DRAFT OF ENVIRONMENTAL IMPACT ASSESSMENT AND

ENVIRONMENT MANAGEMENT PLAN FOR OBTAINING

Environmental Clearance under EIA Notification – 2006

Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY - MINOR MINERAL - CLUSTER - NON-FOREST LAND

CLUSTER EXTENT = 13.50.0 hectares

At

Kamayagoundanpatti Village, Uthamapalayam Taluk,

Theni District, Tamil Nadu State

ToR letter No. Lr. No. SEIAA-TN/F.No.10407/SEAC/ToR- 1616/2023

Dated:06.11.2023

NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

Name and Address	Extent & S.F.No.	Mineral Production
M/s. Annai Sathiya		
Magalir Suya Uthavikuzhu		
Mrs.B.Usha (Leader),	1.00.0 Ha & 1372/1(Part-3)	Rough Stone-53565 m ³
No.49/1, Panjamar Street,		Rough Stone Seeds in
Kamayagoundapatti,		
Uthamapalayam Taluk,		
Theni District -625 516		

ENVIRONMENTAL CONSULTANT

GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. E-mail: info.gtmsdpi@gmail.com,

Website: www.gtmsind.com

NABET ACC. NO: NABET/EIA/2124/SA 0184

Valid till: 02/04/2024

ENVIRONMENTAL LAB

INTERSTELLAR TESTING CENTRE PRIVATE LIMITED

Plot.No.2, Site No.12/2A,

Industrial Estate, Perungudi, Chennai, Tamil Nadu

NABL Certificate Number: TC-6952, Valid Until: 30.07.2024 Baseline Study Period – October 2023 through December 2023

TERMS OF REFERENCE (ToR) COMPLIANCE

ToR issued vide Lr No. SEIAA-TN/F.No.10407/SEAC/ToR-1616/2023 Dated:06.11.2023 for M/s. Annai Sathya Magalir Suya Uthavikuzhu Rough stone Quarry

		_ ·
1	Details of Existing pit dimension, quantity	The details regarding existing pit,
	of the mineral quarried and last transport	quantity of the mineral quarried and last
	permit for the earlier lease period from	transport permit from Dept. Of Geology
	Dept. Of Geology & Mining.	& Mining will be submitted in final EIA
		report.
2	Copy of 'No Objection Certificate' for the	The Copy of 'No Objection Certificate'
	total penalty levied by the concerned	for the total penalty levied by the
	AD/DD, Dept of Geology and Mining, and	concerned AD/DD, Dept of Geology and
	copy of remittance of total penalty by PP.	Mining will be attached in the final EIA
		report.
3	DFO letter regarding proximity of protected	The details of DFO letter are attached in
	areas & reserve forests along with	the Annexure VI.
	conservation measures.	
4	The structures within the radius of (i) 50 m,	There are no structures such as dwelling
	(ii) 100 m, (iii) 200 m and (iv) 300 m shall	houses, places of worship, industries,
	be enumerated with details such as dwelling	factories, sheds, etc. within the radius of
	houses with number of occupants, whether	500m from the proposed project area.
	it belongs to the owner (or) not, place of	The map showing the area of 50m, 100m,
	worship, industries, factories, sheds, etc.	200m, 300m, 500m will be included in
		the final EIA report.
5	The Proponent shall provide a Controlled	A controlled design of blasting has been
	Blast design & Vibration Prediction for the	given in Section 2.6 under Chapter II,
	structures located within 500 m from the	pp.18-25.
	lease boundary and any other sensitive	
	structures.	
6	The project proponent shall furnish details	The photographs of green belt, fencing
	of photographs of adequate barbered	and garland drain will be submitted in the
	fencing, greenbelt and garland drain around	final EIA report.
	the boundary of the proposed quarry.	
7	The Proponent shall submit a conceptual	This project does not require the Slope

quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level. 8 The proponent shall furnish a revised EMP A detailed Environment Management of the proposed shall furnish a revised EMP A detailed Environment Management of the proposed shall furnish a revised EMP A detailed Environment Management of the proposed shall furnish a revised EMP and the proposed shall furnish and the proposed shall furnish a revised EMP and the proposed shall furnish a revised EMP and the proposed shall furnish a revised EMP and the proposed shall furnish a revised EMP and the proposed shall furnish and the proposed shall furnish and the proposed shall furnish a revised EMP and the proposed shall furnish and the proposed shall furnish and the proposed shall furnish and the proposed shall
extended beyond 30 m below ground level. given in the Figure 2.9 under Chapter p.23. 8 The proponent shall furnish a revised EMP A detailed Environment Management
p.23. 8 The proponent shall furnish a revised EMP A detailed Environment Management of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the proponent shall furnish a revised EMP between the proponent of the propone
8 The proponent shall furnish a revised EMP A detailed Environment Managem
budget for entire life of proposed mining Plan has been prepared and provided
including progressive mine closure plan. Tables 10.1 & 10.2 under Chapter
pp.142-147.
9 The PP shall mark the DGPS reference The details of the DGPS reference pil
pillars painted with blue & white colour will be submitted in the final EIA repo
indicating the safety barrier of 7.5 m to be
left under the Rule 13 (1) of MCDR, 1988
within the lease boundary and protective
bunds.
10 The PP shall develop Green belt/plantation The details of green belt/plantation ale
all along the mining lease boundary in a the mine lease area is discussed in
safety barrier. Section 4.6 under Chapter IV, pp.1
112.
11 The PP shall furnish the total manpower Details of manpower required for
required for the proposed mining project project have been given in Table 2
including Statutory officials, Geologist, under Chapter II, p.25.
Supervisory staff, Skilled, Semi-skilled &
Unskilled staff with showing the
representation of the local people as per
their eligibility and experience.
AIYNEXURE-I
1 In the case of existing/operating mines, a letter obtained from the concerned
(Mines) shall be submitted and it shall include the following:
(i) Original pit dimension The details regarding will be submit
(ii) Quantity achieved Vs EC Approved in the final EIA report.

		Quantity	
	(iii)	Balance Quantity as per Mineable	
		Reserve calculated.	
	(iv)	Mined our Depth as on date Vs EC	
		permitted depth	
	(v)	Details of illegal/illicit mining	
	(vi)	Violation in the quarry during the	
		past working.	
	(vii)	Quantity of material mined out	
		outside the mine lease area	
	(viii)	Condition of Safety zone/benches	
	(ix)	Revised/Modified Mining plan	
		showing the benches of not	
		exceeding 6 m height and ultimate	
		depth of not exceeding 50m.	
2	Detail	s of habitations around the proposed	The VAO certificate is attached in
	minin	g area and latest VAO certificate	Annexure – V.
	regard	ling the location of habitations within	
	300m	radius from the periphery of the site	
3	The p	proponent is requested to carry out a	There are no structures such as dwelling
	_	and enumerate on the structures	houses, places of worship, industries,
			factories, sheds, etc. within the radius of
		n, (iii) 200 m, (iv) 300 m, (v) 500 m	500m from the proposed project area.
		details such as dwelling houses with	The map showing the area of 50m, 100m,
		er of occupants, whether it belongs to	200m, 300m, 500m will be included in
		owner or not, places of worship,	the final EIA report.
	indust		
		ting the owner of the building nature	
		astruction, age of the building, number	
		sidents, their profession and income,	
	etc.		
4	The P	P shall submit a detailed hydrological	Details of hydrological survey report are

	report indicating the impact of proposed	enclosed in Chapter III, Section 3.2 Page
	quarrying operations on the water bodies	No. 38-52.
	like lake, water tanks, etc are located within	
	1 km of the proposed quarry.	
5	The proponent shall carry out Bio diversity	The details of Bio diversity will be
	study through reputed institution and the	submitted in the final EIA report.
	same shall be included in EIA Report.	
6	The DFO letter stating that the proximity	The DFO letter is attached in the
	distance of Reserve Forests, Protected	Annexure VI.
	Areas, Sanctuaries, Tiger reserve etc, up to	
	a radius of 25 km from the proposed site.	
7	In the case of proposed lease in an existing	The details regarding will be submitted
	(or old) quarry where the benches are not	in the final EIA report.
	formed (or) partially formed as per the	
	approved mining Plan, the Project	
	Proponent (PP) shall the PP shall carry out	
	the scientific studies to assess the slope	
	stability of the working benches to be	
	constructed and existing quarry wall, by	
	involving any one of the reputed Research	
	and Academic Institutions - CSIR-Central	
	Institute of Mining & Fuel Research /	
	Dhanbad, NIRM/Bangalore, Division of	
	Geotechnical Engineering-IIT-Madras, NIT-	
	Dept of Mining Engg. Surathkal, and Anna	
	University Chennai-CEG Campus. The PP	
	shall submit a copy of the aforesaid report	
	indicating the stability status of the quarry	
	wall and possible mitigation measures	
	during the time of appraisal for obtaining	
	the EC.	
8	However, in case of the fresh/virgin	This project does not require the Slope
	quarries, the Proponent shall submit a	Stability Plan because the quarry was

	conceptual 'Slope Stability Plan' for the	operated only above ground level and the
	proposed quarry during the appraisal while	details regarding the conceptual plan is
	obtaining the EC, when the depth of the	given in the Figure 2.9 & 2.9a under
	working is extended beyond 30 m below	Chapter II, p.23.
	ground level.	
9	The PP Shall furnish the affidavit stating	The affidavit for blasting has been
	that the blasting operation in the proposed	enclosed in the approved mining plan
	quarry is carried out by the statutory	report in Annexure III.
	competent person as per the MMR 1961 such	
	as blaster. mining mate, mine foreman. II/I	
	Class mines manager appointed by the	
	proponent.	
10	The PP shall present a conceptual design for	A conceptual design of blasting has been
	carrying out only controlled blasting	given in Section 2.6 under Chapter II,
	operation involving line drilling and muffle	pp.18-25.
	blasting in the proposed quarry such that the	
	blast-induced ground vibrations are	
	controlled as well as no fly rock travel	
	beyond 30 m from the blast site.	
11	The EIA coordinators shall obtain and	Photographic evidence showing the
	furnish the details of quarry/quarries	project proponent's mining activities
	operated by the proponent in the past, either	shall be submitted in the final EIA report.
	in the same location or elsewhere in the	
	State with video and photographic	
	evidences.	
12	If the proponent has already carried out the m	ining activity in the proposed mining lease
	area after 15.01.2016. then the proponent	shall furnish the following details from
	AD/DD, mines,	
13	What was the period of the operation and	The details regarding will be submitted
	stoppage of the earlier mines with last work	in the final EIA report.
	permit issued by the AD/DD mines?	
14	Quantity of minerals mined out.	

	Highest production achieved in any	
	one year	
	Detail of approved depth of mining.	
	Actual depth of the mining achieved	
	earlier.	
	• Name of the person already mined in	
	that lease area.	
	• If EC and CTO already obtained, the	
	copy of the same shall be submitted.	
	Whether the mining was carried out	
	as per the approved mine plan (or	
	EC if issued) with stipulated	
	benches.	
15	All corner coordinates of the mine lease	All corner coordinates of the mine lease
	area. superimposed on a High-Resolution	area have been superimposed on a high-
	Imagery/Toposheet, topographic sheet,	resolution Google Earth Image, as shown
	geomorphology, lithology and geology of	in Figure 2.4, p.13 under Chapter II.
	the mining lease area should be provided.	
	Such an Imagery of the proposed area	
	should clearly show the land use and other	
	ecological features of the study area (core	
	and buffer zone).	
16	The PP shall carry out Drone video survey	The drone video will be submitted during
	covering the cluster, green belt, fencing etc.,	final EIA presentation.
17	The proponent shall furnish photographs of	Photographs of adequate fencing, green
	adequate fencing, green belt along the	belt along the periphery of the project
	periphery including replantation of existing	area and the photographs showing nearby
	trees & safety distance between the adjacent	water bodies will be included in final
	quarries & water bodies nearby provided as	EIA report.
	per the approved mining plan.	
18	The Project Proponent shall provide the	The Resources and Reserves of Rough
	details of mineral reserves and mineable	Stone were calculated based on cross-

reserves, planned production capacity, proposed working methodology with justifications, The anticipated impacts of the mining operations on the surrounding environment, and the remedial measures for The same.

section method by plotting sections to cover the maximum lease area for the proposed project.

The plate used for reserve estimation has been presented in Figure 2.6 and 2.6a results of geological resources and reserves have been shown in Table 2.3. under Chapter II. Pp.12-26.

Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of Mines Act, 1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.

Details of manpower required for this project have been given in Table 2.14 under Chapter II, p.16.

The Project Proponent shall conduct the hydro-geological study considering contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD/ TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly - be shown whether working will intersect groundwater, Necessary data and documentation in this regard may be provided.

Detailed hydrogeological study was carried out. The results have been discussed Section 3.2 under Chapter III, pp.38-52.

The proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauna including traffic/vehicular movement study.

The baseline data were collected for the environmental components including land, soil, water, air, noise, biology, socio-economy, and traffic and the results have been discussed under Chapter III, pp. 26-92.

22 shall The Proponent the carry Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.

Results of cumulative impact study due to mining operations are given in Section 7.4 under Chapter VII, pp.127-135.

Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted.

As part of rainwater harvesting measures, the rain water from garland drainage system will be diverted to nearby check dams after treating the water in settling tanks.

Land use of the study area delineating forest area, agricultural land, gazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.

Land use of the study area delineating forest area, agricultural land2grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features has been discussed in Section 3.1, pp.27-37 under Chapter III. The details of surrounding sensitive ecological features have been provided in Table 3.39 under Chapter III, p.89. Land use plan of the project area showing pre-

		operational, operational and post-
		operational phases are discussed in Table
2.5		2.8 under Chapter II, p.21.
25	Details of the land for storage of	This condition is not applicable to this
	Overburden/Waste Dumps (or) Rejects	project because no dumps have been
	outside the mine lease. such as extent of	proposed outside the lease area.
	land area, distance from mine lease' its land	
	use, R&R issues. If any, should be	
	provided.	
26	Proximity to Areas declared as 'Critically	Not Applicable.
	Polluted, (or) the project areas which	Project area / Study area is not declared
	attracts the court restrictions for mining	in 'Critically Polluted' Area and does not
	operations. Should also be indicated and	come under 'Aravalli Range.
	where so required. Clearance certifications	come under Aravam Range.
	from the prescribed Authorities, such as the	
	TNPCB (or) Dept. of Geology and Mining	
	should be secured and furnished to the	
	effect that the proposed mining activities	
	could be considered.	
27	Description of water conservation measures	As part of rainwater harvesting measures,
·	proposed to be adopted in the Project should	the rain water from garland drainage
	be given. Details of rainwater harvesting	system will be diverted to nearby check
	proposed in the Project, if any, should be	dams after treating the water in settling
	provided.	tanks.
28	Impact on local transport infrastructure due	Details regarding the impact of the
20		
	to the project should be indicated.	project on traffic are given in Section 3.7
		under Chapter III, pp.86-88.
29	A tree survey study shall be carried out	A detailed tree survey was caried out
	(nos., name of the species, age, diameter	within 300 m radius and the results have
	etc,) both within the mining lease applied	been discussed in Section 3.5 under
	area & 300m buffer zone and its	Chapter III, pp.67-82.
	management during mining activity.	
30	A detailed mine closure plan for the	A progressive mine closure plan has been

	proposed project shall be included in	attached with the approved mining plan
	EIA/EMP report which should be site-	report in Annexure III. The budget
	specific.	details for the progressive mine closure
		plan are shown in Table 2.9 under
		Chapter II, p.21.
31	As a part of the study of flora and fauna	The EIA coordinator and the FAE for
	around the vicinity of the proposed site, the	ecology and biodiversity visited the study
	EIA coordinator shall strive to educate the	area and educated the local students
	local students on the importance of	about the importance of protecting the
	preserving local flora and fauna by	biological environment.
	involving them in the study, wherever	
	possible.	
32	The purpose of green belt around the project	A detailed greenbelt development plan
	is to capture the fugitive emissions, carbon	has been provided in Section 4.6 under
	sequestration and to attenuate the noise	Chapter IV, pp.107-112.
	generated, in addition to improving the	
	aesthetics A wide range of indigenous plant	
	species should be planted as given in the	
	appendix-I in consultation with the DFO,	
	State Agriculture University and local	
	school/college authorities. The plant species	
	with dense/moderate canopy of native origin	
	should be chosen. Species of	
	small/medium/tall trees alternating with	
	shrubs should be planted in a mixed	
	manner.	
33	Taller/one year old Saplings raised in	The FAE of ecology and biodiversity has
	appropriate size of bags, preferably eco-	advised the project proponent that
	friendly bags should be planted as per the	saplings of one year old raised in the eco-
	advice of local forest authorities,	friendly bags should be purchased and
	botanist/Horticulture with regard to site	planted with the spacing of 3 m between
	specific choices. The proponent shall	each plant around the proposed project
	earmark the greenbelt area with GPS	area as per the advice of local forest

	coordinates all along the boundary of the	authorities/botanist.
	project site with at least 3 meters wide and	
	in between blocks in an organized manner.	
34	A Disaster management plan shall be	A disaster management plan for the
	prepared and included in the EIA/EMP	project has been provided in Section 7.2
	Report for the complete life of the proposed	under Chapter VII, pp.126-127.
	quarry (or) till the end of the lease period.	
35	A Risk Assessment and management plan	A risk assessment plan for the project has
	shall be prepared and included in the	been provided in Section 7.1 under
	EIA/EMP Report for the complete life of	Chapter VII, pp.123-125.
	the proposed quarry (or) till the end of the	
	lease period.	
36	Occupational Health impacts of the Project	Occupational health impacts of the
	should be anticipated and the proposed	project and preventive measures have
	preventive measures spelt out in detail.	been discussed in detail in Section 4.8
	Details of pre-placement medical	under Chapter IV, pp.113 & 114.
	examination and periodical medical	
	examination schedules should be	
	incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities proposed	
	in the mining area may be detailed.	
37	Public health implications of the Project and	No public health implications are
	related activities for the population in the	anticipated due to this project. Details of
	impact zone should be systematically	CSR and CER activities have been
	evaluated and the proposed remedial	discussed in Sections 8.6 and 8.7 under
	measures should be detailed along with	Chapter VIII, pp.138 & 139.
	budgetary allocations.	
38	The Socio-economic studies should be	No negative impact on socio-economic
	carried out within a 5 km buffer zone from	environment of the study area is
	the mining activity. Measures of socio-	anticipated and this project shall benefit
	economic significance and influence to the	the socio-economic environment by
	local community proposed to be provided	offering employment for 15 people

	by the Project Proponent should be	directly as discussed in Section 8.1 under
	indicated. As far as possible, quantitative	Chapter VIII, p.137.
	dimensions may be given with time frames	
	for implementation.	
39	Details of litigation pending against the	No litigation is pending in any court
	project, if any, with direction /order passed	against this project.
	by any Court of Law against the Project	
	should be given.	
40	Benefits of the Project if the Project is	Benefits of the project details have been
	implemented should be spelt out. The	given under Chapter VIII, pp.137-139.
	benefits of the Project shall clearly indicate	
	environmental, social, economic,	
	employment potential, etc.	
41	If any quarrying operation were carried out	CCR is not required because the previous
	in the proposed quarrying sile for which	Environment Clearance is not obtained,
	now the EC is sought, the Project Proponent	
	shall furnish the detailed compliance to EC	
	conditions given in the previous EC with	
	the site photographs which shall duly be	
	certified by MoEF & CC, Regional Office,	
	Chennai (or) the concerned DEE/TNPCB.	
42	The PP Shall prepare the EMP for the entire	A detailed environment management
	life/lease period of mine and also Furnish	plan has been prepared following the
	the sworn affidavit starting to Abide the	suggestion made by SEAC, as shown in
	EMP for the entire life of mine.	Chapter X, pp.141-147. The sworn
		affidavit stating to abide the EMP for the entire life of mine will be submitted
		during final EIA presentation.
43	Concealing any factual information or	The EIA report has been prepared
	submission of false/fabricated data and	keeping in mind the fact that concealing
	failure to comply with any of the conditions	any factual information or submission of
	mentioned above may result in withdrawal	false/fabricated data and failure to
	of this Terms of Conditions besides	comply with any of the conditions mentioned above may lead to withdrawal

	attracting penal provisions in the	of this terms of reference besides
	Environment (Protection) Act' 1986.	attracting penal provisions in the
		Environment (Protection) Act, 1986.
	Remarks by SEIAA:	
	The subject was placed in the 670h authority	meeting held on 06.11.2023. The authority
	after detailed discussion accepts the recomm	endation of SEAC in its 416fi meeting of
	SEAC held on 13.10.2023. SEAC has fur	nished its recommendations for granting
	Terms of Reference (ToR) along with Publ	ic Hearing subject to the conditions stated
	therein	
	After detailed discussions, the Authority ac	ecepts the recommendation of SEAC and
	decided to grant Terms of Reference (ToR)	along with Public Hearing under cluster
	for undertaking the combined Environment	Impact Assessment Study and preparation
	of separate Environment Management Plan	subject to the conditions as recommended
	by SEAC & normal conditions in addition	to the conditions in 'Annexure B' of this
	minute. The proponent shall furnish report on	biodiversity study
1	The Proponent shall furnish report on	The ecological details have been
	biodiversity study.	provided in Section 3.5 under Chapter
		III, pp.67-85
2	The proponent shall furnish report impact	The matter has been discussed in Chapter
	on agriculture & livelihood, impact free	IV, pp.93-116.
	ranging wildlife, impact on water table	
	including date of annual rainfall, drainage	
	pattern, temperatures, & Climate change in	
	regard to the proposed mining activity.	
3	The proponent shall furnish NOC from	The NOC from Agricultural Department
	Agricultural Department and Chief Wild	and Chief Wildlife Warden will be
	Life Warden	enclosed in the final EIA report.
4	The DFO letter stating that the proximity	Details of DFO letter will be attached in
	distance of Reserve Forests, Protected	the final EIA letter.
	Areas, Sanctuaries. Tiger reserve etc., up to	
	a radius of 25 km from the proposed site	
	Annexu	re 'B'
	Cluster Managem	nent Committee

1	Cluster Management Committee shall be	A cluster management committee
	framed which must include all the	including all the proponents of the rough
	proponents in the cluster as members	stone quarrying projects within the
	including the existing as well as proposed	cluster of 500 m radius will be
	quarry.	constituted for the effective
		implementation of green belt
		development plan, water sprinkling,
		blasting, etc.
2	The members must coordinate among	The members of the cluster management
	themselves for the effective implementation	committee will be instructed to carry out
	of EMP as committed including Green Belt	EMP in coordination.
	Development Water sprinkling, tree	
	plantation, blasting etc.,	
3	The List of members of the committee	The list of members of the committee
	formed shall be submitted to AD/Mines	formed will be submitted to AD/Mines
	before the execution of mining lease and the	before the execution of mining lease.
	same shall be updated every year to the	
	AD/Mines.	
4	Detailed Operational Plan must be	All the information has been discussed in
	submitted which must include the blasting	Section 2.6 under Chapter II, pp.18-25.
	frequency with respect to the nearby quarry	
	situated in the cluster, the usage of haul	
	roads by the individual quarry in the form of	
	route map and network.	
5	The committee shall deliberate on risk	It will be informed to the committee.
	management plan pertaining to the cluster in	
	a holistic manner especially during natural	
	calamities like intense rain and the	
	mitigation measures considering the	
	inundation of the cluster and evacuation	
	plan.	
6	The Cluster Management Committee shall	It will be advised to the cluster
	form Environmental Policy to practice	management committee to practice

	sustainable mining in a scientific and	sustainable mining in a scientific and
	systematic manner in accordance with the	systematic manner in accordance with
	law. The role played by the committee in	the law. The role played by the
	implementing the environmental policy	committee in implementing the
	devised shall be given in detail.	environmental policy devised will be
		given in detail.
7	The committee shall furnish action plan	A proper action plan regarding the
	regarding the restoration strategy with	restoration will be followed by the
	respect to the individual quarry falling	committee.
	under the cluster in a holistic manner.	
8	The committee shall furnish the Emergency	The committee will submit the
	Management plan within the cluster.	emergency management plan to the
		respective authority in the stipulated time
		period.
9	The committee shall deliberate on the health	The information on the health of the
	of the workers/staff involved in the mining	workers and the local people will be
	as well as the health of the public.	updated periodically.
10	The committee shall furnish an action plan	A proper action plan with reference to
	to achieve sustainable development goals	water, sanitation & safety will be devised
	with reference to water, sanitation & safety.	and submitted by the committee to the
		respective authority.
11	The committee shall furnish the fire safety	The committee will submit the fire safety
	and evacuation plan in the case of fire	and evacuation plan as discussed in
	accidents.	Section 7.2 under Chapter VII, pp.123-
		125.
	Impact study	of Mining
12	Detailed study shall be carried out in regard	to impact of mining around the proposed
	mine lease area covering the entire mine lease	e period as per precise area communication
	order issued from reputed research institutions	s on the following
	a) Soil health & soil biological,	Soil health and biodiversity have been
	physical land chemical features.	discussed in Sections 3.1 and 3.5
		respectively under Chapter III, pp.27-37

			& pp.67-82.
	b)	Climate change leading to Droughts,	Climatic condition of the proposed
		Floods etc.	project area has been discussed in
			Section 3.3.1.1 under Chapter III, pp.52-
			53.
	c)	Pollution leading to release of	The information about CO ₂ emission has
		Greenhouse gases (GHG), rise in	been added to Section 4.6 under Chapter
		Temperature, & Livelihood of the	IV, pp.107-112.
		local People.	
	d)	Possibilities of water contamination	Possibilities of both surface and ground
		and impact on aquatic ecosystem	water contamination have been discussed
		health.	in Section 4.3 under Chapter IV, pp.94 &
			95. The impact on aquatic species has
			been discussed in Section 4.6 under
			Chapter IV, pp. 107-112.
	e)	Agriculture, Forestry, & Traditional	Sorgum, millet, groundnut, and coconut
		practices.	are the primary crops that are cultivated
			in the study area.
	f)	Hydrothermal/Geothermal effect due	The average geothermal gradient of earth
		to destruction in the Environment.	is 25°C/km. As the proposed depth of
			mining is 70 m below the local ground
			level, the temperature will increase by
			1.75°C at the depth of mining.
	g)	Bio-geochemical processes and its	Data is not included.
		foot prints including environmental	
	1	stress.	
	h)	Sediment geochemistry in the	The details of sediment geochemistry is
		surface streams.	discussed in the Table 3.4 under Chapter
			III, p.34.
1.5	-	Agriculture & Ag	•
13	_	et on surrounding agricultural fields	There shall be negligible air emissions or
	aroun	d the proposed mining area.	effluents from the project site. During

		loading the truck, dust generation will be
		likely. This shall be a temporary effect
		and not anticipated to affect the
		surrounding vegetation significantly, as
		shown in Section 4.6 under Chapter IV,
		pp. 107-112.
14	Impact on soil flora & vegetation around the	The details on flora have been provided
	project site.	in Section 3.5 under Chapter III, pp.67-
		85. There is no schedule I species of
		animals observed within study area as
		per Wildlife Protection Act, 1972 and no
		species falls in vulnerable, endangered or
		threatened category as per IUCN. There
		is no endangered red list species found in
		the study area.
15	Details of type of vegetations including no.	Details of vegetation in the lease area
	of trees & shrubs within the proposed	have been provided in Section 3.5 under
	mining area shall be given and if so,	Chapter III, pp.67-85. Details about
	transplantation of such vegetations all along	transplantation of plants have been
	the boundary of the proposed mining area	provided in Section 4.6 under Chapter
	shall committed mentioned in EMP.	IV, pp. 107-112.
16	The Environmental Impact Assessment	The ecological details have been
	should study the biodiversity, the natural	provided in Section 3.5 under Chapter
	ecosystem, the soil micro flora, fauna and	III, pp.67-85 and measures have been
	soil seed banks and suggest measures to	provided in Section 4.6 under Chapter
	maintain the natural Ecosystem.	IV, pp.107-112.
17	Action should specifically suggest for	All the essential environmental
	sustainable management of the area and	protective measures will be followed by
	restoration of ecosystem for flow of goods	the proponent to manage the surrounding
	and services.	environment and restore the ecosystem,
		as discussed in Chapter IV, pp.93-116.
18	The project proponent shall study and	The impact of project on the land
	furnish the impact of project on plantations	environment has been discussed in
		yvii

	in adjoining patta lands, Horticulture,	Section 4.1 under Chapter IV, p.93.
	Agriculture and livestock.	
	Fore	sts
19	The project proponent shall study on impact	The project proponent shall do barbed
	of mining on Reserve forests free ranging	wire fencing work and develop a green
	wildlife.	belt around the lease area to prevent
		wildlife from entering the site.
20	The Environmental Impact Assessment	The impacts of the project on ecology
	should study impact on forest, vegetation,	and biodiversity have been discussed in
	endemic, vulnerable and endangered	Section 4.6 under Chapter IV, pp. 107-
	indigenous flora and fauna.	112.
21	The Environmental Impact Assessment	The impacts of the project on standing
	should study impact on standing trees and	trees and the existing trees have been
	the existing trees should be numbered and	discussed in Section 4.6 under Chapter
	action suggested for protection.	IV, pp.107-112.
22	The Environmental Impact Assessment	The protected areas, National Parks,
	should study impact on protected areas,	Corridors and Wildlife pathways near
	Reserve Forests, National parks, corridors	project site within 10 km radius has been
	and wildlife pathways, near project site.	provided in Table 3.39 under Chapter III,
		p.89-90.
	Water Envi	ronment
23	Hydro-geological study considering the	Detailed hydrogeological study was
	contour map of the water table detailing the	carried out. The results have been
	number of ground water pumping & open	discussed Section 3.2 under Chapter III,
	wells, and surface water bodies such as	pp.38-52.
	rivers, tanks, canals, ponds etc. within 1 km	
	(radius) so as to assess the impacts on the	
	nearby waterbodies due to mining activity.	
	Based on actual monitored data, it may	
	clearly be shown whether working will	
	intersect groundwater. Necessary data and	
	documentation in this regard may be	

	provided, covering the entire mine lease	
	period.	
24	Erosion control measures.	Garland drainage structures will be
		constructed around the lease area to
		control the erosion, as discussed in
		Section 4.3 under Chapter IV, pp.94 &
		95.
25	Detailed study shall be carried out in regard	The matter has been discussed under
	to impact of mining around the proposed	Chapter IV, pp.93-116.
	mine lease area on the nearby villages,	
	waterbodies/rivers & any ecological fragile	
	areas.	
26	The project proponent shall study impact on	An analysis for food chain in aquatic
	fish habitats and the food WEB/food chain	ecosystem has been discussed in Section
	in the water body and Reservoir.	3.5 under Chapter 3, pp. 67-85.
27	The project proponent shall study and	The impacts of the proposed project on
	furnish the details on potential	the surrounding environment have
	fragmentation impact on natural	discussed in Chapter IV, pp. 93-116.
	environment, by the activities.	
28	The project proponent shall study and	The impact of the proposed project on
	furnish the impact on aquatic plants and	aquatic plants and animals in water
	animals in water bodies and possible scars	bodies has been discussed in Section 4.6
	on the landscape, damages to nearby caves,	under Chapter IV, pp. 107-112.
	heritage site, and archaeological sits	
	possible land form changes visual and	
	aesthetic impacts.	
29.	The Terms of Reference should	The impact of mining on soil
	specifically study impact on soil health, soil	environment has been discussed in
	erosion, the soil physical, chemical	Section 4.2 under Chapter IV, p.94.
	components.	
30	The Environmental Impact Assessment	The impacts on water bodies, streams,
	should study on wetlands, water bodies,	lakes have been discussed in Section 4.3
30	The Environmental Impact Assessment	

	rivers streams, lakes and farmer sites.	under Chapter IV, pp.94 & 95.	
	Energy		
31	The measures taken to control Noise, Air,	The measures taken to control noise, air,	
	water, Dust control and steps adopted to	water, and dust have been given under	
	efficiently utilise the Energy shall be	Chapter IV, pp. 93-116.	
	furnished.		
	Climate Cha	ange	
32	The Environmental Impact Assessment	The carbon emission and the measures to	
	shall study in detail the carbon emission and	mitigate carbon emission have been	
	also suggest the measures to mitigate carbon	discussed in Section 4.6 under Chapter	
	emission including development of carbon	IV, pp. 107-112.	
	sinks and temperature reduction including		
	control of other emission and climate		
	mitigation activities.		
33	The Environmental Impact Assessment	The matter has been discussed in Chapter	
	should study impact on climate change,	IV, pp.93-116.	
	temperature rise, pollution and above soil &		
	below soil carbon stock.		
	Mine Close	ure Plan	
34	Detailed Mine closure plan covering the	A progressive mine closure plan has been	
	entire mine lease period as per precise area	attached with the approved mining plan	
	communication order issued.	report in Annexure III. The budget	
		details for the progressive mine closure	
		plan are shown in Table 2.9 under	
		Chapter II, p.21.	
	EM	P	
35	Detailed Environment Management plan	A detailed Environment Management	
	along with adaptation, mitigation &	plan has been given under Chapter X,	
	remedial strategies covering the entire mine	pp.141-147.	
	lease period as per precise area		
	communication order issued.		
36	The Environmental Impact Assessment	A detailed Environment Management	

should hold detailed study on EMP with plan has been given in Tables 10.1 & budget for green belt development and mine 10.2 under Chapter X, pp.142-147. closure plan including disaster management plan. **Risk Assessment** 37 To furnish risk assessment and management The risk assessment and management plan including anticipated vulnerabilities plan for this project has been provided in during operational and post operational Section 7.2 under Chapter VII, pp.123-125. phases of Mining. **Disaster Management Plan** 38 To furnish disaster management plan and The disaster management plan for this disaster mitigation measures in regard to all project has been provided in Section 7.2 aspects to avoid/reduce vulnerability to under Chapter VII, pp.126-127. hazards & to cope with disaster/untoward accidents in & around the proposed mine lease area due to the proposed method of mining activity & its related activities covering the entire mine lease period as per precise area communication order issued. **Others** The VAO certificate of 300 m radius 39. The project proponent shall furnish VAO certificate with reference to 300 m radius have been attached in the attached in the regard to approved habitations, schools, Annexure V. Archaeological sites, structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, river, lake pond, tank etc. 40 MoEF & CCAs per the office The concerns raised during the public F.No.22-65/2017-IA.III memorandum consultation is submitted in final EIA dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management plan.

The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.

The matter on plastic waste management has been given in Section 7.5 under Chapter VII, pp.135-136.

STANDARD TERMS OF REFERENCE

1. Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.

Not applicable. This is not a violation category project. This proposal falls under B1 category.

2. A copy of the document in support of the fact that the proponent is the rightful lessee of the mine should be given.

The proposed site for quarrying is a private land. A copy of the document showing that the proponent is the rightful lessee has been enclosed along with the approved mining plan in Annexure III.

3. All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.

All the documents related to mining plan, EIA and public hearing are compatible to each other and have been provided in the annexure part.

4. All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagery/ toposheet, topographic sheet, geomorphology and geology of the area

All corner coordinates of the mine lease area have been superimposed on a high-resolution Google Earth Image, as shown in Figure 2.4, p.13 under Chapter II.

should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone). Information should be provided in Survey Toposheets of Survey of India have been of India Toposheet in 1:50,000 scale used for showing sampling locations of indicating geological map of the area, air, soil, water, and noise, as shown in geomorphology of land forms of the area, Chapter III. existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics. Details about the land proposed for mining The lease area was inspected by the activities should be given with information officers of Department of Geology along as to whether mining conforms to the land with revenue officials and found that the use policy of the State; land diversion for land is fit for quarrying under the policy of State Government. mining should have approval from State land use board or the concerned authority. 7. It should be clearly stated whether the The framed proponent has proponent Company has a well laid down Environmental Policy and the same has been discussed in Section 10.1 under Environment Policy approved by its Board of Directors? If so, it may be spelt out in the Chapter X, p.141 & 147. Report with description of the EIA prescribed operating process/ procedures to focus bring into any infringement/ deviation/ violation of the environmental or forest norms/conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or

	shareholders or stakeholders at large, may	
	also be detailed in the EIA Report.	
8.	Issues relating to Mine Safety, including	It is an opencast quarrying operation
	subsidence study in case of underground	proposed to operate in Manual method.
	mining and slope study in case of open cast	The rough stone formation is a hard,
	mining, blasting study etc. should be	compact and homogeneous body. The
	detailed. The proposed safeguard measures	height and width of the bench will be
	in each case should also be provided.	maintained as 5m with 90° bench angles.
		Quarrying activities will be carried out
		under the supervision of Competent
		Persons like Mines Manager, Mines
		Foreman and Mining Mate. Necessary
		permissions will be obtained from
		DGMS after obtaining Environmental
		Clearance.
9.	The study area will comprise of 10 km zone	The study area considered for this study
	around the mine lease from lease periphery	is of 5 km radius for air, soil, water, and
	and the data contained in the EIA such as	noise level sample collections, while the
	waste generation etc., should be for the life	study area is 10 km radius for ecology
	of the mine / lease period.	and biodiversity studies and all data
	1	contained in the EIA report such as waste
		generation etc., is for the life of the mine
		/ lease period.
10.	Land use of the study area delineating forest	Land use of the study area delineating
100	area, agricultural land, grazing land, wildlife	forest area, agricultural land, grazing
	area, agriculturar lanu, grazing lanu, whullte	Torest area, agriculturar failu, grazilig

area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if

Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features has been discussed in Section 3.1, pp.27-37 under Chapter III. The details of surrounding sensitive ecological features have been provided in

11.	any, of change of land use should be given. Details of the land for any over burden dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given	Table 3.39 under Chapter III, p.89-90. Land use plan of the project area showing pre-operational, operational and post-operational phases are discussed in Table 2.8 under Chapter II, p.21. It is not applicable as no dumps have been proposed outside the lease area. The entire quarried out rough stone will be transported to the needy customers.
12.	Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal	It is not applicable as there is no forest land involved within the proposed project area. The details have been discussed in Table 3.39 under Chapter III, p.89-90.
13.	Status of forestry clearance for the broken- up area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.	It is not applicable as the proposed project area does not involve any forest land.

14. Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.

Not Applicable.

The project doesn't attract Recognition of Forest Rights Act, 2006 as there are neither forests nor forest dwellers / forest dependent communities in the mine lease area. There shall be no forest impacted families (PF) or people (PP). Thus, the rights of Traditional Forest Dwellers will not be compromised on account of the project.

15. The vegetation in the RF / PF areas in the study area, with necessary details, should be given.

No Reserve Forest is found within the study area. The matter has been discussed Table 3.39 under Chapter III, pp.93.

16. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.

There is no any wildlife/protected area in the mine lease area. The details regarding wildlife/protected area within 10 km radius from the periphery of the project area. has been given in Table 3.39 under Chapter III, pp.89-90. Flora and fauna details attached in Annexure IV

17. Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as

The details National Parks, Biosphere Reserves, Wildlife Corridors, and Tiger/Elephant Reserves within 10 km radius from the periphery of the project area has been given in Table 3.39 under Chapter III, p.89-90.

	mentioned above, should be obtained from	
	the Standing Committee of National Board	
	of Wildlife and copy furnished	
18.	A detailed biological study of the study area	A detailed biological study was carried
	[core zone and buffer zone (10 KM radius	out in both core and buffer zones and the
	of the periphery of the mine lease)] shall be	results have been discussed in Section
	carried out. Details of flora and fauna,	3.5 under Chapter III, pp. 67-85.
	endangered, endemic and RET Species duly	
	authenticated, separately for core and buffer	
	zone should be furnished based on such	
	primary field survey, clearly indicating the	
	Schedule of the fauna present. In case of	
	any scheduled-I fauna found in the study	
	area, the necessary plan along with	
	budgetary provisions for their conservation	
	should be prepared in consultation with	
	State Forest and Wildlife Department and	
	details furnished. Necessary allocation of	
	funds for implementing the same should be	
	made as part of the project cost.	
19.	Proximity to Areas declared as 'Critically	Not Applicable.
	Polluted' or the Project areas likely to come	Project area / Study area is not declared
	under the 'Aravalli Range', (attracting court	in 'Critically Polluted' Area and does not
	restrictions for mining operations), should	come under 'Aravalli Range.
	also be indicated and where so required,	S
	clearance certifications from the prescribed	
	Authorities, such as the SPCB or State	
	Mining Department should be secured and	
	furnished to the effect that the proposed	
	mining activities could be considered.	
20.	Similarly, for coastal Projects, A CRZ map	Not Applicable
	duly authenticated by one of the authorized	The project doesn't attract the C.R.Z.
	agencies demarcating LTL. HTL, CRZ area,	Notification, 2018.
1		

location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).

Not Applicable. R&R Plan/compensation details for the

21. Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need-based sample survey, family-wise, should be undertaken to assess their requirements, action and programmes submitted prepared and accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.

There are no approved habitations of SCs/STs and other weaker sections in the lease area. Therefore, R&R Plan / Compensation Plan for the Project Affected People (PAP) are not provided.

22. One season (non-monsoon) [i.e., March-May (Summer Season); October-December (post monsoon season); December-February (winter season)] primary baseline data on ambient **CPCB** air quality as per Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so

Baseline data were collected for the period of October 2023 - December 2023 as per CPCB notification and MoEF & CC Guidelines. Primary baseline data and the results have been included in Sections 3.1-3.8 under Chapter III, pp. 27-90.

compiled presented date-wise in the EIA Site-specific and **EMP** Report. meteorological data should also he collected. The location of the monitoring stations should be such as to represent whole of the study area and justified in view the keeping pre-dominant downwind direction and location sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.

given.

23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modelling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive

Air quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view 11.2.0. The model results have been given in Section 4.4 under the Chapter IV, pp.95-102.

24. The water requirement for the project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the project should be indicated.

receptors, if any, and the habitation. The

wind roses showing pre-dominant wind

direction may also be indicated on the map.

The water requirement for the project, its availability and source have been provided in Table 2.11 under Chapter II, p.24.

Not Applicable. 25. Necessary clearance from the competent Authority for drawl of requisite quantity of Water for dust suppression, greenbelt water for the project should be provided. development and domestic use will be sourced accumulated from rainwater/seepage water in mine pits and purchased from local water vendors through tankers daily water requirement basis. Drinking water will be sourced from the approved water vendors. Description of water conservation measures Part of the working pit will be allowed to 26. proposed to be adopted in the Project should collect rain water during the spell of rain. be given. Details of rainwater harvesting The water thus collected will be used for proposed in the Project, if any, should be development greenbelt and dust provided. suppression. The mine closure plan has prepared for converting excavated pit into rain water harvesting structure and serve as water reservoir for the project village during draught season. 27. Impact of the Project on the water quality, Impact studies and mitigation measures both surface and groundwater, should be of water environment including surface assessed and necessary safeguard measures, water and ground water have been if any required, should be provided. discussed in Section 4.3 under Chapter IV, pp. 94 & 95. Not Applicable. 28. Based on actual monitored data, it may clearly be shown whether working will The ground water table is found at the intersect groundwater. Necessary data and depth of 60 m below ground level. The documentation in this regard may be ultimate depth of quarry is 70m (65m provided. In case the working will intersect above ground level & 5m below ground groundwater table, a detailed Hydro level). Therefore, the mining activity will Geological Study should be undertaken and not intersect the ground water table. Data Report furnished. The Report inter-alia, regarding the occurrence of groundwater

shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.

Details of any stream, seasonal or

table have been provided in Section 3.2 under Chapter III, pp.38-52.

29. Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.

Not Applicable.

There are no streams, seasonal or other water bodies passing within the project area. Therefore, no modification or diversion of water bodies is anticipated.

30. Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and BGL. A schematic diagram may also be provided for the same.

The highest elevation of the project area is 585 m AMSL. Ultimate depth of the mine is 70m (65m above ground level & 5m below ground level). Depth to the water level in the area is 60 m BGL.

31. Α time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phasewise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the

Greenbelt development plan has been given in Section 4.6 under Chapter IV, pp.107-112.

	local population with emphasis on local and	
	native species and the species which are	
	tolerant to pollution.	
32.	Impact on local transport infrastructure due	Traffic density survey was carried out to
	to the Project should be indicated. Projected	analyse the impact of transportation in
	increase in truck traffic as a result of the	the study area as per IRC guidelines 1961
	Project in the present road network	and it is inferred that there is no
	(including those outside the Project area)	significant impact due to the proposed
	should be worked out, indicating whether it	transportation from the project area.
	is capable of handling the incremental load.	Details have been provided in Section 3.7
	Arrangement for improving the	under Chapter III, p.86 & 88.
	infrastructure, if contemplated (including	
	action to be taken by other agencies such as	
	State Government) should be covered.	
	Project Proponent shall conduct Impact of	
	Transportation study as per Indian Road	
	Congress Guidelines.	
33.	Details of the onsite shelter and facilities to	Infrastructure & other facilities will be
	be provided to the mine workers should be	provided to the mine workers after the
	included in the EIA Report.	grant of quarry lease and the same has
		been discussed in Section 2.6.7 under
		Chapter II, p.24.
34.	Conceptual post mining land use and	Progressive mine closure plan has been
	Reclamation and Restoration of mined out	prepared for this project and is given in
	areas (with plans and with adequate number	Section 2.6.4 under Chapter II, p.21.
	of sections) should be given in the EIA	
	report.	
35.		0 . 1 1 1 1 1
1	Occupational Health impacts of the Project	Occupational health impacts of the
	Should be anticipated and the proposed	project and preventive measures have
	should be anticipated and the proposed	project and preventive measures have
	should be anticipated and the proposed preventive measures spelt out in detail.	project and preventive measures have been explained in detail in Section 4.8

	incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities proposed	
	in the mining area may be detailed.	
36.	Public health implications of the Project and	No public health implications are
	related activities for the population in the	anticipated due to this project. Details of
	impact zone should be systematically	CSR and CER activities have been
	evaluated and the proposed remedial	discussed in Sections 8.6 and 8.7 under
	measures should be detailed along with	Chapter VIII, pp.138 & 139.
	budgetary allocations.	
37.	Measures of socio-economic significance	No negative impact on socio-economic
	and influence to the local community	environment of the study area is
	proposed to be provided by the Project	anticipated and this project shall benefit
	Proponent should be indicated. As far as	the socio-economic environment by
	possible, quantitative dimensions may be	offering employment for 15 people
	given with time frames for implementation.	directly as discussed in Section 8.1 under
		Chapter VIII, p.137.
38.	Detailed environmental management plan	A detailed Environment Management
	(EMP) to mitigate the environmental	Plan has been prepared and provided in
	impacts which, should inter-alia include the	Tables 10.1 & 10.2 under Chapter X,
	impacts of change of land use, loss of	pp.142-147.
	agricultural and grazing land, if any,	
	occupational health impacts besides other	
	impacts specific to the proposed Project.	
39.	Public Hearing points raised and	The outcome of public hearing has been
	commitment of the Project Proponent on the	updated in the final EIA/EMP report
	same along with time bound Action Plan	-
	with budgetary provisions to implement the	
	same should be provided and also	
	incorporated in the final EIA/EMP Report	
	of the Project.	
40.	Details of litigation pending against the	No litigation is pending in any court
	project, if any, with direction /order passed	against this project.
	by any Court of Law against the Project	

	should be given.	
41	The cost of the Project (capital cost and	Project Cost is Rs.62,00,832/-
	recurring cost) as well as the cost towards	CER Cost is Rs. 5,00,000/-
	implementation of EMP should be clearly	In order to implement the environmental
	spelt out.	protection measures, an amount of
		Rs.1982085 as capital cost and recurring
		cost as Rs.1213482 as recurring
		cost/annum is proposed considering
		present market price considering present
		market scenario for the proposed project.
		After the adjustment of 5% inflation per
		year, the overall EMP cost for 5 years
		will be Rs.8721339, as shown in Tables
		10.1 & 10.2 under Chapter X, pp.142-
		147.
42	A disaster management Plan shall be	The disaster management plan for this
	prepared and included in the EIA/EMP	project has been provided in Section 7.3
	Report.	under Chapter VII, pp.126-127.
43.	Benefits of the Project if the Project is	Benefits of the project details have been
	implemented should be spelt out. The	given under Chapter VIII, pp.137-139.
	benefits of the Project shall clearly indicate	
	environmental, social, economic,	
	employment potential, etc.	
44.	Besides the above, the below mentioned ger	neral points are also to be followed:
a)	Executive Summary of the EIA/EMP	Executive summary has been enclosed as
	Report	a separate booklet.
b)	All documents to be properly referenced	All the documents have been properly
	with index and continuous page numbering.	referenced with index and continuous
		page numbering.
c)	Where data are presented in the Report	List of tables and source of the data
	especially in Tables, the period in which the	collected have been mentioned.
	data were collected and the sources should	
	be indicated.	
d)	Project Proponent shall enclose all the	Original Baseline monitoring report have
"/		

	noise etc. using the MoEF & CC/NABL	
	accredited laboratories. All the original	
	analysis/testing reports should be available	
	during appraisal of the Project.	
e)	Where the documents provided are in a	All the documents provided here are in
	language other than English, an English	English language.
	translation should be provided.	
f)	The Questionnaire for environmental	The questionnaire will be attached in the
	appraisal of mining projects as devised	final EIA report.
	earlier by the Ministry shall also be filled	
	and submitted.	
g)	While preparing the EIA report, the	Instructions issued by MoEF & CC O.M.
	instructions for the Proponents and	No. J-11013/41/2006-IA. II (I) dated 4th
	instructions for the Consultants issued by	August, 2009 have been followed while
	MoEF & CC vide O.M. No. J-	preparing the EIA report.
	11013/41/2006-IA. II(I) dated 4th August,	
	2009, which are available on the website of	
	this Ministry, should be followed.	
h)	Changes, if any made in the basic scope and	No changes are made in the basic scope
	project parameters (as submitted in Form-I	and the project parameters.
	and the PFR for securing the TOR) should	
	be brought to the attention of MoEF & CC	
	with reasons for such changes and	
	permission should be sought, as the TOR	
	may also have to be altered. Post Public	
	Hearing changes in structure and content of	
	the draft EIA/EMP (other than	
	modifications arising out of the P.H.	
	process) will entail conducting the PH again	
	with the revised documentation.	
i)	As per the circular no. J-11011/618/2010-	CCR is not required because the previous
	IA. II(I) Dated: 30.5.2012, certified report	Environment Clearance is not obtained,
	of the status of compliance of the conditions	
	stipulated in the environment clearance for	
	the existing operations of the project, should	

	be obtained from the Regional Office of	
	Ministry of Environment, Forest and	
	Climate Change, as may be applicable.	
j	The EIA report should also include (i)	All the plans including surface &
	surface plan of the area indicating contours	geological plans, and progressive closure
	of main topographic features, drainage and	plan have been included in Annexure III.
	mining area, (ii) geological maps and	
	sections and (iii) sections of the mine pit	
	and external dumps, if any, clearly showing	
	the land features of the adjoining area.	

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
NO.		TILE	No.	
I		Introduction	1	
	1.0	Preamble	1	
	1.1	Purpose of the report	2	
	1.2	Environmental clearance	3	
	1.3	Terms of reference (ToR)	5	
	1.4	Post environment clearance monitoring	5	
	1.5	Transferability of environmental clearance	5	
	1.6 Identification of the project proponent			
	1.7 Brief description of the project			
	1.8	Scope of the study	7	
	1.9	Legislation Applicable To Mining Of Mineral Sector	7	
II		PROJECT DESCRIPTION	8	
	2.0	General introduction	8	
	2.1	Description of the project	8	
	2.2	Location and accessibility	9	
	2.3	Leasehold area	12	
		2.3.1 Corner Coordinates	12	
	2.4	Geology	12	
	2.5	Quantity of reserves	16	

	2.6	Mining	method		18
		2.6.1	Magnitu	de of operation	20
		2.6.2	Extent o	f mechanization	20
		2.6.3	Progress	ive quarry closure plan	20
		2.6.4	Progress	ive quarry closure budget	21
		2.6.5	Concept	ual mining plan	21
		2.6.6	Infrastru	ctures	21
			2.6.6.1	Other Infrastructure Requirement	24
		2.6.7	Water re	quirement	24
		2.6.8	Energy r	equirement	24
		2.6.9	Capital r	requirement	24
	2.7	Manpov	wer require	ement	25
	2.8	Project	Implemen	tation Schedule	25
III		D	ESCRIP	TION OF THE ENVIRONMENT	26
	3.0	General			26
	3.1	Land environment		27	
		3.1.1	Geology	and Geomorphology	27
		3.1.2	Land Us	e/Land Cover	30
		3.1.3	Topogra	phy	30
		3.1.4	Drainage	e pattern	30
		3.1.5	Seismic	sensitivity	30
		3.1.6	Soil		33
	3.2	Water I	Water Environment		
		3.2.1	Surface Water Resources and Quality		38
		3.2.2	Ground Water Resources and Quality		38
		3.2.3	Hydrogeological Studies		39
			3.2.3.1	Rainfall	39
			3.2.3.2	Groundwater Levels and Flow Direction	45
			3.2.3.3	Electrical Resistivity Investigation	51
	3.3	Air Env	rironment		52
		3.3.1	Meteoro	logy	52
			3.3.1.1	Climatic Variables	52
			3.3.1.2	Wind Pattern	53
		3.3.2	Ambient	Air Quality Study	57
	3.4	Noise E	invironme	nt	63
-	•	•		l	

	3.5	Biologie	cal Enviro	nment	67
		3.5.1	Flora		68
		3.5.2	Fauna		78
	3.5.3 Agriculture &			ure & Horticulture in Karur district	81
	3.6	Socio-E	conomic	environment	82
		3.6.1	Objectiv	es of the Study	82
		3.6.2	Scope of	work	83
		3.6.3	Socio-Ed	conomic status of Study area	83
		3.6.4	Recomm	endation and Suggestion	86
		3.6.5	Summar	y & Conclusion	86
	3.7	Traffic	density		86
	3.8	Site Spe	ecific Feat	ures	89
IV		ANTIC		ENVIRONMENTAL IMPACTS AND TIGATION MEASURES	93
	4.0	General			93
	4.1	Land Er	nvironmen	t	93
		4.1.1	Anticipa	ted Impact	93
		4.1.2	Common Project	n Mitigation Measures from Proposed	93
	4.2 Soil Environment		94		
	4.2.1 Anticipated Impact		ted Impact	94	
		4.2.2	Common Project	n Mitigation Measures from Proposed	94
	4.3	Water E	nvironme	nt	94
		4.3.1	Anticipa	ted Impact	94
		4.3.2	Common Project	n Mitigation Measures from Proposed	94
	4.4	Air Env	ironment		95
		4.4.1	Anticipa	ted impact from Proposed Project	95
		4.4.2.1	Emission	n Estimation	95
		4.4.2.2	Modellin	ng of Incremental Concentration	96
		4.4.2.3	Model R	esults	96
	4.5	Noise E	nvironme	nt	102
	4.5.1 Anticipated Impact		103		
		4.5.2	Common	n Mitigation Measures	104
		4.5.3	Ground	Vibrations	105
			4.5.3.1	Common Mitigation Measures	106

	4.6	Ecology	And Biod	iversity	107
		4.6.1	Impact on	Ecology and Biodiversity	107
		4.6.2	Mitigation	n Measures on Flora	107
		4.6.3	Anticipate	ed Impact on Fauna	110
		4.6.4	Aquatic E	Biodiversity	112
		4.6.5	Impact of 1km Radi	n agriculture and horticulture crops in us	112
		4.6.6	Mitigation horticultu	_	112
	4.7	Socio E	conomic E	nvironment	113
		4.7.1	Anticipate Projects	ed Impact from Proposed and Existing	113
		4.7.2	Common Project	Mitigation Measures for Proposed	113
	4.8	Occupa	tional Heal	th and Safety	113
		4.8.1	Respirato	ry Hazards	113
		4.8.2	Noise		114
		4.8.3	Physical I	Hazards	114
		4.8.4	Occupation	onal Health Survey	114
	4.9	Mine W	aste Manag	gement	114
	4.10	Mine C	losure		114
		4.10.1	Mine Clo	sure Criteria	115
			4.10.1.1	Physical Stability	115
			4.10.1.2	Chemical Stability	115
			4.10.1.3	Biological Stability	116
V		ANAI	LYSIS OF	ALTERNATIVES (TECHNOLOGY AND SITE)	117
	5.0	Introduc	etion		117
	5.1	Factors	behind the	Selection of Project Site	117
	5.2	Analysi	s of Alterna	ative Site	117
	5.3	Factors	behind Sel	ection of Proposed Technology	117
	5.4	Analysi	s of Alterna	ative Technology	117
VI		ENV	TRONME	NTAL MONITORING PROGRAM	118
	6.0	General			118
	6.1	Method	ology of M	onitoring Mechanism	118
	6.2	Implem	entation Sc	hedule of Mitigation Measures	120
	6.3	Monitor	ring Schedu	ale and Frequency	120

	6.4	Budgetary provision for Environment Monitoring Program		
	6.5	Reporti	ng schedules of monitored data	122
VII			ADDITIONAL STUDIES	123
	7.0	General		123
	7.1	Public (Consultation for Proposed Project	123
	7.2	Risk As	sessment for Proposed Project	123
	7.3	Disaster	Management Plan for Proposed Project	126
		7.3.1	Emergency Control Procedure	126
	7.4	Cumula	tive Impact Study	127
		7.4.1	Air Environment	132
			7.4.1.1 Cumulative Impact of Air Pollutants	132
		7.4.2	Noise Environment	133
		7.4.3	Socio Economic Environment	134
		7.4.4	Ecological Environment	135
	7.5	Plastic '	Waste Management Plan For Proposed Project	135
		7.5.1	Objective	135
VIII			PROJECTS BENEFITS	137
	8.0	General		137
	8.1	Employ	ment Potential	137
	8.2	Socio-Economic Welfare Measures Proposed		
	8.3	Improve	ement in Physical Infrastructure	137
8.4		Improvement in Social Infrastructure		
	8.5	Other T	138	
	8.6	Corpora	te Social Responsibility	138
	8.7	Corpora	te Environment Responsibility	139
	8.8	Summa	ry of project benefits	139
IX		ENV	IRONMENTAL COST BENEFIT ANALYSIS	140
X		EN	VIRONMENTAL MANAGEMENT PLAN	141
	10.0	General		141
	10.1	Environ	mental Policy	141
		10.1.1	Description of the Administration and Technical Setup	141
	10.2	Budgeta	ary Provision for Environmental Management	142
	10.3	Conclus	sion	147
XI			SUMMARY AND CONCLUSION	148
	11.1	Introduc	etion	148

	11.2 Project Description				
	11.3	Descrip	tion of the Environment	148	
		11.3.1	Land Environment	148	
		11.3.2	Soil Characteristics	149	
		11.3.3	Water Environment	149	
	11.3.4	Air Env	ironment	149	
	11.3.5	Noise E	nvironment	150	
	11.3.6	Biologic	cal Environment	150	
	11.3.7	Socio-E	conomic Environment	150	
	11.4	Anticipa Measure	ated Environmental Impacts and Mitigation es for Proposed Project	150	
	11.4.1	Land Er	nvironment	150	
	11.4.2	Water E	151		
	11.4.3	Air Environment			
	11.4.4	Noise E	nvironment	152	
	11.4.5	Biologic	cal Environment	153	
	11.4.6	Socio Economic Environment			
	11.4.7	Occupat	tional Health	154	
	11.5	Environ	mental Monitoring Program	155	
	11.6	Addition	nal Studies	155	
	11.6.1	Risk As	sessment	155	
	11.6.2	Disaster	Management Plan	156	
	11.6.3	Cumula	tive Impact Study	156	
	11.7	Project 1	Benefits	156	
	11.8	Environ	ment Management Plan	157	
XII			CHAPTER XII DISCLOSURES OF CONSULTANT	158	

LIST OF TABLES

TABLE	CONTENTS	PAGE No.
No.	COMPLME	THGE NO.
1.1	Details of Quarries within the cluster area of 500 m radius	2
1.2	Details of project proponent	5
1.3	Salient Features of the Proposed Project	6

Site connectivity to the project area	12
Corner coordinates of proposed project	12
Estimated resources and reserves of the project	16
Year-wise production details	16
Conceptual Blasting Design	19
Operational details for proposed project	20
Machinery details	20
Land use data at present, during scheme of mining, and at the end	21
	21
	21
-	21
	24
-	24
Capital requirement details	25
Employment potential for the proposed project	25
Expected time schedule	25
Monitoring attributes and frequency of monitoring	26
LULC statistics of the study area	30
Soil sampling locations	33
Soil quality of the study area	34
Assigning Scores to Soil Quality Indicators	35
Water sampling locations	38
Ground Water Quality Result	41
Surface Water Quality Result	43
Pre-monsoon water level of Open wells within 2 km radius	45
Post-monsoon water level of Open wells within 2 km radius	45
Pre-monsoon water level of bore wells within 2 km radius	46
Post-monsoon water level of bore wells within 2 km radius	46
Vertical electrical sounding data	51
Onsite Meteorological Data	53
Methodology and Instrument used for AAQ analysis	57
National ambient air quality standards	57
	Corner coordinates of proposed project Estimated resources and reserves of the project Year-wise production details Conceptual Blasting Design Operational details for proposed project Machinery details Land use data at present, during scheme of mining, and at the end of mine life Mine closure budget Ultimate pit dimension Water requirement for the project Fuel requirement details Capital requirement details Employment potential for the proposed project Expected time schedule Monitoring attributes and frequency of monitoring LULC statistics of the study area Soil sampling locations Soil quality of the study area Assigning Scores to Soil Quality Indicators Water sampling locations Ground Water Quality Result Pre-monsoon water level of Open wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Pre-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Post-monsoon water level of bore wells within 2 km radius Vertical electrical sounding data Onsite Meteorological Data Methodology and Instrument used for AAQ analysis

3.16	Ambient air quality (AAQ) monitoring locations	58
3.17	Summary of AAQ result	60
3.18	Noise Monitoring Locations	63
3.19	Ambient Noise Quality Result	64
3.20	Calculation of density, frequency (%), dominance, relative density, relative frequency, relative dominance & important value index	68
3.21	Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness	68
3.22	Flora in mine lease area	69
3.23	Flora in 300 m Radius	71
3.24	Calculation of Species Diversity in 300-meter radius	73
3.25	Species Richness (Index) in 300-meter radius	74
3.26	Methodology Applied during Survey of Fauna	78
3.27	Fauna in Core Zone	79
3.28	Aquatic Fauna and Flora	80
3.29	Major Crops in 1km radius	81
3.30	Major Field Crops & Horticulture cultivation in 1km radius	81
3.31	Kamayagoundanpatti Village Population Facts	83
3.32	Population and literacy data of study area	84
3.33	Detalls on Educational Facilities ,Water, and Drainage & Health Facilities	84
3.34	Workers Profile of Study Area	85
3.35	Traffic survey locations	87
3.36	Existing traffic volume	87
3.37	Rough stone transportation requirement	87
3.38	Summary of traffic volume	87
3.39	Details of environmentally sensitive ecological features in the study area	89
4.1	Empirical formula for emission rate from overall mine	95
4.2	Estimated emission rate	96
4.3	Incremental & Resultant GLC of PM _{2.5}	96

4.4	Incremental & Resultant GLC of PM ₁₀	97
4.5	Incremental & resultant GLC of SO ₂	97
4.6	Incremental & resultant GLC of NO _X	102
4.7	Activity and noise level produced by machinery	103
4.8	Predicted noise incremental values	103
4.9	Predicted PPV Values due to Blasting	105
4.10	Predicted PPV Values due to Blasting at 100-500 radius	105
4.11	Carbon Released During Five Years of Rough Stone and Gravel Production	107
4.12	CO ₂ Sequestration	108
4.13	Recommended Species for Greenbelt Development Plan	108
4.14	Greenbelt development plan	110
4.15	Budget for Greenbelt Development Plan	110
6.1	Implementation schedule for proposed project	120
6.2	Proposed monitoring schedule post EC for the proposed quarry	121
6.3	Environment monitoring budget	122
7.1	Risk assessment& control measures for proposed project	124
7.2	Salient Features of the Proposed Projects (P2)	127
7.3	Salient Features of the Proposed Projects (P3)	128
7.4	Salient Features of the Proposed Project P4	129
7.5	Salient Features of the Proposed Project P5	130
7.6	Salient Features of the Proposed Project P6	131
7.7	Cumulative Production Load of Rough Stone	132
7.8	Cumulative Impact Results from the 6 proposed projects	133
7.9	Cumulative Impact of Noise from 6 Proposed Quarries on Kamayagoundanpatti Habitation	133
7.10	Cumulative Effect of Ground Vibrations Resulting from 6 Mines on Habitation of Kamayagoundanpatti	134
7.11	Socio Economic Benefits from 6 Mines	134
7.12	Employment Benefits from 6 Mines	135
7.13	Greenbelt Development Benefits from Mine	135
7.14	Action Plan to Manage Plastic Waste	136

8.1	CER – action plan	139
8.2	Project Benefits to the state Government	139
10.1	EMP budget for proposed project	142
10.2	Estimation of Overall EMP Budget after Adjusting 5% Annual	147
10.2	Inflation	11,
11.1	LULC Statistics of the Study Area	148
11.2	Environment Monitoring Program	155

LIST OF FIGURES

FIGURE	FIGURE TITLE	
NO.	THLE	
1.1	Location of the proposed and existing rough stone quarries in the cluster of 500m radius	4
2.1	Overall view of proposed project site	9
2.2	Key map showing location of the project site	10
2.3	Site Connectivity to the Project Area	11
2.4	Google earth image showing lease area with pillars	13
2.5	Mine Lease Plan	14
2.6	Surface and Geological Plan	15
2.6a	Surface and Geological Section	15
2.7	Year wise Development Production Plan	17
2.7a	Yearwise Development & Production Section	17
2.8	Mine Layout Plan and Land Use Pattern	22
2.9	Conceptual Plan	23
2.9a	Conceptual Section	23
3.1	Geology Map of 5 km Radius from Proposed Project Site	28
3.2	Geomorphology Map of 5 km Radius from Proposed Project Site	29
3.3	LULC map of 5km radius from proposed project site	31
3.4	Drainage Map of 5 km Radius from Proposed Project Site	32
3.5	Toposheet Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site	36
3.6	Soil Erosion map within 5 km Radius around the Proposed Project Site	37

3.7	Long-Term Monthly Average Rainfall Vs Monthly Rainfall	39
3.8	Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site	40
3.9	Open well static groundwater elevation map showing the direction of groundwater flow during per-monsoon season	47
3.10	Open well static groundwater elevation map showing the direction of groundwater flow during post-monsoon season	48
3.11	Borewell static groundwater elevation map showing the direction of groundwater flow during pre-monsoon season	49
3.12	Borewell static groundwater elevation map showing the direction of groundwater flow during post-monsoon season	50
3.13	Graph showing occurrence of water bearing fracture zones at the depth range of 60 m below ground level in proposed project	52
3.14	Windrose Diagram for 2019 and 2020 (October to December)	54
3.14a	Windrose Diagram for 2021 and 2022 (October to December)	55
3.15	Onsite Wind Rose Diagram	56
3.16	Toposheet Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site	
3.17	Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM _{2.5} Measured from 8 Air Quality Monitoring Stations within 5 km Radius	61
3.18	3.18 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM ₁₀ Measured from 8 Air Quality Monitoring Stations within 5 km Radius	
3.19	Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO ₂ Measured from 8 Air Quality Monitoring Stations within 5 km Radius	62
3.20	Bar Chart Showing Maximum, Minimum, and Average Concentrations of NO _x Measured from 8 Air Quality Monitoring Stations within 5km Radius	62
3.21	Bar chart showing maximum, minimum, and the average concentrations of pollutants in the atmosphere within 5km radius	63
3.22	Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones	65
3.23	Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones	65
3.24	Toposheet Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site	66

3.25	Quadrates sampling methods of flora	67
3.26	Species Richness (Index) in 300-meter radius	
3.27	Plant Species Idintified in The Study area	76
3.28	Map Showing has Meghamalai Wildlife Sanctuary and Eco- Sensitive Zone boundery	77
3.29	Traffic Density Map	88
3.30	Field Study Photographs	92
4.1	Predicted incremental concentration of PM _{2.5}	98
4.2	Predicted incremental concentration of PM ₁₀	99
4.3	Predicted incremental concentration of SO ₂	100
4.4	Predicted incremental concentration of NO _X	101
6.1	Proposed environmental monitoring chart	119
7.1	Disaster management team Loyout for Proposed Project	126

LIST OF ANNEXURES

Annexure No.	Contents	Page No.
I	Copy of ToR letter	163-186
II	Copy of 500 m radius letter	187-190
III	Approved mining plan along with mining plan AD/DD letter/original mining plan plates / modified plates	191-298
IV	Flora in 10 km Radius Buffer Zone	299-314
V	VAO Letter	315
VI	DFO Letter	316-317
VI	NABET certificate of EIA consultant	318

CHAPTER I

INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process used to identify the environmental, social and economic impacts of a project prior to decision-making. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are considered during the project designing. According to the Ministry of Environment and Forests, Govt. of India, EIA notification S.O. 1533(E) of 14th September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14th August 2018, all the mining projects are broadly classified into two categories, i.e., category A and category B, based on the spatial extent of the projects. The category B projects are further divided in to B1 and B2 on the basis of the guidelines issued of the Ministry of Environment and Forests. All mining projects included in category B1 require an EIA report for obtaining environmental clearance from the State Environment Impact Assessment Authority (SEIAA). As the proposed project falls within the cluster of quarries of overall extent of greater than 5 ha and less than 50 ha in the case of non-coal mine lease, the proposed project falls under the category B1 and the project requires preparation and submission of an EIA report after public consultation to SEIAA for obtaining environmental clearance as per the order dated 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.

In compliance with ToR obtained vide Lr No. SEIAA-TN/F.No.10407/SEAC/ToR-1616/2023 dated:06.11.2023, this EIA report has been prepared for the project proponent, M/s.Annai Sathya Magalir Suya Uthavikuzhu applied for rough stone quarry lease in the Government land falling in S.F.No.1372/1(Part-3) over an extent of 1.00.0 ha in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District and Tamil Nadu. This EIA report takes into account the rough stone quarries within the cluster of 500 m radius from the periphery of the proposed project site. The cluster contains six proposed projects known as P1, P2, P3, P4, P5 and P6. All the projects mentioned above have been taken for cluster extent calculation as per MoEF & CC Notification S.O.2269 (E) Dated 1st July 2016. The total extent of all the quarries is 13.50.0 ha, also known as the cluster extent. The quarries involved in the calculation of cluster extent are shown in Figure 1.1.

Table 1.1 Details of Quarries within the cluster area of 500 m radius

Proposed Quarries					
Code	Name of the Owner	S.F. No	Village	Extent (ha)	Status
P1	Tvl. Annai Sathya Mahalir Suyauthavikuzhu, Tmt.Usha (President)	1372/1 (Part-3)	Kamayagoundanpatty	1.00.0	Proposed Area
P2	Tvl. K.K.Patty Kalluadaikkum Mahalir Sangam	1372/1 (Part-2)	Kamayagoundanpatty	2.37.0	Applied Area
Р3	Tvl. Sangalikaradu Kalludaikkum Mahalir Nala Sangam	1372/1 (Part-1)	Kamayagoundanpatty	2.63.0	Proposed Area
P4	Tvl. Annai Therasa Kalludaikkum Mahalir Nala Munnetra Sangam	1372/1 (Part-4)	Kamayagoundanpatty	2.50.0	Applied Area
P5	Tvl. Vaumaikottirkkukeelvazhum Mahalir Suyauthavikuzhu	1372/1 (Part-5)	Kamayagoundanpatty	2.50.0	Applied Area
P6	Tvl. Sangalikaruppan Thanneerparai Kalludaikkum Mahalir Nala Sangam Tvl. Sangalikaruppan 1372/1 (Part-6)		2.50.0	Applied Area	
	Existing Quarry				•
	Nil				
	Expired Quarries				
Nil					
Total Cluster Extent 13.50.0				13.50.0	

Source:

DD Letter - Rc.No.1068/2022/Mines, Dated:05.09.2023.

Note: Cluster area is calculated as per MoEF & CC Notification – S.O. 2269 (E) Dated: 01.07.2016.

1.1 PURPOSE OF THE REPORT

The purpose of the report is to study baseline environmental conditions in and around the proposed project area for the period of **October-December**, 2023 according to the provisions of MoEF & CC Office Memorandum dated 29.08.2017 and MoEF & CC Notification, S.O. 996 (E) dated 10.04.2015, to analyse impacts and provide mitigation measures.

1.2 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages are screening, scoping, public consultation & appraisal.

Screening

Screening is the first stage of the EIA process. In this stage, the State level Expert Appraisal Committee (SEAC) examined the application of EC made by the proponent in Form 1 through online (Proposal No. SIA/TN/MIN/444467/2023) and decided that the project requires detailed environmental studies for the preparation of EIA report. Therefore, the proponent submitted application for Terms of Reference (ToR) on 20.09.2023.

Scoping

The proposal was placed in the 416th meeting of SEAC on 13.10.2023. Based on the presentation and documents furnished by the project proponent, SEAC decided to recommend the proposal for the grant of Terms of Reference (ToR) and the recommendation for ToR is subjected to the outcome of the Honourable NGT, Principal Bench, New Delhi (O.A No.186 of 2016 (M.A.No.350/2016) and O.A. No.200/2016 and O.A.No.580/2016 (M.A.No.1182/2016) and O.A.No.102/2017 and O.A.No.404/2016 (M.A.No. 758/2016, M.A.No.920/2016, M.A.No.1122/2016, M.A.No.12/2017 & M.A. No. 843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).

Public Consultation

In this stage, an application along with the draft of EIA and EMP report will be made to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing ensuring public participation at the project site or in its close proximity in the district. During public hearing, an opportunity will be given to the people living nearby the project site to express their opinions about the impact of the proposed project on the environment. The outcome of the public hearing meeting will be updated in the final EIA report for appraisal.

Appraisal

In this stage, an application along with final EIA report including the outcome of the public consultations will be made to the SEIAA. The application thus made will be scrutinized by the SEAC. Then, the SEAC will make recommendations to grant EC or reject the application to the SEIAA.



Figure 1.1 Location of the proposed and existing rough stone quarries in the cluster of 500 m radius

1.3 TERMS OF REFERENCE (ToR)

The SEAC framed a comprehensive Terms of Reference (ToR) based on the information provided in the Form 1 and information collected from the proposed project site visit and issued TOR to the proponent vide Letter No: SEIAA-TN/F.No.10407/SEAC/ToR-1616/2023 dated:06.11,2023.

1.4 POST ENVIRONMENT CLEARANCE MONITORING

For category B projects, irrespective of its clearance by MoEF/SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and the details of MoEF website where it is displayed.

After obtaining EC, the project proponent will submit a half-yearly compliance report of stipulated environmental clearance terms and conditions to MoEF & CC Regional Office & SEIAA on 1st June and 1st December of every year.

1.5 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period (EIA Guidance Manual for Mining of Minerals, 20).

- Summary & Conclusion
- Disclosure of Consultants engaged.

1.6 IDENTIFICATION OF THE PROJECT PROPONENT

The profile of the project proponent who has involved in this quarrying project has been given in Table 1.2.

Table 1.2 Details of Project Proponent

Name of the Project Proponent	M/s. Annai Sathiya Magalir Suya Uthavikuzhu
	Mrs.B,Usha (Leader),
	No.49/1, Panjamar Street,
Address	Kamayagoundapatti,
	Uthamapalayam Taluk,
	Theni District -625 516
Status	Proprietor

1.7 BRIEF DESCRIPTION OF THE PROJECT

The proposed project deals with excavation of rough stone which is primarily used in construction projects. The method adopted for rough stone excavation is Open Cast Semi Mechanized mining method involving formation of benches with 5 m height and 5 m width. The proposed project site is located in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, and Tamil Nādu State. Some of the important features of the proposed project have been provided in Table 1.3.

Table 1.3 Salient Features of the Proposed Project

Name of the Quarry	M/s.Annai Sathya Magalir Suya Uthavikuzhu Rough Stone Quarry		
Type of Land	Governme	ent Land	
Extent	1.00.0) На	
S.F.No	1372/1 ((Part-3)	
Toposheet No	58 (G/6	
Location of Project Site	9°43'44.44"N to 77°20'22.43"E to		
Highest Elevation	585 m A	AMSL	
Proposed depth of Mining	(65m above base level &	0m) 5m below base level)	
Coolesies Description	Rough Stone in m ³	Top Soil in m ³	
Geological Resources	366605	6553	
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³	
ivinicable Reserves	53565	4486	
Proposed reserves for five years	Rough Stone in m ³	Top Soil in m ³	
1 Toposed Teserves for five years	53565	4486	
Method of Mining	Open-Cast Semi M	echanized mining	
Topography	Hillock To	pography	
	Jack Hammer	2	
Machinery proposed	Compressor	1	
wiachnicry proposed	Tipper	3	
	Excavator 1		
	The quarrying operation is proposed to carried		
Blasting Method	out by open cast mining using jack hammer		
	drilling and blasting for shattering effect and		
	loosen the rough stone.		

Proposed Manpower Deployment	15 Nos
Project Cost	Rs.62,00,832
CER Cost	Rs. 5,00,000
Proposed Water Requirement	2.55 KLD

1.8 SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact of the quarries in the cluster on the study area and formulate the effective mitigation measures for each individual lease. A detailed account of the emission sources, emissions control equipment, background air quality levels, meteorological measurements, dispersion model and all other aspects of pollution like effluent discharge, and dust generation has been provided in this report. The baseline monitoring study has been carried out during the period of **October-December**, 2023 for various environmental components such as land, soil, air, water, noise, ecology, etc. to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project. The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of sample analysis, etc., are given in Table 3.1 in chapter III.

1.9 LEGISLATION APPLICABLE TO MINING OF MINERAL SECTOR

A few important legislations are given below:

- ❖ The Mines Act, 1952
- ❖ The Mines and Mineral (Development and Regulation) Act, 1957
- Mines Rules, 1955
- Mineral Concession Rules, 1960
- Mineral Conservation and Development Rules, 1988
- ❖ State Minor Mineral Concession Rules, 1960
- Granite Conservation and Development Rule, 1999
- ❖ The Water (Prevention and Control of pollution) Act, 1974
- ❖ The Air (Prevention and Control of pollution) Act,1981
- ❖ The Environment (Protection) Act, 1986
- ❖ The Forest (Conservation) Act, 1988
- ❖ The Wildlife (Protection) Act, 1972.

CHAPTER II

PROJECT DESCRIPTION

2.0 GENERAL INTRODUCTION

The open cast mining method, also known as open-pit mining has been proposed to extract the mineral deposit. It is the most commonly used surface mining method all over the world and is generally suitable for mining low-grade mineral deposits that are found close to the surface of the earth and distributed uniformly over a large area. Open pits are also termed quarries when the pits are used for the extraction of building materials and dimension stones.

Opencast mining starts with the development of benches, the widths of which will be determined in such a way to accommodate the use of heavy machinery. The walls of open pits will be dug at an angle that will be decided based on well-established industry standards to provide safety. In some cases where the walls are composed of weak material such as soil and highly weathered rocks, dewatering holes will be drilled horizontally to relieve the water pressure to avoid wall collapse inside the mine site.

The required mine-related infrastructures will be established close to the open pit. The mining infrastructures may include an administration building, a maintenance garage, and a warehouse. The materials mined from open pits will be brought to the surface using trucks. The waste rocks will be piled up in a suitable location, usually close to the open pit. The structure produced by the waste rock pile is known as a waste dump. The dimension of the waste dump will be determined based on industrial safety standards to prevent the rocks from falling into the surrounding area.

2.1 DECSCRIPTION OF THE PROJECT

The proponent, M/s.Annai Sathya Magalir Suya Uthavikuzhu is involved in the undertaking of establishment, construction, development, and closure of opencast mines. He, through the exploration phase, identified the proposed project site as the one that has a great potential of producing an economically viable quantity of rough stone and gravel. Therefore, the proponent had applied for quarry lease on 15.09.2022 to extract rough stone. The precise area communication letter was issued by Department of Geology and Mining, Theni vide Rc.No.1068/Mines/2022, dated:10.08.2023. Based on the precise area communication letter, mining plan was prepared. The mining plan thus prepared was approved by Deputy Director Department of Geology and Mining, Theni Rc.No.1068/Mines/2022, dated:04.09.2023. The overall view of the project site is shown in Figure 2.1.

Figure 2.1 Overall View of Proposed Project Site 2.2 LOCATION AND ACCESSIBILITY

The proposed quarry project is located in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, as shown in Figure 2.2 & 2.3. The area lies between Latitudes from 9°43'44.44"N to 9°43'49.07"N and Longitudes from 77°20'22.43"E to 77°20'26.67"E. The maximum altitude of the project area is 585 m AMSL. Accessibility details to the proposed project site have been given in Table 2.1.

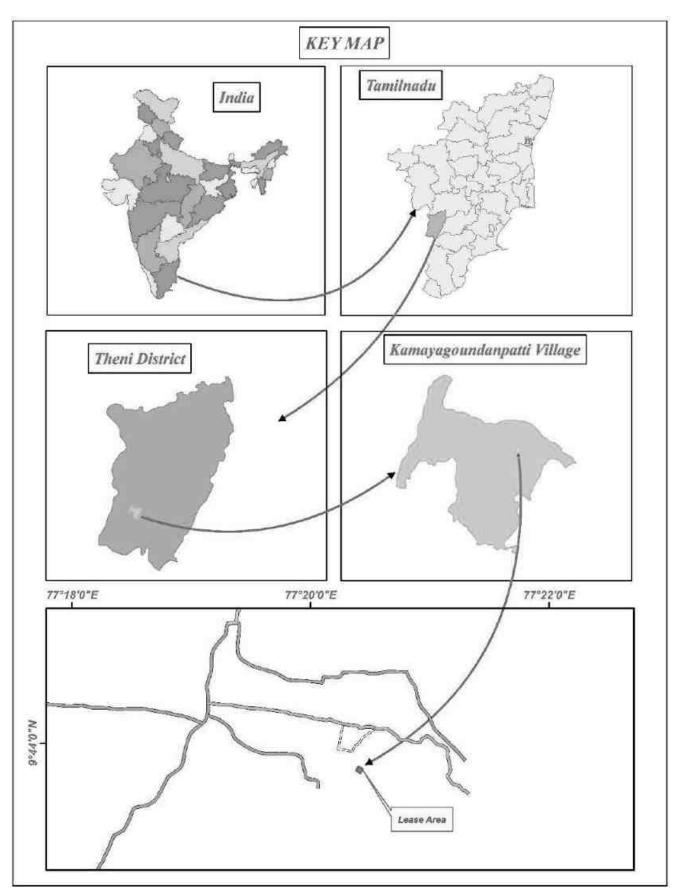


Figure 2.2 Key Map Showing Location of the Project Site

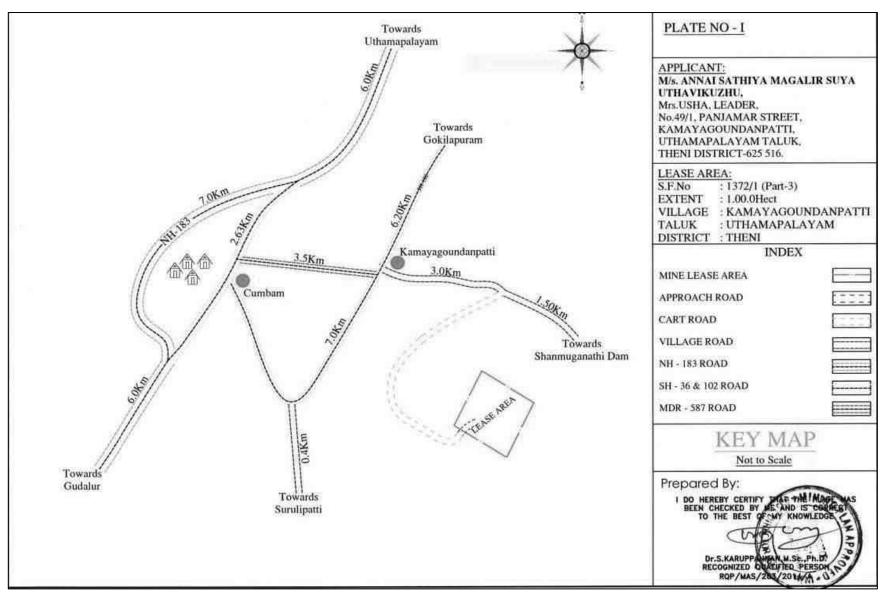


Figure 2.3 Site Connectivity to the Project Area

Table 2.1 Site Connectivity to the Project Area

	SH -102	2.47 km W
Nearest Roadways	Suruli Road	
11002001100001100	NH – 183	5.18 km W
	Theni – Cumbum Road	
Nearest Town	Royappanpatti	4.3 km N
Nearest Railway Station	Theni	35.0 km N
Nearest Airport	Madurai	83.2 km E
Nearest Seaport	Thoothukudi	149 km SE
	Rayappanpatti	4.28 km N
Nearest Villages	Anaipatti	2.60 km NW
1 : Suz 252	Kamayagoundanpatti	2.03 km W
	Narayanattevanpatti	3.03 km SW

2.3 LEASEHOLD AREA

- ❖ The extent of the proposed project site is 1.00.0 ha.
- * The proposed project is site specific.
- * There is no mineral beneficiation or processing proposed inside the project area.
- ❖ There is no forest land involved in the proposed area and is devoid of major vegetation and trees.

2.3.1 Corner Coordinates

The boundary corner geographic coordinates are given in Table 2.2 and the proposed project site with boundary coordinates has been shown in Figure 2.4.

Table 2.2 Corner Coordinates of Proposed Project

Pillar ID	Latitude	Longitude
1	9°43'47.36"N	77° 20'26.67"E
2	9°43'44.44"N	77° 20'25.22"E
3	9°43'46.15"N	77° 20'22.43"E
4	9°43'49.07"N	77° 20'23.88"E

2.4 GEOLOGY

The lease area geologically occurs on Calc Granulite with Limestone. The Granulite, commercially called as rough stone occurs within the migmatite rock. Also, the lease area geomorphologically occurs low dissected senudational hills and valleys.

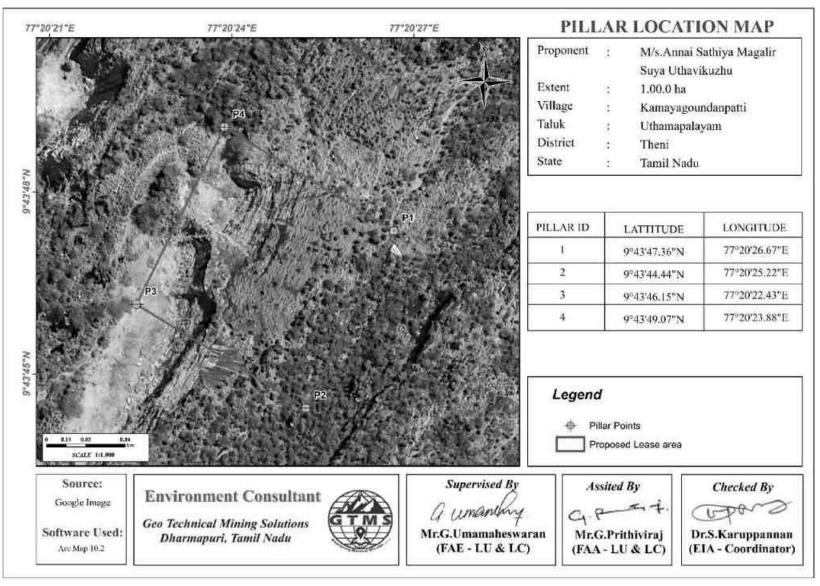


Figure 2.4 Google Earth Image Showing Lease Area with Pillars

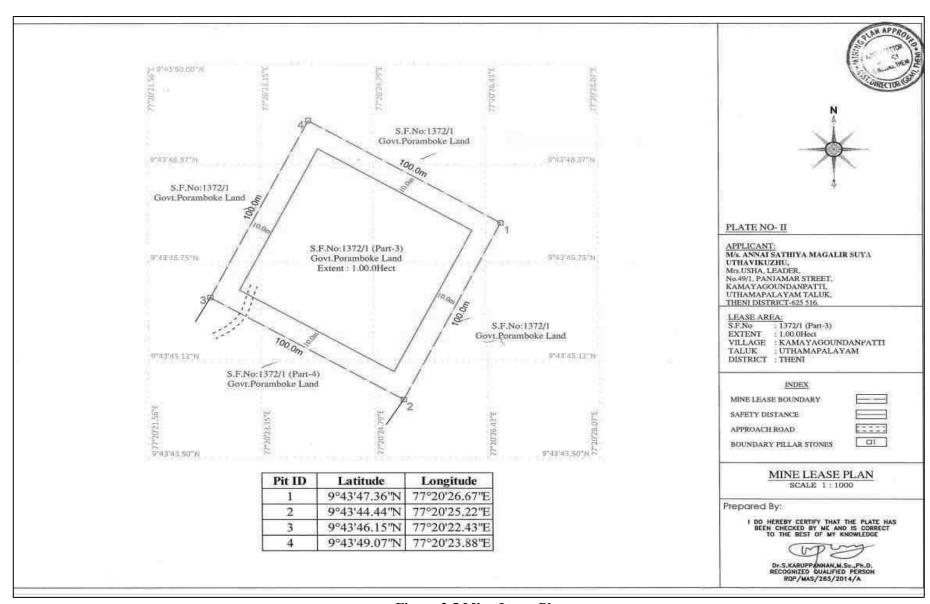


Figure 2.5 Mine Lease Plan

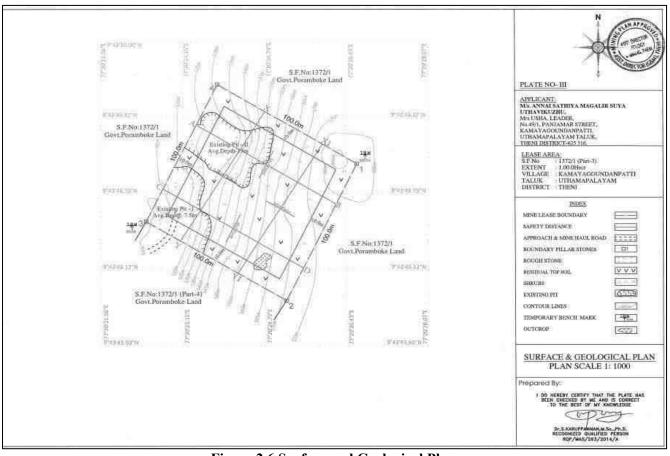


Figure 2.6 Surface and Geological Plan

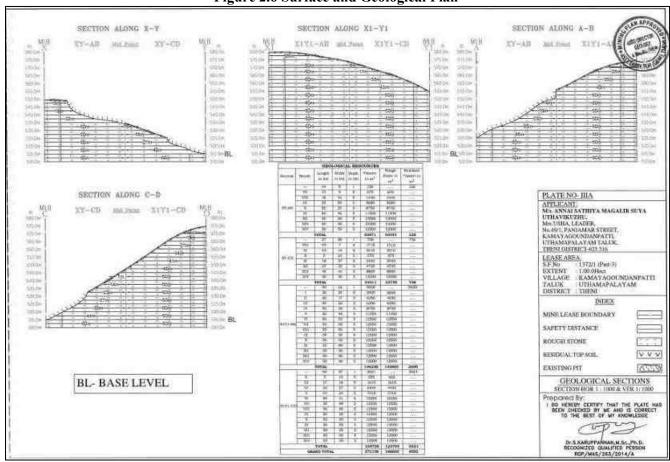
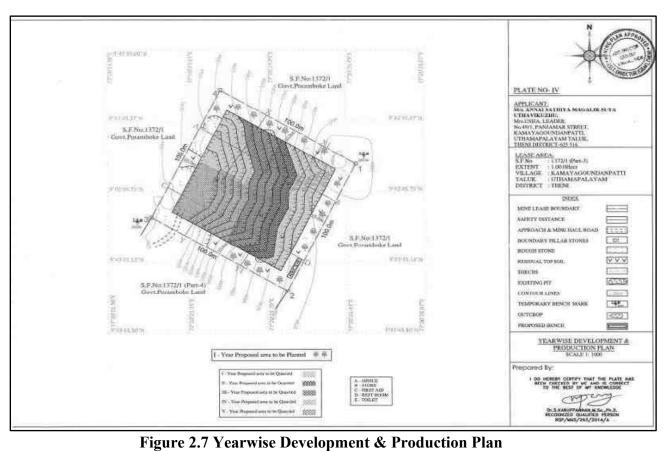


Figure 2.6a. Surface and Geological Section

2.5 QUANTITY OF RESERVES

The Resources and Reserves of Rough Stone were calculated based on cross-section method by plotting sections to cover the maximum lease area for the proposed project. Based on the availability of geological resources, the mineable reserves are calculated by considering excavation system of bench formation and leaving essential safety distance of 7.5m and 10m safety distance as per precise area communication letter and deducting the locked-up reserves during bench formation (also called as Bench Loss). The mineable reserves are calculated up to the depth of 70m considering there is no waste / overburden / side burden (100% Recovery anticipated) for the proposed project. The plate used for reserve estimation has been shown in Figure 2.6 and 2.6b results of geological resources and reserves have been shown in Table 2.3.

Table 2.3 Estimated Resources and Reserves of the Project


Resource Type	Rough Stone in m ³	Top Soil in m ³
Geological Resource in m ³	366605	6553
Mineable Reserves in m ³	53565	4486
Proposed production for 5 years m ³	53565	4486

Based on the year wise development and production plan and sections, the year wise production results have been given in Table 2.4 & Figure 2.7 and 2.7a.

Table 2.4 Year-Wise Production Details

Year	Rough Stone in m ³ (5 years)	Top Soil in m ³ (2 year)
I	9355	3694
II	9975	
III	12680	792
IV	8375	
V	13180	
Total	53565	4486

Source: Approved Mining Plan & Tord

SECTION ALONG X-Y SECTION ALDNG MI-YI SECTION ALONG A-B XV-AB BARNES XY-CD MINI-AB BERREIT MINI-CO WEAR MARIN NIN BL BL PLATE NO- IVA
APPLICASE:
Ms. ANNAI SATHIYA MAGALIR SUYA.
UTHAYMOZIA:
Ms. UTHAYMOZIA:
Ms. UTHAYMOZIA:
Ms. UTHAYMOZIA:
UTHAYMOZI SHETTON ALONG C-D NY-CO MARKE XIVI-CO MINE LEASE BUILDINGSBY SAFETY DISTANCE ROUGH STONE 36 VVV 200.00 EXISTING PET (S121718) CLIMATE BUSCH 300400 BL-BASE LEVEL 1500 (500 8479 8475 174 575 1900 1860 8175 8375 9000 8000 soces

Figure 2.7a Year wise Production Sections

2.6 MINING METHOD

The Quarrying operation is proposed to be carried out by open cast semi-mechanized mining method with the bench height and width of 5 m each. The open cast semi-mechanized method involving drilling and blasting is proposed to extract rough stone. The extracted rough stone will be loaded manually to the trucks for dispatch to the customers. In this project, NONEL blasting will be adopted to extract rough stone.

Conceptual Blasting Design

In this project, NONEL blasting will be employed to win rough stone. This method will involve closed spaced perimeter holes to reduce the overbreak/backbreak on a blast. The objective of the blasting design is to prevent fly rocks from damaging the nearby structures.

Rules of Thumb for Blast Design

Based on practical experience and technical information, a set of rules for blasting have been provided as below (<u>Chapter8 (nps.gov)</u>). These rules will be applied to blast rocks in the proposed project.

Rule 1: The detonation velocity (VOD) of the explosive should be close to the same value of the sonic velocity (VSO) of the rock to be blasted.

The sonic velocity of a rock is considered to be a reliable indicator of its structural integrity and resistance to fragmentation. As the VOD of the explosive approaches close to the VSO of the rock, the blasting would result in relatively smaller size of fragmentation with uniformity. There is no value in using an explosive that has a VOD greatly in excess of the VSO of the rock, since there is little or no improvement in fragmentation above the VSO. When selecting an explosive to match up the VSO of a rock mass, variance of <10% in the velocities is acceptable.

Rule 2: Generally, select the densest explosive possible.

When the density of explosives is higher, the potential energy of the explosives can be greater and the more of it can be placed within a borehole of a given size.

Rule 3: Select explosives according to the characteristics of the rock formation to be blasted.

When planes of separation in the rock are smaller than the degree of fragmentation required, the rock can often be blasted by using lower density and lower detonation velocity explosives.

Rule 4: When using slurry or water gel explosives, always determine the critical temperature below which the explosive will fail to reliably detonate.

Almost all slurry explosives have a critical temperature below which they may not detonate, or may not sustain detonation in elongated columns. The explosives should not be used when the temperature of the explosive at time of loading is below that critical temperature.

Rule 5: The distance between holes (spacing) should not be greater than one-half the depth of the borehole.

When the distance between holes in a row is greater than one-half the depth of the hole, the angles of breakage intersect above the bottom of the holes. This causes both a great deal of vertical throw and a very uneven bottom.

Rule 6: Stemming should be equal to the burden.

Stemming is useful to confine and maximize efficient use of the explosive's energy. It also reduces noise as much as possible. If the stemming is greater than the burden, the rock at the top of the borehole will have less cracking from reflection and refraction of compressive and tensile waves. Therefore, stemming should be equal to burden. Drill fines can be used for loading the borehole.

Rule 7: Subdrill (if necessary) should be between 0.3 and 0.5 of spacing/burden.

Subdrill should be equal to 0.3 of burden. It will work when there is row-for-row delay. In blasts where the delay system is both row-for-row and hole-for-hole, the subdrill should be determined by the largest dimension, which can be the spacing or the burden. An average subdrill of 0.4 of spacing is best to use for planning purposes. Based on the above-mentioned rules, blasting design has been conceptualized and has been provided in Table 2.5.

Table 2.5 Conceptual Blasting Design

<u> </u>	9
Blasthole Diameter (D) in mm	32
Burden (B) in m	1.5
Spacing (S) in m	1.30
Subdrill in m	0.45
Charge length (C) in m	0.64
Stemming	1.5
Hole Length (L) in m	2.6
Bench Height (BH) in m	2.1
Mass of explosive/hole in g	400
Stemming material size in mm	3.2
Burden stiffness ratio	1.43
Blast volume/hole in m ³	4.16

Production of rough stone/day in m ³	40
Number of blastholes/day	10
Blasthole pattern	Staggered / Rectangular
Mass of explosive /day in kg	3.82
Powder factor in kg/m ³	0.10
Loading density	0.63
Type of explosives	Slurry
Diameter of packaging in mm	25
Initiation system	NONEL
Fly rock distance in m	19

2.6.1 Magnitude of Operation

Based on the results of estimated production for the 5 years, details about the size of operation have been provided in Table 2.6.

Table 2.6 Operational Details for Proposed Project

•	Rough Stone	Top Soil
Proposed production for 5 years in m ³	53565	4486
Number of Working Days /Annum	270	270
Production of /Day (m ³)	40	8.3
No. of Lorry Loads	7	1

2.6.2 Extent of Mechanization

List of machineries proposed for the quarrying operation is given in Table 2.7.

Table 2.7 Machinery Details

S. No.	Туре	No of Unit	Size /Capacity	Make	Motive Power
1	Jack Hammers	2	Hand held		Diesel Drive
2	Compressor	1	Air		Diesel Drive
3	Hydraulic Excavator	1	2.9 m ³		Diesel Drive
4	Tipper	3			Diesel Drive

2.6.3 Progressive Quarry Closure Plan

The progressive quarry closure plan of the proposed project shows past, present, and future land use statistics. According to the land use results, as shown in Table 2.8 At Present about 0.28.73 ha of land is used for quarrying, 0.70.27 ha of land is unutilized, Whereas, at the end of the mine life, about 0.24.94 ha of land is used for green belt and about 0.07.46 ha of land is untilized and 0.03.0 ha will be used for roads and 0.01.0 ha is used for infrastructure and about 0.63.6 ha is used for quarrying.

Table 2.8 Land use data at present, during scheme of mining, and at the end of mine life

Description	Present Area (ha)	Area at the end of life of quarry (ha)
Area under quarry	0.28.73	0.63.6
Infrastructure	Nil	0.01.0
Roads	0.01.0	0.03.0
Green Belt & Dump	Nil	0.24.94
Drainage & Settling Tank	Nil	Nil
Unutilized area	0.70.27	0.07.46
Total	1.00.0	1.00.0

2.6.4 Progressive Quarry Closure Budget

As the proposed project has the enormous potential for continuous operations even after the expiry of lease period, mine closure plan is not proposed for now. Based on the progressive mine closure plan for the scheme period, the mine closure cost is given in Table 2.9.

Table 2.9 Mine Closure Budget

Activity	Capital Cost
200 plants inside the lease area	40000
300 plants outside the lease area	90000
Wire Fencing	200000
Renovation of Garland Drain	10000
Total	340000

Source: Environment Management Plan

2.6.5 Conceptual Mining Plan

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc. Details of ultimate pit dimensions have been derived from given in Table 2.10, Figure 2.9 &2.9a.

Table 2.10 Ultimate Pit Dimension

Pit	Length (m)	Width (m) (Max)	Depth (m)
I	42	47	70

Source: Approved Mining Plan & ToR

2.6.6 Infrastructures

Infrastructures like mines office, temporary rest shelters for workers, latrine and urinal facilities have been proposed as per the mine rule and will be established after the grant of quarry lease. There is no proposal for the mineral processing or ore beneficiation plants in this project.

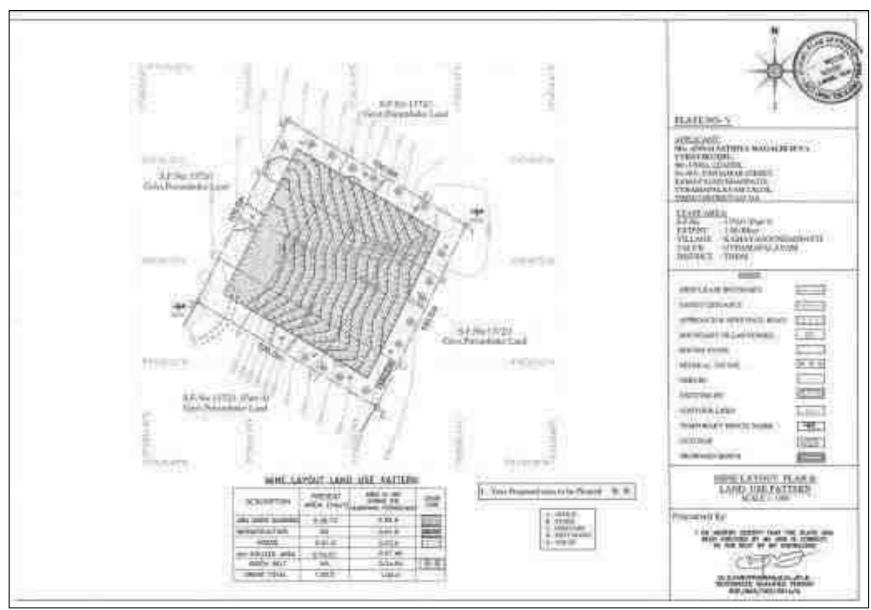
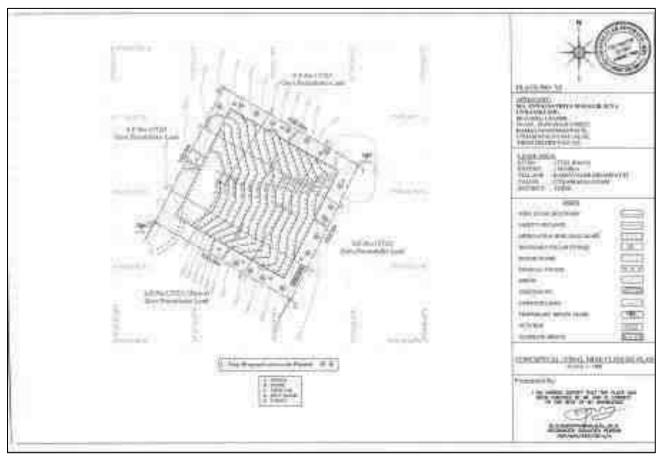



Figure 2.8 Mine Layout Plan and Land Use Pattern

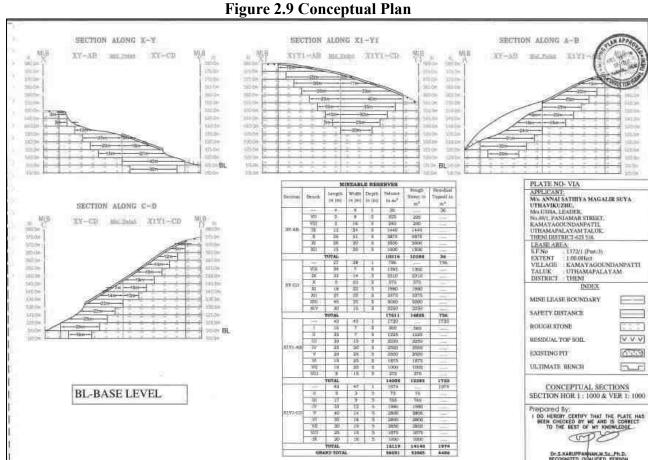


Figure 2.9a Conceptual Section

2.6.6.1 Other Infrastructure Requirement

No workshops are proposed inside the project area. Hence, there will not be any process effluent generation from the proposed lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. As there is no toxic effluent expected to generate in the form of solid, liquid or gaseous form, there is no requirement of waste treatment plant.

2.6.7 Water Requirement

Detail of water requirement in 2.55 KLD is given in Table 2.11.

Table 2.11 Water Requirement for the Project

Purpose	Quantity	Source
Dust Suppression	0.75 KLD	Existing bore wells nearby the lease area
Green Belt development	0.5 KLD	Existing bore wells nearby the lease area
Drinking & Domestic	1.3 KLD	Existing bore wells and approved water vendors
Total	2.55 KLD	

Source: Prefeasibility Report

2.6.8 Energy Requirement

High speed Diesel (HSD) will be used for quarrying machineries. As per the data shown in Table 2.12, Around 2,27,550 litres of HSD will be used for rough stone extraction during this 5 years plan period. The diesel will be brought to the site from nearby diesel pumps.

Table 2.12 Fuel Requirement Details

Fuel Requirement for Excavator							
Details	Rough Stone (53565 m ³)	Topsoil (4486 m ³)	Total Diesel (litre)				
Average Rate of Fuel Consumption (l/hr)	16	10					
Working Capacity (m ³ /hr)	20	60					
Time Required (hours)	2678	75					
Total Diesel Consumption for 5 years (litre)	42852	748	43600				
Fuel Requirement	for Compressor	•					
Average Rate of Fuel Consumption/hole (litre)	0.4						
Number of Drillholes/day	10						
Total Diesel Consumption for 5 years (litre)	5400		5400				
Fuel Requireme	ent for Tipper						
Average Rate of Fuel Consumption/Trip (litre)	20	20					
Carrying Capacity in m ³	6	0					
Number of Trips / days	7	0*					
Number of Trips / 5 years	8928	0					
Total Diesel Consumption for 5 years (litre)	178550	0	178550				
Total Diesel Consumption by Excavator,	Compressor and	d Tipper	227550				

^{*} Number of truck loads for gravel has been normalized for 5 years.

2.6.9 Capital Requirement

The project proponent will invest **Rs.62,00,832**/- to the project. The breakup summary of the investment has been given in Table 2.13.

Table 2.13 Capital Requirement Details

S. No.	Description	Cost (Rs.)
1	Fixed Asset Cost	Rs.20,63,332/-
2	Machinery cost	Rs.20,00,000/-
3	EMP Cost	Rs.21,37,500/-
	Total Project Cost	Rs.62,00,832 /-

Source: Approved Mining Plan

2.7 MANPOWER REQUIREMENT

The skilled, competent qualified statutory persons will be engaged for quarrying operation, preference will be given to the local community. Number of employees required for this project have been provided in Table 2.14.

Table 2.14 Employment Potential for the proposed project

S. No.	Category	Role	Nos.			
		IInd Class Mine Manager	1			
1	Highly Skilled	Mine Geologist	1			
		Blaster	1			
		Driver	3			
2 Unskilled		Hitachi Operator	1			
		Musdoor/ Labours	8			
	Total 15					

Source: Prefeasibility Report

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the environmental clearance will be compiled before the start of mining operation. Expected time schedule for the quarrying operation is given Table 2.15.

Table 2.15 Expected Time Schedule

S. No.	Particulars	Time Schedule (in			ule (i	Remarks if any			
		Months)			s)				
		1 st	2 nd	3 rd	4 th	5 th			
1	Environmental								
	Clearance								
2	Consent to Establish						Project Establishment		
							Period		
3	Consent to operate						Production starting period.		
Time line	Time line may vary; subjected to rules and regulations /& other unforeseen circumstances								

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines

CHAPTER III

DESCRIPTION OF THE ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as land, water, air, noise, biological and socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering **October to December**, **2023** with CPCB guidelines. Environmental baseline data were collected by an NABL accredited and MoEF notified **Interstellar Testing Centre Pvt. Ltd** for the environmental attributes including soil, water, air, and noise and by FAEs for ecology and biodiversity, traffic, and socio-economy.

Study Area

The study area has been divided into two zones: core zone and buffer zone. Core zone is considered as lease area and buffer zone as 5 km radius from the periphery of the cluster, except for ecological study, which considers 10 km as buffer zone. Both core and buffer zones are taken as the study area. The data was collected from the study area to understand the existing environment conditions of the above-mentioned environmental components. Sampling methodologies for the various environmental parameters, including frequency of sampling, method of sample analysis, etc., are briefly given in Table 3.1.

Table 3.1 Monitoring Attributes and Frequency of Monitoring

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
Land Use/ Land Cover	Land-use Pattern within 5 km radius of the study area	Once during the study period	Study Area	Satellite Imagery & Primary Survey
*Soil	Physico- Chemical characteristics	Once during the study period	12 (1 in core & 11 in buffer zone)	IS 2720 Agriculture Handbook - Indian Council of Agriculture Research, New Delhi
*Water	Physical,	Once during the	7	IS 10500 & CPCB
Quality	Chemical and	study period	/	Standards

	Bacteriological Parameters		3 surface water & 4 ground water)	
Meteorology	Wind speed Wind direction Temperature Cloud cover Dry bulb temperature Rainfall	1 hourly continuous mechanical/automatic weather station	1	Site specific primary data & secondary data from IMD Station
*Ambient Air Quality	$\begin{array}{c} PM_{10} \\ PM_{2.5} \\ SO_2 \\ NO_X \end{array}$	24 hours, twice a week	10 (1 core & 9 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient noise	Hourly observation for 24 hours per location	12 (1 core & 11 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing flora and fauna	Through field visit during the study period	Study area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio- economic characteristics, Population statistics and existing infrastructure in the study area	Site visit & Census Handbook, 2011	Study area	Primary Survey, census handbook & need based assessments.

^{*}All monitoring and testing have been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 Geology and Geomorphology

Study area is mainly composed of acid to intermediate charnockite, Hornblende biotite genesis, clayey sand (active floodplain) and granite sillimanite gnesis+graphite+corderite as shown in Figure 3.1. The lease area occurs in charnockite terrain.

Among the geomorphic units, active flood olain, older alluvial plain, bajada and highly dissected structural hills and valley to the study area, as shown in Figure 3.2. The lease area occurs in shallow weathered/buried pediplain terrain.

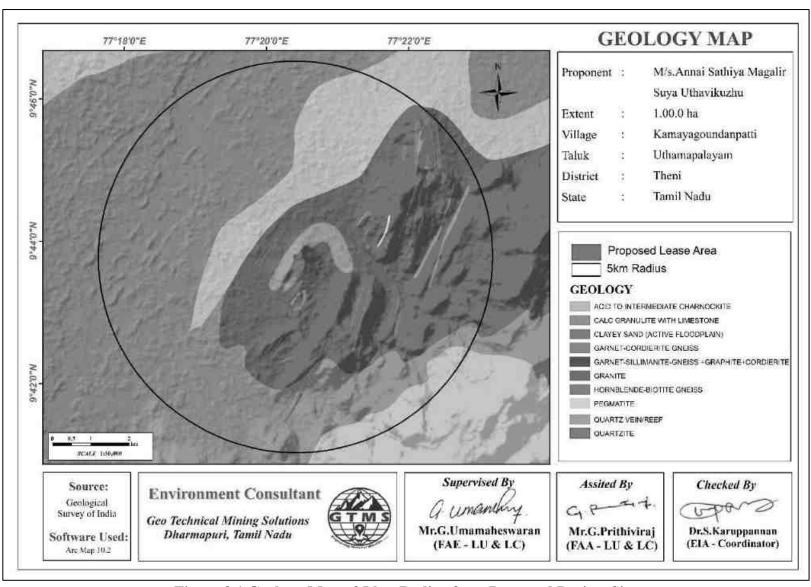


Figure 3.1 Geology Map of 5 km Radius from Proposed Project Site

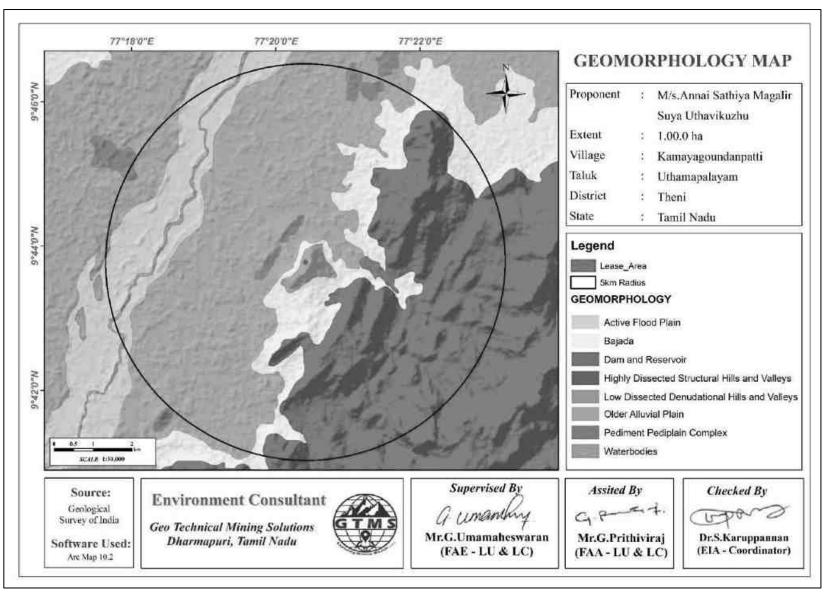


Figure 3.2 Geomorphology Map of 5 km Radius from Proposed Project Site

3.1.2 Land Use/ Land Cover

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally, 8 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 20.20 ha accounting for 0.26 %, of which lease area of 1.00.0 ha contributes only about 0.013%. This small percentage of mining activities shall not have any significant impact on the land environment.

Table 3.2 LULC Statistics of the Study Area

S. No.	Classification	Area (ha)	Area (%)
1	Crop Land	2643.02	34.59
2	Dense Forest	390.24	5.11
3	Fallow Land	680.59	8.91
4	Mining/Industrial lands	20.20	0.26
5	Land with or Without Scrub	2039.81	26.70
6	Plantations	1648.38	21.57
7	Settlements	154.70	2.02
8	Water bodies	64.02	0.84
	Total	7640.96	100.0

Source: Sentinel II Satellite Imagery

3.1.3 Topography

The proposed lease area is located in a flat terrain with an altitude range of 515-585 m AMSL, showing relief of 70 m.

3.1.4 Drainage Pattern

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin over time that reveals characteristics of the kind of rocks and geological structures in a landscape. The proposed area shows dendritic drainage pattern indicating uniform lithology beneath the surface, as shown in Figure 3.4.

3.1.5 Seismic Sensitivity

The proposed lease area is situated in a Seismic Zone II, as defined by National Center for Seismology (Official Website of National Centre of Seismology). The Zone II is defined as the region where only minor damage is expected from seismic events. In this respect, the proposed lease area is located in a low earthquake hazard area.

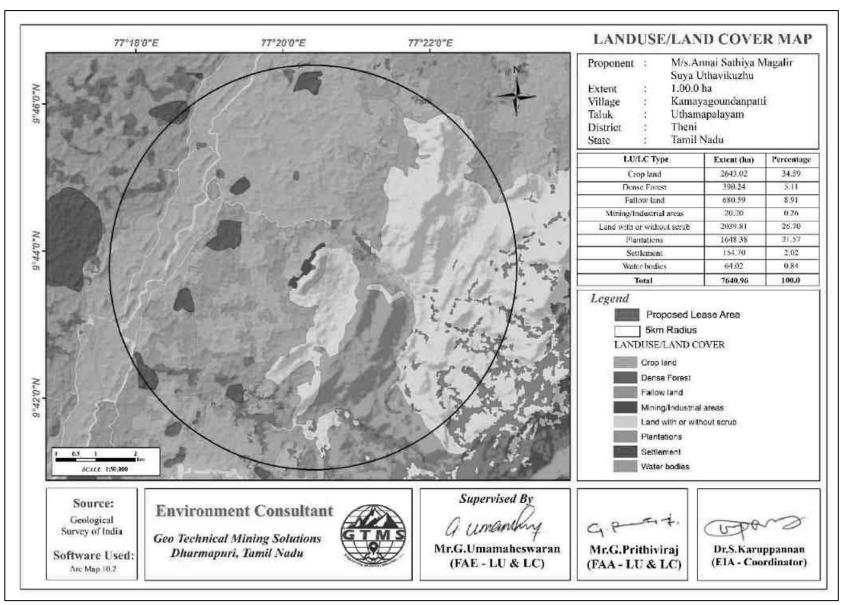


Figure 3.3 LULC Map of 5 km Radius from Proposed Project Site

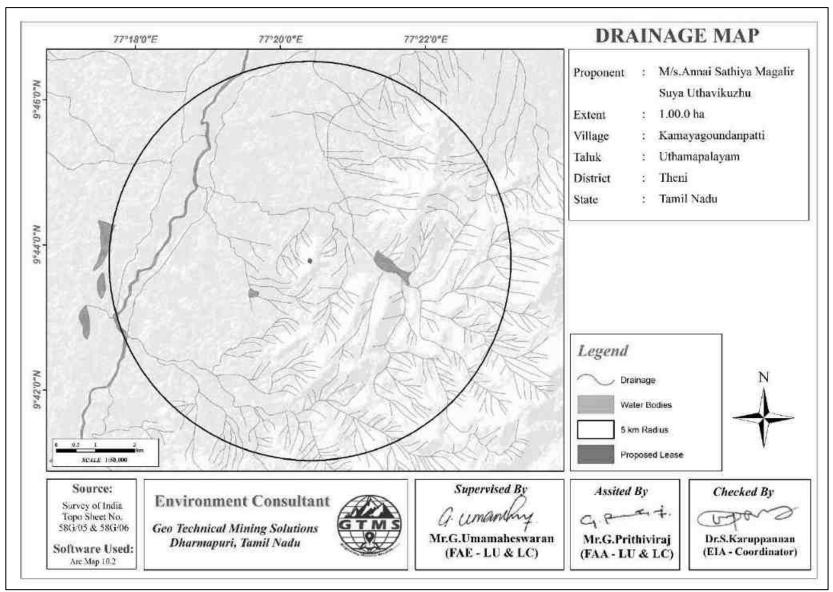


Figure 3.4 Drainage Map of 5 km Radius from Proposed Project Site

3.1.6 Soil

Composite soil samples were collected from 12 locations of the study area to determine the baseline soil characteristics of the soil. The locations were selected for soil sampling based on soil types, vegetative cover, and industrial & residential activities including infrastructure facilities. Soil samples were collected up to 90 cm depth, filled in polythene bags, coded and sent to laboratory for analysis. The locations of the sampling sites are shown in Table 3.3 and Figure 3.5. The samples thus collected were analysed for physical and chemical characteristics. The physical and chemical characteristic results of soil samples are provided in Table 3.4.

Table 3.3 Soil Sampling Locations

S.	Sampli	· ·	Distance	D.	G 11 1
No.	ng ID	Location	(km)	Direction	Coordinates
		M/s. Sangilikaradu			
1	S1	Kalvudaikkum Magalir	0.56	NE	9°44'3.77"N, 77°20'34.85"E
		Nalasangam			
		M/s.K.K.Patti			
2	S2	Kaludaykum Magalir	0.20	N	9°43'55.58"N, 77°20'22.66"E
		Sangam			
3	S3	Core			9°43'47.10"N, 77°20'26.19"E
		M/s. AnnaiTherasa			
4	S4	Kaludaikum Magalir	0.21	SW	9°43'40.91"N, 77°20'17.77"E
		Munnetra Sangam			
		M/s.Varumaikotterku			
5	S5	Keelvaalum Magalir	0.43	SW	9°43'36.14"N, 77°20'12.86"E
		Suyauthavikuzhu			
		M/s.Sangili Karuppan			
6	S6	Thanneer Parai Magalir	0.59	SSW	9°43'29.11"N, 77°20'13.30"E
		Nalasangam			
7	S7	Kamayagoundanpatti	1.79	NW	9°44'3.57"N, 77°19'26.39"E
8	S8	Rayappanpatti	4.11	N	9°46'3.13"N, 77°20'19.38"E
9	S9	Narayanathevanpatti	4.19	SW	9°42'55.41"N, 77°18'14.73"E
10	S10	Shanmuganathi dam	1.45	Е	9°43'45.05"N, 77°21'14.14"E
11	S11	Poosarigoundanpatty	4.73	NE	9°44'55.51"N, 77°22'45.45"E
12	S12	Koothanatchiyar RF	3.88	S	9°41'38.03"N, 77°20'24.19"E

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd, in association with GTMS.

Table 3.4 Soil Quality of the Study Area

S.No	Parameters	Units	Core result	Manimum	Maximum	Average
1	Bulk Density kg/m3 1406		1406	1076.00	1458.00	1226.27
2	Porosity	% by Weight	42	28.00	38.00	33.64
3	Total Organic Matter	% by mass	0.05	0.12	0.88	0.36
4	Total Nitrogen N	mg/kg	198	148.00	260.00	202.45
5	Cadmium Cd	mg/kg	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)
6	Magnesium as Mg	mg/kg	9518	4799.00	16340.00	9806.00
7	Potassium as K,	mg/kg	1628	1334.00	13171.00	4820.64
8	Lead	Pb, mg/kg	1.59	0.53	5.70	2.06
9	Zinc as Zn	mg/kg	13.9	15.20	32.90	22.93
10	Iron as Fe	mg/kg	22816	23866.00	41581.00	32323.00
11	Chromium as Cr	mg/kg	55.1	48.90	174.00	98.54
12	Calcium as Ca	mg/kg	11623	3417.00	21085.00	10145.00
13	Manganese as Mn	mg/kg	601	156.00	997.00	521.55
14	Boron as B,	mg/kg	0.23	2.62	18.50	8.25
15	Total Organic Carbon	% by mass	0.06	0.07	0.51	0.21
16	Sand	% by Weight	21.2	3.50	42.60	24.61
17	Silt	% by Weight	70.7	48.50	88.20	67.03
18	Clay	% by Weight	8.1	6.80	10.40	8.36
19	Copper as Cu	mg/kg	37.7	12.10	674.00	84.98
20	Chloride	mg/kg	115	48.00	118.00	94.84
21	Total Phosphorus as P	mg/kg	13.5	5.15	18.70	11.94
22	Cation Exchange Capacity (CEC)	meq/100g	5.48	4.11	19.90	8.23
23	Texture	-	Clay Loam	Clay	Loam	Loam
24	Total Soluble Sulphate as SO4	mg/kg	183	52.00	126.00	90.27
25	pH Value	-	7.24	6.23	7.98	7.40
26	Electrical Conductivity	μmhos/cm	129.9	43.85	419.40	141.54

Source: Sampling Results by Interstellar Testing Centre Pvt. Ltd, in association with GTMS

Table 3.4a Assigning Scores to Soil Quality Indicators

	Soil Quality Score								
SI. No.	OM	BD	pН	CEC	EC	Total Score	Recommendation		
S01	S01	30	2	18	2	10			
S02	S02	30	2	12	2	10			
S03	S03	30	2	18	2	10			
S04	S04	30	2	12	2	10			
S05	S05	30	2	18	2	10	The soil requires major		
S06	S06	30	2	12	2	10	and immediate		
S07	S07	30	2	12	2	10	treatment		
S08	S08	30	2	18	2	10	ti catimont		
S09	S09	30	2	12	6	10			
S10	S10	30	2	12	2	10			
S11	S11	30	2	12	2	10			
S12	S12	30	2	18	2	10			

(BD) Bulk Density (OM) Organic Matter (EC) Electrical Conductivity.

Physical Characteristics & Chemical Characteristics

The soil samples in the study area show loamy textures varying between silty clay loam, silty loam and loam. pH of the soil varies from 6.23 to 7.98 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 43.85to 419 µmhos/cm. Bulk density ranges between 1076 to 1458 kg/cm³.Nitrogen ranges between 148 and 260 mg/kg. Phosphorus ranges between 5.15 and 18.70 mg/kg. Potassium ranges between 1334 and 16340 mg/kg Calcium ranges between 3417 and 18703 mg/kg. Magnesium ranges between 4799 and 16340 mg/kg.

Soil Erosion

There is no soil erosion in the mining lease area. The south east and south west part of the lease area has less moderate soil erosion as shown in the soil erosion map in Figure 3.6

Soil Quality Assessment

Soil quality is the foundation of sustainable crop production. Soil quality assessment helps to understand soil conditions and adopt suitable production practices. It can be done using physical, chemical, and biological properties of soil. For this assessment, four soil quality parameters including pH, EC, OM, and BD were taken into account. The soil quality score for each sample has been provided in Table 3.4a.

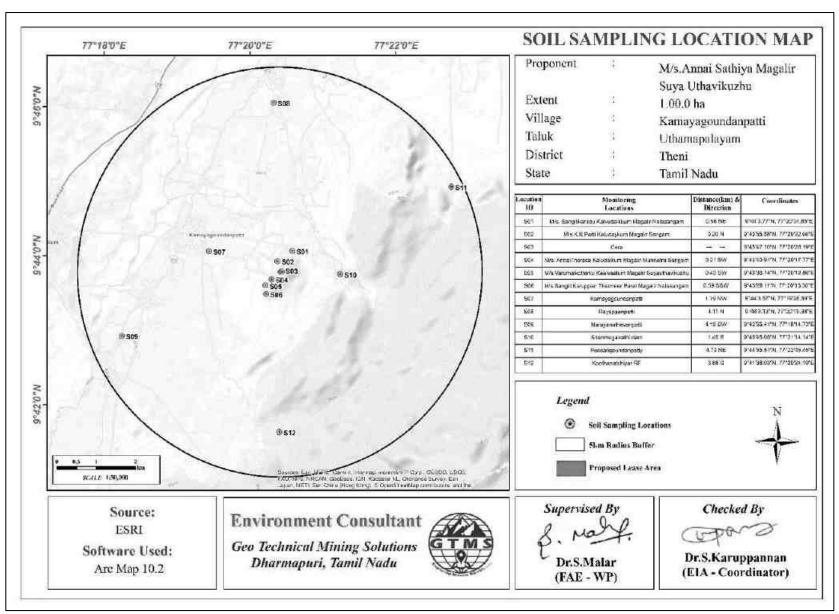


Figure 3.5 Toposheet Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site

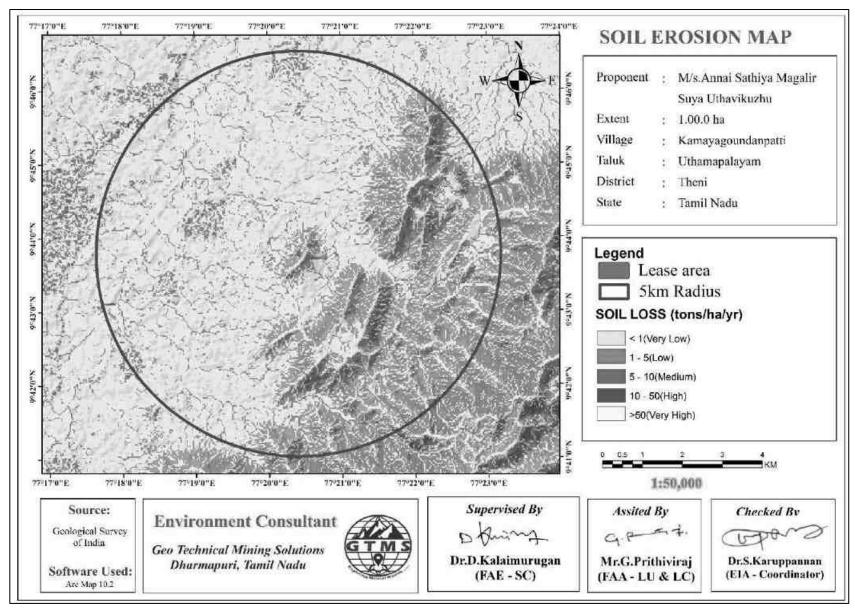


Figure 3.6 Soil Erosion Map within 5 km Radius around Proposed Project Site

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the baseline quality of surface and ground water.

Table 3.5 Water Sampling Locations

S. No.	Samplin g ID	Location	Distance (km)	Direction	Coordinates
1	OW1	Anaipatti	2.53	NW	9°44'45.29"N77°19'23.34"E
2	OW2	Rayappanpatti	4.72	N	9°46'22.26"N77° 20'32.03"E
3	BW1	Mallingapuram	0.65	SW	9°43'39.45"N77°20'2.35"E
4	BW2	Kamayagoundanpatti	2.01	NW	9°44'7.04"N77°19'19.87"E
5	SW1	Shanmuganathi dam	1.38	Е	9°43'52.78"N77°21'11.53"E
6	SW2	Mullaiperiyar River	4.22	WSW	9°43'32.74"N77°18'4.19"E
7	SW3	Koothanatchiyar Dam	4.01	S	9°41'33.80"N77°20'23.94"E

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS.

3.2.1 Surface Water Resources and Quality

Shanmuganathi Dam, Mullaiperiyar River and Koothanatchiyar Dam in mine lease area are the three prominent surface water resources present in the study area. These are ephemeral in nature, which convey water only after rainfall events. The proposed project area is located 1.38 km E of Shanmuganathi dam, 4.22 km WSW of Mullaiperiyar River and 4.01 km S of Koothanatchiyar Dam, as shown in Table 3.5 and Figure 3.5. Three surface water samples, known as SW1, SW2 and SW3 were collected from the three surface water bodies to assess the baseline water quality. Table 3.7 summarizes surface water quality data of the three samples.

Result for surface water sample in the Table 3.7 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.2 Ground Water Resources and Quality

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose.

Four groundwater samples, known as OW1, OW2, BW1 and BW2 were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and

bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.8. Table 3.6 summarizes ground water quality data of the four samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.3 Hydrogeological Studies

The area within 2 km radius consists of numerous open wells and deep wells. Groundwater level data were collected both from open wells and bore wells for two monsoon seasons as discussed in the following section.

3.2.3.1 *Rainfall*

Rainfall data for the study area were collected for the period of 1981-2021(POWER | Data Access Viewer (nasa.gov)). Long term monthly average rainfall was estimated from the data of 1981-2021 and compared with the monthly rainfall for the year 2021, shown in Figure 3.13. The Figure 3.7 shows that rainfall is generally high in the months of September through November in every year. Particularly, rainfall in September through November of 2021 is higher than the previous years.

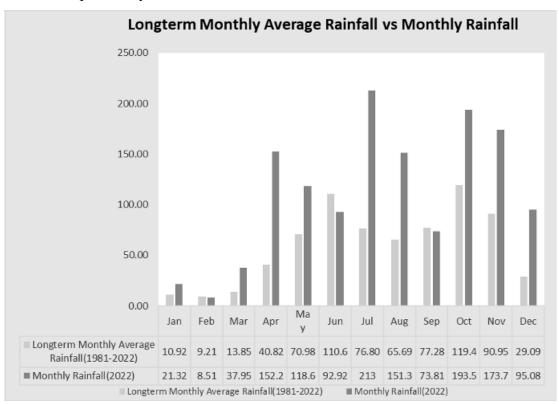


Figure 3.7 Long-Term Monthly Average Rainfall Vs Monthly Rainfall

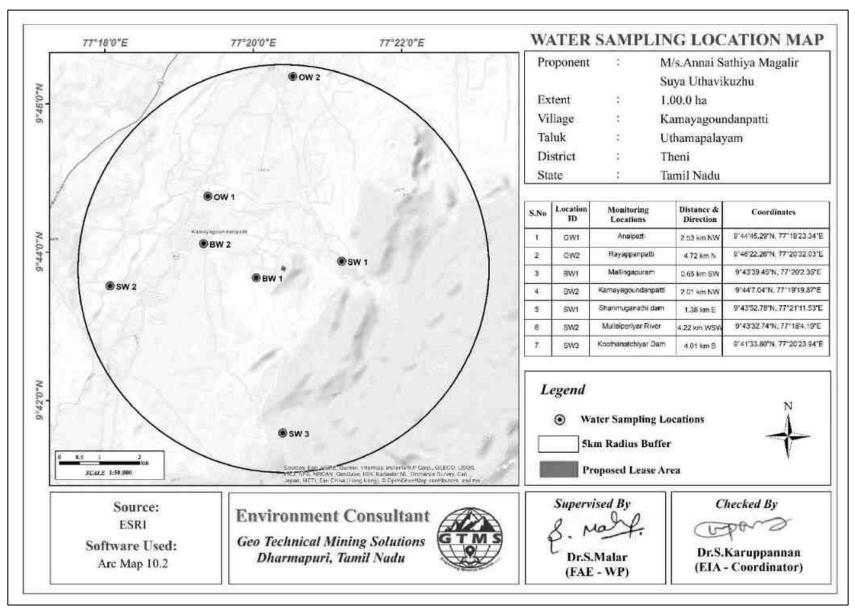


Figure 3.8 Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site

Table 3.6 Ground Water Quality Result

				Ground Water Quan		Acceptable Limits	Permissible
S.No.	Parameters	Units	Minimum	Maximum	Average	As per IS	Limits As Per IS
						10500:2012	10500:2012
1	Colour	Hazen	5	10	6.66	5	15
2	Odour	_	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	pH Value	_	7.33	8.31	7.73	6.5 - 8.5	No relaxation
4	Total Ammonia	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.5	No relaxation
5	Anionic detergent	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.2	1.0
6	Sulphate (SO ₄)	mg/L	16.9	39	27.96	200	400
7	Calcium (Ca)	mg/L	12.5	72	49.83	75	200
8	Fluoride (F)	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	1.0	1.5
9	Free Residual	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.2	1.0
	Chlorine	mg/L	BEQ(EOQ.0.1)	BEQ(EOQ.0.1)	BEQ(EOQ.0.1)	0.2	1.0
10	Magnesium (Mg)	mg/L	4.4	10.7	7.43	30	100
11	Manganese (Mn)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.1	0.3
12	Nitrate (NO ₃)	mg/L	2.98	3.6	5.4	45	No relaxation
	Phenolic						
13	compounds	mg/L	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	0.001	0.002
	(C_6H_5OH)						
14	Selenium (Se)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.01	No relaxation
15	Iron (Fe)	mg/L	0.05	0.24	0.14	0.3	No relaxation

16	Aluminium (Al)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.03	0.2
17	Chloride (Cl)	mg/L	29.6	138	95.86	250	1000
18	Copper (Cu)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.05	1.5
19	Barium (Ba)	mg/L	0.06	0.37	0.24	0.5	No relaxation
20	Boron (B)	mg/L	0.1	0.4	0.22	0.5	1.0
21	EC	μS/Cm	466	814	683	-	-
22	Cadmium (Cd)	mg/L	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	0.003	No relaxation
23	Cyanide (CN)	mg/L	BLQ(LOQ:0.01)	BLQ(LOQ:0.01)	BLQ(LOQ:0.01)	0.05	No relaxation
24	Lead (Pb)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.01	No relaxation
25	Mercury (Hg)	mg/L	BLQ(LOQ:0.0005)	BLQ(LOQ:0.0005)	BLQ(LOQ:0.0005)	0.001	No relaxation
26	Total Dissolved Solids	mg/L	274	478	399.8	500	2000
27	Sodium (Na)	mg/L	21.2	106	73.06	20	200
28	Potassium (K)	mg/L	1.1	8.8	8.8	12	No relaxation
29	Molybdenum (Mo)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.07	No relaxation
30	Total Coliform MPN/100ml	MPN/100ml	<2	<2	<2	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample
31	E.coli MPN/100ml	MPN/100ml	<2	<2	<2	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS

Table 3.7 Surface Water Quality Result

S.NO	Parameters	Units	Minimum	Maximum	Average	Acceptable Limits As per IS 10500:2012	Permissible Limits As Per IS 10500:2012
1	Colour	Hazen	5	10	7.5	5	300
2	Odour	_	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	pH Value	_	7.54	8.37	7.88	6.5 - 8.5	No relaxation
4	Total Ammonia	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.5	No relaxation
5	Anionic detergent	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.2	1.0
6	Sulphate (SO ₄)	mg/L	6.3	14.2	9.2	200	400
7	Calcium (Ca)	mg/L	11.7	25.5	17.2	75	200
8	Fluoride (F)	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.0	0.4
9	Free Residual Chlorine	mg/L	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	BLQ(LOQ:0.1)	0.2	1.0
10	Magnesium (Mg)	mg/L	5	10	7.5	30	100
11	Manganese (Mn)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.1	0.3
12	Nitrate (NO ₃)	mg/L	2.2	6.1	3.8	45	No relaxation
13	Phenolic compounds (C ₆ H ₅ OH)	mg/L	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	0.001	0.002
14	Selenium (Se)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.01	No relaxation
15	Iron (Fe)	mg/L	0.19	0.38	0.29	0.3	No relaxation

16	Aluminium (Al)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.03	0.2
17	Chloride (Cl)	mg/L	6.8	13.1	9.53	250	1000
18	Copper (Cu)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.05	1.5
19	Barium (Ba)	mg/L	BLQ(LOQ:0.05)	BLQ(LOQ:0.05)	BLQ(LOQ:0.05)	0.5	No relaxation
20	Boron (B)	mg/L	BLQ(LOQ:0.05)	BLQ(LOQ:0.05)	BLQ(LOQ:0.05)	0.5	1.0
21	EC	μS/Cm	116	310	205	-	-
22	Cadmium (Cd)	mg/L	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	BLQ(LOQ:0.001)	0.003	No relaxation
23	Cyanide (CN)	mg/L	BLQ(LOQ:0.01)	BLQ(LOQ:0.01)	BLQ(LOQ:0.01)	0.05	No relaxation
24	Lead (Pb)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.01	No relaxation
25	Mercury (Hg)	mg/L	BLQ(LOQ:0.0005)	BLQ(LOQ:0.0005)	BLQ(LOQ:0.0005)	0.001	No relaxation
26	Total Dissolved Solids	mg/L	64	176	114.6	500	2000
27	Sodium (Na)	mg/L	4.6	7.4	6.2	20	200
28	Potassium (K)	mg/L	0.43	0.7	0.52	12	No relaxation
29	Molybdenum (Mo)	mg/L	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	BLQ(LOQ:0.005)	0.07	No relaxation
30	Total Coliform MPN/100ml	MPN/100ml	<2	<2	<2	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample
31	E.coli MPN/100ml	MPN/100ml	<2	<2	<2	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS

3.2.3.2 Groundwater Levels and Flow Direction

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December, 2023(Post Monsoon Season).

The open well water level data thus collected onsite are provided in Tables 3.8 and 3.9. According to the data, average depths to the static water table in open wells range from 4.08 to 5.80 m BGL in pre monsoon and 5.50 to 7.50 m BGL in post monsoon. The bore well data thus collected onsite are provided in Tables 3.10 and 3.11. The average depths to static potentiometric surface in bore wells for the period of October through December 2023 (Post-Monsoon Season) vary from 52.0 to 52.7 m and from 57.03 to 57.80 m for the period of March through May, 2023 (Pre-Monsoon Season). Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

Table 3.8 Pre-Monsoon Water Level of Open Wells within 2 km Radius

Station ID	Depth t	o Static Wa	ter Table BG	SL (m)	Latitude Longitude	
Station 1D	Mar-2023	Apr-2023	May- 2023	Average	Latitude	Longitude
DW01	4.5	6	7	5.80	9° 44.095'N	77° 19.358'E
DW02	3.5	5	6.5	5.00	9° 44.272'N	77° 20.018'E
DW03	3	4.5	6	4.50	9° 44.554'N	77° 19.784'E
DW04	4	5	6.5	5.10	9° 44.659'N	77° 20.381'E
DW05	4.5	6	7	5.80	9° 44.172'N	77° 21.213'E
DW06	3.5	5	6.5	5.00	9° 43.927'N	77° 20.774'E
DW07	3.5	5.5	7	5.30	9° 43.195'N	77° 20.223'E
DW08	3	4.5	6	4.50	9° 43.264'N	77° 19.376'E
DW09	4	5	6.5	5.10	9° 43.674'N	77° 19.191'E

Source: Onsite monitoring data

Table 3.9 Post-Monsoon Water Level of Open Wells within 2 km Radius

Station ID	Depth	to Static Wat	ter Table Bo	GL(m)	Latitude	Longitude
	Oct-2023	Nov- 2023	Dec-2023	Average	Latitude	Longitude
DW01	5	6.5	8	6.50	9° 44.095'N	77° 19.358'E
DW02	4.5	6	7.5	6.00	9° 44.272'N	77° 20.018'E
DW03	4	6	7	5.60	9° 44.554'N	77° 19.784'E

DW04	5.5	7	8.5	7.00	9° 44.659'N	77° 20.381'E
DW05	5.5	7	8	6.80	9° 44.172'N	77° 21.213'E
DW06	4.5	5.5	7	5.80	9° 43.927'N	77° 20.774'E
DW07	4	5.5	7.5	5.60	9° 43.195'N	77° 20.223'E
DW08	6	7.5	9	7.50	9° 43.264'N	77° 19.376'E
DW09	4	5.5	7	5.50	9° 43.674'N	77° 19.191'E

Source: Onsite monitoring data

Table 3.10 Pre-Monsoon Water Level of Bore Wells within 2 km Radius

Station ID	Depth to Sta	tic Potention	metric Surfac	e BGL(m)	_ Latitude Longitude	Longitude
Station 1D	Mar-2023	Apr-2023	May- 2023			Longitude
BW01	55.2	57.2	59.1	57.2	9° 44.137'N	77° 20.642'E
BW02	55.4	57.6	58.9	57.3	9° 44.025'N	77° 20.381'E
BW03	55.1	58.1	59.8	57.7	9° 43.646'N	77° 19.942'E
BW04	55.6	56.2	59.3	57.0	9° 43.560'N	77° 19.412'E
BW05	56.1	57.1	60.1	57.8	9° 43.612'N	77° 20.711'E
BW06	56.2	57.8	59.4	57.8	9° 43.033'N	77° 20.171'E
BW07	54.9	57.5	59.3	57.2	9° 42.781'N	77° 19.713'E
BW08	55.8	57.9	59.4	57.7	9° 44.460'N	77° 19.608'E
BW09	55.4	57.4	60.1	57.6	9° 44.920'N	77° 20.653'E

Source: Onsite monitoring data

Table 3.11 Post-Monsoon Water Level of Bore Wells within 2 km Radius

	Depth	to Static Po	tentiometric	Surface		
Station ID		BC	GL(m)		Latitude	Longitude
	Oct-2023	Nov-2023	Dec-2023	Average	Limitado	Longitude
BW01	54.1	52.1	50.1	52.1	9° 44.137'N	77° 20.642'E
BW02	53.2	52.5	51.9	52.5	9° 44.025'N	77° 20.381'E
BW03	53.8	51.9	50.8	52.2	9° 43.646'N	77° 19.942'E
BW04	54.1	51.8	51.3	52.4	9° 43.560'N	77° 19.412'E
BW05	53.2	51.4	52.1	52.2	9° 43.612'N	77° 20.711'E
BW06	53.8	52	51.1	52.3	9° 43.033'N	77° 20.171'E
BW07	54.1	52.4	51.6	52.7	9° 42.781'N	77° 19.713'E
BW08	53.6	52.3	50	52.0	9° 44.460'N	77° 19.608'E
BW09	53.4	52.6	50.3	52.1	9° 44.920'N	77° 20.653'E

Source: Onsite monitoring data

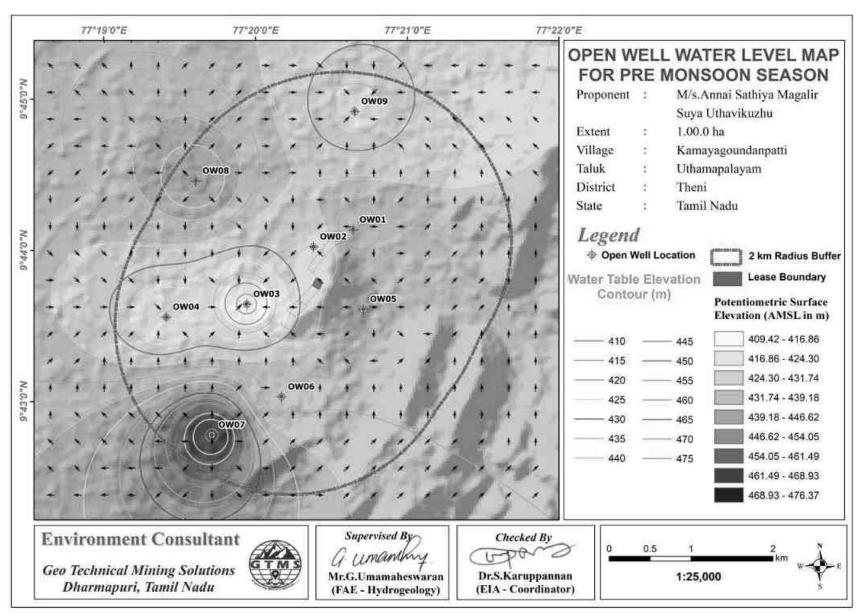


Figure 3.9 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

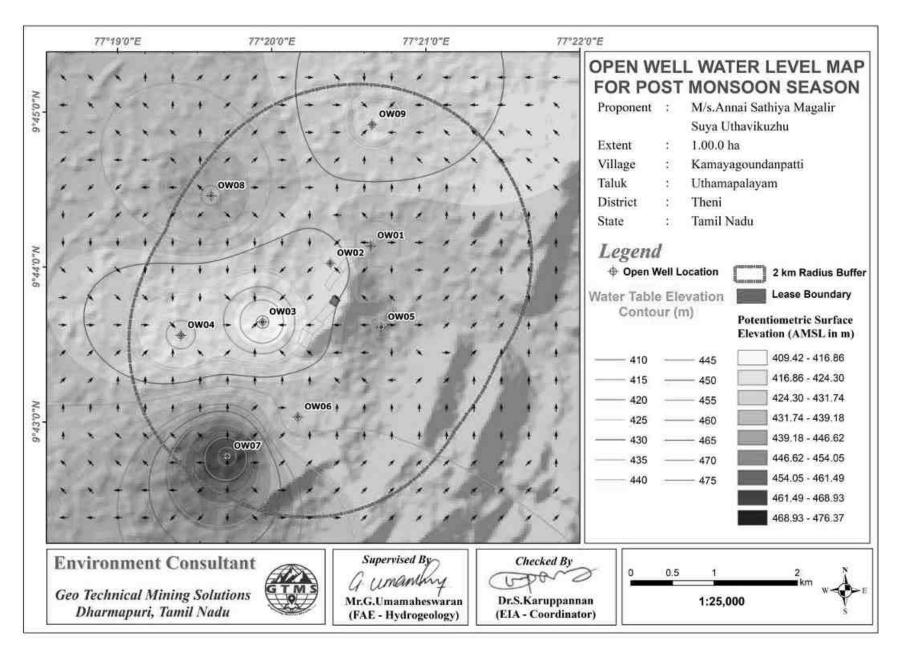


Figure 3.10 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season

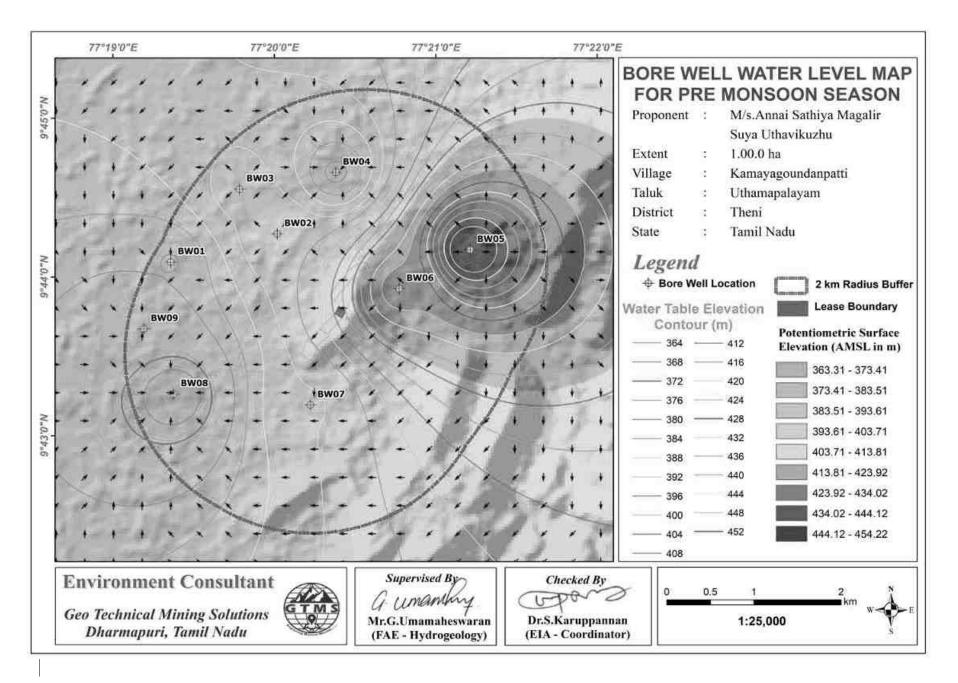


Figure 3.11 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

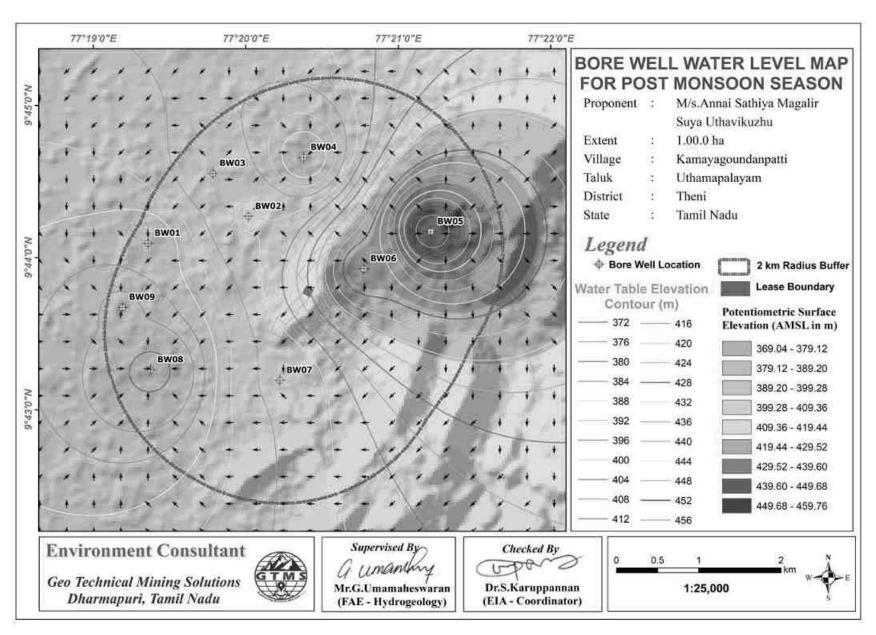


Figure 3.12 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season

3.2.3.3 Electrical Resistivity Investigation

Electrical resistivity investigation is especially useful in the areas where there are no adequate exploratory well data about the aquifer conditions. The present study makes use of vertical electric sounding (VES) to delineate earth's subsurface layers. The electrical resistivity investigation uses four electrodes set up where current is sent through outer electrodes into the ground and the inner electrodes measure the potential difference.

Result

The Geophysical VES data obtained from the project site have been shown in Table 3.12. The field data obtained from a detailed geophysical investigation were plotted using excel spreadsheet for interpretation. The plot for the purpose of interpretation has been shown in Figure 3.13.

Table 3.12 Vertical Electrical Sounding Data

	Lo	cation Coord	inates - 9°44'3.3	35"N 77°20'29.61	"E	
S. No.	AB/2	MN/2	Geometrical	Resistance in	Apparent	
5. 110.	(m)	(m)	Factor (G)	Ω	Resistivity in Ωm	
1	2	2	11.78	13.248	156.06	
2	4	2	49.46	6.127	303.04	
3	6	5	112.26	3.937	441.97	
4	8	5	200.18	2.798	560.1	
5	10	5	75.36	8.997	678.01	
6	15	10	173.49	5.188	900.07	
7	20	10	310.86	3.558	1106.04	
8	25	10	487.49	2.603	1268.94	
9	30	10	274.75	5.001	1374.02	
10	35	10	376.8	3.883	1463.11	
11	40	10	494.55	3.160	1562.78	
12	45	10	628	2.683	1684.92	
13	50	10	777.15	2.202	1710.95	
14	65	20	453.6	2.213	1003.82	
15	70	20	989.1	2.651	2622.1	
16	80	20	1256	2.196	2758.18	
17	90	20	1554.3	1.846	2869.24	
18	100	20	1653.6	2.213	3659.42	

The rock formation of low resistivity values indicates occurrence of water at the depth of about 60 m below ground level. The maximum depth proposed for the proposed project as these are hilly areas, quarrying takes place only 85 meters above ground level and 15 meters below ground level. Therefore, the mining operation will not affect the aquifer throughout the entire mine life period.

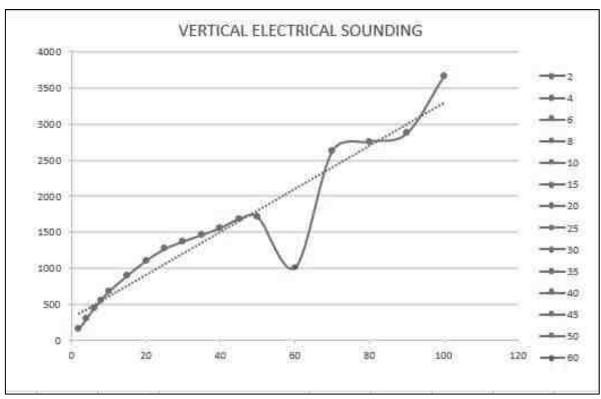


Figure 3.13 Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 60 m Below Ground Level in Proposed Project

3.3 AIR ENVIRONMENT

The baseline studies on air environment include identification of specific air pollutants and their existing levels in ambient air. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities.

3.3.1 Meteorology

3.3.1.1 Climatic Variables

A temporary meteorological station was installed at the project sites by covering cluster quarries. The station was installed at a height of 3 m above the ground level as there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature. Meteorological data obtained from the onsite monitoring station are provided in Table 3.13. According to the onsite data, the temperature in October 2023 varied from 20.93 to 35.26° C with the average of 25.41° C; in November, 2023 from 18.77 to 28.82° C with the average of 23.94° C; and in December, 2023 from 16.37 to 29.48° C with the average of 22.62°C. In October, 2023, relative humidity ranged from 35.75 to 99.38 % with the average of 81.92%; in November, 2023, from 64.88 to 100 % with the average of 88.69%; and in December, 2023, from 52.50 to 100 % with the average of 86.40 %. The wind speed in October, 2023 varied from 0.10 to 5.86 m/s with the average of 1.71 m/s; in November, 2023 from 0.27 to 3.48 m/s

with the average of 1.53 m/s; and in December, 2023 from 0.59 to 5.13 m/s with the average of 2.06 m/s. In October,2023, wind direction varied from 0.36 to 359.11° with the average of 185.92°; in November, 2023, from 0.00 to 359.61° with the average of 84.86°; and in December, 2023, from 0.29 to 359.76° with the average of 107.67°. In October,2023, surface pressure varied from 95.66 to 96.52 kPa with the average of 96.17 kPa; in November, 2023, from 95.73 to 96.57kPa with the average of 96.17kPa; and in December, 2023, from 95.44 to 96.88 kPa with the average of 96.08 kPa.

Table 3.13 Onsite Meteorological Data

S. No.	Parameters		OCT,2023	NOV,2023	DEC,2023
		Min	20.93	18.77	16.37
1	Temperature (⁰ C)	Max	35.26	28.82	29.48
		Avg	25.41	23.94	22.62
		Min	35.75	64.88	52.50
2	Relative Humidity (%)	Max	99.38	100.00	100.00
		Avg	81.92	88.69	86.40
		Min	0.10	0.27	0.59
3	Wind Speed (m/s)	Max	5.86	3.48	5.13
		Avg	1.71	1.53	2.06
	Wind Direction	Min	0.36	0.00	0.29
4	(degree)	Max	359.11	359.61	359.76
	(degree)	Avg	185.92	84.86	107.67
		Min	95.66	95.73	95.44
5	5 Surface Pressure(kPa)	Max	96.52	96.57	96.88
		Avg	96.17	96.17	96.08

Source: On-site monitoring/sampling by notified Interstellar Testing Centre Pvt. Ltd in association with GTMS

3.3.1.2 Wind Pattern

Wind pattern will largely influence the dispersion pattern of air pollutants and noise from the proposed project site. Analysis of wind pattern requires hourly site-specific data of wind speed and direction. Two types of wind rose were generated: historical seasonal wind rose for the period of October through December of the years from 2019 to 2022 and the seasonal wind rose for the study period of October through December 2023. The wind rose diagrams thus produced are shown in Figures 3.14-3.14a. Figure 3.14 reveals that:

- ❖ The measured average wind velocity during the study period is 1.77 m/s.
- ❖ Predominant wind was dominant in the directions ranging from northeast to southeast.

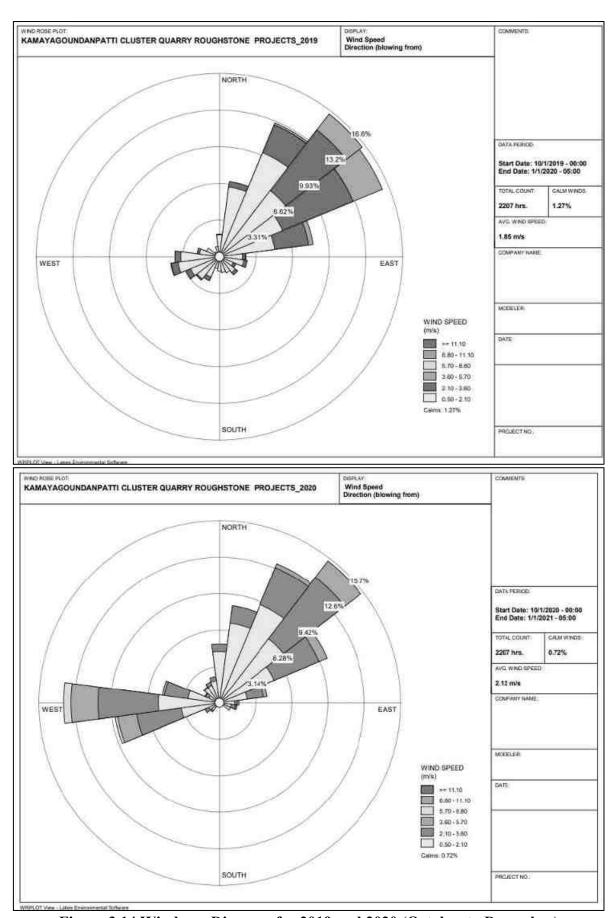


Figure 3.14 Windrose Diagram for 2019 and 2020 (October to December)

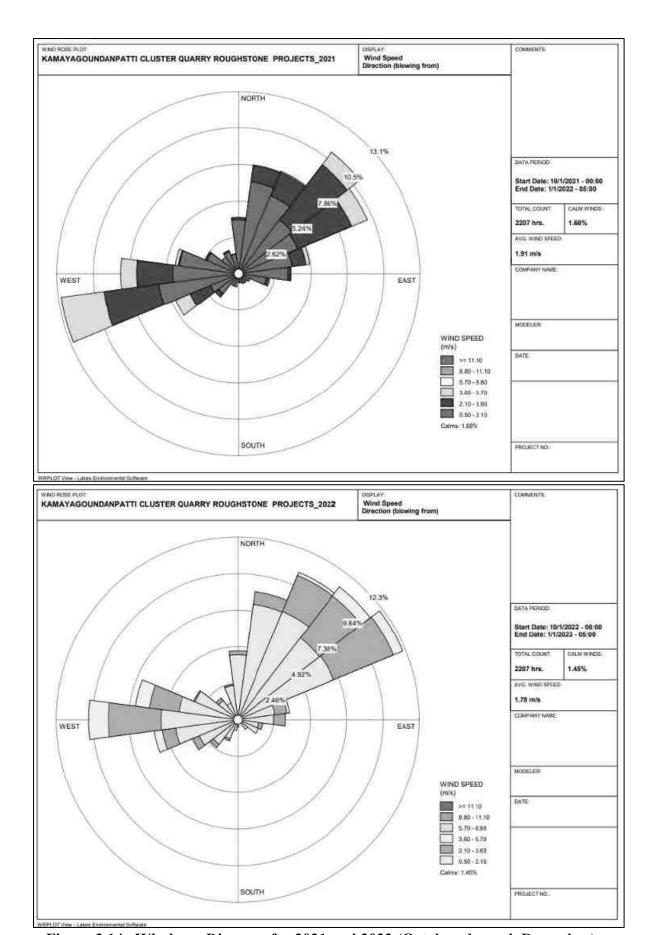


Figure 3.14a Windrose Diagram for 2021 and 2022 (October through December)

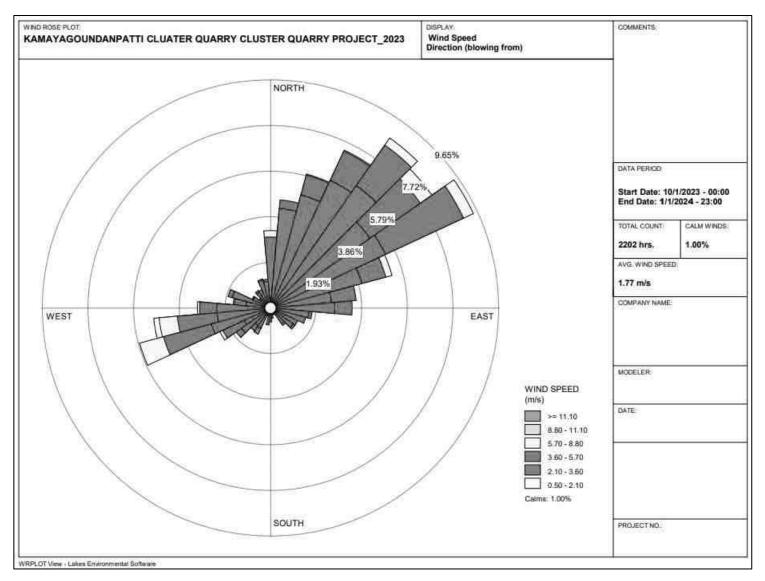


Figure 3.15 Onsite Wind Rose Diagram

3.3.2 Ambient Air Quality Study

The baseline ambient air quality is studied through a scientifically designed ambient air quality monitoring network considering the followings:

- Meteorological condition on synoptic scale
- Topography of the study area
- Representatives of regional background air quality for obtaining baseline status
- Location of residential areas representing different activities
- ❖ Accessibility and power availability

Table 3.14 Methodology and Instrument Used for AAQ Analysis

Parameter	Method	Instrument
PM _{2.5}	Gravimetric method	Fine Particulate Sampler
1 1012.5	Beta attenuation method	Thie I articulate Sampler
PM_{10}	Gravimetric method	Respirable Dust Sampler
F 1V110	Beta attenuation method	
SO_2	IS-5182 Part II	Respirable Dust Sampler with gaseous
SO_2	(Improved West & Gaeke method)	attachment
NOx	IS-5182 Part II (Jacob & Hoch heiser modified method)	Respirable Dust Sampler with gaseous attachment
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Source: Sampling Methodology based on Interstellar Testing Centre Pvt. Ltd & CPCB Notification

Table 3.15 National Ambient Air Quality Standards

	Pollutant		Concentration in ambient air		
S. No.		Time Weighted Average	Industrial, Residential, Rural & other areas	Ecologically Sensitive area (Notified by Central Govt.)	
1	$SO_2 (\mu g/m^3)$	Annual Avg.* 24 hours**	50.0 80.0	20.0 80.0	
2	$NO_x (\mu g/m^3)$	Annual Avg. 24 hours	40.0 80.0	30.0 80.0	
3	$PM_{10} (\mu g/m^3)$	Annual Avg. 24 hours	60.0 100.0	60.0 100.0	
4	PM _{2.5} (μg/m3)	Annual Avg. 24 hours	40.0 60.0	40.0 60.0	

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

Methodology

Ambient air quality monitoring was carried out with a frequency of two samples per week at ten (10) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period October through December, 2023 as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least 3 ± 0.5 m above the ground level at each monitoring station for negating the effects of wind-blown ground dust. The equipment was placed at space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results. The baseline data of ambient air were generated for PM_{2.5}, PM₁₀, sulphur dioxide (SO₂) and nitrogen dioxide (NO_x). The sampling locations are shown in Figure 3.16 and average concentrations of air pollutants are summarized in Tables 3.16 and are shown in Figures 3.17-3.21.

Table 3.16 Ambient Air Quality (AAQ) Monitoring Locations

S. No	Location Code	Monitoring Locations	Distance (km)	Direction	Coordinates	
1	AAQ1	Pit I Core	0.55Km	NNE	9°44'5.10"N	77°20'31.69"E
2	AAQ2	Pit II Core	0.32Km	N	9°43'59.63"N	77°20'24.82"E
3	AAQ3	Between Pit IV and Pit V	0.24Km	SW	9°43'40.70"N	77°20'16.90"E
4	AAQ4	Pit VI Core	0.61Km	SW	9°43'30.31"N	77°20'10.98"E
5	AAQ5	Surulipatti	4.58Km	SW	9°42'25.57"N	77°18'9.92"E
6	AAQ6	Narayanathevanpatti	3.27Km	WSW	9°43'27.69"N	77°18'36.84"E
7	AAQ7	Kamayagoundanpatti	2.36Km	NW	9°44'19.19"N	77°19'12.71"E
8	AAQ8	Royappanpatti	4.66Km	N	9°46'20.66"N	77°20'17.63"E
9	AAQ9	Koothanachiamman Temple	3.74Km	SSW	9°41'43.38"N	77°20'12.36"E
10	AAQ10	Puthupati	4.82Km	NW	9°45'53.15"N	77°18'28.99"E

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS

Results

As per the monitoring data, $PM_{2.5}$ ranges from 20.1 $\mu g/m^3$ to 22.0 $\mu g/m^3$; PM_{10} from 45.4 $\mu g/m^3$ to 49.7 $\mu g/m^3$; SO_2 from 5.2 $\mu g/m^3$ to 7.7 $\mu g/m^3$; NO_X from 12.4 $\mu g/m^3$ to 15.7 g/m^3 . The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index (AQI)

The AQI shows that the air quality of the study area falls within good category 47 causing minimal impact to human health.

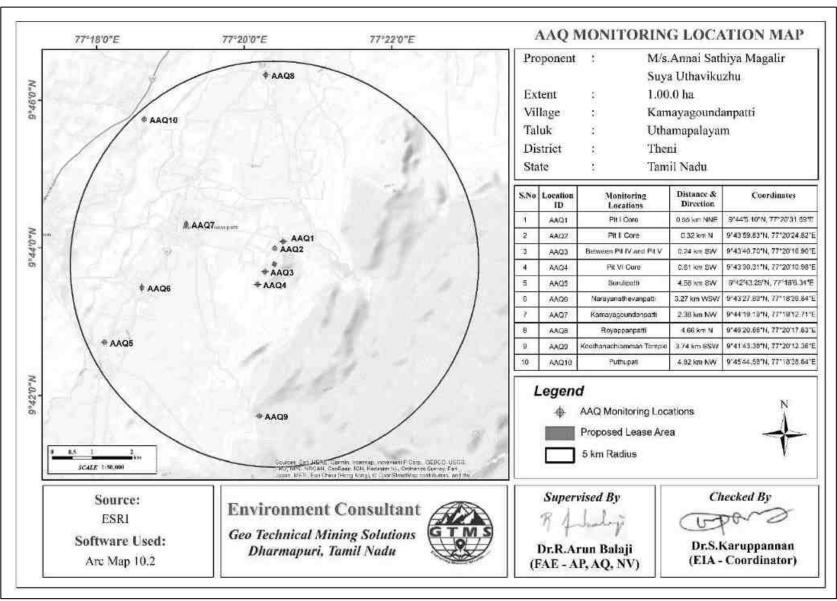


Figure 3.16 Toposheet Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site

Table 3.17 Summary of AAQ Result

		PM _{2.5}		3.17 Summar	y OI AAQ		PM ₁₀		
Station ID	Max	Min	Mean	98 th Percentile	Max	Min	Mean	98 th Percentile	
AAQ1	21.4	18.9	19.7	21.3	49.8	43.9	45.8	49.5	
AAQ2	23.3	20.7	21.4	23.1	50.5	45.0	46.5	50.2	
AAQ3	22.1	20.6	21.1	21.4	49.2	45.7	46.9	48.8	
AAQ4	21.1	18.6	19.4	21.0	49.1	43.3	45.2	48.9	
AAQ5	22.3	20.7	21.6	22.3	51.8	48.0	50.2	51.8	
AAQ6	23.0	21.4	22.3	23.0	53.6	49.7	51.9	53.5	
AAQ7	22.5	20.9	21.8	22.5	53.7	49.7	52.0	53.6	
AAQ8	25.4	23.6	24.6	25.4	56.5	52.4	54.7	56.5	
AAQ9	18.9	17.5	18.0	18.7	40.2	37.3	38.3	39.4	
AAQ10	20.0	18.4	19.1	19.8	42.6	39.1	40.6	42.2	
		SO ₂	l		NO _x				
AAQ1	5.7	5.1	5.3	5.7	16.4	14.5	15.1	16.3	
AAQ2	5.7	5.0	5.2	5.6	16.2	14.4	14.9	16.1	
AAQ3	5.4	5.0	5.1	5.2	15.3	14.2	14.5	15.1	
AAQ4	5.7	5.0	5.2	5.6	16.2	14.3	14.9	16.1	
AAQ5	6.0	5.6	5.9	6.0	17.1	15.9	16.6	17.1	
AAQ6	15.1	5.3	5.9	10.7	16.1	5.3	15.2	16.1	
AAQ7	6.1	5.6	5.9	6.1	17.2	15.9	16.6	17.0	
AAQ8	16.4	5.6	6.2	11.6	16.9	5.8	16.0	16.9	
AAQ9	5.3	5.0	5.1	5.3	12.5	11.6	11.9	12.3	
AAQ10	5.5	5.0	5.2	5.4	13.6	12.5	13.0	13.5	

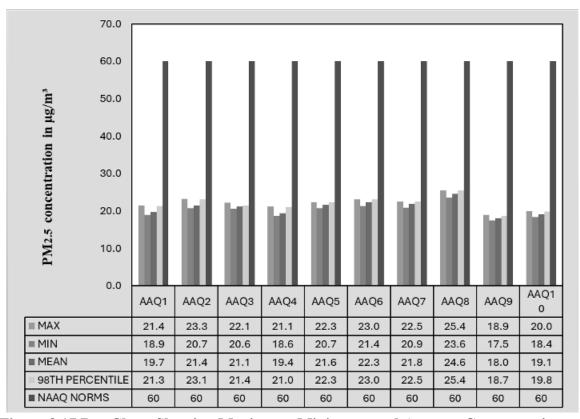


Figure 3.17 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{2.5} Measured from 10 Air Quality Monitoring Stations within 5 km Radius



Figure 3.18 Bar Chart Showing Maximum, Minimum and Average Concentrations of PM₁₀ Measured from 10 Air Quality Monitoring Stations within 5 km Radius

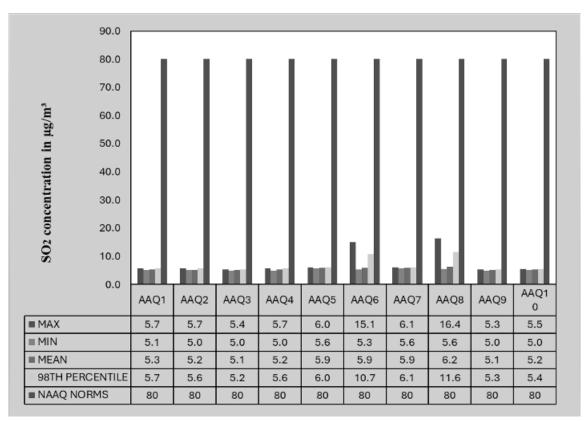


Figure 3.19 Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO₂ Measured from 10 Air Quality Monitoring Stations within 5 km Radius

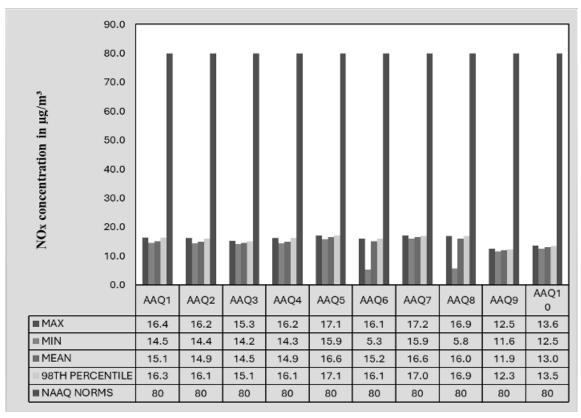


Figure 3.20 Bar Chart Showing Maximum, Minimum and Average Concentrations of NOx Measured from 10 Air Quality Monitoring Stations within 5km Radius

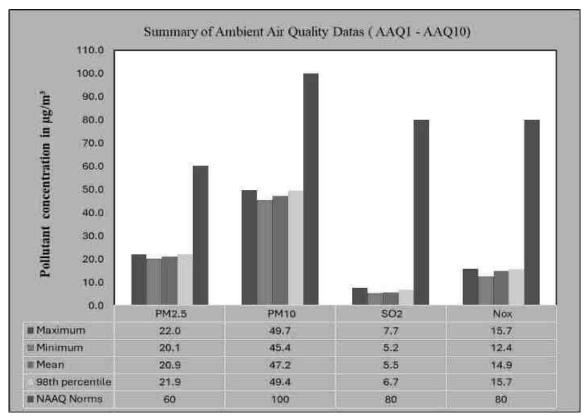


Figure 3.21 Bar Chart Showing Maximum, Minimum and Average Concentrations of Pollutants in Atmosphere within 5 km Radius

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in the study area. The main objective of noise monitoring in the study area is to establish the baseline noise level, which will in turn be used to assess the impact of the total noise expected to be generated during the project operations around the project site. In order to assess the ambient noise levels within the study area, noise monitoring was carried out at seven (7) locations covering commercial, residential, rural areas within the radius of 5 km. Details of noise monitoring locations are provided in Table 3.18 and spatial occurrence of the locations are shown in Figure 3.24.

Table 3.18 Noise Monitoring Locations

S.	Location	Monitoring	Distanc	Directio	Coordinates				
No	Code	Locations	e in km	n	Coordinates				
1	N1	PIT I	0.46Km	NNE	9°44'3.33"N	77°20'29.04"E			
2	N2	PIT II	0.28Km	N	9°43'58.13"N	77°20'24.61"E			
3	N3	PIT III			9°43'46.33"N	77°20'22.57"E			
4	N4	PIT IV	0.05 Km	SW	9°43'44.74"N	77°20'21.67"E			

5	N5	PIT V	0.45 Km	SW	9°43'36.45"N	77°20'12.92"E
6	N6	PIT VI	0.58 Km	SW	9°43'32.29"N	77°20'10.61"E
7	N7	Surulipatti	4.80 Km	SW	9°42'26.87"N	77°18'2.28"E
8	N8	Narayanathevan patti	3.33 Km	WSW	9°43'28.53"N	77°18'34.41"E
9	N9	Kamayagounda npatti	2.47 Km	NW	9°44'11.41"N	77°19'5.26"E
10	N10	Royappanpatti	4.73 Km	N	9°46'22.40"N	77°20'10.72"E
11	N11	Koothanachiam man Temple	3.73 Km	S	9°41'43.85"N	77°20'11.55"E
12	N12	Puthupati	5.08 Km	NW	9°45'50.09"N	77°18'30.11"E

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS

Table 3.19 Ambient Noise Quality Result

Station ID	Location	Environmental setting	Average day noise level (dB(A))	Average night noise level (dB(A))	Day time (6.00 AM – 10.00 PM)	time (10.00 PM – 6.00 AM)
						$(L_{eq} \text{ in } dB)$
					(A))	
N1	PIT I		44.7	41	75	70
N2	PIT II		50.8	43	75	70
N3	PIT III	Industrial Area	40	38.1	75	70
N4	PIT IV	muusmai Area	44.4	37.2	75	70
N5	PIT V		43.8	40.6	75	70
N6	PIT VI		44.7	43.4	55	45
N7	Surulipatti		42.6	39	55	45
N8	Narayanathevanpatti		49	41.4	55	45
N9	Kamayagoundanpatti	Residential	41.9	39.8	55	45
N10	Royappanpatti	Area	46.5	38.9	55	45
N111	Koothanachiamman	Alta			55	45
N11	Temple		41.9	39.9		
N12	Puthupati		44.6	39.1	55	45

Source: On-site monitoring/sampling by Interstellar Testing Centre Pvt. Ltd in association with GTMS

The Table 3.19 shows that noise level in core zone was 40.0 dB (A) Leq during day time and 38.1 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 41.9 to 50.8 dB (A) Leq and during night time from 37.2 to 43.4 dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB. The results are also depicted below in Figures 3.22 and 3.23.

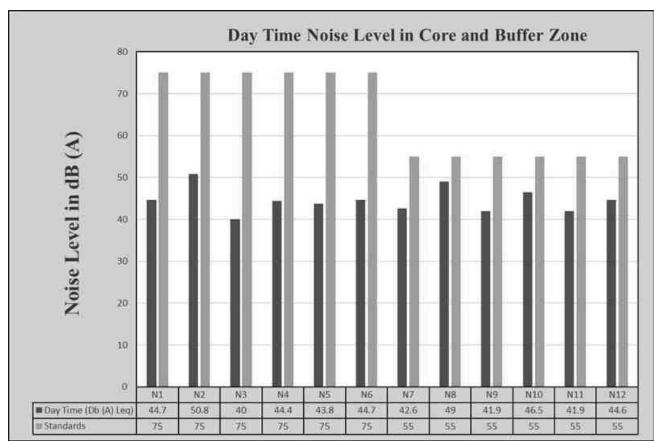


Figure 3.22 Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones Night Time Noise Level in Core and Buffer Zone 80 70 60 Noise Level in dB (A) 50 40 30 20 10 0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 ■ Night Time (Db (A) Leq) 41 43 38.1 37.2 40.6 43.4 39 41.4 39.8 38.9 39.9 39.1 ■ Standards 70 45

Figure 3.23 Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones

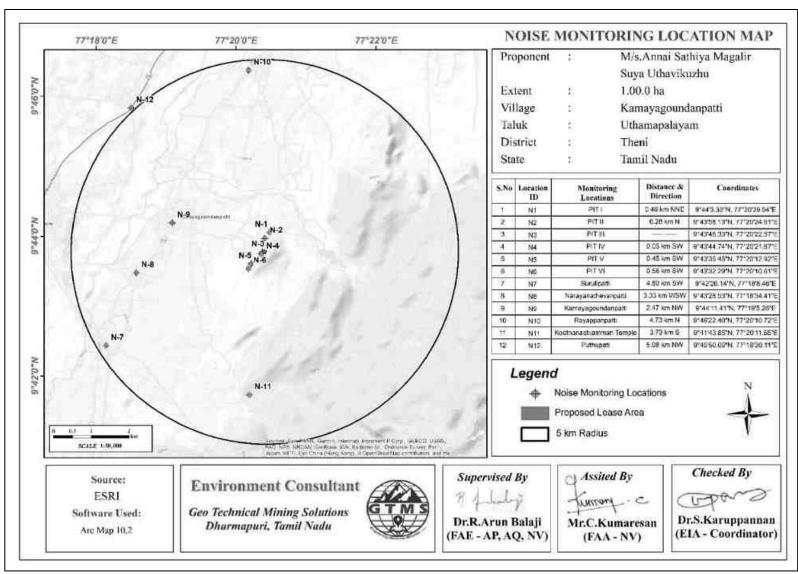


Figure 3.24 Toposheet Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site

3.5 BIOLOGICAL ENVIRONMENT

An ecological survey was conducted to collect the baseline data regarding flora and fauna in the study area of 10 km radius. Data were also collected from different sources, i.e., government departments such as District Forest Office, Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

Methodology

Sampling locations were selected with reference to topography, land use, vegetation pattern, etc. In this study, quadrats of 25 m \times 25 m were laid down to assess trees and quadrats of 10 m \times 10 m were laid down for shrubs, as shown in Figure 3.25.

Figure 3.25 Quadrates Sampling Methods of Flora

Phyto-Sociological Studies

Phyto sociological parameters, such as *Density, Frequency, Abundance and Importance Value Index* of individual species were determined in randomly placed quadrat of different sizes in the study area, as shown in Table 3.20. Relative frequency, and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and grasses, *Density, Frequency, Relative Density & Relative Frequency were found*. Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process.

Table 3.20 Calculation of Density, Frequency (%), Dominance, Relative Density, Relative Frequency, Relative Dominance & Important Value Index

Parameters	Formula
Density	Total No. of individuals of species/ Total No. of Quadrats used in
	sampling
Frequency (%)	(Total No. of Quadrats in which species occur/ Total No. of Quadrats
	studied)100
Abundance	Total No. of individuals of species/ No. of Quadrats in which they occur
Relative Density	(Total No. of individuals of species/Sum of all individuals of all species)
	* 100
Relative	(Total No. of Quadrats in which species occur/ Total No. of Quadrats
Frequency	occupied by all species) * 100
Important Value	Relative Density + Relative Frequency
Index	

Shannon – Wiener Index, Evenness and Richness

Biodiversity index is a quantitative measure that reflects how many different types of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species is equally abundant. The corresponding formulas are given in Table 3.21.

Table 3.21 Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness

Description	Formula
Species diversity –	$H = \sum [(p_i)^* In(p_i)]$
Shannon – Wien	Where p _{i:} Proportion of total sample represented by species
Index	i: number of individuals of species i/ total number
	samples
Evenness	H/H max
	$H_{max} = ln(s) = maximum diversity possible$
	S=No. of species
Species Richness by	RI = S-1/ln N
Margalef	Where S = Total Number of species in the community
	N = Total Number of individuals of all species in the
	Community

3.5.1 Flora

Flora study was conducted using the above said methodology to inventory the existing terrestrial plants in both core and buffer zones. Details of plants have been described in the succeeding sections. Photographs showing various species are provided in Figure 3.27.

Flora in mine lease area (core zone)

The mine lease area contains total of 30 species belonging to 17 families have been recorded from the mine lease area.5 Tree, 12 shrubs, 13 herbs were identified. It is a grassy land. There are no endangered species in mine lease area. The Meghamalai Wildlife Sanctuary Eco-Sensitive Zone is located 636.5 meters NE of the quarry lease area. the megamalai wildlife sanctuary core located in the 1.30km SE side from the lease area. During the study period There are no rare, endangered, threatened (RET) and endemic species recorded in mine lease area. Details of vegetation with scientific name indicated in Table 3.22. Wildlife Sanctuary and Eco Sensitive zone showing in figure 3.28

Table 3.22 Flora in mine lease area

Table 5.22 Flora III IIIIII lease al ca										
S. No	Local name	Scientific name	Family name	IUCN Conservation Status						
Trees										
1	Semai Karuvealan	Prosopis juliflora	Fabaceae	NL						
2	Unjai maram	Albizia amara	Fabaceae	NL						
3	Neem	Azadirachta indica	Meliaceae	NL						
4	Vetpalai	Wrightia tinctoria	Apocynaceae	NL						
5	Mullu maram	Vachellia karroo	Fabaceae	NL						
		Shrubs								
1	Avaram chadi	Senna auriculata	Fabaceae	NL						
2	Earuku	Calotropis gigantea	Apocynaceae	NL						
3	Virali chadi	Dodonaea viscosa	Sapindaceae	LC						
4	Unichadi	Lantana camara	Verbenaceae	NL						
5	Sapathikalli	Opuntia ficus-indica	Cactaceae	NL						
6	Katralai	Agave americana	Asparagaceae	NL						
7	Karaichadi	Canthium coromandelicum	Rubiaceae	NL						
8	Suraimullu	Ziziphus oenopolia	Rhamnaceae	NL						
9	Kari indu mullu	Acacia caesia	Fabaceae	NL						
10	Sulli maral	Barleria prionitis	Acanthaceae	NL						
11	Communist pacha	Chromolaena odorata	Asteraceae	NL						
12	Hedge cactus	cereus hildmannianus	Cactaceae	NL						
		Herbs /Climber								
1	Perandai	Cissus quadrangularis	Vitaceae	NL						
2	Parthiniyam	Parthenium hysterophorus	Asteraceae	NL						
3	Kombukkalli	Euphorbia tirucalli L.	Euphorbiaceae	NL						
4	Thathapondu	Tridax procumbens	Asteraceae	NL						
5	Kolunji chadi	Tephrosia purpurea	Fabaceae	NL						
6	Nayuruvi	Achyranthes aspera	Amaranthaceae	NL						
7	Nearunji Mull	Tribulus zeyheri	Zygophyllaceae	NL						
8	Seemai nayuruvi	Stachytarpheta indica	Verbenaceae	NL						

9	Poolapu	Aerva lanata	Amaranthaceae	NL
10	Vellaikaattukottai	Jatropha gossypiifolia L.	Euphorbiaceae	NL
11	American Mint	Hyptis suaveolens	Lamiaceae	NL
12	Siddhamutti	Sida cordifolia	Malvaceae	NL
13	Kolunji chadi	Tephrosia purpurea	Fabaceae	NL

The Flora in lease area and 300 m radius (buffer zone)

There is no agricultural land nearby lease area. It contains a total of 48 species belonging to 23 families have been recorded from the buffer zone. 14 Trees 12 Shrubs and 22 Herbs, Climbers, Creeper, Grass & Cactus (53.7%) were identified. Details of flora with the scientific name details and of diversity species Rich ness index were mentioned in Table 3.23-3.25 and Figure 3.26. There is no threat to the Flora species in 300 m radius. The Meghamalai Wildlife Sanctuary Eco-Sensitive Zone is located 636.5 meters NE of the quarry lease area.

Flora in 10 km radius buffer zone

The buffer zone has more vegetation than the core zone. Meghamalai Wildlife Sanctuary is located 1.13Km SE side of the quarry lease area. The wildlife sanctuary has red listed plants and medicinal plants. The primary and secondary data collected during the field survey is attached in Annexure-IV and the list of reserve forests within 10 km radius is given in 3.42. Total of 510 species belonging to 80 families have been recorded from the buffer zone. 101 Trees 69 Shrubs 191 Herbs and Climbers& Straggler 86, Grass 63 were identified.

Meghamalai Wildlife Sanctuary

Meghamalai Wildlife Sanctuary is located 1.13Km SE h of the quarry lease area The Meghamalai Wildlife Sanctuary Eco-Sensitive Zone is located 636.5 meters NE of the quarry lease area. The Megamalai hill is lying between the geographical range of 9°31′- 9°51′N and 77°10′ - 77°30′E. The altitude reaches upto 2000 m (msl.). The mountain range is otherwise popularly known as High Wavy Mountains and Pachakumatchi hills. It is a spur of the Western Ghats in Agastyamalai range. The Megamalai WLS is located on the border of Kerala and Tamil Nadu, this hill range is adjoining to the periyar tiger reserve, Idukki district of Kerala, and Grizzled Squirrel sanctuary, Srivillipudur in Tamil Nadu. This is the main catchment area for some important perennial rivers like Vaigai, Vaipar and Suruliar. Most of the sanctuary area is often sheltered by several tea, coffee, and cardamom estates interspersed with patches of dense forest cover. The study area represented the several forest types such as scrub forest, dry deciduous forest, moist deciduous forest, wet evergreen forest, dry grasslands, savannas, sholas and riparian forest. The detail of Meghamalai Wildlife Sanctuary flora and fauna list attached in annexure IV.

Table 3.23 Flora in 300 m Radius

S.No.	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
		D 1.0		rees			0.0	60.6	1.0		. .	1.7.6	37.77.4
1	Karuvealan	Prosopis juliflora	Fabaceae	4	3	5	0.8	60.0	1.3	7.7	7.9	15.6	Not Listed
2	Palm tree	Borassus flabellifer	Fabaceae	3	2	5	0.6	40.0	1.5	5.8	5.3	11.0	Not Listed
3	Vembu	Azadirachta indica	Meliaceae	5	4	5	1.0	80.0	1.3	9.6	10.5	20.1	Not Listed
4	Vealli vealan	Vachellia leucophloea	Babesiae	2	1	5	0.4	20.0	2.0	3.8	2.6	6.5	Not Listed
5	Unjai maram	Albizia amara	Fabaceae	3	2	5	0.6	40.0	1.5	5.8	5.3	11.0	Not Listed
6	Vetpalai	Wrightia tinctoria	Apocynaceae	4	3	5	0.8	60.0	1.3	7.7	7.9	15.6	Not Listed
7	Teke	Tectona grandis	Verbenaceae	5	4	5	1.0	80.0	1.3	9.6	10.5	20.1	Not Listed
8	Allamaram	Ficus benghalensis	Morassie	2	1	5	0.4	20.0	2.0	3.8	2.6	6.5	Not Listed
9	Pungamaram	Pongamia pinnata	Fabaceae	3	2	5	0.6	40.0	1.5	5.8	5.3	11.0	Not Listed
10	Piliyamaram	Tamarindus indica	Fabaceae	4	3	5	0.8	60.0	1.3	7.7	7.9	15.6	Not Listed
11	Theannaimaram	Cocos nucifera	Arecaceae	5	4	5	1.0	80.0	1.3	9.6	10.5	20.1	Not Listed
12	Vathanarayani	Delonix elata	Fabaceae	3	2	5	0.6	40.0	1.5	5.8	5.3	11.0	Not Listed
13	Ilavapanju maram	Ceiba pentandra	Malvaceae	4	3	5	0.8	60.0	1.3	7.7	7.9	15.6	Not Listed
14	Manga maram	Mangifera indica	Anacardiaceae	5	4	5	1.0	80.0	1.3	9.6	10.5	20.1	Not Listed
			,	hrubs									
1	Avaram chadi	Senna auriculata	Fabaceae	7	6	10	0.7	60.0	1.2	8.0	7.9	15.8	Not Listed
2	Earuku	Calotropis gigantea	Apocynaceae	8	7	10	0.8	70.0	1.1	9.1	9.2	18.3	Not Listed
3	Virali chadi	Dodonaea viscosa	Sapindaceae	6	5	10	0.6	50.0	1.2	6.8	6.6	13.4	Not Listed
4	Unichadi	Lantana camara	Verbenaceae	9	8	10	0.9	80.0	1.1	10.2	10.5	20.8	Not Listed
5	Sapathikalli	Opuntia ficus-indica	Cactaceae	8	7	10	0.8	70.0	1.1	9.1	9.2	18.3	Not Listed
6	Katralai	Agave americana	Asparagaceae	7	6	10	0.7	60.0	1.2	8.0	7.9	15.8	Not Listed

		G 4:											
7	Karaichadi	Canthium coromandelicum	Rubiaceae	6	5	10	0.6	50.0	1.2	6.8	6.6	13.4	LC
8	Suraimullu	Ziziphus oenopolia	Rhamnaceae	7	6	10	0.7	60.0	1.2	8.0	7.9	15.8	Not Listed
9	Kari indu mullu	Acacia caesia	Fabaceae	8	7	10	0.8	70.0	1.1	9.1	9.2	18.3	Not Listed
10	Sulli maral	Barleria prionitis	Acanthaceae	9	8	10	0.9	80.0	1.1	10.2	10.5	20.8	Not Listed
11	Communist pacha	Chromolaena odorata	Asteraceae	7	6	10	0.7	60.0	1.2	8.0	7.9	15.8	Not Listed
12	Hedge cactus	cereus hildmannianus	Cactaceae	6	5	10	0.6	50.0	1.2	6.8	6.6	13.4	Not Listed
			Н	lerbs									
1	Nayuruvi	Achyranthes aspera	Amaranthaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
2	Nearunji mull	Tribulus zeyheri Sond	Zygophyllaceae	9	8	15	0.6	53.3	1.1	5.0	5.0	10.1	1100 215004
3	pill	Cenchrus ciliaris	Poaceae	10	11	15	0.7	73.3	0.9	5.6	6.9	12.5	Not Listed
4	pulapoo	Aerva lanata	Amaranthaceae	7	6	15	0.5	40.0	1.2	3.9	3.8	7.7	Not Listed
5	kapok bush	Aerva javani	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.4	3.1	6.5	Not Listed
6	Rail poondu	Croton bonplandianus	Euphorbiaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
7	Yanai neariji	pedalium murex	Pedaliaceae	9	8	15	0.6	53.3	1.1	5.0	5.0	10.1	Not Listed
8	Perandai	Cissus quadrangularis	Vitaceae	11	10	15	0.7	66.7	1.1	6.1	6.3	12.4	Not Listed
9	Thumbai chadi	Leucas aspera	Lamiaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
10	Umathai	Datura metel	Solanaceae	9	8	15	0.6	53.3	1.1	5.0	5.0	10.1	Not Listed
11	Sethamutti	Sida cordata	Malvaceae	7	6	15	0.5	40.0	1.2	3.9	3.8	7.7	Not Listed
12	Annanm	Iva annua	Asteraceae	6	5	15	0.4	33.3	1.2	3.4	3.1	6.5	Not Listed
13	Kolunji	Tephrosia purpurea	Fabaceae	9	8	15	0.6	53.3	1.1	5.0	5.0	10.1	Not Listed
14	Vealiparuthi	Pergularia daemia	Apocynaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
15	Seppu nerinji	Indigofera linnaei Ali	Fabaceae	6	5	15	0.4	33.3	1.2	3.4	3.1	6.5	Not Listed
16	Sapathikalli	Opuntia ficus-indica	Cactaceae	10	9	15	0.7	60.0	1.1	5.6	5.7	11.2	Not Listed
17	Pal kodi	Cynanchum viminale	Apocynaceae	7	6	15	0.5	40.0	1.2	3.9	3.8	7.7	Not Listed
18	Ilia perandai	Cissus rotundifolia	Vitaceae	9	8	15	0.6	53.3	1.1	5.0	5.0	10.1	Not Listed
19	Katralai	Aloe vera	Asphodelaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
20	Seammulli	Barleria prionitis	Acanthaceae	6	5	15	0.4	33.3	1.2	3.4	3.1	6.5	Not Listed
21	Thuthi	Abutilon indicum	Malvaceae	8	7	15	0.5	46.7	1.1	4.5	4.4	8.9	Not Listed
22	Thulasi	Ocimum tenuiflorum	Lamiaceae	10	9	15	0.7	60.0	1.1	5.6	5.7	11.2	Not Listed

Table 3.24 Calculation of Species Diversity in 300 m Radius

S.No.	Common name	Scientific name	No. of Species	Pi	In (Pi)	Pi x in (Pi)				
		Trees								
1	Karuvealan	Prosopis juliflora	4	0.08	-2.56	-0.20				
2	Palm tree	Borassus flabellifer	3	0.06	-2.85	-0.16				
3	Vembu	Azadirachta indica	5	0.10	-2.34	-0.23				
4	Vealli vealan	Vachellia leucophloea	2	0.04	-3.26	-0.13				
5	Unjai maram	Albizia amara	3	0.06	-2.85	-0.16				
6	Vetpalai	Wrightia tinctoria	4	0.08	-2.56	-0.20				
7	Teke	Tectona grandis	5	0.10	-2.34	-0.23				
8	Allamaram	Ficus benghalensis	2	0.04	-3.26	-0.13				
9	Pungamaram	Pongamia pinnata	3	0.06	-2.85	-0.16				
10	Piliyamaram	Tamarindus indica	4	0.08	-2.56	-0.20				
11	Theannaimaram	Cocos nucifera	5	0.10	-2.34	-0.23				
12	Vathanarayani	Delonix elata	3	0.06	-2.85	-0.16				
13	Ilavapanju maram	Ceiba pentandra	4	0.08	-2.56	-0.20				
14	Manga maram		5	0.10	-2.34	-0.23				
		H (Shannon Diversity	Index) = 2.6	0						
	Shrubs									
1	Avaram chadi	Senna auriculata	7	0.08	-2.53	-0.20				
2	Earuku	Calotropis gigantea	8	0.09	-2.40	-0.22				
3	Virali chadi	Dodonaea viscosa	6	0.07	-2.69	-0.18				
4	Unichadi	Lantana camara	9	0.10	-2.28	-0.23				
5	Sapathikalli	Opuntia ficus-indica	8	0.09	-2.40	-0.22				
6	Katralai	Agave americana	7	0.08	-2.53	-0.20				
7	Karaichadi	Canthium coromandelicum	6	0.07	-2.69	-0.18				
8	Suraimullu	Ziziphus oenopolia	7	0.08	-2.53	-0.20				
9	Kari indu mullu	Acacia caesia	8	0.09	-2.40	-0.22				
10	Sulli maral	Barleria prionitis	9	0.10	-2.28	-0.23				
11	Communist pacha	Chromolaena odorata	7	0.08	-2.53	-0.20				
12	Hedge cactus	cereus hildmannianus	6	0.07	-2.69	-0.18				
		H (Shannon Diversity	Index) = 2.4	8						
		Herbs								
1	Nayuruvi	Achyranthes aspera	8	0.04	-3.11	-0.14				
2	Nearunji mull	Tribulus zeyheri Sond	9	0.05	-2.99	-0.15				
3	pill	Cenchrus ciliaris	10	0.06	-2.88	-0.16				
4	pulapoo	Aerva lanata	7	0.04	-3.24	-0.13				
5	kapok bush	Aerva javani	6	0.03	-3.40	-0.11				
6	Rail poondu	Croton bonplandianus	8	0.04	-3.11	-0.14				
7	Yanai neariji	pedalium murex	9	0.05	-2.99	-0.15				
8	Perandai	Cissus quadrangularis	11	0.06	-2.79	-0.17				
9	Thumbai chadi	Leucas aspera	8	0.04	-3.11	-0.14				
10	Umathai	Datura metel	9	0.05	-2.99	-0.15				

11	Sethamutti	Sida cordata	7	0.04	-3.24	-0.13
12	Annanm	Iva annua	6	0.03	-3.40	-0.11
13	Kolunji	Tephrosia purpurea	9	0.05	-2.99	-0.15
14	Vealiparuthi	Pergularia daemia	8	0.04	-3.11	-0.14
15	Seppu nerinji	Indigofera linnaei Ali	6	0.03	-3.40	-0.11
16	Sapathikalli	Opuntia ficus-indica	10	0.06	-2.88	-0.16
17	Pal kodi	Cynanchum viminale	7	0.04	-3.24	-0.13
18	Ilia perandai	Cissus rotundifolia	9	0.05	-2.99	-0.15
19	Katralai	Aloe vera	8	0.04	-3.11	-0.14
20	Seammulli	Barleria prionitis	6	0.03	-3.40	-0.11
21	Thuthi	Abutilon indicum	8	0.04	-3.11	-0.14
22	Thulasi	Ocimum tenuiflorum	10	0.06	-2.88	-0.16
		H (Shannon Diversity	$\sqrt{\text{Index}} = 3.0$	8		

Table 3.25 Species Richness (Index) in 300-meter radius

Details	Н	H max	Evenness	Species Richness
Tree	2.60	2.64	0.98	3.29
Shrubs	2.48	2.48	1.00	2.46
Herbs	3.08	3.09	1.00	4.05

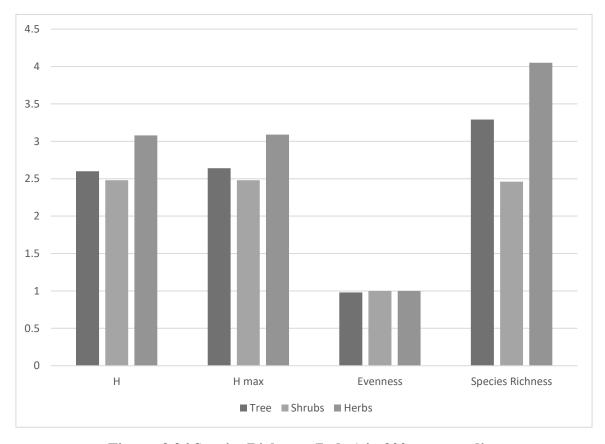


Figure. 3.26 Species Richness (Index) in 300-meter radius



Figure 3.28 Map Showing has Meghamalai Wildlife Sanctuary and Eco-Sensitive Zone boundary

3.5.2 Fauna

The faunal survey was carried out for Mammals, Birds, Reptiles, Amphibians and Butterflies. There are no rare, endangered, threatened (RET) and endemic species present in core area.

Fauna Methodology

Table 3.26 Methodology Applied during Survey of Fauna

S.No.	Taxa	Method of Sampling	References		
1	Insects	Random walk, Opportunistic	Pollard (1977);		
1	Hisects	observations	Kunte (2000)		
2	Reptiles	Visual encounter survey (Direct Search)	Daniel J.C (2002)		
3	Amphibians	Visual encounter survey (Direct Search)	Daniel J.C (2002)		
4	Mammals	Tracks and Signs	Menon V (2014)		
5	Avian	Random walk, Opportunistic observations	Grimmett R (2011); Ali S (1941)		

Fauna in Core Zone

A total of 24 varieties of species observed in the Core zone among them numbers of Insects 7 (29%), Reptiles 5 (21%), Mammals 3 (13%) and Avian 9 (37%). A total of 24 species belonging to 19 families have been recorded from the core mining lease area. There are one schedule II species and 8 species are under schedule IV according to Indian wild life Act 1972. A total of 9 species of bird were sighted in the study area. The Meghamalai Wildlife Sanctuary Eco-Sensitive Zone is located 1.13 meters south-east of the quarry lease area. the megamalai wildlife sanctuary located in the 636.5 km east side feome the lease area. During the study period There are no rare, endangered, threatened (RET) and endemic species recorded in mine lease area. Details of fauna in core zone with the scientific name were mentioned in Table. 3.27. Wildlife Sanctuary and Eco Sensitive zone showing in figure 3.28

Fauna in Buffer Zone

During the study buffer zone has more Faunal species due to reserve forest and Megamalai wildlife sanctuary. Reserve Forests and Wildlife Sanctuaries Taxonomically a total of 188 species have been recorded from the buffer zone area. Based on habitat classification the majority of species were Birds 98 followed by reptiles 27 (23%), mammals 49 (6%) and amphibians 14 (6%). A total of 98 species of bird were sighted in the study area. Details of fauna in buffer zone with the scientific name were attached in Annexure-IV.

Table 3.27 Fauna in Core Zone

S. No	Common Name/English Name	Family Name	Scientific Name	Schedule list wildlife Protection act 1972	IUCN Red List data				
Insects									
1	Red-veined darter	Libellulidae	Sympetrum fonscolombii	NL	LC				
2	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC				
3	Mottled emigrant	Peridae	Catopsilia pyranthe	NL	LC				
4	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC				
5	Stick insect	Lonchodidae	carausius morosus	NL	LC				
6	Praying mantis	Mantidae	Mantis religiosa	NL	NL				
7	Common Tiger	Nymphalidae	Danaus genutia	NL	NL				
	1		Reptiles	l					
8	Garden lizard	Agamidae	Calotes versicolor	NL	LC				
9	Fan-Throated Lizard	Fan-Throated Agamidae		NL	LC				
10	Common skink	Scincidae	Mabuya carinatus	NL	LC				
11	Brahminy skink	Scincidae	Eutropis carinata	NL	LC				
12	Common house gecko	Gekkonidae	Hemidactylus frenatus	NL	LC				
			Mammals						
13	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	NL				
14	Common rat	Muridae	Rattus rattus	Schedule IV	LC				
15	Asian Small Mongoose	Herpestidae	Herpestes javanicus	Schedule (Part II)	LC				
	•		Aves						
16	Common myna	Sturnidae	Acridotheres tristis	NL	LC				
17	Koel	Cucalidae	Eudynamys	Schedule IV	LC				
18	Rose-ringed parkeet	Psittaculidae Psittacula krameri		NL					
19	Two-tailed Sparrow	Dicruridae	Dicrurus macrocercus	Schedule IV	LC				
20	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC				
21	Black drongo	Dicruridae	Dicrurus macrocercus	Schedule IV	LC				
22	House crow	Corvidae	Corvussplendens	NL	LC				
23	Red-vented Bulbul	Pycnonotidae	Pycnonotuscafer	Schedule IV	LC				
24	Common quail	Phasianidae	Coturnix coturnix	Schedule IV	LC				

^{*}NE- Not Evaluated; LC- Least Concern, NT –Near Threatened, T-Threatened

Aquatic Vegetation

The field survey for assessing the aquatic vegetation was also undertaken during the study period. Fish is commonly found in all types of natural water bodies and very common source of food in Easterner South India. The local fishermen were enquired and also the secondary resources were reviewed to collect information on the fishes found in the study area. Few common species are; *Catla (Catla catla), Channa striata, Oreochromis niloticus*.

Table 3.28 Aquatic Fauna and Flora

Sl. No	Common Name	Scientific name	Family Name	IUCN Red List of Threatened Species		
		Flora				
1	Water hyacinth	Eichornia crassipes	Pontederiaceae	NA		
2	Blue waterlily	Nymphaea nouchali	Nymphaea nouchali Nymphaeaceae			
3	Cross Grass	Carex cruciata	Cyperaceae	NA		
4	Scutch grass	Cynodon dactylon	Poaceae	LC		
		Fauna				
5	Thilopia	Oreochromis niloticus	Cichlidae	LC		
6	Catla	Catla catla	Catla catla Cyprinidae			
7	Koravi meen	Channa striata	Channidae	LC		
8	Roghu	Labeo rohita	Cyprinidae	LC		

^{*}LC- Least Concern, NA-Not yet assessed

Phytoplankton's:

Microcystis, Nitzschia, Oscillatoria, Navicula and Pediastrum sps.

Zooplanktons:

These consist of microscopic organisms from groups Protozoa, Rotifers, Cladocera and Copepoda etc. Some common species of zooplanktons are; *Deflandre, Arcella vulgaris, Centropyxis spinosa Arcella discoides, Arcella hemispherica, Centropyxis aculeate, Trigonopyxis arcula, Brachionus calyciflorus, Lecane curvicornis, Brachionus angularis, Polyarthra vulgaris, Filinia longiseta.*

Food chain

The food chain in aquatic ecosystems often begins with the algae or phytoplankton producers, and then the zooplankton that feed on them. This type of food chain is found in nearby lakes and rivers with phytoplankton, zooplankton, fish Artiola gray and humans.

Ex: Phytoplankton→Zooplankton→small fish→large fish → Human

3.5.3 Agriculture & Horticulture in Theni district:

Major horticulture crops cultivated in this district are fruits crops like mango, banana, sapota aonla and guava, vegetables like brinjal, bhendi, capsicum, beans, theratachai, onion and chillies, spices like turmeric and pepper, and flower crops.

Major Agricultural Crops

Major horticulture crops cultivated in this district are vegetables crops like tomato, brinjal, chillies, onion and turmeric. Details of major field crops and Agricultural in 1km radius is given in Table. 3.29.

Table 3.29 Major Agricultural Crops in 1km radius

S. No	Major crops	Scientific name	Families
1	Sorghum	Sorghum bicolor	Poaceae
2	Gingelly	Sesamum indicum	Pedaliaceae
3	Groundnut	Arachis hypogaea	Legumes
5	Millets	Panicum miliaceum L	Poaceae
6	Sesame	Sesamum indicum	Pedaliaceae
7	Cotton	Gossypium herbaceum	Malvaceae
8	Paddy	Oryza sativa	Poaceae
9	Coconet	Cocos nucifera	Arecaceae
10	Sugarcane	Saccharum officinarum	Poaceae

Major Horticulture Crops

Horticulture includes cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and non-food crops such as grass and ornamental trees and plants. It also includes plant conservation, landscape restoration, landscape and garden design.

Horticulture

Major horticulture crops cultivated in Theni district are fruit crops like mango, banana, Sapota and guava, vegetables like tomato, brinjal, Veandai, chillies, beans, thiratchai, kovaikai onion and tapioca, spices like turmeric. Details of major field crops and horticulture cultivation in 1km radius is given in Table 3.30.

Table 3.30 Major Field Crops & Horticulture cultivation in 1km radius.

S. No	Common Name	Scientific Name	Family
		Major Horticultural Crops	
1	Guava	Psidium guajava	Myrtaceae
2	Sapota	Manilkara zapota	Sapotaceae
3	Lemon	Citrus × limon	Rutaceae
4	Papaya	Carica papaya	Caricaceae
5	mango	Mangifera indica	Anacardiaceae

6	banana	Musa × paradisiaca	Musaceae
7	Onion	Allium cepa	Amaryllidaceae
8	Tapioca	Manihot esculenta	Spurges
9	Brinjal	Solanum melongena	Nightshade
10	Tomato	Solanum lycopersicum	Nightshade
11	Bottle Gourd	Lagenaria siceraria	Cucurbits
12	Veandai kai	Abelmoschus esculentus	Mallows
13	Moringa	Moringa oleifera	Moringaceae
14	Kovakkai	Coccinia	Cucurbitaceae
15	Theranchai	Vitis vinifera	Vitaceae
16	Beans	Phaseolus vulgaris	Fabaceae

Results

Biological assessment of the site was done to identify ecologically sensitive areas and whether there are any rare, endangered, endemic or threatened (REET) species of flora & fauna in the core area as well its buffer zone to be impacted. The study has also been designed to suggest suitable mitigation measures, if necessary, for protection of wildlife habitats and conservation of REET species if any. The study found that there is no endemic, endangered migratory fauna found in the core zone. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO ECONOMICS ENVIRONMENT

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the nature and magnitude of the project. Socio-economic study of an area provides a good opportunity to assess the socio-economic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

3.6.1 Objectives of the Study

The main objectives of the study are as follows:

- To know the current socio-economic condition in the region to cover the sub sectors education, health, sanitation, and water & food security.
- ❖ To recommend practical strategic interventions in the sector.

- ❖ To help in providing better living standards.
- ❖ To understand skill sets and plan for employment opportunities which shall be created.

3.6.2 Scope of Work

- ❖ To study the socio-economic environment of the area from the secondary sources
- ❖ Data collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 Socio-Economic Status of Study area

The study area covers 7 villages including Chinnaovalpuram, Erasakkanayackanur, Erasakkanayackanur Hills, Gokilapuram, Mallingapuram, Narayanathevanpatti, Royappanpatti. As Kamayagoundanpatti is the village in which the proposed project site is located, the summary of population facts for the village is exclusively provided in Table 3.31 and for other 8 villages in Tables 3.32 - 3.34.

Table 3.31 Kamayagoundanpatti Village Population Facts

Kamayagoundanp	atti
Number of Households	11545
Population	42305
Male Population	21081
Female Population	21224
Children Population	737
Sex-ratio	1058
Literacy	76.22%
Male Literacy	84.52%
Female Literacy	68.49%
Scheduled Tribes (ST) %	0
Scheduled Caste (SC) %	869
Total Workers	7774
Main Worker	7420
Marginal Worker	354
0 1 // 2011 : /1/:11 //25407.1:	1 1 1 1

Source: https://www.census2011.co.in/data/village/635497-kuppam-tamil-nadu.html

Table 3.32 Population and Literacy Data of Study Area

Village	No of Households	Total Population Person	Total Population Male	Total Population Female	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
Chinnaovalapuram	1308	4573	2317	2256	2814	1645	1169	1759	672	1087
Erasakkanayackanur	1650	6849	3469	3380	4633	2585	2048	2216	884	1332
Erasakkanayackanur Hills	7	18	9	9	12	7	5	6	2	4
Gokilapuram	1196	4512	2245	2267	3208	1775	1433	1304	470	834
Mallingapuram	1540	5728	2846	2882	4118	2229	1889	1610	617	993
Narayanathevanpatti	4311	14622	7139	7483	9729	5400	4329	4893	1739	3154
Royappanpatti	3452	15886	8134	7752	12137	6643	5494	3749	1491	2258

Table 3.33 Details on Educational Facilities, Water, and Drainage & Health Facilities

Village	Private Primary School (Numbers)	Govt Vocational Training School/ITI (Numbers)	Primary Health Centre (Numbers)	Tap Water Untreated	River/Canal	Is the Area Covered under Total Sanitation Campaign (TSC)?	Telephone (landlines)	Public Bus Service	Gravel (kutcha) Roads	Commercial Bank	Agricultural Credit Societies	Self - Help Group (SHG)	Nutritional Centres- Anganwadi Centre	Community Centre with/without TV	Power Supply for Domestic Use
Chinnaovalapuram	0	0	0	1	2	1	1	1	1	2	2	1	1	1	1
Erasakkanayackanur	1	0	1	1	2	1	1	1	1	1	1	1	1	1	1
Erasakkanayackanur Hills	0	0	0	1	2	2	2	2	1	2	2	2	2	2	1
Gokilapuram	0	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Mallingapuram	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Narayanathevanpatti	0	0	2	1	1	2	1	1	1	2	2	1	1	2	1
Royappanpatti	3	0	1	1	2	2	1	1	1	1	2	1	1	1	1

Table 3.34 Workers' Profile of Study Area

Village	Total Worker Population Person	Total Worker Population Male	Total Worker Population Female	Main Working Population Person	Main Working Population Male	Main Working Population Female	Main Cultivator Population Person	Main Agricultural Labourers Population Person	Main Other Workers Population Person	Non-Working Population Person
Chinnaovalapuram	2949	1469	1480	2900	1437	1463	350	2406	94	1624
Erasakkanayackanur	3685	1978	1707	3531	1925	1606	436	2784	297	3164
Erasakkanayackanur Hills	18	9	9	18	9	9	0	17	1	0
Gokilapuram	2430	1322	1108	1893	1086	807	85	1283	398	2082
Mallingapuram	2810	1706	1104	2482	1539	943	230	1555	629	2918
Narayanathevanpatti	8127	4452	3675	8018	4399	3619	352	6736	845	6495
Royappanpatti	7226	3852	3374	6477	3492	2985	698	4008	1591	8660

3.6.4 Recommendation and Suggestion

- ❖ Awareness program should be conducted to make the population aware of education and to get a better livelihood.
- ❖ Vocational training programme should be organized to make the people self employed, particularly for women and unemployed youth.
- ❖ On the basis of qualification and skills local community may be preferred. Long term and short-term employments should be generated.
- ❖ Health care centre and ambulance facility should be provided to the population to get easy access to medical facilities. Apart from that, as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the marginalized and vulnerable groups. So that special attention can be given to these groups with special provisions while making action plans.

3.6.5 Summary & Conclusion

The socio-economic study in the study area gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from a lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis.

The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn the social standards will improve.

3.7 TRAFFIC DENSITY

The traffic survey conducted based on the transportation route of material, the Rough Stone and gravel is proposed to be transported mainly through Village Road and Dindigul to Madurai (NH-7) and Kollam-Theni (NH-220) as shown in Table 3.35 and in Figure 3.29. Traffic density measurements were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station. During each shift one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

Direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

Table 3.35 Traffic Survey Locations

Station Code	Road Name	Distance and Direction	Type of Road
TS1	Village Road	1.05Km NE	Village Road
TS2	Uthamapalayam-Surulipatti (SH-102)	2.46Km W	Uthamapalayam- Surulipatti (SH-102)
TS3	Kollam-Theni (NH-220)	6.04Km W	Kollam-Theni (NH-220)

Source: On-site monitoring by GTMS FAE & TM

Table 3.36 Existing Traffic Volume

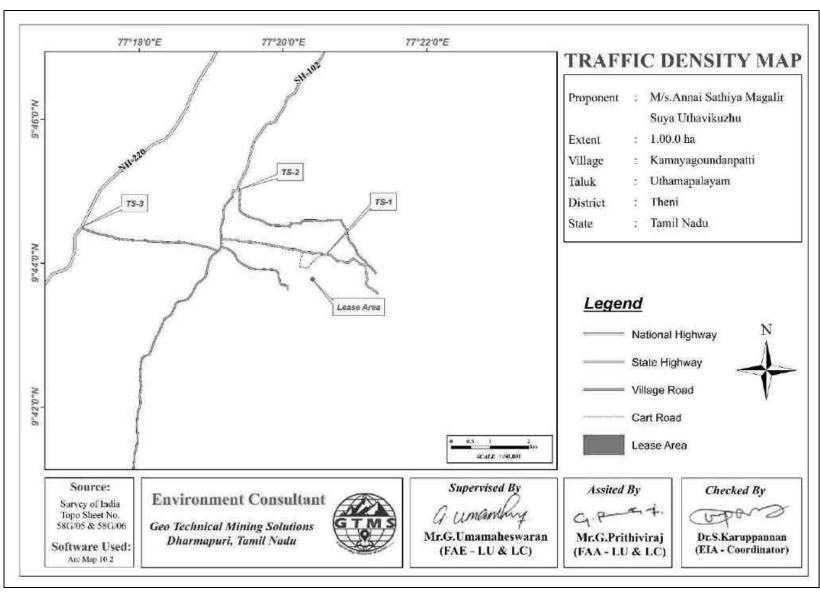
Station code	HMV		LMV		2/3 Wheelers		Total PCU
Station code	No	PCU	No	PCU	No	PCU	Total I CO
TS1	30	90	35	35	80	40	165
TS2	50	150	40	40	98	49	239
TS3	85	255	90	90	105	53	398

Source: On-site monitoring by GTMS FAE & TM

Table 3.37 Rough Stone Transportation Requirement

Transportation of Rough and Gravel per day				
Capacity of trucks	No. of Trips per day	Volume in PCU		
15 tonnes	8	24		

Source: Approved Mining Plan


Table 3.38 Summary of Traffic Volume

	Existing traffic volume in PCU	Incremental	Total	Hourly Capacity in
Route		traffic due to	traffic	PCU as per IRC –
		the project	volume	1960guidelines
TS1	165	24	189	1200
TS2	239	24	263	1200
TS3	398	24	422	1500

Source: On-site monitoring analysis summary by GTMS FAE & TM

Oue to these projects the existing traffic volume will not exceed the traffic limit. As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour. Hence there will not be any conjunction due to this proposed transportation.

^{*} PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3 Wheelers = 0.5

Figure 3.29 Traffic Density Map

3.8 SITE SPECIFIC FEATURES

There are no Wildlife Sanctuaries, Reserve Forest and National Park within 10 km radius. Therefore, there will be no need of acquisition/diversion of forest land. The details related to the environmentally sensitive areas around the proposed mine lease area i.e., 10 km radius and the nearby water bodies are given in the Table 3.39.

Table 3.39 Details of Environmentally Sensitive Ecological Features in the Study Area

S. No.	Sensitive Ecological Features	Name	Areal Distance in km
	National Park /	Megamalai WLS	1.31Km E
1	Wild life Sanctuaries /Eco Sensitive Zone	Megamalai Eco Sensitive area	0.31Km NE
		Megamalai R.F	1.31 km E
		ErasakkanayakkanurR.F	1.76 km E
		Dhoni Karadu R.F	1.31 km SW
		Surulipatti R.F	3.87 km SE
		Anaimalayanpatty	6.20 km NE
		Poovathikaradu	5.56 km S
		Boothakaradu R.F	8.61 km S
		Hanumantanpatty R.F	9.16Km NW
		Vannathiparai R.F	8.77Km S
2	Reserve Forest	Kombai R.F	10.4Km SW
		PannimuthanKaradu R.F	10.14Km NW
		Salamalai Karadu R.F	12.73Km N
		Machakkal R.F	11.58Km W
		Vellaikaradu R.F	13.45Km NE
		Suranganar R.F	16.32Km S
		Teak Gundu Karadu R.F	15.37Km NE
		Chinna Karadu R.F	16.21Km NW
		Thevaram R.F	18.37Km NW
		KattabommanKaraduR.F	22.61Km N

		Seelayampatty R.F	22.72Km N	
		Jambalmedu R.F	24.05Km N	
	Lakes/Reservoirs/ Dams/Streams/Rivers	Varatriver(Shanmuganathi)	1.37 km NE	
		Shanmuganathi Dam	1.34 km E	
		Canel	2.79 km W	
		Narayanathevanpatti North	2.80 km W	
3		lake	2.00 MH **	
		Suruli River (Periyar River)	3.30Km NW	
		Kuttanachchi river	3.94Km S	
		Uttamapuram Lake	4.93Km W	
		Cumbum Lake	5.12Km W	
		SurukiPatti Lake	5.26Km W	
	Tiger Reserve/Elephant			
4	Reserve/ Biosphere Reserve	None	Nil within 10 km radius	
5	Critically Polluted Areas	None	Nil within 10 km radius	
6	Mangroves	None	Nil within 10 km radius	
7	Mountains/Hills	None	Nil within 10 km radius	
8	Centrally Protected	None	Nil within 10 km radius	
	Archaeological Sites	None		
9	Industries/	None	Nil within 10 km radius	
	Thermal Power Plants	None	TVII WIMIII TO KIII Taulus	
10	Defence Installation	None	Nil within 10 km radius	

Source: Survey of India Toposheet

Figure 3.30 Field Study Photographs

CHAPTER IV

ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

4.0 GENERAL

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction. This chapter discusses the anticipated impacts on soil, land, water, air, noise, biological, and socioeconomic environments.

4.1 LAND ENVIRONMENT

4.1.1 Anticipated Impact

- Permanent change on land use and land cover.
- Change in topography of the mine lease area.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- ❖ Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby agricultural fields during the rainy season
- ❖ Increase in agricultural productivity of land when mine water is discharged to the surrounding lands for irrigation

4.1.2 Common Mitigation Measures from Proposed Project

- ❖ Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- ❖ Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- ❖ At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- ❖ In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.

Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle

4.2 SOIL ENVIRONMENT

4.2.1 Anticipated Impact

- ❖ Deterioration of soil quality in the surrounding area due to runoff from the project area
- Decrease in the agricultural productivity of the surrounding land due to soil quality degradation

4.2.2 Common Mitigation Measures from proposed project

- Construction of garland drains, settling pits, and check dams to prevent runoff and siltation
- ❖ Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged into the settling tanks to reduce suspended sediment loads before runoff is discharged from the quarry site.
- * Retain existing or re-plant the vegetation will be retained at the site wherever possible.
- ❖ Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

4.3 WATER ENVIRONMENT

4.3.1 Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- ❖ As the proposed project acquires 4.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

4.3.2 Common Mitigation Measures for the Proposed Project

- * Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- ❖ Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- ❖ The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- ❖ Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted

Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program

4.4 AIR ENVIRONMENT

4.4.1 Anticipated Impact from proposed project

- ❖ During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air
- ❖ The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area

4.4.2 Emission Estimation

Emission resulting from different mining activities is estimated using relevant empirical formulae developed by Chaulya et al.,2001. The equations used for SPM, SO₂, and NO_X emission estimation have been given in Table 4.1.

Table 4.1 Empirical Formula for Emission Rate from Overall Mine

	Pollutant	Source	Empirical Equation	Parameters
		Type		
Overall	SPM	Area	$E = [u0.4a0.2\{9.7+$	u = Wind speed(m/s); p =
Mine			$0.01p+b/(4+0.3b)$ }]	Mineral production (Mt/yr); b =
				Overburden handling (Mm ³ /yr);
				$a = Lease area(km^2); E =$
				Emission rate(g/s).
Overall	SO_2	Area	E=a0.14{u/(1.83+0.93u)}	u = Wind speed(m/s); p =
Mine			[{p/(0.48+0.57p)}	Mineral production (Mt/yr); b =
			+{b/(14.37+1.15b)}]	Overburden handling (Mm³/yr);
				$a = Lease area(km^2); E =$
				Emission rate(g/s).
Overall	NO_X	Area	$E=a0.25\{u/(4.3+32.5u)\}$	u = Wind speed(m/s); p =
Mine			$[1.5p+\{b/(0.06+0.08b)\}]$	Mineral production (Mt/yr); b=
				Overburden handling (Mm³/yr);
				$a = Lease area(km^2); E =$
				Emission rate(g/s).

The emission rate thus calculated using the empirical formula is used as one of the inputs in the AERMOD modelling. It is important to note that PM10 emission rate is derived from the SPM estimation in the background that PM10 constitutes 52% of SPM emission. The PM2.5, PM10, SO2 and NOX emission results have been given in Table 4.2

Table 4.2 Estimated Emission Rate

Activity	Pollutant	Calculated Value (g/s)	Lease Area in m ²	Calculated Value (g/s/m²)
Overall Mine	PM _{2.5}	0.126043922	10000	1.26044E-05
Overall Mine	PM_{10}	0.840292816	10000	8.40293E-05
Overall Mine	SO_2	0.014513287	10000	1.45133E-06
Overall Mine	NO _X	0.009287412	10000	9.28741E-07

4.4.2.1 Modelling of Incremental Concentration

Anticipated incremental concentration and net increase in emissions due to quarrying activities within 500 m around the project area is predicted by open pit source modelling using AERMOD Software and the incremental values of the air pollutants were added to the base line data monitored at the proposed site to predict total GLC of the pollutants, as shown in Tables 4.3-4.6.

4.4.2.2 Model Results

The post project resultant concentrations of PM₁₀, PM_{2.5}, SO₂ & NO_X (GLC) is given in Tables 4.3-4.6.

Table 4.3 Incremental & Resultant GLC of PM_{2.5}

Q	core	п	concen	PM 2.5 trations($(\mu g/m^3)$	oon (fy d	e of	nce
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total	Comparison against air quality standard (60 µg/m³)	Magnitude of change (%)	Significance
AAQ1	0.55	NNE	19.7	1	20.7		5.1	
AAQ2	0.32	N	21.4	1	22.4		4.7	
AAQ3	0.24	SW	21.1	1	22.1		4.7	
AAQ4	0.61	SW	19.4	1	20.4	ard	5.2	ant
AAQ5	4.58	SW	21.6	0.5	22.1	Below standard	2.3	Not significant
AAQ6	3.27	WSW	22.3	0	22.3	s MC	0.0	sigr
AAQ7	2.36	NW	21.8	0	21.8	Bela	0.0	Not
AAQ8	4.66	N	24.6	0	24.6		0.0	
AAQ9	3.74	SSW	18.0	0.1	18.1		0.56	
AAQ10	4.82	NW	19.1	0.1	19.2		0.52	

Table 4.4 Incremental & Resultant GLC of PM₁₀

ID	o core m)	on	concei	PM ₁₀	s(μg/m ³)	Comparison against air quality		ison st		ison st		ırison nst ıality		m³)	de of	(%)	ance
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total			air qua	standard	$(100~\mu\mathrm{g/m}^3)$	Magnitude of	change (%)	Significance				
AAQ1	0.55	NNE	43.9	1	44.9						2	2.3					
AAQ2	0.32	N	45.0	1	46						2	2.2					
AAQ3	0.24	SW	45.7	5.24	50.94						1	1.5					
AAQ4	0.61	SW	43.3	5	48.3			ard			1	1.5	ant				
AAQ5	4.58	SW	48.0	0.5	48.5			Below standard			1	.0	Not significant				
AAQ6	3.27	WSW	49.7	0	49.7			s Mc			(0.0	t sign				
AAQ7	2.36	NW	49.7	0.1	49.8			Bel			().2	Not				
AAQ8	4.66	N	52.4	0.1	52.5						().2					
AAQ9	3.74	SSW	37.3	0.5	37.8						1	.34					
AAQ10	4.82	NW	39.1	0.1	39.2						0	.26					

Table 4.5 Incremental & Resultant GLC of SO₂

9	core n)	n n	concent	SO ₂	μg/m ³)	son t ity d	e of %)	nce
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 µg/m³)	Magnitude of change (%)	Significance
AAQ1	0.55	NNE	5.3	0.5	5.8		9.4	
AAQ2	0.32	N	5.2	1	6.2		19.2	
AAQ3	0.24	SW	5.1	0.5	5.6		9.8	
AAQ4	0.61	SW	5.2	1	6.2	ard	19.2	Not significant
AAQ5	4.58	SW	5.9	0.1	6	Below standard	1.7	
AAQ6	3.27	WSW	5.9	0	5.9	w st	0.0	
AAQ7	2.36	NW	5.9	0	5.9	Beld	0.0	Not
AAQ8	4.66	N	6.2	0	6.2		0.0	
AAQ9	3.74	SSW	5.1	0.1	5.2		1.96	
AAQ10	4.82	NW	5.2	0	5.2		0.00	

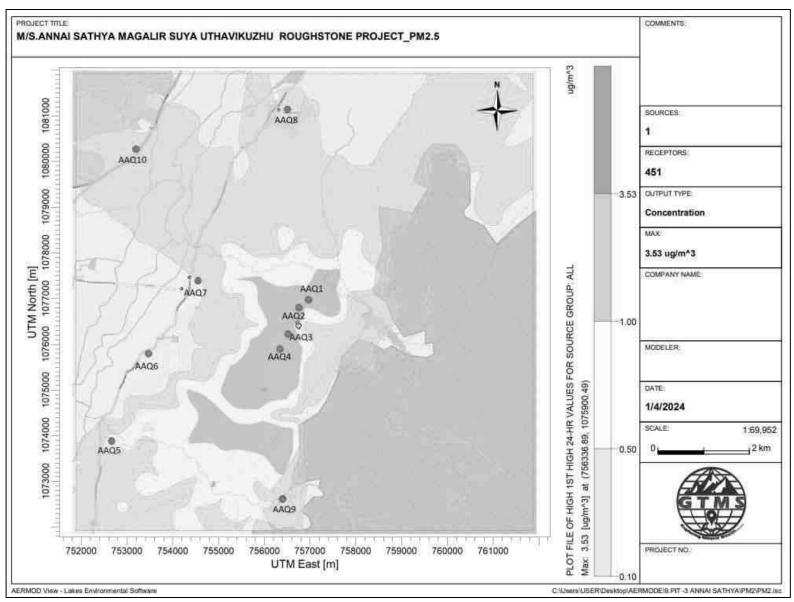


Figure 4.1 Predicted Incremental Concentration of PM_{2.5}

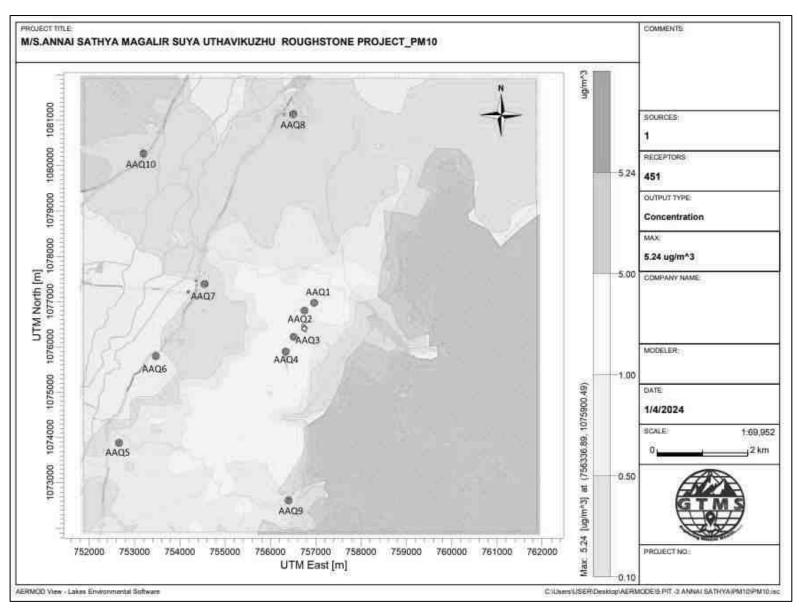


Figure 4.2 Predicted Incremental Concentration of PM₁₀

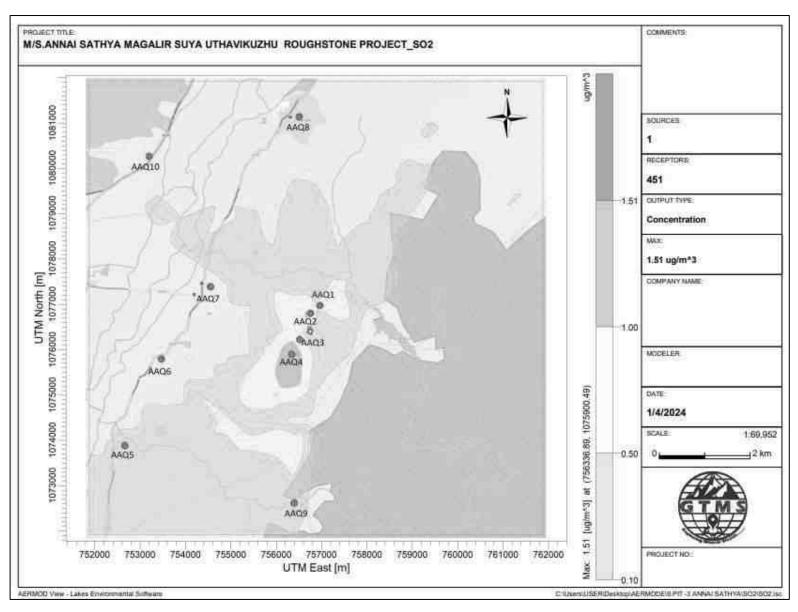


Figure 4.3 Predicted Incremental Concentration of SO₂

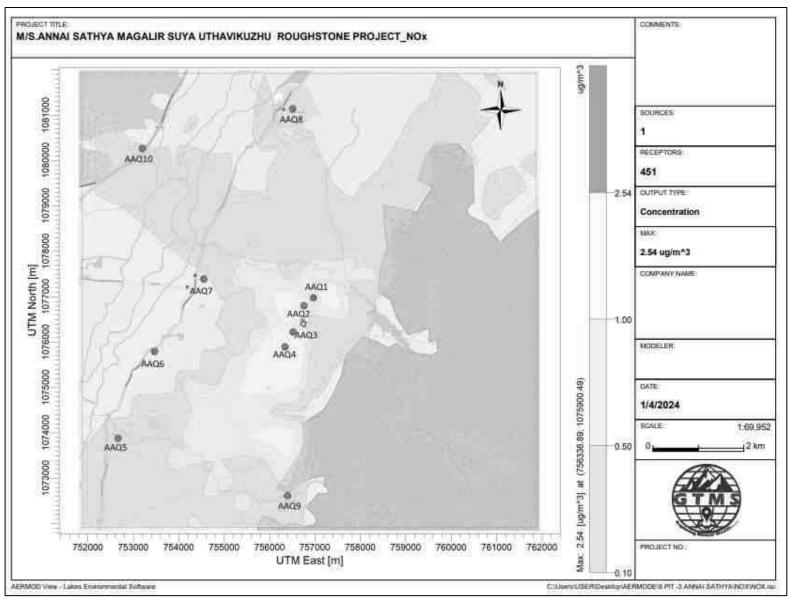


Figure 4.4 Predicted Incremental Concentration of NO_X

Table 4.6 Incremental & Resultant GLC of NOx

	e	Table		NOx		tant GEC 01110X			
1	o cor m)	ou	concent	rations(μ g /m³)	ison st lity rd n³)	de of (%)	ınce	
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 µg/m³)	Magnitude of change (%)	Significance	
AAQ1	0.55	NNE	15.1	0.5	15.6		3.3		
AAQ2	0.32	N	14.9	0.5	15.4		3.4	1	
AAQ3	0.24	SW	14.5	1	15.5		6.9		
AAQ4	0.61	SW	14.9	1	15.9	ard	6.7	ant	
AAQ5	4.58	SW	16.6	0.1	16.7	Below standard	0.6	Not significant	
AAQ6	3.27	WSW	15.2	0	15.2	S MC	0.0	t sign	
AAQ7	2.36	NW	16.6	0	16.6	Bel	0.0	No	
AAQ8	4.66	N	16.0	0	16		0.0		
AAQ9	3.74	SSW	11.9	0.1	12		0.84		
AAQ10	4.82	NW	13.0	0.1	13.1		0.77		

The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

4.5 NOISE ENVIRONMENT

Noise modelling has been carried out to assess the impact on surrounding ambient noise levels. Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves which are propagated outwards from the source through the air at a speed of 1, 100 ft/sec with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A). For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using a mathematical model based on first principle.

$$Lp_2 = Lp_1 - 20 \log (r_2/r_1) - Ae_{1,2}$$

Where, Lp_1 & Lp_2 are sound levels at points located at distances r_1 and r_2 from the source; $Ae_{1,2}$ is the excess attenuation due to environmental conditions. Combined effect of all sources can be determined at various locations by logarithmic addition.

$$Lp_{total} = 10 log \{10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots \}$$

4.5.1 Anticipated Impact

The attenuation due to several factors including ground reflection, atmosphere, wind speed, temperature, trees, and buildings as 35.5 dB (A), the barrier effect. Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are: source data, receptor data, and attenuation factor. Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4.7..

Table 4.7 Activity and Noise Level Produced by Machinery

S. No.	Machinery / activity	Impact on environment?	Noise produced in dB(A) at 50 ft from source*
1	Blasting	Yes	94
2	Jack hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
	Total		95.8

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). Generally, most mining operations produce noise between 100-109 dB (A). We have considered equipment and operation noise levels (max) to be approx. 109 dB (A) for noise prediction modelling.

Table 4.8 Predicted Noise Incremental Values

Noise Monitoring Location	Distance From Project Site(m)	Baseline Noise Level (dBA)m During Day Time	Predicted Noise Level (dBA)	Total (dBA)
PIT I	460	44.7	30.70	44.87
PIT II	280	50.8	35.02	50.91
PIT III	100	40	43.96	45.43
PIT IV	50	44.4	49.98	51.04
PIT V	450	43.8	30.90	44.02
PIT VI	580	44.7	28.69	44.81

Surulipatti	4800	42.6	10.33	42.60		
Narayanathevanpatti	3330	49	13.51	49.00		
Kamayagoundanpatti	2740	41.9	15.20	41.91		
Royappanpatti	4730	46.5	10.46	46.50		
Koothanachiamman	3730		12.53	41.91		
Temple	3730	41.9	12.33	11.91		
Puthupati	5080	44.6	9.84	44.60		
NAAQ Standards	Industrial Day Time - 75 dB (A) & Night Time- 70 dB (A) Residential Day Time55 dB (A) & Night Time- 45 dB (A)					
	Residential	Day Time -33 dB (A) & Night Time-	43 ub (A)		

From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000. Therefore, no impact is anticipated on the noise environment due to the project

4.5.2 Common Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- ❖ Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise
- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise
- ❖ Silencers / mufflers will be installed in all machineries
- Greenbelt/Plantation will be developed around the project area and along the haul roads.
 The plantation minimizes propagation of noise
- ❖ Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- Regular medical check—up and proper training to personnel to create awareness about adverse noise level effects

4.5.3 Ground Vibrations

Ground Vibrations

The major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kutcha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation. The empirical equation for assessment of peak particle velocity (PPV) is given below:

$$V = K [R/Q^{0.5}]^{-B}$$

Where,

V = peak particle velocity (mm/s)

K = site and rock factor constant (500)

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

R = distance from charge (m)

Table 4.9 Predicted PPV Values due to Blasting

Location	Maximum	Nearest	PPV in	Fly rock	Air Blast	
ID	Charge in kgs	Habitation	mm/s	distance	Pressure	Sound
	Charge in Kgs	in m	IIIII/ S	in m	(kPa)	Level (dB)
P1	3.80	2740	0.005	19	0.0	96

Table 4.10 Predicted PPV Values due to Blasting at 100-500 m radius

Location	Maximum	Radial	PPV in	Fly rock	Air Blast		
ID	Charge in kgs	Distance in	mm/s	distance	Pressure	Sound	
	Charge in Kgs	m	11111,5	in m	(kPa)	Level (dB)	
		100	0.92		0.07	130	
		200	0.30	19	0.03	123	
P1	3.80	300	0.16		0.02	119	
		400	0.10		0.01	116	
		500	0.07		0.01	113	

The PPV results shows that the ground vibration is well below the permissible limits set by DGMS through circular 7,1997 for domestic houses near by the lease area at the dominant frequency of <8 Hz.

4.5.3.1 Common Mitigation Measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators which reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting
- ❖ Adequate safe distance from blasting will be maintained as per DGMS guidelines
- ❖ Blasting shelter will be provided as per DGMS guidelines
- ❖ Blasting operations will be carried out only during day time
- The charge per delay will be minimized and preferably a greater number of delays will be used per blasts
- ❖ During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- ❖ A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- ❖ The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- ❖ Appropriate blasting techniques shall be adopted in such a way that the predicted peak particle velocity shall not exceed 0.251mm/s
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

4.6 ECOLOGY AND BIODIVERSITY

4.6.1 Impact on Ecology and Biodiversity

- Blasting and during clearing routes.
- ***** Erecting structures for the project.
- ❖ Vehicular movement and movement of men and materials.
- Vibrations, smoke, noise and operation of earthmoving machinery.
- Storage of muck / debris, and transport and disposal of excavated overburden, debris and muck.
- Disposal of spills of wastes and fuels.
- During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- ❖ The Number of plants in the mining lease area is given in chapter 3 table 3.21 which vegetation in the lease area may be removed during mining.
- ❖ Carbon released from quarrying machineries and tippers during quarrying would be 452 kg per day, 121967 kg per year and 609833 kg over five years, as provided in Table 4.11.

Table 4.11 Carbon Released During Five Years of Rough Stone and Gravel Production

	Per day	Per year	Per five years
Fuel consumption of excavator	32	8720	43600
Fuel consumption of compressor	4	1080	5400
Fuel consumption of tipper	132	35710	178550
Total fuel consumption in liters	169	45510	227550
Co ₂ emission in kg	452	121967	609833

4.6.2 Mitigation Measures on Flora

- ❖ During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- ❖ None of the plants in the lease area will be cut during operational phase of the mine. we recommend uprooting and planting of the 10 trees along the 7.5 m safety zone to prevent environmental pollution during quarrying. As the survival rate due to uprooting was only 30%, 100 seedlings will be procured at the rate of 10 seedlings per tree and planted in 7.5 m safety zone.
- * Existing roads will be used; new roads will not be constructed to reduce impact on flora.
- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 11988 kg of carbon

- per year. Therefore, we recommend 500 planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- ❖ As per the greenbelt development plan as recommended by SEAC (Table 4.13), about 1315 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 4582 kg of the total carbon, as provided in Table 4.12.

Table 4.12 CO₂ Sequestration

CO ₂ sequestration in kg	44	11988	59940
Remaining CO ₂ not sequestered in kg	407	109979	549893
Trees required for environmental compensation	4582		
Area required for environmental compensation in hectares	9		

Table 4.13 Recommended Species for Greenbelt Development Plan

S. No	Botanical Name	Common Name
1	Aegle marmelos	Vilvam
2	Adenaanthera pavonina	Manjadi
3	Albizia lebbeck	Vaagai
4	Albizia amara	Usil
5	Bauhinia purpureu	Mantharai
6	Bauhinia racemosa	Aathi
7	Bauhinia tomentosa	lruvathi
8	Buchanania axillaris	Kattuma
9	Borassus flabellifer	Panai
10	Butea monosperma	Murukka maram
11	Bobax ceiba	Ilavu, Sevvilavu
12	Calophyllum inophyllum	Punnai
13	Cassia fistula	Sarakondrai
14	Cassia roxburghii	Sengondrai
15	Chloroxylon sweitenia	Purasa maram
16	Cochlospermum religiosum	Kongu, Manjal llavu
17	Cordia dichotoma	Mookuchali maram
18	Creteva adansonii	Mavalingum
19	Dillenia indica	Uva,Uzha
20	Dillenia pentagyna	Siru Uva. Sitruzha
21	Diospyros ebenum	Karungali
22	Diospyros chloroxylon	Vaganai

23	Ficus amplissima	Kal Itchi	
24	Hibiscus tiliaceus	Aatru poovarasu	
25	Hardwickia binata	Aacha	
26	Holoptelia integrifolia	Aayili	
27	Lannea coromandelica	Odhiam	
28	Lagerstroemia speciosa	Poo Marudhu	
29	Lepisanthus tetrophylla	Neikottai maram	
30	Limonia acidissima	Vila maram	
31	Litsea glutinosa	Pisin pattai	
32	Madhuca longifolia	Illuppai	
33	Manilkara hexandra	Ulakkai Paala	
34	Mimusops elengi	Magizha maram	
35	Mitragyna porvdolia	Kadambu	
36	Morinda pubescens	Nuna	
37	Morinda citrifolia	Vellai Nuna	
38	Phoenix sylvestre	Eachai	
39	Pongamia pinnata	Pungam	
40	Premna mollissima	Munnai	
41	Premna serratifolia	Narumunnai	
42	Premna tomentosa	Purangai Naari,	
43	Prosopis cinerea	Vanni maram	
44	Pterocarpus marsupium	Vengai	
45	Pterospermum canescens	Vennangu, Tada	
46	Pterospermum xylocarpum	Polavu	
47	Puthranjiva roxburghii	Puthranjivi	
48	Salvadora persica	Ugaa Maram	
49	Sapindus emarginatus	Manipungan, Soapu kai	
50	Saraca asoca	Asoca	
51	Streblus asper	Piraya maram	
52	Strychnos nuxvomica	Yetti	
53	Strychnos potatorum	Therthang Kottai	
54	Syzygium cumini	Naval	
55	Terminalia bellerica	Thandri	

56	Terminalia arjuna	Ven marudhu
57	Toona ciliate	Sandhana vembu
58	Thespesia populnea	Puvarasu
59	Walsuratrifoliata	valsura
60	Wrightia tinctoria	Veppalai
61	Pithecellobium dulce	Kodukkapuli

Table 4.14 Greenbelt Development Plan

	No. of trees proposed for	No. of trees expected to	Area to be		
	plantation	survive @ 80%	covered(m ²)		
Plantation in the	Number of plants inside the mine lease area				
construction phase (3	200 160		1800		
months)	Number of plan	nts outside the mine lease area	a		
,	300	240	2700		
Total	500	400	4500		

Table 4.15 Budget for Greenbelt Development Plan

Activity	Plantation in the construction phase(3Months) Cost		Capital Cost (Rs.)	Recuring Cost-per annum
Plantation inside the mine lease area (in safety margins)	200	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	40000	6000
Plantation outside the area	300	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	90000	9000
	1,30,000	15,000		

Source: EMP budget

4.6.3 Anticipated Impact on Fauna

❖ Meghamalai Wildlife Sanctuary is located near the quarry lease area, so there is a possibility of wild animals migrating to the quarry lease area.

- Noise and dust generated during quarrying may cause disturbance to birds and animals and may lead to migration of birds.
- * Rare, endemic & endangered species are reported in the buffer zone. Therefore, during the course of mining, the management will practice scientific method of mining with proper Environmental Management Plan including pollution control measures especially for air and noise, to avoid any adverse impact on the surrounding wildlife.
- ❖ Fencing around all the proposed mine lease areas will be constructed to restrict the entry of stray animals.
- ❖ Green belt development will be carried out which will help in minimizing adverse impact on the flora found in the area.

Measures for Protection and Conservation of Wildlife Species

- Undertaking mitigative measures for conducive environment to the flora and fauna in consultation with Forest Department.
- Dust suppression system will be installed within mine and periphery of mine for proposed project
- Plantation around mine area will help in creating habitats for small faunal species and to create better environment for various fauna. Creating and developing awareness for nature and wildlife in the adjoining villages.

Mitigation Measures

- ❖ All the preventive measures will be taken for growth & development of fauna.
- Creating and development awareness for nature and wildlife in the adjoin villages.
- The workers shall be trained to not harm any wildlife, should it come near the project site. No work shall be carried out after 6.00 pm.

Mitigation Measures in Elephants, Leopards and other wildlife animals

- Possibility of using coppicing and pollarding of fodder trees/poles preferred by elephants for fresh fodder at appropriate scale
- ❖ Plantation of fodder grass keeps elephant herds confined to forest.
- ❖ After removal of weeds, locally available palatable grasses should be planted/ grass seeds should be sown in the area.
- New bamboo plantations/Restocking of existing degraded bamboo areas and also in lantana removed areas.
- ❖ To improve the habitat by adding fodder and canopy, Ficus cuttings and bamboo wildlings have been planted around the waterholes

4.6.4. Aquatic Biodiversity

Impact

- ❖ There is a small pond and lake within 1km around the quarry lease area and the dust generated during the quarrying may affect water bodies.
- ❖ Dust generated during quarrying can affect aquatic plants and animals in water bodies.

Mitigation Measures

Planting trees around quarries prevents dust from escaping and prevents dust from spreading into water bodies. Aquatic plants and animals in water bodies are not affected.

4.6.5 Impact on agriculture and horticulture crops in 1km Radius

- Problems to agricultural and horticulture land due to dust caused by movement of heavy vehicles.
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season.
- ❖ The fugitive dust released from the mining operations may cause effect on the agricultural and horticulture land who are directly exposed to the fugitive dust.
- ❖ Dust from the quarries is likely to affect reproductive systems in nearby agricultural and horticulture lands.
- ❖ Dust from quarries can affect plant growth and reduce vegetable yields.

4.6.6 Mitigation Measures on agriculture and horticulture crops.

- ❖ The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas. In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases.
- ❖ It is a granite quarry, no explosives are used, there is no possibility of vibration and dust, thus there is no possibility of damage to the adjacent agricultural land.
- Quarry approach roads are sprayed with water 3 times a day to control dust. Thus, the damage to the nearby farmlands is controlled.
- ❖ A green belt will be created in 7.5 safety zone around the quarry to contain the dust from the quarry and prevent the dust from spreading to the adjacent agricultural land.
- ❖ Transportation of material will be carried out during day time and material will be covered with tarpaulin
- ❖ The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust.

4.7 SOCIO ECONOMIC ENVIRONMENT

4.7.1 Anticipated Impact from Proposed and Existing Projects

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- ❖ Approach roads can be damaged by the movement of tippers
- ❖ Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.7.2 Common Mitigation Measures for Proposed Project

- ❖ Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems.
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines.
- Air pollution control measure will be taken to minimize the environmental impact within the core zone.
- ❖ For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules.
- ❖ Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly.
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.8 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- Respiratory hazards
- Noise
- Physical hazards
- Explosive storage and handling

4.8.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- ❖ Cabins of excavators and tippers will be enclosed with AC and sound proof
- Use of personal dust masks will be made compulsory

4.8.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- ❖ The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- ❖ Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels.

4.8.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- ❖ Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse gravel will be taken up.

4.8.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests: general physical tests, audiometric tests, full chest, X-ray, Lung function tests, spirometry tests, periodic medical examination – yearly, lung function test – yearly, those who are exposed to dust, and eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.9 MINE WASTE MANAGEMENT

No waste is anticipated from any of the proposed quarries.

4.10 MINE CLOSURE

Mine closure plan is the most important environmental requirement in mining project. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing

with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While formulating the closure objectives for the site, it is important to consider the existing or the premining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- ❖ To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- ❖ To protect public health and safety of the surrounding habitation
- ❖ To minimize environmental damage
- ❖ To conserve valuable attributes and aesthetics
- ❖ To overcome adverse socio-economic impacts.

4.10.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.10.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.10.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharge likely to cause adverse impacts is predicted in advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.10.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc.,

A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For re-vegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g., for development of social forestry
- ❖ Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally.
- ❖ Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor. For example, development of green barriers

The Mine closure plan should be as per the approved mining plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

CHAPTER V

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

5.0 INTRODUCTION

Consideration of alternatives to a proposed project is a requirement of EIA process. During the scoping process, alternatives to a proposed project can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.1 FACTORS BEHIND THE SELECTION OF PROJECT SITE

The proposed project is site specific and has the following advantages:

- ❖ The mineral deposit occurs in a non-forest area.
- ❖ There is no habitation within the project area; hence no R & R issues exist.
- ❖ There is no river, stream, nallah and water bodies in the applied mine lease area.
- ❖ Availability of skilled, semi-skilled and unskilled workers in this region.
- ❖ All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- ❖ As the proposed project area falls in seismic zone II, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history.

5.2 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as the mine site is mineral specific.

5.3 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Manual open cast mining method with secondary blasting will be applied to extract rough stone and gravel in the area. The proposed mining lease areas have following advantages:

- ❖ As the mineral deposition is homogeneous and batholith formation, opencast method of working is preferred over underground method.
- ❖ The material will be loaded with the help of excavators into tractors/tippers and transported to the need by customers.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages.

5.4 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for this project. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

CHAPTER VI

ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections. The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction—during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA-TN as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by respective project proponents. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed project; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the respective mine management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in the proposed quarry. The responsibilities of this cell will be:

- Implementation of pollution control measures
- ❖ Monitoring programme implementation
- ❖ Post-plantation care
- ❖ To check the efficiency of pollution control measures taken
- ❖ Any other activity as may be related to environment

❖ Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by the proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA-TN as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC). The Environmental Monitoring Cell will be formed for the proposed project. The structure of the cell will be as shown in Figure 6.1.

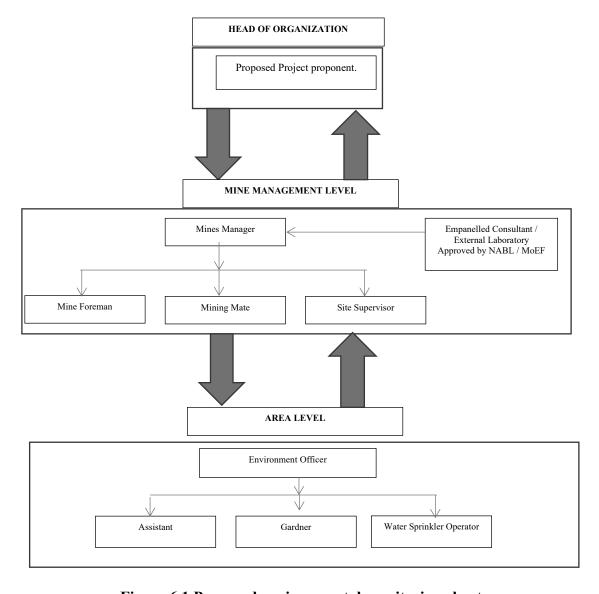


Figure 6.1 Proposed environmental monitoring chart

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in chapter IV will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

Table 6.1 Implementation Schedule for Proposed Project

S. No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- **❖** Air quality
- * Water and wastewater quality
- ❖ Noise levels

- ❖ Soil quality and
- ❖ Greenbelt development

The details of proposed monitoring schedule have been provided in Table 6.2.

Table 6.2 Proposed Monitoring Schedule Post EC for the Proposed Quarry

S.	Environment	Logotion	Monitoring		Parameters	
No.	Attributes	Location	Duration	Frequency	Parameters	
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL	
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	-	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physical and chemical characteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR ENVIRONMENT MONITORING PROGRAM

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF. The proposed recurring cost for Environmental Monitoring Programme is Rs 2,95,000 /- per annum for the proposed project site.

Table 6.3 Environment Monitoring Budget

S. No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality	-	Rs 60,000/-
2	Meteorology	-	Rs 15,000/-
3	Water Quality	-	Rs 20,000/-
4	Water Level Monitoring		Rs 10,000/-
5	Soil Quality	-	Rs 20,000/-
6	Noise Quality	-	Rs 10,000/-
7	Vibration Study	-	Rs 1,50,000/-
8	Greenbelt	-	Rs 10,000/-
	Total	-	Rs 2,95,000 /-

Source: Field Data

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Respective Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to:

- ❖ MoEF & CC Half yearly status report
- * TNPCB Half yearly status report
- ❖ Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of respective project will submit the periodical reports to:

- Director of mines safety
- Labour enforcement officer
- ❖ Controller of explosives as per the norms stipulated by the department.

CHAPTER VII ADDITIONAL STUDIES

7.0 GENERAL

Additional studies deal with:

- Public Consultation for Proposed Project
- ❖ Risk Assessment
- Disaster Management Plan
- Cumulative Impact Study
- ❖ Plastic Waste Management

7.1 PUBLIC CONSULTATION FOR PROPOSED PROJECT

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district was made and the public opinions on the proposed project will be updated in the final EIA/EMP report.

7.2 RISK ASSESSMENT FOR PROPOSED PROJECT

Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening. The methodology for the risk assessment is based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in Table 7.1.

Table 7.1 Risk Assessment & Control Measures for Proposed Project

S.	Risk factors	Causes of risk	Control measures	
No.				
1	Accidents due	Improper	/ All	safety precautions and provisions of Mine Act,
	to explosives	handling and	195	2, Metalliferous Mines Regulation, 1961 and
	and heavy	unsafe working	Mir	nes Rules, 1955 will be strictly followed during all
	mining	practice	min	ing operations.
	machineries.		Wo	rkers will be sent to the Training in the nearby
			Gro	oup Vocational Training Centre Entry of
			una	uthorized persons will be prohibited.
			Fire	e-fighting and first-aid provisions in the mine
			offi	ce complex and mining area.
			Pro	visions of all the safety appliances such as safety
			boo	t, helmets, goggles etc. will be made available to
			the	employees and regular check for their use.
			Wo	rking of quarry, as per approved plans and
			regu	ularly updating the mine plans.
			Cle	aning of mine faces on daily basis shall be daily
			don	e in order to avoid any overhang or undercut.
			Har	ndling of explosives, charging and firing shall be
			carr	ried out by competent persons only under the
			sup	ervision of a Mine Manager.
			Mai	intenance and testing of all mining equipment as
			per	manufacturer's guidelines.
2	Drilling	Improper and	Safe	e operating procedure established for drilling
		unsafe practices;	(SO	P) will be strictly followed.
		Due to high	Onl	y trained operators will be deployed.
		pressure of	No	drilling shall be commenced in an area where shots
		compressed air,	hav	e been fired until the blaster/blasting foreman has
		hoses may burst;	mac	de a thorough Examination of all places,
		Drill Rod may	✓ Dı	rilling shall not be carried on simultaneously on the
		break;	be	enches at places directly one above the other.

			✓	Periodical preventive maintenance and replacement
				of worn-out accessories in the compressor and drill
				equipment as per operator manual.
			✓	All drills unit shall be provided with wet drilling
				shall be maintained in efficient working in condition.
			✓	Operator shall regularly use all the personal
				protective equipment.
3	Transportation	Potential hazards	✓	Before commencing work, drivers personally check
		and unsafe		the truck/tipper for oil(s), fuel and water levels, tyre
		workings		inflation, general cleanliness and inspect the brakes,
		contributing to		steering system, warning devices including
		accident and		automatically operated audio-visual reversing alarm,
		injuries		rear view mirrors, side indicator lights etc., are in
				good condition.
		Overloading of	✓	Not allow any unauthorized person to ride on the
		material		vehicle nor allow any unauthorized person to operate
				the vehicle.
		While reversal &	✓	Concave mirrors should be kept at all corners
		overtaking of	✓	All vehicles should be fitted with reverse horn with
		vehicle		one spotter at every tipping point
			✓	Loading according to the vehicle capacity
		Operator of truck	✓	Periodical maintenance of vehicles as per operator
		leaving his cabin		manual
		when it is loaded.		
4	Natural	Unexpected	√	Escape Routes will be provided to prevent
	calamities	happenings		inundation of storm water
			✓	Fire Extinguishers & Sand buckets
5	Failure of Mine	Slope geometry,	✓	Ultimate or over all pit slope shall be below 60° and
	Benches and	Geological		each bench height shall be 5m.
	Pit Slope	structure		

Source: Analysed and Proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN FOR PROPOSED PROJECT

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea. Hence, the disaster due to heavy floods and tsunamis are not anticipated. The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- ❖ Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations. Structure of the team has been shown in Figure 7.1.

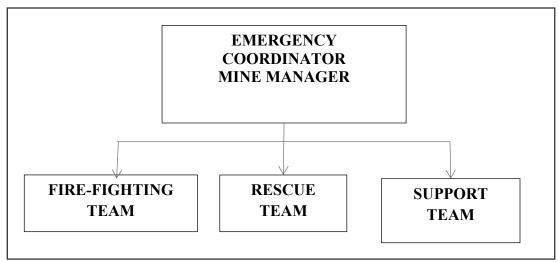


Figure 7.1 Disaster management team layout for proposed project

7.3.1 Emergency Control Procedure

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call

point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- ❖ Emergency security controller will commence his role from main gate office
- ❖ Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- ❖ Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
- He will receive information continuously from incident controller and give decisions and directions to:
- Incident controller
- Mine control rooms
- Emergency security controller

7.4 CUMULATIVE IMPACT STUDY

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting. For this cumulative study, 6 proposed projects, known as P1, P2, P3, P4, P5 and P6 are taken into consideration. The details of P1 have been given in Table 1.2 and the details of P2, P3, P4 and P5 are given in the Table 7.2 - 7.6.

Table 7.2 Salient Features of the Proposed Project P2

Name of the Quarry	M/s.K.K.Patti Kaludaykum Magalir Sangam Rough Stone Quarry
Type of Land	Government Land
Extent	2.37.0 Ha
S.F.No	1372/1 (Part-2)
Toposheet No	58 G/6
Location of Project Site	9°43'50.83"N to 9°44'0.16"N
Edeation of Freject Site	77°20'20.77"E to 77°20'27.84"E
Highest Elevation	530 m AMSL

Proposed depth of Mining	(50m) 45m AGL +5m BGL		
Geological Resources	Rough Stone in m ³	Top Soil in m ³	
Geological Resources	632445	4926	
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³	
Willicable Reserves	185120	920	
Proposed reserves for five years	Rough Stone in m ³	Top Soil in m ³	
Troposed reserves for five years	185120	920	
Method of Mining	Open-Cast Semi Mechanized mining		
Topography	Hillock Top	ography	
	Jack Hammer	2	
Machinery proposed	Compressor	1	
wacminery proposed	Tipper	1	
	Excavator	2	
	The quarrying operation is proposed to carried		
Blasting Method	out by open cast mining using jack hammer		
Diasting Method	drilling and blasting for shattering effect and		
	loosen the rough stone.		
Proposed Manpower Deployment	16 Nos		
Project Cost	Rs.80,19,097 /-		
CER Cost	Rs. 5,00,000/-		
Proposed Water Requirement	3.5 KLD		

Table 7.3 Salient Features of the Proposed Project P3

Name of the Quarry	M/s. Sangilikaradu Kalvudaikkum	
Name of the Quarry	Magalir Nalasangam Rough Stone Quarry	
Type of Land	Government Land	
Extent	2.63.0 Ha	
S.F.No	1372/1 (Part-1)	
Toposheet No	58 G/6	
Location of Project Site	9°43'57.88"N to 9°44'5.78"N	
Location of Project Site	77°20'26.16"E to 77°20'35.55"E	
Highest Elevation	530 m AMSL Proposed	
depth of Mining	(100 m) 85m AGL +15m BGL	
Geological Resources	Rough Stone in m ³ Top Soil in m ³	

	1414465	5161
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³
Willicable Reserves	234160	1925
Proposed reserves for five years	Rough Stone in m ³	Top Soil in m ³
Troposed reserves for five years	234160	1925
Method of Mining	Open-Cast Semi Mechanized mining	
Topography	Hillock Topography	
	Jack Hammer	5
Machinery proposed	Compressor	1
Wideminery proposed	Tipper	4
	Excavator	1
	The quarrying operation is proposed to carried	
Blasting Method	out by open cast mining using jack hammer	
Blasting Method	drilling and blasting for shattering effect and	
	loosen the rough stone.	
Proposed Manpower Deployment	17 Nos	
Project Cost	Rs.102,34,463/-	
CER Cost	Rs. 5,00,000/-	
Proposed Water Requirement	4.5 KLD	

Table 7.4 Salient Features of the Proposed Project P4

Table 7.4 Sanent Features of the Troposed Troject 14		
Name of the Quarry	M/s. Annai Therasa Kaludaikum Magalir	
Name of the Quarry	Nala Munnetra Sangam	
Toposheet No	58 G/6	
Lattitude	9°43'38.46"N to 9°43'46.15"N	
Longitude	77°20'16.87"E to 77°20'25.22"E	
Highest Elevation	570 m AMSL	
Ultimate depth of Mining	(85m) 70m AGL +15m BGL	
Geological Resources	Rough Stone in m ³	Top Soil in m ³
Geological Resources	1096980	20512
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³
	188331	19272
Proposed reserve for five years	Rough Stone in m ³	Top Soil in m ³

	188331	19272
Ultimate Pit Dimension	42m (L) x 47m (W) x 85m (D)	
Method of Mining	Opencast Mechanized Mining Method	
Topography	Hillock area	
Machinery proposed	Jack Hammer	3 Nos
	Compressor	1 Nos
wiachmery proposed	Hydraulic Excavator	1 Nos
	Tippers	4 Nos
	The quarrying operation is proposed to carried by operation	
Blasting Method	cast mining in conjunction with conventional method	
	using jack hammer drilling and blasting for shattering	
	effect and loosen the rough stone.	
Proposed Manpower Deployment	18 Nos	
Project Cost	Rs.81,76,830 /-	
CER Cost	Rs.5,00,000/-	
Proposed Water Requirement	3.5 KLD	

Table 7.5 Salient Features of the Proposed Project P5

Name of the Quarry	M/s. Varumaikotterku Keelvaalum Magalir Suyauthavikuzhu	
Toposheet No	58-G/6	
Lattitude	9°43'33.94"N to 9°43'40.17"N	
Longitude	77°20'12.10"E to 77°20'20.54"E	
Highest Elevation	560 m AMSL	
Ultimate depth of Mining	70m AGL	
Geological Resources	Rough Stone in m ³	Top Soil in m ³
	1188755	28573
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³
	191590	21823
Proposed reserve for five years	Rough Stone in m ³	Top Soil in m ³
	191590	21823
Ultimate Pit Dimension	171m (L) x 65m (W) x 70m (D)	
Method of Mining	Opencast Mechanized Mining Method	

Topography	Hillock area	
Machinery proposed	Jack Hammer	2 Nos
	Compressor	1 Nos
	Hydraulic Excavator	1 Nos
	Tippers	7 Nos
	The quarrying operation is proposed to carried by open	
Blasting Method	cast mining in conjunction with conventional method	
	using jack hammer drilling and blasting for shattering	
	effect and loosen the rough stone.	
Proposed Manpower Deployment	20 Nos	
Project Cost	Rs.82,19,330 /-	
CER Cost	Rs.5,00,000/-	
Proposed Water Requirement	2.55 KLD	

Table 7. 6 Salient Features of the Proposed Project P6

Table 7. 6 Salient Features of the Proposed Project Po		
	M/s. Sangili Karuppan Thaneer Parai Kaludaikum Magalir Nalasangam	
Name of the Quarry		
	Rough Stone quarry	
Toposheet No	58-G/6	
Lattitude	9°43'28.31"N to 9°43'36.19"N	
Longitude	77°20'10.08"E to 77°20'15.98"E	
Highest Elevation	545 m AMSL	
Ultimate depth of Mining	50m AGL	
Geological Resources	Rough Stone in m ³	Top Soil in m ³
	934558	6714
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³
	267033	3914
D	Rough Stone in m ³	Top Soil in m ³
Proposed reserve for five years	267033	3914
Ultimate Pit Dimension	94m (L) x 79m (W) x 50m (D)	
Method of Mining	Opencast Mechanized Mining Method	
Topography	Hillock area	
Machinery proposed	Jack Hammer	4 Nos
	Compressor	2 Nos

	Hydraulic Excavator	1 Nos	
	Tippers	5 Nos	
	The quarrying operation is proposed to carried by open cast mining in conjunction with conventional method		
Blasting Method	using jack hammer drilling and blasting for shattering		
	effect and loosen the rough stone.		
Proposed Manpower Deployment	20 Nos	S	
Project Cost	Rs.99,01,	330	
CER Cost	Rs.5,00,000		
Proposed Water Requirement	3.5 KLD		

7.4.1 Air Environment

As the production of rough stone plays a vital role in affecting the air environment. The data on the cumulative production resulting from the proposed project have been given in Tables 7.7.

Table 7.7 Cumulative Production Load of Rough Stone

Proposed Production Details					
Omerway	5 Years in	Per Year in	Per Day in	Number of Lorry Load	
Quarry	m^3	m ³	m ³	Per Day	
P1	53565	10713	40	7	
P2	185120	37024	137	23	
Р3	234160	46832	173	29	
P4	18831	3766	14	2	
P5	191590	46918	174	29	
P6	267033	71147	263	44	
Grand Total	950299	190060	704	117	

The cumulative study shows that the overall production of rough stone from the quarry is 704m³ per day with a capacity of 117 trips of rough stone per day.

7.4.1.1 Cumulative Impact of Air Pollutants

The results on the cumulative impact of the 6 proposed projects on air environment of the cluster have been provided in Table 7.8. The cumulative values resulting from the 6 projects for each pollutant do not exceed the permissible limits set by CPCB.

Table 7.8 Cumulative Impact Results from the 6 proposed projects

	Baseline Incremental Values (μg/m³)					Cumulative		
Pollutants	Data (μg/m³)	P1	P2	Р3	P4	P5	Р6	Value (μg/m³)
PM _{2.5}	20.9	3.53	4.86	4.01	4.50	4.83	5.25	47.88
PM ₁₀	47.2	5.24	6.24	7.51	7.33	7.17	9.32	90.01
SO ₂	5.5	1.51	1.97	2.72	1.75	2.44	2.56	18.45
NO _x	14.9	2.54	4.25	2.11	4.72	2.98	4.37	35.87

7.4.2 Noise Environment

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

Table.7.9 Cumulative Impact of Noise from 6 Proposed Quarries on Kamayagoundanpatti Habitation

Location ID	Distance (m)	Direction	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	2740	NW	41.9	15.20	41.91	
						-
Habitation Near P2	2370	WNW	41.9	16.46	41.91	
Habitation Near P3	2490	WNW	41.9	16.04	41.91	
Habitation Near P4	2380	NW	41.9	16.43	41.91	55
Habitation Near P5	2310	NW	41.9	16.69	41.91	
Habitation Near P6	2300	NW	41.9	16.73	41.91	
	Cun	47.93				

Source: Lab Monitoring Data

The cumulative analysis of noise due to 6 proposed projects shows that habitation of **Kamayagoundanpatti will** receive about 47.93dB(A) respectively. The cumulative results for all the villages in consideration do not exceed the limit set by CPCB for residential areas for day time.

Ground Vibrations

Cumulative results of ground vibrations due to mining activities in the all the 6 mines have been shown in Table 7.10.

Table 7.10 Cumulative Effect of Ground Vibrations Resulting from 6 Mines on Habitation of Kamayagoundanpatti

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s			
P1	3.8	2740	0.005			
P2	13.2	2370	0.016			
P3	16.7	2490	0.018			
P4	13.4	2380	0.016			
P5	16.7	2310	0.020			
P6	25.36	2300	0.028			
	Total					

Results from the above tables 7.10 indicate that the cumulative PPV value of each habitation is well below the peak particle velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

7.4.3 Socio Economic Environment

Socio Economic benefits of the proposed project were calculated and the results have been shown in Table 7.11 the project together will contribute Rs. 30,00,000/-towards CER fund.

Table 7.11 Socio Economic Benefits from 6 Mines

Location ID	Project Cost	CER Cost
P1	Rs.62,00,832	Rs. 5,00,000
P2	Rs.80,19,097	Rs. 5,00,000
Р3	Rs.102,34,463	Rs. 5,00,000
P4	Rs.81,76,830	Rs. 5,00,000
P5	Rs.82,19,330	Rs. 5,00,000
P6	Rs.99,01,330	Rs. 5,00,000
Grand Total	Rs.5,07,51,882	Rs.30,00,000

Table 7.12 Employment Benefits from 6 Mines

Location ID	Employment
P1	15
P2	16
Р3	17
P4	18
P5	20
P6	20
Grand Total	106

A total of 86 people will get employment due to 6 proposed mines in cluster

7.4.4 Ecological Environment

Table 7.13 Greenbelt Development Benefits from Mine

Code	Number of Trees proposed	Area to be covered (m²)	No. of Trees expected to be grown @ 80% survival rate	Species
P1	500	4500	400	
P2	1185	10665	948	
Р3	1315	11835	1052	Azadirachta indica, Albizia lebbeck,
P4	1250	11250	1000	Delonix regia, Techtona grandis,
P5	1250	11250	1000	etc.,
P6	1250	11250	1000	
Total	6,750	60,750	5,400	

Cumulative studies show that the proposed project will plant about 6,750 native tree species like *Azadirachta indica*, *Albizia lebbeck*, *Delonix regia*, *Techtona grandis*, etc inside and outside the lease area. It is expected that 80 % of trees, i.e., 5,400 trees will survive in this green belt development program.

7.5 PLASTIC WASTE MANAGEMENT PLAN FOR PROPOSED PROJECT

All the Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986.

7.5.1 Objective

❖ To investigate the actual supply chain network of plastic waste.

- ❖ To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.

A detailed action plan to manage plastic waste has been provided in Table 7.14.

Table 7.14 Action Plan to Manage Plastic Waste

S. No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the	Mines Manager
	Rules, user fee to be charged from waste generators for plastic	
	waste management, penalties/fines for littering, burning plastic	
	waste or committing any other acts of public nuisance.	
2	Enforcing waste generators to practice segregation of bio-	Mines Manager
	degradable, recyclable and domestic hazardous waste.	
3	Collection of plastic waste.	Mines Foreman
4	Setting up of Material Recovery Facilities.	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at	Mines Foreman
	Material Recovery Facilities.	
6	Channelization of Recyclable Plastic Waste to registered	Mines Foreman
	recyclers.	
7	Channelization of Non-Recyclable Plastic Waste for use either	Mines Foreman
	in Cement kilns, in Road Construction.	
8	Creating awareness among all the stakeholders about their	Mines Manager
	responsibility.	
9	Surprise checking's of littering, open burning of plastic waste	Mine Owner
	or committing any other acts of public nuisance.	
		l .

Source: Proposed by FAEs and EC

CHAPTER VIII

PROJECT BENEFITS

8.0 GENERAL

The proposed project at Kamayagoundanpatti Village aims to produce **53565** m³ of rough stone over a period of 5 years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits:

- ❖ Increase in Employment Potential
- ❖ Improvement in Socio-Economic Welfare
- ❖ Improvement in Physical Infrastructure
- ❖ Improvement in Social infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 15 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be an opportunity for indirect employment to the form of contractual jobs, business opportunities, and service facilities etc. Because of this, the economic status of the local people will improve.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry project is located in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District and Tamil Nadu. The area has already well-established communications roads and other facilities. The following physical infrastructure facilities will further improve due to proposed project.

- * Road transport facilities
- Communications
- ❖ Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below

- ❖ Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation for supply of goods and services to the mine and other community services
- ❖ Additional housing demand for rental accommodation will increase
- ❖ Cultural, recreation and aesthetic facilities will also improve
- ❖ Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- ❖ The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

8.6 CORPORATE SOCIAL RESPONSIBILITY

Individual project proponents will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponents will take-up following programmes for social and economic development of villages within 5 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas:

- Health Services
- Social Development
- Infrastructure Development
- Education & Sports
- Self-Employment
- CSR Cost Estimation

CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Kamayagoundanpatti Village. CSR budget.

8.7 CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III dated 01.05.2018. As per para 6 (II) of the office memorandum, being a green field project & capital investment is ≤ 100 crores, the proposed project shall contribute 2% of capital investment towards CER as per directions of EAC/SEAC. However, the SEAC has suggested to allocate CER fund on the basis of the extent of the project. Therefore, Rs. 5,00,000 is allocated for CER. The proposed utilization of the budget of CER activities is given in Table 8.1.

Table 8.1 CER Action Plan

S.	Activity	Budget (Rs.in
No.		Lakh)
1	The applicant Indents to involve in corporate environment responsibilities (CER) activities such as renovation of existing toilet, plantation within the school premises, donating environment related books to the nearby school library, etc.	Rs.5,00,000
	Total	Rs.5,00,000

Source: Field survey conducted by FAE in consultation with project proponent

8.8 SUMMARY OF PROJECT BENEFITS

The project would pay about Rs.62,85,020 to the state government through various ways, as provided in Table 8.2.

Table 8.2 Project Benefits to the State Government

Particulars	Budget for Rough Stone (Rs.)		
CER	5,00,000		
Seigniorage @ Rs.90/m ³ of rough stone	4820850		
District Mineral Foundation Tax @ 10% of Seigniorage	482085		
Green Tax @ 10% of Seigniorage	482085		
Total	62,85,020		

CHAPTER IX ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

CHAPTER X

ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of environmental management plan will ensure to keep all the environmental parameters of the project in respect of ambient air quality, water quality, socio economic improvement standards. Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The project proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance. The Proponent M/s.Annai Sathya Magalir Suya Uthavikuzhu will:

- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities.
- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities.
- ❖ Allocate necessary resources to ensure the implementation of the environmental policy.
- ❖ Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts.
- ❖ Implement monitoring programs to provide early warning of any deficiency or unanticipated performance in environmental safeguards.
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement.

10.1.1 Description of the Administration and Technical Setup

The environment monitoring cell discussed under chapter VI will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through mine management level of each proposed quarry. The said team will be responsible for:

- ❖ Monitoring of the water/ waste water quality, air quality and solid waste generated.
- ❖ Analysis of the water and air samples collected through external laboratory.

- ❖ Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.
- ❖ Co-ordination of the environment related activities within the project as well as with outside agencies.
- Collection of health statistics of the workers and population of the surrounding villages.
- ❖ Green belt development.
- ❖ Monitoring the progress of implementation of the environmental monitoring program.
- ❖ Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.2 Budgetary Provision for Environmental Management

Adequate budgetary provision has been made by the company for execution of Environmental Management Plan. The Table 10.10 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

Table 10.1 EMP Budget for Proposed Project

Attribute	Mitigation measures	Provision for Implementation	Capital Cost (Rs.)	Recurring Cost/annu m (Rs.)
	Compaction, gradation and drainage on both sides	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare and yearly maintenance @ Rs. 10,000/- per hectare	10000	10000
Air Environm ent	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed sprinkler installation and new water tanker cost for capital; and water sprinkling (thrice a day) cost for recurring	800000	50000
	Air quality will be regularly monitored as per norms within ML area & ambient area	Yearly compliance as per CPCB norms	0	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags /	0	5000

		steel mesh / old tyres / used conveyor belts		
	Wet drilling procedure / latest eco-friendly drill machine with separate dust extractor unit	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance	50000	5000
	No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin to avoid escape of fines to the atmosphere	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governors @ Rs. 5000/- per tipper/dumper deployed	10000	0
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes	0	2500
	Regular sweeping and maintenance of roads for at least about 200 m from quarry entrance	Provision for 2 labours @ Rs.10,000/labour (Contractual) / hectare	0	20000
	Installing wheel wash system near exit gate of quarry	Installation + Maintenance + Supervision	50000	20000
	Total Air Enviro	onment	920000	177500
Noise Environm ent	Source of noise will be transportation vehicles, and HEMM. For this, proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0
	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done.	Provision made in Operating Cost	0	0
	Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0

	It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0
	Safety tools and implementations that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 tons of blasted material	0	149982
	Total Noise Envir	onment	50000	151982
Water Environm ent	Water Management	Provision for garland drain @ Rs. 10,000/- per hectare with maintenance of Rs. 5,000/- per annum (4.82.7 ha X 10000)	10000	5000
	Total Water Envi		10000	5000
Waste Managem ent	Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency (capital cost, recurring cost for collection /disposal).	25000	20000
		Installation of dust bins	5000	2000

	Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	0	0
	Total Waste Man	agement	30000	22000
Implement ation of EC, Mining Plan & DGMS Condition	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed display board at the quarry entrance as permanent structure	10000	1000
	Total Implementation of 1	EC, Mining Plan	10000	1000
	Workers will be provided with Personal Protective Equipment	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee)	60000	15000
	Health checkup for workers will be provisioned	IME & PME Health checkup @ Rs. 1000/- per employee	0	15000
	First aid facility will be Provision of 2 Kits per provided Hectare @ Rs. 2000/-		0	4000
	Mine will have safety precaution signages, boards.	Provision for signages and boards made	10000	2000
Occupatio nal Health and Safety	Barbed Wire Fencing to quarry area will be provisioned. Per Hectare fencing Cost (a) Rs. 2,00,000/- with Maintenance of Rs 10,000/ per annum (4.82.7 hectare)		200000	10000
	No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for vehicles /HEMMs. Flaggers will be deployed for traffic management	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs. 10,000/- as maintenance cost	50000	10000
	Installation of CCTV cameras in the mines and mine entrance	Camera 4 Nos, DVR, Monitor with internet facility	30000	5000

	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1st Class / 2nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0 3 50000	780000 841000
	Total Occupational Hea	<u>-</u>	33000	041000
Developm ent of Green Belt	Green belt development - 500 trees per hectare (200 Inside Lease Area & 300	Site clearance, preparation of land, digging of pits /trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	40000	6000
	Outside Lease Area)	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	90000	9000
	Total Development of		130000	15000
Closure includes 10% of the amount allotted for Greenbelt development, wire fencing, and garland drainage (Rule 27 in MCDR 2017 for Cat B mines will pay 2 lakhs per hectare or minimum amount of financial assurance of 5 lakhs)			0	34000
	G.O.(Ms)No.23, Dated: 28.09.2021	Section IVA of TNMMCR 1959 (@10% of Seigniorage Fee) (Seigniorage Fee for Roughstone = Rs.90)	482085	0
	Total Seigniora	ge Fee	482085	0
TOTAL				1213482 (Exclude. Mine Closure)

Table 10.2 Estimation of Overall EMP Budget after Adjusting 5% Annual Inflation

I st Year	II nd Year	III rd Year	IV th Year	V th Year (including Mine Closure Cost)	Total Recurring Cost	Total EMP Cost
1213482	1274156	1337864	1404757	1508995	6739254	8721339

In order to implement the environmental protection measures, an amount of **Rs.** 1982085 as capital cost and recurring cost as **Rs.** 1213482 as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.** 8721339 as shown in Table 10.11.

10.3 CONCLUSION

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XI

SUMMARY AND CONCLUSION

11.1 INTRODUCTION

As the proposed rough stone mining project (P1) falls within the quarry cluster of 500 m radius with the total extent of 13.50.0 ha, it requires submission of EIA report for grant of Environmental Clearance (EC) after conducting public hearing. The proposed project falling in S.F.No.1372/1(Part-3) over the extent of 1.00.0 ha is situated in the cluster falling in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District and Tamil Nadu. The quarries involved in the calculation of cluster extent are 6 proposed quarries.

11.2 PROJECT DESCRIPTION

The proposed project area is located between Latitudes from 9°43'44.44"N to 9°43'49.07"N and Longitudes from 77°20'22.43"E to 77°20'26.67"E in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, and Tamil Nadu State. According to the approved mining plan, about 53565 m³ of rough stone will be mined up to the ultimate depth of 70 m in the five years. The quarrying operation is proposed to be carried out by opencast semi mechanized mining method involving drilling, blasting, and formation of benches of the prescribed dimensions.

11.3 DESCRIPTION OF THE ENVIRONMENT

Baseline data were collected to evaluate the existing environmental condition in the core and buffer areas during October to December, 2023 as per CPCB guidelines. The data were collected by both the FAEs and NABL accredited and MoEF notified Interstellar Testing Centre Pvt. Ltd ory for the environmental attributes including soil, water, noise, air and by FAEs for ecology and biodiversity, traffic, and socio-economy.

11.3.1 Land Environment

Land use pattern of the area of 5 km radius was studied using Sentinel II imagery. LULC types and their extent are given in Table 1.

Table 11.1 LULC Statistics of the Study Area

S. No.	Classification	Area (ha)	Area (%)
1	Crop Land	2643.02	34.59
2	Dense Forest	390.24	5.11
3	Fallow Land	680.59	8.91
4	Mining/Industrial lands	20.20	0.26
5	Land with or Without Scrub	2039.81	26.70
6	Plantations	1648.38	21.57
7	Settlements	154.70	2.02
8	Water bodies	64.02	0.84
	Total	7640.96	100.0

Source: Sentinel II Satellite Imagery

11.3.2 Soil Environment

The soil samples in the study area show loamy textures varying between silty clay loam, silty loam and loam. pH of the soil varies from 6.23 to 7.98 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 43.85to 419 µmhos/cm. Bulk density ranges between 1076 to 1458 kg/cm³.Nitrogen ranges between 148 and 260 mg/kg. Phosphorus ranges between 5.15 and 18.70 mg/kg. Potassium ranges between 1334 and 16340 mg/kg Calcium ranges between 3417 and 18703 mg/kg. Magnesium ranges between 4799 and 16340 mg/kg.

11.3.3 Water Environment

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose.

Four groundwater samples, known as OW1, OW2, BW1 and BW2 were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.8. Table 3.6 summarizes ground water quality data of the four samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

11.3.4 Air Environment

As per the monitoring data, $PM_{2.5}$ ranges from 20.1 $\mu g/m^3$ to 22.0 $\mu g/m^3$; PM_{10} from 45.4 $\mu g/m^3$ to 49.7 $\mu g/m^3$; SO_2 from 5.2 $\mu g/m^3$ to 7.7 $\mu g/m^3$; NO_X from 12.4 $\mu g/m^3$ to 15.7 g/m^3 . The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index (AQI)

The AQI shows that the air quality of the study area falls within good category 47 causing minimal impact to human health.

11.3.5 Noise Environment

Noise level in core zone was 40.0 dB (A) Leq during day time and 38.1 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 41.9 to 50.8 dB (A) Leq and during night time from 37.2 to 43.4 dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB

11.3.6 Biological Environment

The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

11.3.7 Socio Economic Environment

The proposed project will provide direct and indirect employment and improve the infrastructural facilities in that area, thus leading to the improvement of people's standard of living.

11.4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

11.4.1 Land Environment

Anticipated Impact

- Change in land use and land cover and topography of the mine lease area
- Problems to human habitations due to dust and noise caused by movement of heavy vehicles
- Soil erosion and sediment deposition in the nearby water bodies during the rainy season
- Siltation of water course due to wash off from the exposed working area
- Deterioration of soil quality in the surrounding area due to runoff from the project area
- Decrease in the agricultural productivity of the surrounding land due to soil quality degradation

Mitigation Measures

- Construction of garland drains, settling pits, and check dams to prevent runoff and siltation
- Runoff water will be discharged into the settling tanks to reduce suspended sediment loads before runoff is discharged from the quarry site
- The vegetation will be retained at the site wherever possible

• Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season

11.4.2 Water Environment

Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- As the proposed project acquires 2.55 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

Mitigation Measures

- Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program

11.4.3 AIR ENVIRONMENT

Anticipated Impact

Anticipated increase of the air pollutants due to quarrying activities have been predicted using AERMOD software. The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further

Mitigation Measures

- To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar
- Controlled blasting will be carried out using suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone
- Blasting will be restricted to a particular time of the day i.e., at the time of lunch hours
- Before loading of material water will be sprayed on blasted material
- Dust mask will be provided to the workers and their use will be strictly monitored
- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust
- The un-metaled haul roads will be compacted weekly before being put into use
- It will be ensured that all transportation vehicles carry a valid PUC certificate
- Haul roads and service roads will be graded to clear accumulation of loose materials
- Planting of trees all along main mine haul roads and around the project site will be practiced to prevent the generation of dust

11.4.4 Noise Environment

Anticipated Impact

Total noise level in all the sampling areas is well below the CPCB standards for industrial and residential areas. The peak particle velocity produced by the charge of 3.80kg is well below that of 0.3 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

Mitigation Measures

- The blasting operations in the cluster quarries will use shallow holes and delay detonators to reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be used during blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines

- Blasting operations will be carried out only during day time
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

11.4.5 Biological Environment

Anticipated Impact

- There shall be negligible air emissions or effluents from the project site. During loading
 the truck, dust generation will be likely. This shall be a temporary effect and not
 anticipated to affect the surrounding vegetation significantly
- Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region.
- Carbon released from quarrying machineries and tippers during quarrying would be 452 kg per day, 121967 kg per year and 609833 kg over five years

Mitigation Measures

• During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time

- Quarry approach roads are sprayed with water 3 times a day to control dust. Thus, the damage to the nearby farmlands is controlled
- Existing roads will be used; new roads will not be constructed to reduce impact on flora
- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 11988kg of carbon per year. Therefore, we recommend 500 planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc
- About 407 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 4582kg of the total carbon

11.4.6 Socio Economic Environment

Anticipated Impact

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area
- Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region

Mitigation Measures

- Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines
- Air pollution control measure will be taken to minimize the environmental impact within the core zone
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly

11.4.7 Occupational Health

- All the persons will undergo pre-employment and periodic medical examination
- Employees will be monitored for occupational diseases by conducting medical tests: General physical tests, Audiometric tests, Full chest, X-ray, Lung function tests, Spiro

- metric tests, Periodic medical examination yearly, Lung function test yearly, those who are exposed to dust and Eye test
- Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost.
- The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

11.5 Environment Monitoring Program

Table 11.2 Environment Monitoring Program

S.	Environment	T	Mon	itoring	D 4	
No.	Attributes	Location	Duration	Frequency	Parameters	
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL	
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	-	Once in six months	Physical and chemical characteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

Source: Guidance of manual for mining of minerals, February 2010

11.6 ADDITIONAL STUDIES

11.6.1 Risk Assessment

The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards

in order to prioritize those that need immediate attention. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

11.6.2 Disaster Management Plan

The objective of the disaster management plan is to make use of the combined resources of the mine and the outside services to:

- Rescue and treat casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

11.6.3 Cumulative Impact Study

The results on the cumulative impact of the 6 proposed projects on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.

- The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time
- PPV resulting from six proposed project is well below the permissible limit of Peak Particle Velocity of 5 mm/s
- The proposed six projects will allocate Rs. 30,00,000/- towards CER as recommended by SEAC
- The proposed six projects will directly provide jobs to 106 local people, in addition to indirect jobs
- The proposed six projects will plant 6750 about trees in and around the lease area
- The proposed six projects will add 402 PCU per day to the nearby roads.

11.7 Project Benefits

Various benefits are envisaged due to the proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

• Direct employment to 15 local people

- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,
- Strengthening of existing community facilities through the Community Development Program
- Skill development & capacity building like vocational training.
- Rs. 5,00,000 will be allocated for CER

11.8 ENVIRONMENT MANAGEMENT PLAN

In order to implement the environmental protection measures, an amount of Rs.1982085 as capital cost and recurring cost as Rs.1213482 as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be Rs.8721339.

CHAPTER XII

DISCLOSURES OF CONSULTANT

The Project Proponent, M/s.Annai Sathya Magalir Suya Uthavikuzhu has engaged **Geo Technical Mining Solutions**, a NABET accredited consultancy for carrying out the EIA study as per the ToR issued.

Address of the consultancy:

No: 1/213B Natesan Complex, Oddapatti, Dharmapuri – 636705, Tamil Nadu, India. Email:info.gtmsdpi@gmail.com

Web: www.gtmsind.com
Phone: 04342 232777.

The accredited experts and associated members who were engaged in this EIA study are given below:

S.No	Name of the expert	Name of the expert In house/ Empanelled Sector		Functional Area	Categ ory				
•	Approved Functional Area Experts & EC								
1.	Dr. S. Karuppannan	EIA Coordinator (EC) In-house	1(a)(i)	Mining	В				
2.	Dr. M. Vijayprabhu	In-house FAE	1(a)(i)	HG, LU, GEO	В				
3.	Dr. J. Rajarajeswari	In-house, FAE	1(a)(i)	EB, SC	В				
4.	Dr. G. Prabakaran	In-house, FAE	1(a)(i)	SE	В				
5.	Dr. R. Arunbalaji	In-house, FAE	1(a)(i)	AP, AQ, NV	В				
6.	J.N. Manikandan	Empanelled FAE	1(a)(i)	RH, SHW, AP	В				
7.	Dr. S. Malar	In-house, FAE	1(a)(i)	WP	В				
8.	G. Umamaheswaran	In-house, FAE	1(a)(i)	HG, LU, GEO	В				
9.	S. Gopalakrishnan	In-house, FAE	1(a)(i)	HG, GEO	В				
10.	P. Venkatesh	In-house, FAE	1(a)(i)	AP	В				
11.	Dr. D.Kalaimurugan	In-house, FAE	1(a)(i)	SC	В				
	Approved Functional Area Associates								
12.	G. Prithiviraj	FAA	1(a)(i)	LU, HG	В				

13.	C. Kumaresan	FAA			1(a)(i)	NV	В	
14.	P. Vellaiyan		FAA		1(a)(i)	HG, GEO	В	
15.	P. Dhatchayini		FAA		1(a)(i)	AQ	В	
16.	V. Malavika		FAA		1(a)(i)	NV, SHW	В	
			Abbr	eviations	I			
EC	EIA Coordinator	•	NV		Noise	and Vibration		
FAE	Functional Area Ex	pert	SE		Soci	o Economics		
FAA	Functional Area Asso	ciates	HG	Hydrology, ground wate		round water and water	ater and water	
IAA	Functional Area Associates		Tunctional Area Associates		conse		onservation	
TM	Team Member		SC		Soil	Soil conservation		
GEO	Geology		RH	Risk a	assessment	and hazard manager	ment	
WP	Water pollution monit	oring,	SHW		Solid and	hazardous wastes		
***	prevention and con-	trol	SIIV		Solid alla	nazaraous wastes		
AP	Air pollution monito	ring,	MSW		Munici	pal Solid Wastes		
	prevention and con-	trol		Wastes				
LU	Land Use		ISW		Industr	ial Solid Wastes		
AQ	AO Meteorology, air quality		HW	HW Hazardous Wastes		urdous Wastes		
modelling, and prediction				11320				
EB	Ecology and bio-dive	ersity	GIS	Ge	eographica	aphical Information System		

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA & EMP

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA & EMP report.

Signature : Warran

Date :

Name : **Dr. S. Karuppannan**

Designation : EIA Coordinator

Name of the EIA Consultant Organization : Geo Technical Mining Solutions

Period of Involvement : Till date

We, the FAEs and FAAs hereby declare that information furnished in this EIA/EMP report for M/s.Annai Sathya Magalir Suya Uthavikuzhu rough stone quarry project with the extent of 1.00.0 ha situated in the cluster with the extent of 13.50.0 ha in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District of Tamil Nadu is true and correct to the best of our knowledge.

List of Functional Area Experts Engaged in this Project

S. No.	Functional Area	Involvement	Name of the Experts	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity Prediction of air pollution and 	J.N. Manikandan	lolept
		propose mitigation measures / control measures	P.Venkatesh	P. Ulul
		 Suggesting water treatment systems, drainage facilities Evaluating probable impacts of 		
2	WP	effluent/waste water discharges into the receiving environment/water bodies and suggesting control measures.		g. mart.
3	HG	 Interpretation of ground water table and predict impact and propose mitigation measures. Analysis and description of aquifer Characteristics 	Dr.M. Vijay Prabhu	M. (H) mgrun
4	GEO	 Field Survey for assessing the regional and local geology of the area. Preparation of mineral and geological maps. Geology and Geo morphological analysis/description and Stratigraphy/Lithology. 	G.Gopala Krishnan	Eleop Otris ht
5	SE	 Revision in secondary data as per Census of India, 2011. Impact Assessment & Preventive Management Plan Corporate Environment Responsibility. 	Dr. G. Prabhakaran	Pralation
6	ЕВ	 Collection of Baseline data of Flora and Fauna. Identification of species labelled as Rare, Endangered and threatened 	Dr.J. Rajarajeshwari	J. Cypt="

		as per IUCN list.			
		o Impact of the project on flora and			
		fauna.			
		o Suggesting species for greenbelt			
		development.			
		o Identification of hazards and			
		hazardous substances			
		o Risks and consequences analysis	J.N. Manikandan	14110	
7	RH	o Vulnerability assessment	VII W IVIAIIIIAAII	libert	
		o Preparation of Emergency			
		Preparedness Plan			
		Management plan for safety.			
		Construction of Land use Map			
		o Impact of project on surrounding	G.Uma	~	
8	LU	land use	G.Uma Maheswaran	a umanthy	
		Suggesting post closure sustainable	Waneswaran	1	
		land use and mitigative measures.			
		o Identify impacts due to noise and			
		vibrations	D D	@ 111-	
9	NV	Suggesting appropriate mitigation	Dr.R. Arun Balaji	1) Ansalogi	
		measures for EMP.			
		o Identifying different source of			
		emissions and propose predictions			
10	AQ	of incremental GLC using	Dr.R. Arun Balaji	R/ Ldui	
10	110	AERMOD.	Di.ix. / Huii Duluji	1	
		0	o Recommending mitigations		
		measures for EMP			
		o Assessing the impact on soil			
11	SC	environment and proposed		a kim	
		mitigation measures for soil	D.Kalaimurugan	D. Smy 7	
		conservation			
		o Identify source of generation of			
		non-hazardous solid waste and			
	SHW	hazardous waste.		180.00	
12			J.N. Manikandan	hotel	
		minimization of generation of			
		waste and how it can be reused or			
		recycled.			

List of Functional Area Associate Engaged in this Project

S.No.	Name	Functional Area	Involvement	Signature
1	G. Prithiviraj	LU, HG	Site visit with FAEProvide inputs & Assisting FAEfor LU and HG	9.2 mi
2	C. Kumaresan	NV	 Assistance to FAE in both primary and secondary data collection Assistance in noise prediction modelling 	framont =
3	P. Vellaiyan	HG & GEO	Field visits along with FAEAssistance to FAE in both primaryand secondary data collection	Stammet.
4	P. Dhatchayini	AQ	 Site visit with FAE Assistance to FAE in collection of both primary and secondary data	Pohtchyn
5	V. Malavika	NV, SHW	Site visit along with FAEAssistance in report preparation	V-Hab

DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT ORGANIZATION

I, **Dr. S. KARUPPANNAN**, Managing Partner, **Geo Technical Mining Solutions**, hereby, confirm that the above-mentioned functional area experts and team members prepared the EIA/EMP report for M/s.Annai Sathya Magalir Suya Uthavikuzhu rough stone quarry project with the extent of 1.00.0 ha situated in the cluster with the extent of 13.50.0 ha in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District of Tamil Nadu is true and correct to the best of my knowledge.

Signature : Warra

Date :

Name : **Dr. S. Karuppannan**Designation : Managing Partner

Name of the EIA Consultant Organization : Geo Technical Mining Solutions

NABET Certificate No & Issue Date : NABET/EIA/2124/SA 0184

Validity : April 02,2024

THIRU.DEEPAK S.BILGI, I.F.S., MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY – TAMIL NADU

3rd Floor, Panagal Maaligai, No.1, Jeenis Road, Saidapet, Chennai-15. Phone No. 044-24359973 Fax No. 044-24359975

TERMS OF REFERENCE (ToR) Lr No. SEIAA-TN/F.No.10407/SEAC/ToR- 1616/2023 dated:06.11.2023

To

M/s. Annai Sathya Magalir Suya Uthavikuzhu.
Mrs. B.Usha, Leader,
No.49/1, Panjamar Street,
Kamayagoundanpatti Village,
Uthamapalayam Taluk,

Sir/Madam,

Theni District.

Sub: SEIAA-TN - Terms of Reference with public hearing for the Proposed Rough stone quarry project over an extent of 1.00.0Ha (Government Poramboke Land) at S.F. No:1372/1 (Part-3) of Kamayagoundanpatti Village, uthamapalayam Taluk, Theni District by M/s. Annai Sathya Magalir Suya Uthavikuzhu - under project category - "B1" and Schedule S.No.1 (a) - ToR issued along with Public Hearing - preparation of EIA report - Regarding.

Ref: 1. Online Application No SIA/TN/MIN/444467/2023, dt: 16/09/2023

- 2. Your application for Terms of Reference dated: 20.09.2023
- Minutes of the 416th SEAC Meeting held on 13.10.2023
- 4. Minutes of the 670th authority meeting held on 06.11.2023.

Kindly refer to your proposal submitted to the State Level Impact Assessment Authority for Terms of Reference.

The proponent, M/s. Annai Sathya Magalir Suya Uthavikuzhu has submitted application for Terms of Reference (ToR) with public Hearing, in Form-I, Pre-Feasibility report for Proposed Rough stone

MEMBER SECRETARY SEIAA-TN

Page 1 of 24

quarry project over an extent of 1.00.0Ha (Government Poramboke Land) at S.F. No:1372/1 (Part-3) of Kamayagoundanpatti Village, uthamapalayam Taluk, Theni District, Tamil Nadu.

Remarks by SEAC:

Proposed Rough stone quarry project over an extent of 1.00.0Ha (Government Poramboke Land) at S.F. No:1372/1 (Part-3) of Kamayagoundanpatti Village, uthamapalayam Taluk, Theni District by M/s. Annai Sathya Magalir Suya Uthavikuzhu - For Terms of Reference. (SIA/TN/MIN/444467/2023, dt: 16/09/2023)

The proposal was placed in the 416th SEAC Meeting held on 13.10.2023. The details of the minutes are available in the website (parivesh.nic.in). The SEAC noted the following:

- The project proponent, M/s. Annai Sathya Magalir Suya Uthavikuzhu has applied for Terms
 of Reference for the proposed rough stone quarry project over an extent of 1.00.0Ha at S.F.
 No:1372/1 (Part-3) of Kamayagoundanpatti Village, uthamapalayam Taluk, Theni District,
 Tamil Nadu.
- The project/activity is covered under Category "B1" of Item 1(a) "Mining of Minerals Projects" of the Schedule to the EIA Notification, 2006.
- 3. The proposed lease area was previously granted to quarrying of rough stone in favor of "Annai Terasa Kaludaikkum Magalir Nala Munnetra Sangam" by the District Collector, Theni proceedings vide Rc.444/2008/Mines, dated 22.01.2009 in S.F.No.1372/1, Part III, Theni District, Uthamapalayam Taluk, Kamayagoundanpaty Village, over an extent of 2.50.0hectares for a period of 3 years. The lease deed was executed from 23.02.2009 to 22.02.2012.
- 4. Existing Pits 2 Nos. 7.5m & 15m.
- 5. As per the precise area communication the lease period is for 5 Years. The mining plan is for 3 Years. The Mineable reserve /production for 5 Years shall not to 53565m^{3 of} exceed rough stone and the ultimate depth of 70m (65m AGL & 5m BGL).

Based on the presentation and details furnished by the project proponent, SEAC decided to grant Terms of Reference (TOR) with Public Hearing subject to the following TORs, in addition to the standard terms of reference for EIA study for non-coal mining projects and details issued by the MOEF & CC and Annexure, to be included in EIA/EMP Report:

 Details of Existing pit dimension, quantity of the mineral quarried and last transport permit for the earlier lease period from Dept. Of Geology & Mining.

164

- Copy of 'No Objection Certificate' for the total penalty levied by the concerned AD/DD, Dept of Geology and Mining, and copy of remittance of total penalty by PP.
- DFO letter regarding proximity of protected areas & reserve forests along with conservation measures.
- 4. The structures within the radius of (i) 50 m, (ii) 100 m, (iii) 200 m and (iv) 300 m shall be enumerated with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc.
- The Proponent shall provide a Controlled Blast design & Vibration Prediction for the structures located within 500 m from the lease boundary and any other sensitive structures.
- The project proponent shall furnish details of photographs of adequate barbered fencing, greenbelt and garland drain around the boundary of the proposed quarry.
- The Proponent shall submit a conceptual 'Slope Stability Plan' for the proposed quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.
- The proponent shall furnish a revised EMP budget for entire life of proposed mining including progressive mine closure plan.
- The PP shall mark the DGPS reference pillars painted with blue & white colour indicating the safety barrier of 7.5 m to be left under the Rule 13 (1) of MCDR, 1988 within the lease boundary and protective bunds.
- The PP shall develop Green belt/plantation all along the mining lease boundary in a safety barrier.
- 11. The PP shall furnish the total manpower required for the proposed mining project including Statutory officials, Geologist, Supervisory staff, Skilled, Semi-skilled & Unskilled staff with showing the representation of the local people as per their eligibility and experience.

Annexure I

- In the case of existing/operating mines, a letter obtained from the concerned AD (Mines) shall be submitted and it shall include the following:
 - (i) Original pit dimension
 - (ii) Quantity achieved Vs EC Approved Quantity

MEMBER SECRETARY SEIAA-TN

- (iii) Balance Quantity as per Mineable Reserve calculated.
- (iv) Mined out Depth as on date Vs EC Permitted depth
- (v) Details of illegal/illicit mining
- (vi) Violation in the quarry during the past working.
- (vii) Quantity of material mined out outside the mine lease area
- (viii) Condition of Safety zone/benches
- (ix) Revised/Modified Mining Plan showing the benches of not exceeding 6 m height and ultimate depth of not exceeding 50m.
- Details of habitations around the proposed mining area and latest VAO certificate regarding the location of habitations within 300m radius from the periphery of the site.
- 3. The proponent is requested to carry out a survey and enumerate on the structures located within the radius of (i) 50 m, (ii) 100 m, (iii) 200 m and (iv) 300 m (v) 500m shall be enumerated with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc with indicating the owner of the building, nature of construction, age of the building, number of residents, their profession and income, etc.
- 4. The PP shall submit a detailed hydrological report indicating the impact of proposed quarrying operations on the waterbodies like lake, water tanks, etc are located within 1 km of the proposed quarry.
- The Proponent shall carry out Bio diversity study through reputed Institution and the same shall be included in EIA Report.
- The DFO letter stating that the proximity distance of Reserve Forests, Protected Areas,
 Sanctuaries, Tiger reserve etc., up to a radius of 25 km from the proposed site.
- 7. In the case of proposed lease in an existing (or old) quarry where the benches are not formed (or) partially formed as per the approved Mining Plan, the Project Proponent (PP) shall the PP shall carry out the scientific studies to assess the slope stability of the working benches to be constructed and existing quarry wall, by involving any one of the reputed Research and Academic Institutions CSIR-Central Institute of Mining & Fuel Research / Dhanbad, NIRM/Bangalore, Division of Geotechnical Engineering-IIT-Madras, NIT-Dept of Mining Engg, Surathkal, and Anna University Chennai-CEG Campus. The PP shall submit a copy of the aforesaid report indicating the stability status of the quarry wall and possible mitigation measures during the time of appraisal for obtaining the EC.

166

MEMBER SECRETARY SEIAA-TN

- 8. However, in case of the fresh/virgin quarries, the Proponent shall submit a conceptual 'Slope Stability Plan' for the proposed quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.
- The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry
 is carried out by the statutory competent person as per the MMR 1961 such as blaster,
 mining mate, mine foreman, II/I Class mines manager appointed by the proponent.
- 10. The PP shall present a conceptual design for carrying out only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 30 m from the blast site.
- 11. The EIA Coordinators shall obtain and furnish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the State with video and photographic evidences.
- If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD, mines,
- 13. What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines?
- 14. Quantity of minerals mined out.
 - Highest production achieved in any one year
 - · Detail of approved depth of mining.
 - · Actual depth of the mining achieved earlier.
 - · Name of the person already mined in that leases area.
 - If EC and CTO already obtained, the copy of the same shall be submitted.
 - Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches.
- 15. All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagery/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 16. The PP shall carry out Drone video survey covering the cluster, green belt, fencing, etc.,

MEMBER SECRETARY SEIAA-TN

- 17. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.
- 18. The Project Proponent shall provide the details of mineral reserves and mineable reserves, planned production capacity, proposed working methodology with justifications, the anticipated impacts of the mining operations on the surrounding environment, and the remedial measures for the same.
- 19. The Project Proponent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of the Mines Act'1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.
- 20. The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of groundwater pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds, etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.
- 21. The proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauna including traffic/vehicular movement study.
- 22. The Proponent shall carry out the Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.
- Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted.
- 24. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should

168

- be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- Details of the land for storage of Overburden/Waste Dumps (or) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be provided.
- 26. Proximity to Areas declared as 'Critically Polluted' (or) the Project areas which attracts the court restrictions for mining operations, should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the TNPCB (or) Dept. of Geology and Mining should be secured and furnished to the effect that the proposed mining activities could be considered.
- Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 28. Impact on local transport infrastructure due to the Project should be indicated.
- 29. A tree survey study shall be carried out (nos., name of the species, age, diameter etc.,) both within the mining lease applied area & 300m buffer zone and its management during mining activity.
- A detailed mine closure plan for the proposed project shall be included in EIA/EMP report which should be site-specific.
- 31. As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.
- 32. The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating with shrubs should be planted in a mixed manner.
- 33. Taller/one year old Saplings raised in appropriate size of bags, preferably ecofriendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site specific choices. The proponent shall earmark the greenbelt area with GPS

- coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner
- 34. A Disaster management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 35. A Risk Assessment and management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 36. Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 37. Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 38. The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 41. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.
- 42. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.
- 43. Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.

170

Appendix -I List of Native Trees Suggested for Planting

No	Scientific Name	Tamil Name	Tamil Name
1	Aegle marmelos	Vilvam	வில்வம்
2	Adenaanthera pavonina	Manjadi	மஞ்சாடி, ஆளைக்குன்றிமணி
3	Albizia lebbeck	Vaagai	வாகை
4	Albizia amara	Usil	உசில்
5	Bauliinia purpurea	Mantharai	மந்தாரை
6	Bauhinia racemosa	Aathi	ஆத்தி
7	Bauhinia tomentos	Iruvathi	இருவாத்தி
8	Buchanania axillaris	Kattuma	காட்டுமா
9	Borassus flabellifer	Panai	Lisson
10	Butea monosperma	Murukkamaram	முருக்கமரம்
11	Bobax ceiba	Ilavu, Sevvilavu	இலவு
12	Calophyllum inophyllum	Punnai	புள்ளை
13	Cassia fistula	Sarakondrai	சரக்கொன்றை
14	Cassia roxburghii	Sengondrai	செங்கொன்றை
15	Chloroxyton sweitenia	Purasamaram	புரசு மரம்
16	Cochlospermum religiosum	Kongu, Manjalllavu	கோங்கு, மஞ்சள் இலவு
17	Cordia dichotoma	Naruvuli	நருவுளி.
18	Creteva adansoni	Mavalingum	மாவிலங்கம்
19	Dillenia indica	Uva, Uzha	2_ #T
20	Dillenia pentagyna	SiruUva, Sitruzha	சிறு உசா
21	Diospyro sebenum	Karungali	கருங்காலி
22	Diospyro schloroxylon	Vaganai	வாகணை
23	Ficus amplissima	Kailtchi	கல் இச்சி
24	Hibiscus tiliaceou	Aatrupoovarasu	ஆற்றுப்புவரக
25	Hardwickia binata	Aacha	ஆச்சா
26	Holoptelia integrifolia	Aayili	ஆயா மரம், ஆயிலி
27	Lannea coromandelica	Odhiam	ஓதியம்
28	Lagerstroemia speciosa	Poo Marudhu	பு மருது
29	Lepisanthus tetraphylla	Neikottaimaram	தெப் கொட்டடை மரம்
30	Limonia acidissima	Vila maram	விலா மரம்
31	Litsea glutinos	Pisinpattai	அரம்பா. புசின்பட்டை
32	Madhuca longifolia	Illuppai	இலுப்பை
33	Manilkara hexandra	UlakkaiPaalai	உலக்கை பாலை
34	Mimusops elengi	Magizhamaram	மகிழமரம்
35	Mitragyna parvifolia	Kadambu	கடம்பூ
36	Morinda pubescens	Nuna	(P) 60011
37	Morinda citrifolia	Vellai Nuna	வெள்ளை நுணா
38	Phoenix sylvestre	Eachai	maswgio
39	Pongamia pinnat	Pungam	புங்கம்

40	Premna mollissima	Munnai	முன்னை
41	Premna serratifolia	Narumunnai	நறு முன்னன
42	Premna tomentosa	Malaipoovarasu	மலை பூவரசு
43	Prosopis cinerea	Vanni maram	ഖങ്ങ് ഗഗ്ര
44	Pterocarpus marsupium	Vengai	வேங்கை
45	Pterospermum canescens	Vennangu, Tada	வெண்ணாங்கு
46	Pterospermum xylocarpum	Polavu	புலவு
47	Puthranjiva roxburghi	Karipala	கறிபாலா
48	Salvadora persica	Ugaa Maram	வைகா மரம்
49	Sapindus emarginatus	Manipungan, Soapukai	மணிப்புங்கள் சோப்புக்காய்
50	Saraca asoca	Asoca	-емв-т-шт
51	Streblus asper	Piray maram	பிராப் மரம்
52	Strychnos nuxvomic	Yetti	எட்டி
53	Strychnos potatorum	Therthang Kottai	தேத்தான் கொட்டை
54	Syzygium cumini	Naval	தாவல்
55	Terminalia belleric	Thandri	தான்றி
56	Terminalia arjuna	Ven marudhu	வெண் மருது
57	Toona ciliate	Sandhana vembu	சந்தன வேம்பு
58	Thespesia populnea	Puvarasu	rimite.
59	Walsuratrifoliata	valsura	வால்கரா
60	Wrightia tinctoria	Veppalai	வெப்பாலை
61	Pithecellobium dulce	Kodukkapuli	கொடுக்காப்புளி

Appendix -II Display Board

(Size 6' x5' with Blue Background and White Letters)

கரங்கங்களில் குவாரி செயல்பாடுகளுக்கான சுற்றுச்துமல் அனுமதி கீழ்கண்ட நிபந்தனைகளுக்கு உட்பட்டு வழங்கப்பட்டுள்ளது பட்ட ____ தேதியிடப்பட்டு சுற்றுச்துமல் அனுமதி _____ தேதி வளர் செல்லத்தக்கதாக உள்ளது

பசுமை பகுதி வளர்ச்சி	குவாரியின் எஸ்லையைச் சுற்றி வேலி அமைக்க வேண்டும்				
மேம்பாட்டுக்கான அரங்கத் திட்டம்	ரைக்கப்பாழையின் ஆழம் நாரமட்டத்தினிருந்து பிட்டர்க்கு மிகாமல் இருக்க வேண்டும்.				
	காற்றில் மாக ஏற்படாதவாறு கரங்க பணிகளை மேற்கோள்ள வேண்டும்.				
privit@	வாகனங்கள் செல்லும் பாதையில் மாக ஏற்படாத அளவிற்கு தண்ணிரை முறையாக தண்ணிர் லாரிகளின் மூலமாக அவ்வப்போது தெளிக்க வேண்டும்.				
ugnodiškius Gomingu ugniskir amministra	இனரச்சல் அள்ளவால் நூகி மாசுபாட்டையும் குறைப்பதற்காக சூவாரியின் எல்லையை சுற்றி அபர்த்தியான பசுமை பகுதியை ஏற்படுத்த வேண்டும்.				
வரங்கத்தில் வெடி வைக்கும்பொ நடவடிக்கைகளை உள்ளிப்பாக செடி	முது நிலகதிர்வுகள் ஏற்படாதவாறும் மற்றும் கற்கள் பறக்காதவாகும் பாதுகாப்பு மல்படுத்தப்பட வேண்டும்				
கரங்கத்தில் இருத்து ஏற்படும் இனர மேற் கொள்ள வேண்டும்.	ச்சல் அனவு 85 பெ.சியல்ஸ் (கூடி) அளவிற்கு மேல் ஏற்படாதவாறு நகுத்த கட்டுப்பாடுகளை				
வரங்க சட்ட விதிகள் 1955ன் கீழ் ககாதாரமுள்ள கழிப்பறை வசதிகள்	கரங்கத்தில் உள்ள பணியார்களுக்கு தகுந்த பாதுகாப்பு கருவிகள் வழங்கவதோடு கள செய்து தர வேண்டும்.				
கொடை அல்லது பஞ்சாயத்து வழியா	s வாகனங்கள் செல்லும் சாலையை தொடர்ந்து நன்கு பராமரிக்க வேண்டும்.				
ரைங்கப்பணிகளால் அருகில் உள்ள	விவசாயப் பணிகள் மற்றும் நீர்நிலைகள் பாதிக்கப்படக் கூடாது.				
நிறினைன் பாதிக்கப்படாமல் இருப்ப	தை உறுதி செய்யும் வளவகில் இலக்குடி தீரின் தரத்தினை தொடர்ந்து கண்காணிக்க வேண்டும்.				
	னை எடுத்துச் செல்வது கிராம மக்களுக்கு எந்தத் கிரமத்தினையும் ஏற்படுத்தாதவாறு 0 பாடுக்கவாத வண்ணம் வாகணம்களை இயக்க வேண்டும்.				
கரங்கப்பணிகள் முடிக்கப்பட்டவுடல்	r கரங்க முடல் திட்டத்தில் உள்ளவாறு. கரங்கத்தினை மூட வேண்டும்.				
	சென்னர் வரங்கப் பகுதி மற்றும் கரங்க நடவடிக்கைகளால் இடையூறு ஏற்படக்கூடிய டுமானம் செய்து நாவரங்கள் விலங்குகள் ஆகியவற்றின் வளர்ச்சிக்கு ஏற்ற வகையில் ஈடும்.				
சுற்றுதழல் சாந்த புகாந்களுக்கு G	பாரிவேஷ் (http://purkedinicia) என்கிற இணையதளத்தைப் பார்வையிடவும் மேலும் எத்தவித சன்னையில் உள்ள சுற்றுச்தமுல் மற்றும் வன அமைச்சகத்தின் முழுங்கினைந்த வட்டார தமிழ்தாடு மாக கட்டுப்பாடு வாரியத்தின் மாவட்ட சுற்றுச்தமுல் பொறியானை அனுகவும்				

172

Remarks by SEIAA:

The subject was placed in the 670th authority meeting held on 06.11.2023. The authority after detailed discussion accepts the recommendation of SEAC in its 416th meeting of SEAC held on 13.10.2023. SEAC has furnished its recommendations for granting Terms of Reference (ToR) along with Public Hearing subject to the conditions stated therein

After detailed discussions, the Authority accepts the recommendation of SEAC and decided to grant Terms of Reference (ToR) along with Public Hearing under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the conditions in 'Annexure B' of this minutes. The proponent shall furnish report on biodiversity study

- 1. The Proponent shall furnish report on biodiversity study.
- The proponent shall furnish report impact on agriculture & livelihood, impact free ranging wildlife, impact on water table including datea of annual rainfall, drainage pattern, temperatures, & Climate change in regard to the proposed mining activity.
- 3. The proponent shall furnish NOC from Agricultural Department and Chief Wild Life Warden
- The DFO letter stating that the proximity distance of Reserve Forests, Protected Areas, Sanctuaries, Tiger reserve etc., up to a radius of 25 km from the proposed site

Annexure 'B'

Cluster Management Committee

- Cluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.
- The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development, Water sprinkling, tree plantation, blasting etc.,
- The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.
- 4. Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.
- The committee shall deliberate on risk management plan pertaining to the cluster in a holistic manner especially during natural calamities like intense rain and the mitigation measures considering the inundation of the cluster and evacuation plan.

- The Cluster Management Committee shall form Environmental Policy to practice sustainable
 mining in a scientific and systematic manner in accordance with the law. The role played by
 the committee in implementing the environmental policy devised shall be given in detail.
- The committee shall furnish action plan regarding the restoration strategy with respect to the individual quarry falling under the cluster in a holistic manner.
- 8. The committee shall furnish the Emergency Management plan within the cluster.
- The committee shall deliberate on the health of the workers/staff involved in the mining as well as the health of the public.
- The committee shall furnish an action plan to achieve sustainable development goals with reference to water, sanitation & safety.
- 11. The committee shall furnish the fire safety and evacuation plan in the case of fire accidents.

Impact study of mining

- 12. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area covering the entire mine lease period as per precise area communication order issued from reputed research institutions on the following
 - a) Soil health & soil biological, physical land chemical features.
 - b) Climate change leading to Droughts, Floods etc.
 - c) Pollution leading to release of Greenhouse gases (GHG), rise in Temperature, & Livelihood of the local people.
 - d) Possibilities of water contamination and impact on aquatic ecosystem health.
 - e) Agriculture, Forestry & Traditional practices.
 - f) Hydrothermal/Geothermal effect due to destruction in the Environment.
 - g) Bio-geochemical processes and its foot prints including environmental stress.
 - h) Sediment geochemistry in the surface streams.

Agriculture & Agro-Biodiversity

- 13. Impact on surrounding agricultural fields around the proposed mining Area.
- Impact on soil flora & vegetation around the project site.
- 15. Details of type of vegetations including no. of trees & shrubs within the proposed mining area and. If so, transplantation of such vegetations all along the boundary of the proposed mining area shall committed mentioned in EMP.

174

- 16. The Environmental Impact Assessment should study the biodiversity, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.
- 17. Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.
- 18. The project proponent shall study and furnish the impact of project on plantations in adjoining patta lands, Horticulture, Agriculture and livestock.

Forests

- The project proponent shall detailed study on impact of mining on Reserve forests free ranging wildlife.
- 20. The Environmental Impact Assessment should study impact on forest, vegetation, endemic, vulnerable and endangered indigenous flora and fauna.
- 21. The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.
- The Environmental Impact Assessment should study impact on protected areas, Reserve Forests,
 National Parks, Corridors and Wildlife pathways, near project site.

Water Environment

- 23. Hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) so as to assess the impacts on the nearby waterbodies due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided, covering the entire mine lease period.
- 24. Erosion Control measures.
- 25. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area on the nearby Villages, Water-bodies/ Rivers, & any ecological fragile areas.
- 26. The project proponent shall study impact on fish habitats and the food WEB/ food chain in the water body and Reservoir.
- 27. The project proponent shall study and furnish the details on potential fragmentation impact on natural environment, by the activities.

- 28. The project proponent shall study and furnish the impact on aquatic plants and animals in water bodies and possible scars on the landscape, damages to nearby caves, heritage site, and archaeological sites possible land form changes visual and aesthetic impacts.
- 29. The Terms of Reference should specifically study impact on soil health, soil erosion, the soil physical, chemical components and microbial components.
- The Environmental Impact Assessment should study on wetlands, water bodies, rivers streams, lakes and farmer sites.

Energy

 The measures taken to control Noise, Air, Water, Dust Control and steps adopted to efficiently utilise the Energy shall be furnished.

Climate Change

- 32. The Environmental Impact Assessment shall study in detail the carbon emission and also suggest the measures to mitigate carbon emission including development of carbon sinks and temperature reduction including control of other emission and climate mitigation activities.
- 33. The Environmental Impact Assessment should study impact on climate change, temperature rise, pollution and above soil & below soil carbon stock.

Mine Closure Plan

34. Detailed Mine Closure Plan covering the entire mine lease period as per precise area communication order issued.

EMP

- 35. Detailed Environment Management Plan along with adaptation, mitigation & remedial strategies covering the entire mine lease period as per precise area communication order issued.
- 36. The Environmental Impact Assessment should hold detailed study on EMP with budget for Green belt development and mine closure plan including disaster management plan.

Risk Assessment

37. To furnish risk assessment and management plan including anticipated vulnerabilities during operational and post operational phases of Mining.

Disaster Management Plan

38. To furnish disaster management plan and disaster mitigation measures in regard to all aspects to avoid/reduce vulnerability to hazards & to cope with disaster/untoward accidents in & around the proposed mine lease area due to the proposed method of mining activity & its

176

related activities covering the entire mine lease period as per precise area communication order issued.

Others

- 39. The project proponent shall furnish VAO certificate with reference to 300m radius regard to approved habitations, schools, Archaeological sites, Structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, channel, river, lake pond, tank etc.
- 40. As per the MoEF& CC office memorandum F.No.22-65/2017-IA.III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan.
- 41. The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.

A. STANDARD TERMS OF REFERENCE

- Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
- A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.
- 3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- 4) All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery/ topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 5) Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
- Details about the land proposed for mining activities should be given with information as to

- whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- 7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.
- 8) Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
- 10) Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- 11) Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.
- 12) Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.
- 13) Status of forestry clearance for the broken up area and virgin forestland involved in the Project

- including deposition of Net Present Value (NPV) and Compensatory Afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- 14) Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.
- 15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given.
- 16) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- 17) Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.
- 18) A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
- 19) Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Department should be secured and furnished to the effect that the proposed mining activities could be considered.
- 20) Similarly, for Coastal Projects, a CRZ map duly authenticated by one of the authorized agencies demarcating LTL. HTL, CRZ area, location of the mine lease with respect to CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management

Authority).

- 21) R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.
- One season (non-monsoon) [i.e. March-May (Summer Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.
- 23) Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of Vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.
- 24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should be indicated.
- 25) Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.
- 26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.

180

- 27) Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.
- 28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
- 29) Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
- 30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
- 31) A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
- 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.
- 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- 34) Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.

- 35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 36) Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 38) Detailed Environmental Management Plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
- 39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
- 40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- 41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.
- 42) A Disaster management Plan shall be prepared and included in the EIA/EMP Report.
- 43) Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 44) Besides the above, the below mentioned general points are also to be followed:-
 - a) Executive Summary of the EIA/EMP Report
 - All documents to be properly referenced with index and continuous page numbering.
 - c) Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
 - d) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.

MEMBER SECRETARY

- e) Where the documents provided are in a language other than English, an English translation should be provided.
- f) The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
- g) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
- h) Changes, if any made in the basic scope and project parameters (as submitted in Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the ToR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
- i) As per the circular no. J-11011/618/2010-IA.II(I) dated 30.5,2012, certified report of the status of compliance of the conditions stipulated in the Environment Clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
- j) The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

In addition to the above, the following shall be furnished:-

The Executive summary of the EIA/EMP report in about 8-10 pages should be prepared incorporating the information on following points:

- 1. Project name and location (Village, District, State, Industrial Estate (if applicable).
- Process description in brief, specifically indicating the gaseous emission, liquid effluent and solid and hazardous wastes.
- 3. Measures for mitigating the impact on the environment and mode of discharge or disposal.
- Capital cost of the project, estimated time of completion.
- The proponent shall furnish the contour map of the water table detailing the number of wells located around the site and impacts on the wells due to mining activity.
- A detailed study of the lithology of the mining lease area shall be furnished.

- 7. Details of village map, "A" register and FMB sketch shall be furnished.
- Detailed mining closure plan for the proposed project approved by the Geology of Mining department shall be shall be submitted along with EIA report.
- 9. Obtain a letter /certificate from the Assistant Director of Geology and Mining standing that there is no other Minerals/resources like sand in the quarrying area within the approved depth of mining and below depth of mining and the same shall be furnished in the EIA report.
- EIA report should strictly follow the Environmental Impact Assessment Guidance Manual for Mining of Minerals published February 2010.
- Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.
- 12. The EIA study report shall include the surrounding mining activity, if any.
- 13. Modeling study for Air, Water and noise shall be carried out in this field and incremental increase in the above study shall be substantiated with mitigation measures.
- 14. A study on the geological resources available shall be carried out and reported.
- 15. A specific study on agriculture & livelihood shall be carried out and reported.
- 16. Impact of soil erosion, soil physical chemical and biological property changes may be assumed.
- 17. Site selected for the project Nature of land Agricultural (single/double crop), barren, Govt./ private land, status of is acquisition, nearby (in 2-3 km.) water body, population, with in 10km other industries, forest, eco-sensitive zones, accessibility, (note - in case of industrial estate this information may not be necessary)
- 18. Baseline environmental data air quality, surface and ground water quality, soil characteristic, flora and fauna, socio-economic condition of the nearby population
- Identification of hazards in handling, processing and storage of hazardous material and safety system provided to mitigate the risk.
- 20. Likely impact of the project on air, water, land, flora-fauna and nearby population
- Emergency preparedness plan in case of natural or in plant emergencies
- 22. Issues raised during public hearing (if applicable) and response given
- CER plan with proposed expenditure.
- 24. Occupational Health Measures
- 25. Post project monitoring plan
- The project proponent shall carry out detailed hydro geological study through intuitions/NABET Accredited agencies.

184

- 27. A detailed report on the green belt development already undertaken is to be furnished and also submit the proposal for green belt activities.
- 28. The proponent shall propose the suitable control measure to control the fugitive emissions during the operations of the mines.
- 29. A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals.
- 30. Reserve funds should be earmarked for proper closure plan.
- 31. A detailed plan on plastic waste management shall be furnished. Further, the proponent should strictly comply with, Tamil Nadu Government Order (Ms) No.84 Environment and forests (EC.2) Department dated 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986. In this connection, the project proponent has to furnish the action plan.

Besides the above, the below mentioned general points should also be followed:-

- a. A note confirming compliance of the TOR, with cross referencing of the relevant sections / pages of the EIA report should be provided.
- All documents may be properly referenced with index, page numbers and continuous page numbering.
- c. Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.
- d. While preparing the EIA report, the instructions for the proponents and instructions for the consultants issued by MoEF & CC vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry should also be followed.
- e. The consultants involved in the preparation of EIA/EMP report after accreditation with Quality Council of India (QCI)/National Accreditation Board of Education and Training (NABET) would need to include a certificate in this regard in the EIA/EMP reports prepared by them and data provided by other organization/Laboratories including their status of approvals etc. In this regard circular no F. No.J -11013/77/2004-IA-II(I) dated 2nd December, 2009, 18th March 2010, 28th May 2010, 28th June 2010, 31st December 2010 & 30th September 2011 posted on the Ministry's website http://www.moef.nic.in/ may be referred.
 - After preparing the EIA (as per the generic structure prescribed in Appendix-III of the EIA Notification, 2006) covering the above mentioned points, the proponent will

take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.

- The final EIA report shall be submitted to the SEIAA, Tamil Nadu for obtaining Environmental Clearance.
- The TORs with public hearing prescribed shall be <u>valid for a period of three years</u> from the date of issue, for submission of the EIA/EMP report as per OMNo.J-11013/41/2006-IA-II(I)(part) dated 29th August, 2017.

MEMBER SECRETARY SEIAA-TN

Copy to:

- The Additional Chief Secretary to Government, Environment & Forests Department, Govt. of Tamil Nadu, Fort St. George, Chennai - 9
- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600 032.
- The APCCF (C), Regional Office, MoEF & CC (SZ), 34, HEPC Building, 1st& 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai -34.
- Monitoring Cell, IA Division, Ministry of Environment, Forests & CC, Paryavaran Bhavan, CGO Complex, New Delhi 110003
- 6. The District Collector, Theni District.
- 7. Stock File.

From Assistant Director, Dept. of Geology and Mining, Theni.

To
Tvl Annai Sathya Mahlir
Suyauthavikuzhu,
No. 49/1,Panchamar Street,
Kamayagoundanpatti
village,Uthamapalayam Taluk,
Theni District-625 516

Roc No.1068/2022/Mines, dated.05 .09.2023

Sir,

Mines and Minerals - Minor Mineral - Rough stone -Sub: District - Uthamapalayam Taluk Kamayagoundanpatti Village - Govt. Poramboke land -S.F.No. 1372/1(Part-3) - over an extent 1.00.0 Hects -Application of Tvl Annai Sathya Suyauthavikuzhu for grant of quarry lease for quarrying Rough Stone - Precise area communicated -Mining Plan approval Accorded- 500 meter radius quarry details requested - Furnished - Regarding.

- Ref: 1. The District Gazette Extraordinary Notification No.16, dated.18.08.2022.
 - Application of Tvl Annai Sathya Mahlir Suyauthavikuzhu, Kamayagoundanpatty village, dated: 15.09.2022.
 - Precise area communication letter Roc No. Roc.1068/Mines/2022, dated:10.08.2023
 - Mining Plan Approval letter Roc No. 1068/Mines/2022, dated:04.09.2023

In the reference 1st cited, the District Gazette Extraordinary Notification No.16, dated.18.08.2022 was issued by the District Collector for inviting application from the SGSY Groups registered under the Tamil Nadu Co-operative Act, 1983 or under Societies Act, 1975 and Societies formed by the released bonded laborers under rule 8(10)(A) of Tamil Nadu Minor Mineral Concession Rules, 1959 for direct grant of quarry lease for quarrying rough stone in Government poramboke land.

- 2) Based on the Gazette notification, the applicant Tvl Annai Sathya Mahlir Suyauthavikuzhu submitted an application on 14.09.2022 with a request to grant of rough stone quarry lease in Government poramboke land in S.F.No.1372/1(Part-3), over an extent of 1.00.0 Hects of Kamayagoundanpatti Village, Uthamapalayam Taluk for a period of five years under rule 8(10-A) of Tamil Nadu Minor Mineral Concession Rules, 1959.
- 3) Precise area was communicated by District Collector, Theni vide reference 3rd cited to Tvl Annai Sathya Mahlir Suyauthavikuzhu for grant of quarry lease in Government poramboke land in S.F.No.1372/1(Part-3), over an extent of 1.00.0 Hects of Kamayagoundanpatti Village, Uthamapalayam Taluk and Theni District for a period of 5 years.
- 4) Accordingly, Tvl Annai Sathya Mahlir Suvyauthavikuzhu has submitted the draft Mining Plan and the same has been approved on 04.09.2023. The applicant has requested to furnish the details of quarry lease situated within 500 mts radius from the subject quarry for obtaining Environmental Clearance from the State Level Environment Impact Assessment Authority.
- 5) In this connection, it is informed that the following existing and abandoned quarries are located within 500 radius distance from the proposed area for clearance.

A. Existing Quarries

S. No	Name of the owner	Village and Taluk	S.F.No.	Extent (in Hects)	Collector's Proc No.& Date.	Lease Period
F			NII			1000

B.Expired/Abandoned Quarries

S. N	Name of the owner	Village and Taluk	S.F.No.	Exte nt (in Hect s)	Collector's Proc No.& Date.	Lease Period
1.	K.K.Patty Kalludaikk um Mahalir Nala	Kamayagoundan patty village & Uthamapalayma Taluk	1372/1 (Part-I)	2.50.	Roc No.442/2008/ Mines, dated.22.01.200	23.02.2 009 - 22.02.2 012

	sangam				9	
2.	Sankalikar adu Kalludaikk um Mahalir Nala sangam	Kamayagoundan patty village & Uthamapalayma Taluk	1372/1 (Part-I)	2.50.	Roc No.443/2008/ Mines, dated.22.01.200	23.02.2 009 - 22.02.2 012
3.	AnnaiThera sa Kalludaikk um Mahalir Nala Munnetra Sangam	Kamayagoundan patty village & Uthamapalayma Taluk	1372/1 (Part-III)	2.50.	Roc No.444/2008/ Mines, dated.22.01.200	23.02.2 009 - 22.02.2 012
4.	Manbumig u Ithaya deivam puratchitha lavi doctor amma mahalir nala sangam	Kamayagoundan patty village & Uthamapalayma Taluk	1372/1 (Part-IV)	2.50.	Roc No.224/2003/ Mines, dated.18.07.200 4	18.07.2 004 - 17.07.2 007
5.	M.Tamil selvi n	Kamayagoundan patty village & Uthamapalayma Taluk	1427/1, 1428, 1429/1, 1430/1, 1430/2,1 431	1.21.	District Collector Proceedings Roc.No. 1058/2010/Min es, dated 20.04.2012	20.04.2 012 to 19.04.2 017
б.	I.Murugesw ari,	Kamayagoundan patty village & Uthamapalayma Taluk	1372/5, 1373	1.33.	District Collector Proceedings Roc.No. 9/2012/Mines, dated 20.04.2012	20.04.2 012 to 19.04.2 017
7.	V. Rajendiran,	Kamayagoundan patty village & Uthamapalayma Taluk	1412	0.35.	District Collector Proceedings Roc.No. 167/2012/Mine s, dated 20.08.2013	22.11.2 013 to 21.11.2 016

C.Present Proposed Quarries

S. No.	Name of the owner	Village and Taluk	S.F.No.	Extent (in Hects)
1.	Tvl Sangalikaradu Kalludaikkum Mahalir Nala Sangam,	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-1)	2.63.0

2.	Tvl K.K.Patty Kallaudaikkum Mahalir Sangam	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-2)	2.37.0
3.	Tvl Annai Sathya Mahlir Suvyauthavikuzhu, Tmt.Usha (President),	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-3)	1.00.0
4.	Tvl Annai Therasa Kalludaikkum Mahalir Nala Munnetra Sangam	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-4)	2.50.0
5.	Tvl Vaumaikottirkkukeelvazhum Mahalir Suvyauthavikuzhu	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-5)	2.50.0
6.	Tvl Sangalikaruppan Thanneerparai Kalludaikkum Mahalir Nala Sangam	Kamayagoundanpatty village & Uthamapalayma Taluk	1372/1 (Part-6)	2.50.0

Assistant Director,
Dept. of Geology and Mining,
Theni.

Copy to,
The Chairman,
State level Environment
Impact Assessment Authority,
3rd floor, Panagal Maligai, No.1,Jeenis

8/2/100

From
Thiru T.Vinoth, M.Sc.,
Assistant Director,
Dept. of Geology & Mining,
Theni.

Tvl Annai Sathya Mahalir Suyauthavikuzhu, No. 49/1,Panchamar Street, Kamayagoundanpatti village,Uthamapalayam Taluk, Theni District-625 516

Rc.No.1068/Mines/2022, dated:04.09.2023

Sir,

Sub: Mines and Minerals – Minor Mineral – Rough stone
- Theni District – Uthamapalayam Taluk –
Kamayagoundanpatti Village – Govt. Poramboke
land – S.F.No. 1372/1(Part-3) – over an extent
1.00.0 Hects - Application of Tvl Annai Sathya
Mahalir Suyauthavikuzhu for grant of quarry lease
for quarrying Rough Stone - Precise area
communicated – Draft Mining plan submitted –
Approval Accorded - Reg. .

- Ref: 1. The District Gazette Extraordinary Notification No.16, dated.18.08.2022.
 - Application of Tvl Annai Sathya Mahalir Suyauthavikuzhu, Kamayagoundanpatty village, dated: 15.09.2022.
 - Precise area communication letter Roc No. Roc.1068/Mines/2022, dated:10.08.2023
 - 4. Requisition letter received from Tvl Annai Sathya Mahalir Suyauthavikuzhu, dated.25.08.2023

In the reference 1st cited, the District Gazette Extraordinary Notification No.16, dated.18.08.2022 was issued by the District Collector for inviting application from the SGSY Groups registered under the Tamil Nadu Co-operative Act, 1983 or under Societies Act, 1975 and Societies formed by the released bonded laborers under rule 8(10)(A) of Tamil Nadu Minor Mineral Concession Rules, 1959 for direct grant of quarry lease for quarrying rough stone in Government poramboke land.

- Annai Sathya Mahalir Suyauthavikuzhu submitted an applicant Tvl 15.09.2022 with a request to grant of rough stone quarry lease in Government poramboke land in S.F.No.1372/1(Part-3), over an extent of 1.00.0 Hects of Kamayagoundanpatti Village, Uthamapalayam Taluk for a period of five years under rule 8(10-A) of Tamil Nadu Minor Mineral Concession Rules, 1959.
- 3) After examining the application submitted by the applicant, the special committee has furnish its recommendation to the District Collector to grant of quarry lease to applicant Tvl Annai Sathya Mahalir Suyauthavikuzhu to quarry rough stone S.F.No.1372/1(Part-3), over S extent of 1.00.0 Hects an Kamayagoundanpatti Village, Uthamapalayam Taluk for a period of five years.
- 4) Based on the recommendation of the Revenue Divisional Officer, Uthamapalayam and the Special Committee, the precise area was communicated by the District Collector vide reference 3rd cited to applicant Tvl Annai Sathya Mahalir Suyauthavikuzhu with a direction to submit the mining plan and Environmental Clearance issued by the competent authority for grant of rough stone quarry lease in S.F.No.1372/1(Part-3), over an extent of 1.00.0 Hects of Kamayagoundanpatti Village, Uthamapalayam Taluk and Theni District.
- 5) In response to the precise area communicated, the applicant has submitted three copies of draft Mining Plan duly prepared by a Qualified Person and requested for approval of the same vide reference 4th cited.
- 6) The draft Mining Plan submitted by the applicant has been examined in detail. The applicant has proposed to production of 53,565 cbm of Rough stone for a period of 5 years. All the conditions stipulated in

the precise area communicated have been incorporated in the Mining Plan.

- 7) In exercise of the powers vested under sub rule (2) and (5) of Rule 41 of Tamil Nadu Minor Mineral Concession Rules, 1959, I hereby approve the mining plan subject to the following conditions:-
 - The mining plan is approved without prejudice to any other order or direction from any court of contempt jurisdiction.
 - ii. The mining plan is approved without prejudice to any other Law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.
 - iii. The approval of the mining plan does not in any way imply the approval of the Government in terms of any other provisions of the Mines and Minerals (Development and Regulation) Act 1957, or any other connected laws including Forest (Conservation) Act, 1980, Forest Conservation Rules, 1981, Environment Protection Act, 1980, Indian Explosives Act, 1884 (Central Act IV of 1884) and the Rules made there under and the Tamil Nadu Minor Mineral Concession Rules, 1959.
 - iv. The applicant is entitled for production of 53,565 cbm of Rough stone for a period of 5 years as per Mining plan.
 - v. Quarrying operations should be carried out in accordance with the Approved Mining Plan.
 - vi. A safety distance of 7.5 meters should be provided to the adjoining patta lands.
 - vii. A safety distance of 10 meters should be provided to the adjoining Government poramboke lands.
 - viii. No hindrance shall be caused to the adjacent pattadars lands, Government poramboke odai and public while carrying out quarrying operations.
 - ix. Environmental Clearance should be obtained from the State Level Environment Impact Assessment Authority, Chennai.

6) As directed by the Assistant Director of Geology and Mining, Theni in the reference 3rd cited, you are hereby requested to produce Environmental Clearance obtained from the State Level Environment Impact Assessment Authority (SEIAA), Chennai as applicable under Rule 42 of Tamil Nadu Minor Mineral Concession Rules, 1959 for grant of quarry lease, in respect of the precise area communicated.

Encl: Approved Mining plan.

Assistant Director,
Dept. of Geology and Mining,
Theni.

8 1 1 1 Jew

TO LAN APAROLES

ST. DIRECTOR

SECTOR LESSES

WHITE TOR LESSES

PETTOR LESSES

PE

FOR

KAMAYAGOUNDANPATTI VILLAGE ROUGH STONE MINING LEASE WITH PROGRESSIVE OUARRY CLOSURE PLAN

Govt Poramboke land /-Semi-Mechanized mining/Non-forest/Captive Use – "B2' Category

Lease period 5 Years from the date of lease execution

(Prepared under rule 41 of Tamil Nadu Minor Mineral Concession Rules, 1959)

LOCATION OF THE LEASE AREA

-10

STATE

TAMILNADU /

DISTRICT

THENI

TALUK

UTHAMAPALAYAM

VILLAGE

KAMAYAGOUNDANPATTI

S.F. NO'S

1372/1 (Part-3)

EXTENT

1.00.0 Hectares

ADDRESS OF THE APPLICANT

M/s. Annai Sathiya Magalir Suya Uthavikuzhu,

Mrs.B.Usha (Leader), No.49/1, Panjamar street,

Kamayagoundanpatti,

Uthamapalayam Taluk,

Theni District - 625 516.

PREPARED BY

Dr.S.KARUPPANNAN.M.Sc., Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

(A NABET Accredited & ISO Certified Company)
No: 1/213 -B, Ground Floor, Natesan Complex,

Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu.

Mob.: +91 9443937841, +917010076633,

E-mail: <u>info.gtmsdpi@gmail.com</u>. Website: www.gtmsind.com

CONTENTS

Sl. No.	Description	Page No.
5.	Certificates	5-8
2	Introductory notes	9
1.0	General	11
2.0	Location and Accessibility	12
	PART-A	
3.0	Geology and Mineral reserves	15
4.0	Mining	20
5.0	Blasting	26
6.0	Mine Drainage	28
7.0	Stacking of Mineral rejects and disposal of waste	28
8.0	Uses of Mineral	29
9.0	Others	29
10.0	Mineral processing/Beneficiations	30
	PART-B	
11.0	Environmental management plan	32
12.0	Progressive quarry closure plan	37
13.0	Financial assurance	39
14.0	Certificates	39
15.0	Plan and sections, etc	39
16.0	Any other details intend to furnish by the applicant	39
17.0	CSR Expenditure	40

ANNEXURES

Sl. No.	Description	Annexure No.
1.	Copy of Gazette Order	I
2.	Copy of precise area communication letter	П
3.	Copy of Previous lease deed & proceeding letter	m
4.	Copy of FMB (Field Measurement book)	IV
5.	Copy of "A" register	V
6.	Copy of Adangal	VI
7.	Photo copy of the applied lease area	VII
8.	Copy of ID Proof of the authorized signatory	VIII
9.	Copy of Company registration certificate	IX
10.	Copy of RQP Certificate	x

LIST OF PLATES

Sl. No.	Description	Plate No.	Scale
1	Key map	I	Not to scale
2	Location plan	I-A	Not to scale
3	Toposheet map	I-B	1:1,00,000
4.	Satellite imagery map	I-C	1: 5,000
5.	Environmental plan	I-D	1: 5,000
6.	Mine lease plan	II	1:1500
7.	Surface & Geological plan	III	1:1000
8.	Geological Sections	IIIA	Sections HOR 1:1000 VER 1:1000
9.	Year wise Development & Production plan	IV	1:1000
10.	Year wise Development, Production Sections	IVA	Sections HOR 1:1000 VER 1:1000
11.	Mine layout plan and Land use pattern	V	1:1000
12.	Conceptual plan	VI	1:1000
13.	Conceptual sections	VIA	Sections HOR 1:1000 VER 1:1000

M/s.Annai Sathiya Magalir Suya Uthavikuzhu,

Mrs.B.Usha (Leader),

No.49/1, Panjamar street,

Kamayagoundanpatti,

Uthamapalayam Taluk,

Theni District - 625 516.

COLAN APPRODUCTOR SET CONSCION NAME OFFICTURICATION OFFICTURICATION

CONSENT LETTER FROM THE APPLICANT

The Mining Plan in respect of rough stone quarry lease in Government Poramboke land at S.F.No's: 1372/1 (Part-3) over an extent of 1.00.0hectares of Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, Tamil Nadu State has been prepared by

Dr. S. KARUPPANNAN. M.Sc., Ph.D., Regn. No. RQP/MAS/263/2014/A

I request "The Assistant Director", Department of Geology and Mining, Theni
District to make further correspondence regarding modifications of the Mining Plan with
the said Recognized Qualified Person on this following address,

Dr. S.KARUPPANNAN.M.Sc., Ph.D., RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

(A NABET Accredited & ISO certified Company)
No: 1/213-B, Ground Floor, Natesan Complex,
Oddapatti, Collectorate Post office, Dharmapuri-636705
Ph: +91 9443937841,7010076633.
E-mail: info.gtmsdpi@gmail.com,
Website: www.gtmsind.com

I hereby undertake that all modifications so made in the Mining Plan by the Recognized Qualified Person may be deemed to have been made with my knowledge and consent and shall be acceptable to me and binding on me in all respects.

Place: Theni, TN.

Date:

C. Usha

Signature of the applicant

(M/s.Annai Sathiya Magalir Suya Uthavikuzhu)

ASST. DIRECTOR WANTED TO A MANUAL OFFICTOR (COMP)

M/s.Annai Sathiya Magalir Suya Uthavikuzhu,

Mrs.B.Usha (Leader), No.49/1, Panjamar street, Kamayagoundanpatti, Uthamapalayam Taluk,

Theni District - 625 516.

DECLARATION

The Mining Plan in respect of rough stone quarry lease in Government Poramboke land at S.F.No's: 1372/1 (Part-3) over an extent of 1.00.0hectares of Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, Tamil Nadu State have been prepared with my consultation and I have understood the contents and agree to implement the same in accordance with the Mining Laws.

Place: Theni, TN.

Date:

C- UShee Signature of the applicant

(M/s.Annai Sathiya Magalir Suya Uthavikuzhu)

Dr. S.KARUPPANNAN.M.Sc., Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

(A NABET Accredited & ISO certified Company)

No: 1/213-B, Ground Floor, Natesan Complex,

Oddapatti, Collectorate Post office, Dharmapuri-636705

Ph: +91 9443937841,7010076633 E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com

CERTIFICATE

This is to certify that, the provisions of 8 (10-A) (b) (iii) Tamil Nadu Minor Minerals Concession Rules, 1959 have been observed in the Mining Plan for the grant of rough stone quarry lease in S.F.No's: 1372/1 (Part-3) over an extent of 1.00.0hectares of Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, Tamil Nadu State applied to M/s.Annai Sathiya Magalir Suya Uthavikuzhu Theni District.

Wherever specific permission / exemptions / relaxations or approvals are required, the applicant will approach the concerned authorities of State and Central governments for granting such permissions etc.

Place: Dharmapuri, TN

Date: 22 8 23

Signature of the Recognized Qualified Person.

OFRECTOR'

Dr.S.KARUPPANNAN, M.Sc, Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

A NABET Accredited and ISO Certified Company
1/213-B, Ground Floor, Natesan Complex,
Collectorate Post Office, Oddapatti,
Dharmapuri-636705, TamilNadu, India

Dr. S.KARUPPANNAN.M.Sc., Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

(A NABET Accredited & ISO certified Company)

No: 1/213-B, Ground Floor, Natesan Complex,

Oddapatti, Collectorate Post office, Dharmapuri-636705

Ph: +91 9443937841,7010076633 E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com

CERTIFICATE

I certify that, in preparation of Mining Plan for rough stone quarry lease in S.F.No's: 1372/1 (Part-3) over an extent of 1.00.0hectares of Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District, Tamil Nadu State prepared to M/s.Annai Sathiya Magalir Suya Uthavikuzhu Theni District, covers all the provisions of Mines Act, Rules, and Regulations etc., made there under and whenever specific permission are required, the applicant will approach the Director General of Mines Safety, Chennai. The standards prescribed by DGMS in respect of Mines Health will be strictly implemented.

Place: Dharmapuri, TN

Date: 22/8/23

Signature of the Recognized Qualified Person.

Dr.S.KARUPPANNAN, M.Sc, Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

A NABET Accredited and 150 Certified Company
1/213-B, Ground Floor, Natesan Complex,
Collectorate Post Office, Oddapatti,
Dharmapuri-636705, TamilNadu, India

MINING PLAN

FOR KAMAYAGOUNDANPATTI VILLAGE ROUGH STONE MINING LEASE WITH PROGRESSIVE QUARRY CLOSURE PLAN PECTURICE

Govt Poramboke land / Open cast-Semi-Mechanized mining/Non-forest/Captive Use — "B2" Category

Lease period 5 Years from the date of lease execution

(Prepared under rule 41 of Tamil Nadu Minor Mineral Concession Rules, 1959)
INTROD CTORY NOTES:

a) <u>Introduction</u>: Special publication No.16 dated 18.08.2022 and the applications invited for grant of direct quarry lease license to M/s.Annai Sathiya Magalir Suya Uthavikuzhu Mrs.B.Usha (Leader) office at No.49/1, Panjamar street, Kamayagoundanpatti, Uthamapalayam Taluk, Theni District. Tamilnadu State. The special committee formed under the District Collector, Theni District and report submitted to district collector on 27.02.2023.

Therefore, the district collector granted rough stone quarry lease in government poramboke land for a period of 5 years in S.F.No: 1372/1 (Part-3), over an extent of 1.00.0Hectare, Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District.

- b) The Precise area communication letter: The District Collector, Theni has directed to the applicant M/s.Annai Sathiya Magalir Suya Uthavikuzhu through his precise area communication letter vide Rc.No.1068/Mines/2022 Dated 10.08.2023, for quarrying lease rough stone at Tamil Nadu State, Theni District, Uthamapalayam Taluk, Kamayagoundanpatti Village in S.F.No's: 1372/1 (Part-3) over an extent of 1.00.0hectares has recommended as following conditions for a period of Five (5) years under Rule 8 (10A) (b) (iii), Tamil Nadu Minor Mineral concession rules, 1959
 - A safety distance of 7.5meter and 10 meter should be provided to the adjacent patta lands and government lands.
 - (ii) Quarrying should be carried out without any disturbance to the neighboring lease holders/ without any encroachment on the neighboring leasehold and government lands.
 - (iii) DGPS Measurement of applied boundaries before commencement of mining by lessee as per letter No.2921/MM4/2016 dated: 09.03.2021 from Commissioner, Geology and Mines, Chennai before obtaining mining lease license. It should be recorded on CD and submitted as a report.

c) Previous Lease Particulars: The proposed lease area was previously grand to quarrying of rough stone in favor of "Annai Terasa Kaludaikkum Magali Vala Munnetra Sangam" by the District Collector, Theni proceedings Rc.444/2008/Mines, dated 22.01.2009 in S.F.No. 1372/1 Part -III, Theni District, Uthamapalayam Taluk, Kamayagoundanpaty Village, over an extent of 2.50.0hectares for a period of 3 years. The lease deed was executed from 23.02.2009 to 22.02.2012.

There is an existing pit was noticed with an average depth Pit-1 is 7.5m & Pit-2 is 15m and the existing pit marked in the surface and geological plan (Ref Plate No's: III).

- d) Preparation and Submission of Mining Plan: The Mining Plan with progressive quarry closure plan has been prepared under rule 41 and submitted under rule 42 of Tamil Nadu Minor Mineral Concession Rules, 1959 for mining lease as per conditions mentioned in the precise area communication letter Rc.No.1068/Mines/2022 Dated 10.08.2023.
- e) Geological resources and Mineable reserves: Geological resource of estimated as 373158m³ including the resources of safety zone, residual topsoil etc. Of which, rough stone resources of about 366605m³, and residual topsoil is 6553m³. The total mineable reserve is estimated to be 58051m³ by deducting the reserve safety zone, block in benches from the total Geological resources. of which, rough stone is about 53565m³ and residual topsoil is 4486m³ up to a depth of 70m (Which is 65m above base level + 5m below base level) (Refer Plate No. VI & VIA).
- f) Proposed Production Schedule: Total proposed production of rough stone is 53565m³ and residual topsoil is 4486m³ up to a depth of 70m (Which is 65m above base level + 5m below base level) for five years plan period. (Refer Plate No. IV & IVA).
- g) Environmental Sensitivity of the proposed lease area:
 - i). Interstate boundary: There is no Interstate boundary within the 10km radius from the lease area.
 - ii). Wildlife Protection Act, 1972: There is a Megamalai wild life sanctuary situated about 1.13km on the east side from the applied lease area.

- iii). Indian Reserve Forest Act, 1980: There is no reserve forest within 1.0km radius periphery of proposed lease area. The nearest reserved forest is Doni Karadu R.F 1.28km East side
- iv). CRZ Notification, 2019: There is no Sea coastal zone found within radius of 10km and this project site doesn't attract CRZ Notification, 2019.

h) Environmental measures to be adopted during the ongoing activity period,

- a. Usage of sharp drill bits while drilling which will help in reducing noise.
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders.
- c. Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained.
- d. Green Belt/Plantation will be developed around the project area and along the haul roads. The plantation minimizes propagation of noise.
- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation.
- Transportation of material will be carried out during day time and material will be covered with tarpaulin.
- g. The speed of tippers plying on the haul road will be limited below 20 km/hr to avoid generation of dust.
- And any other conditions as stipulated by the concerned authorities should be followed to protect the environment.

1.0 GENERAL:

a.	Name of the Applicant	25	M/s.Annai Sathiya Magalir Suya Uthavikuzhu
	Applicant address	£	Mrs.B.Usha (Leader), No.49/1, Panjamar street, Kamayagoundanpatti, Uthamapalayam Taluk,
	District		Theni
	State	133	Tamilnadu
	Pin code	9.39	625 516
	Phone		
	Fax		Nil
	Gram	:	Nil
	Telex		Nil
	E-mail	1	7*******
b.	Status of the Applicant		
	Private individual	:	Private Individual
	Cooperative Association	:	
	Private company	1	

	Public Company	12			
	Public Sector Undertaking	i,			
	Joint Sector Undertaking				
	Other (pl. specify)	0.00	CONTROL OF THE CONTRO		
c.	Mineral(s) Which are occurring in the area and which the applicant intends to mine	12	Rough stone quarry lease		
d.	Period for which the mining lease granted /renewed/ proposed to be applied	:	The precise area has been communicated to the applicant for quarrying period of five (5) years.		
	Name of the RQP / QP preparing the Mining Plan		Dr. S.KARUPPANNAN.M.Sc.,Ph.D.,		
	Address		Geo Technical Mining Solutions (A NABET Accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Web site: www.gtmsind.com		
	Phone		+91 9443937841, 7010076633		
	Fax		Nil		
	e-mail	1	info.gtmsdpi@gmail.com		
	Telex	-	Nil		
	Registration number	1	RQP/MAS/263/2014/A		
	Date of grant/renewal	:	16.12.2014		
- 51	Valid upto	- 1	15.12.2024		
f.	Reference No. and date of consent letter from the state government	2	The precise area communication letter issued by the Assistant Director, Department Geology and Mining, Then vide Rc.No.1068/Mines/2022 Dated 10.08.2023		

2.0 LOCATION AND ACCESSIBILITY:

Details of the Area:		Refer plate no: IA & IB	
District & State	1	Theni, Tamil Nadu	
Taluk	;	Uthamapalayam	
Village		Kamayagoundanpatti	

Khasra No./ Plot No./ Block Range/ Felling Series etc.:

Survey	Sub	Total Extent	Patta No.	Ownership /
No.	division	in Heet		Occupancy
1372	1 (Part-3)	1.00.0	***	Govt Poramboke land

Lease area (hectares)	1	1.00.0 H	TESTED CLASS CONT.
Whether the area is recorded to be in forest (please specify whether protected, reserved, etc)		It is a Go	vernment Poramboke Land
Ownership / Occupancy	3	Governm	ent of Tamil Nadu
Existence of Public Road / Railway line if any nearby and approximate distance	205	transposituate There side a Suruli There side a Theni There 5km ra	is an NH-183 is situated on the west bout 5.18km which is connecting - Cumbum Road. is no railway line situated around idius from the site.
Toposheet No. with latitude and longitude Geo-Coordinates of the lease bour	dary	Latitude:	t No. 58 G/6 From 9°43'44.44"N to 9°43'49.07"N E: From 77°20'22.43"E to 77°20'26.67"E
<u></u>	ZASSAHIR.		
Pit ID	Latitude		Longitude
	-	'47.36"N '44.44"N	77°20'26.67"E 77°20'25.22"E
		44.44 N	77°20'22.43"E
		49.07"N	77°20'23.88"E
Land use pattern (Forest, Agricultural, Grazing, Barren etc.)	:	It is an ba	rren Land.
Attach a general location and vicinity map showing area boundaries and existing and proposed access routs. It is preferred that the area to be marked on a survey of India topographical map or a		Refer plat	te no-IA & IB

the case may be. However if none of these are available, the area should be shown on an accurate sketch map on scale of 1:5000.

i) INFRASTRUCTURE AND COMMUNICATION:

S.No	Description	Place	Distance	Direction	
a.	Nearest post office	Kamayagoundanpatti	2.56Km	West	
b.	Nearest police station	Royappanpatti	4.3km	North	
c.	Nearest fire station	Cumbum	6.45km	West	
d.	Nearest medical facility	Kamayagoundanpatti	2.65Km	West	
e.	Nearest school	Kamayagoundanpatti	2.28km	West	
f.	Nearest railway station	Theni	35.0km	North	
g.	Nearest port facility	Thoothukudi	149km	Southeast	
h.	Nearest airport	Madurai	83.2km	East	
i.	Nearest DSP office	Uthamapalayam	8.9km	Northwes	
j.	Nearest villages	Rayappanpatti	4.28Km	North	
		Anaipatti	2.60Km	Northwes	
		Kamayagoundanpatti	2.03Km	West	
		Narayanattevanpatti	3.03km	Southwes	

ECTOR (C)

3.0 GEOLOGY AND MINERAL RESERVES:

.

0

0

0

•

(a) Briefly describe the topography and general geology and local/mine geology of the mineral deposit including drainage pattern:

(i) Topography	: The proposed lease area is Hillock topography. The maximum elevation (585m) was observed in Northeast side of the site, while the minimum elevation (515m) was observed Southwest side of the site. The slope is towards Southwest side and falls in Toposheet no. 58-G/6.
----------------	--

(ii) a) General Geology of the District:

Crystalline rocks of Archaean to late Proterozoic age occupy over 80% of the area of the state of Tamil Nadu. The high-grade metamorphic rocks are well exposed in southern Tamil Nadu (Theni district) on the moderate to steeply sloping hills. These rocks are characterized into three Groups, namely i. Khondalite Group comprises quartzite, pyroxene granulite, calc gneiss / crystalline limestone, garnet sillimanite / garnet-cordierite ± spinel gneiss, minor garnet-cordierite gneiss and garnetiferous quartzo feldspathic gneiss (leptynite). ii. Charnockite Group consisting of acid charnockite and pyroxene granulite. iii. Migmatite Complex, represented by hornblendebiotite gneiss, grey granitic gneiss and pink migmatite.

b) Soils:

The district is characterized by Red, Black and Brown soils. The major part of the area is characterized by red soil, which can be either transported or lateritic. These are medium to heavy textured soils with moderate to higher permeability. The black soils are limited to less than 1% of the area. They are fine textured with low permeability. The brown soils are limited to less than 1% of the area and they characterized by low permeability.

c) Lineaments:

The NNE-SSW trending structurally controlled Kambam Valley comprises the following landforms. The Archaean rock are exposed in the pediments, amphitheatre, ridges, monadnocks and inselbergs, The plain areas are away from the pediment and the slopes of pediments with minor gullies and hills, delineated as Cumbam surface. The data have been checked by field studies and Survey of India topographical maps at the 1:1,00,000 scale.

	1	AH	PPR	1	
1	1		CTOR	18	
H	15	C::)	061	E (W	
V	13	E Militi	NG. 1711	5	
	10	PREC	TOR	30	

Age	Group	Rock Formation		
Recent to Sub recent		Topsoil Soil		
Archaean to Lower Proterozoic	Khondalite Group	Quartzite, pyroxene granulite, calc gneiss / crystalline limestone, garnet sillimanite		
	Charnockite Group	Charnockite and pyroxene granulite		
Archaean	Migmatite Complex	Homblende biotite gneiss, grey granitic gneiss and pink migmatite		

(iii) Local / Mine Geology of The Mineral Deposit:

Topography of the proposed lease area:

The proposed lease area is Hillock topography. The maximum elevation (585m) was observed in Northeast side of the site, while the minimum elevation (515m) was observed Southwest side of the site. The slope is towards Southwest side.

Residual Topsoil is obtained and rough stone starts from 0-70m Which is 65m above base level 5m below base level. The charnockite forms as country rock in the area with trending of NE-SW, slope towards SW. The Surface plan showing elevation, contour, accessibility road and Geological map was prepared the proposed lease area.

Mode of origin:

0

The Charnockite series originally was assumed to have developed by the fractional crystallization of silicate magma. Subsequent studies have shown, however, that many, if not all, of the rocks are metamorphic, formed by recrystallization at high pressures and moderately high temperatures.

Physiography of the rocks:

General characteristics of the rocks of this series has recorded that the rocks are in general bluish gray or darkish in colour and extremely fresh in appearance with an even grained granular structure

Chemical composition of rocks:

The compositional characteristics of coexisting orthopyroxene, garnet

and biotite have established several petrographic varieties within the Charnockites-Enderbites such as the granulite's and gneisses. Plagioclase feldspars, alkali feldspars and quartz are the salic minerals present in this series of rocks. Order of superposition of the proposed lease area,

	Age	Group	Rock Formation Topsoil (Clayey soil)	
	Recent to Sub recent			
	Archaean	Charnockite Group	Charnockite.	
(iv)	Drainage Pattern	70.01 45 50 20	ajor river situated around 50m radius. n the area is dendritic in nature.	

0

(b)	2000 with contour in the area should be ta	n of the lease area prepared on a scale of 1:1000 or 1: nterval of 3 to 10m depending upon the topography of aken as the base plan for preparation of geological plan.
		loration already carried out including evidences of ould be shown on the geological plan:

	a. Present status:		The RQP examined the surface features during survey. It is an Existing quarry lease average depth of Pit-1 is 7.5m and Pit-2 is 15m. Non excavated area covered with topsoil in this lease area.
	b. Surface Plan	-	Surface plan showing elevation contour and accessibility road was prepared at the scale of 1: 1000, as shown in Plate No. III.
(c)	Geological sections should be prepared at suitable intervals on a scale of 1: 1000 / 1: 2000:	10.5	Longitudinal and transverse geological cross sections were prepared at the horizontal scale of 1: 1000 and at the vertical scale of 1:1000, as shown in Plate No. IIIA

(d) Broadly indicate the Yearwise future programme of exploration, taking into consideration the future production programme planned in next five years as in table below:-

No future programmed proposed in this area. Its massive homogeneous parent rock. Hence exploration proposal is not required to this mining project.

(e) Indicate geological and recoverable reserves and grade, duly supported by standard method of estimation and calculations along with required sections (giving split up of various categories i.e. proved, probable, possible). Indicate cut-off grade, Availa its resources should also be indicated for the entire leasehold.

The geological resources were computed by cross section method with respect to the boundaries of the lease area. In this method, the lease area was divided into two longitudinal and two transverse sections to calculate the volume of material up to the depth of 70m (which is 65m above base level and 5m below base level) for five years plan period. (Refer Plate No. III & IIIA). The longitudinal and transverse cross sections were assigned XY-AB, XY-CD, X1Y1-AB & X1Y1-CD as respectively. Using the cross-sectional method, total reserve is estimated to be 373158m³ including the resources of safety zone, and topsoil, etc. Of which, rough stone resources of about 366605m³ and residual topsoil is 6553m³

		GE	OLOGIC	AL RES	OURCES		STEEL STEEL
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Residual Topsoil in m ³
		14	9	1	126	*****	126
	VΠ	15	9	5	675	675	****
	VIII	18	16	5	1440	1440	1.6.6.6
	IX	32	23	5	3680	3680	****
XY-AB	X	50	35	5	8750	8750	++,11+
	XI	50	46	5	11500	11500	00000 *****
	XII	50	50	5	12500	12500	
	XIII	50	50	5	12500	12500	100151
	XIV	50	50	5	12500	12500	
		TOTAL			63671	63545	126
	444	27	28	1	756	23333	756
İ	VIII	49	7	5	1715	1715	22774
1	IX	43	14	5	3010	3010	7,5,5,75
XY-CD	X	5	23	5	575	575	5.8.66
	XI	18	27	5	2430	2430	*****
	XII	27	35	5	4725	4725	
	XIII	40	44	5	8800	8800	2222
	XIV	50	50	5	12500	12500	
		TOTAL			34511	33755	756
		50	53	1	2650	F = ++#	2650
	1	26	20	5	2600	2600	77555
I	11	50	17	5	4250	4250	
	111	50	25	5	6250	6250	
I	IV	50	35	5	8750	8750	11111
	V	50	45	5	11250	11250	24.44
	VI	50	50	5	12500	12500	
XIY1- AB	VII	50	50	5	12500	12500	
AB	VIII	50	50	5	12500	12500	
ſ	IX	50	50	5	12500	12500	2000
	X	50	50	5	12500	12500	F* # 6+
	XI	50	50	5	12500	12500	14.44
	XII	50	50	5	12500	12500	
Ī	XIII	50	50	5	12500	12500	11111
	XIV	50	50	5	12500	12500	17.55
		TOTAL			148250	145600	2650
X1Y1-	***	53	57	1	3021	*****	3021
CD	II	5	13	5	325	325	
CD	III	17	19	5	1615	1615	7242

IV	33	27	5	4455	4455	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
V	43	34	5	7310	7310	
VI	50	41	5	10250	10250	=
VII	50	49	5	12250	12250	\3
VIII	50	50	5	12500	12500	1/3
IX	50	50	5	12500	12500	
X	50	50	5	12500	12500	****
XI	50	50	5	12500	12500	
XII	50	50	5	12500	12500	
XIII	50	50	5	12500	12500	
XIV	50	50	5	12500	12500	****
18	TOTAL			126726	123705	3021
GRA	ND TOTAL	L		373158	366605	6553

(f) Indicate mineable reserves by slice plan / level plan method, as applicable, as per the proposed mining parameters: -

0

•

The total mineable reserve is estimated to be 58051m³ by deducting the reserve safety zone, block in benches from the total Geological resources up to a depth of 70m (which is 65m above base level and 5m below base level). Of which, rough stone is about 53565m³ and residual topsoil is 4486m³. The commercially viable rough stone has been prepared on 1: 1000 scale and sections are prepared in a scale of 1:1000 in horizontal axis and 1:1000 as vertical axis (Refer plate no's.VI & VIA).

		THE STORY	MINEABI	LE RESE	RVES	33K 1 1 1 1 1 1	
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Residual Topsoil in m ³
	248	4	9	1	36	****	36
	VII	5	9	5	225	225	*****
	VIII	3	16	5	240	240	4444
XY-AB	IX	12	24	5	1440	1440	60000
	X	25	31	5	3875	3875	
	XI	20	30	5	3000	3000	8244
	XII	15	20	5	1500	1500	*****
		TOTAL			10316	10280	36
	9	27	28	1	756	173340000	756
i	VIII	39	7	5	1365	1365	
	IX	33	14	5	2310	2310	****
	X	5	23	5	575	575	
XY-CD	XI	18	22	5	1980	1980	
	XII	27	25	5	3375	3375	
	XIII	40	25	5	5000	5000	
	XIV	30	15	5	2250	2250	
		TOTAL	4		17611	16855	756
	Equip :	40	43	1	1720		1720
	I	16	7	5	560	560	*****
	11	35	7	5	1225	1225	*****
W1871	III	30	15	5	2250	2250	20,500
XIYI-	IV	25	20	5	2500	2500	3049840
AB	v	20	25	5	2500	2500	27,101
	VI	15	25	5	1875	1875	5.4.44
	VII	10	20	5	1000	1000	11.131
	VIII	5	15	5	375	375	99.000
		TOTAL	111-2		14005	12285	1720

	7	OTAL			14005	12285	1720
		42	47	1	1974	4+400	1974
1	II	5	3 /	5	75	75	
	Ш	17	9 -	- 5	765	765	****
*****	IV	33	12	- 5	1980	1980	****
XIYI-	V	40/	14	- 5	2800	2800	******
CD	VI	35	16	5	2800	2800	*****
	VII	30	19	5	2850	2850	34304
Ī	VIII	25	15-	- 5	1875	1875	11111
Ī	IX	20	10	5	1000	1000	7.55734
	1	OTAL			16119	14145	1974
	GRA	ND TOTAL			58051	53565	4486

4.0 MINING:

a) Briefly describe the existing / proposed method for developing / working the deposit with all design parameters.

(Note: In case of pocket deposits, sequence of development/working may be indicated on the same plan)

The mining operation is open-cast, semimechanized method are adopted and on single shift basis only. Under the regulation 106 of the Metalliferous Mines Regulations, 1961 in all open cast workings in hard rock, the benches and sides should be properly benched and sloped. The bench height should not exceed 6m and the bench width should not less than the bench height. The slope of the benches should not exceed 45° from horizontal.

 Indicate quantum of development and tonnage and grade of production expected pit wise as in table below.

Total proposed production rough stone is about 53565m³ and residual topsoil is 4486m³ up to a depth of 70m (which is 65m above base level and 5m below base level) for five years plan period. (Refer Plate No's. IV & IVA).

Year	Pit No.(s)	Topsoil/ Overburden (m³)	ROM (m³)	Saleable rough stone (m³) @ 100%	Rough stone rejects(m³)	Sub grade/ Weathered rock (m³)	Saleable Gravel (m³)	Rough stone to waste ratio
First	I	3694	13049	9355			3	***
Second	I		9975	9975	5000	***	***	100
Third	I	792	13472	12680	***			22.5
Fourth	1	322	8375	8375		900	***	555
Fifth	1		/3180	13180	***			***
Total	****	4486	58051	53565	***	***	***	

c) Composite plans and Year :

Not applicable. It is a "B" class quarry lease

wise sections (In case of 'A' class mines):

Section	Year			Barrens B		Mark Barrier	Rough	Residual
	Cur	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In M ³	Stone in m ³	Topsoil in M ³
		1942	40	43	1	1720	35457	1720
		I	16	7	5	560	560	*****
XIYI-		II	35	7	5	1225	1225	
AB		Ш	30	15	5	2250	2250	*****
	I-YEAR	IV	25	20	5	2500	2500	19199
		***	42	47	1	1974		1974
X1Y1-		II	5	3	5	75	75	
CD		Ш	17	9	5	765	765	
		IV	33	12	5	1980	1980	*55.534
		TOT	AL			13049	9355	3694
XIYI-		V	20	25	5	2500	2500	1577
AB	II-	VI	15	25	5	1875	1875	27755
X1Y1-	YEAR	V	40	14	5	2800	2800	****
CD		VI	35	16	5	2800	2800	
		TOT	AL			9975	9975	0
X1Y1-		VII	10	20	5	1000	1000	100000
AB		VIII	5	15	5	375	375	8330
X1Y1- CD		VII	30	19	5	2850	2850	2,2,222
		VIII	25	15	5	1875	1875	2222
	III- YEAR	IX	20	10	5	1000	1000	8999
		2550	4	9	1	36	935309 J	36
XY-		VII	5	9	5	225	225	1990
AB		VIII	3	16	5	240	240	11111
		IX	12	24	5	1440	1440	*****
			27	28	1	756		756
XY-		VIII	39	7	5	1365	1365	
CD		IX	33	14	5	2310	2310	
		TO	AL			13472	12680	792
	SAN	X	25	31	5	3875	3875	*****
XY-	IV-	XI	20	30	5	3000	3000	
AB	YEAR	XII	15	20	5	1500	1500	11310
		TOT	TAL			8375	8375	0
		X	5	23	5	575	575	
3/3/	V-	XI	18	22	5	1980	1980	
XY-	YEAR	XII	27	25	5	3375	3375	
CD		XIII	40	25	5	5000	5000	
		XIV	30	15	5	2250	2250	12.77
		TOT	ΓAL			13180	13180	0
		GRAND	TOTAL			58051	53565	4486

			-								
	layouts, dumps, sta	cks of sub-						(à			
	grade mineral, if an	v. etc.						() 3			
-		MESCE-1995				c 11					
e)	Indicate proposed i	ate of proc	duction	when the	mine i	s Juny a	ievelopea	ana inev			
	expected life of the	nine and th	ie year j	from which	lı effecte	ed:					
	At this rate of pro	eduction fl	ne expe	cted life o	of quarr	v is cal	culated a	as given			
		oddenon, u	по спре	otou mo t	, quai	<i>y</i> 10 cu.		81.411			
	below:										
	Rough stone:					1					
	Mineable reserv	able reserves of rough stone = 53565m ³									
		y production = 10713m ³									
	37.37		ū								
	Monthly produc	hly production of rough stone = 893m ³									
f)	Attach a note furn	note furnishing a conceptual mining plan for the entire lease period									
10.50	(for "B" category I										
				SC-15244 (C-2244)		25	100	y mines)			
	based on the geolog	gical, minin	ig and e	nvironmei	its cons	ideratio	is:				
i)	Time frame of cor	npletion of	:	Consider	ing t	he ir	definite	depth			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			nersisten	ce of th	ne rough	stone d	enosit is			
	mineral exploration			persistence of the rough stone deposit is							
	in leasehold area:	Give broad		up to a depth of 70m (which is 65m above							
	description identifie	ed potential									
	G.			base leve	el and 5	m below	base lev	vel) from			
	areas to be cover	rea in the		0.4704000000000000000000000000000000000		ic cha		of the			
	given time frame:										
				CALLEG				he actual			
	97			mining p	practice	in the a	rea and	with the			
				current 1	rend of	rough	stone pr	oduction			
				the quarry may sustain for 5 years.							
	. I was a second of the second			0.0000000000000000000000000000000000000	en 2000-000-0						
ii)	Whether ultimate p	ther ultimate pit limit has been determined and demarcated on surface and									
	geological plan :-										
	The ultimate pit	limit has be	een dete	rmined an	d demai	reated in	the con	ceptual			
						ences e					
	plan										
				ION XY-AI							
	Bench	Period	230000000	burden/ ineral	(m)	(m)	D (m)				
	: ***			al Topsoil	4	9	1				
	VII				5	9	_ 5				
	VIII	6 ,,,,,,,,			3 12	16	5				
	IX X	5 years	Rou	gh stone	25	31	5				
	XI				20	30	5				
	XII		0000	101/17/	1.5	20	- 5				
		March Sales and		ION XY-CI burden/	L	W	D				
	Bench	Period		ineral	(m)	(m)	(m)				
		5 years	Residu	al Topsoil	27	28	1				

PRECTORIES

					-				(\$)
		X				5	23	5	13/
		XI				1.8	22	5	*WIWI
		XII				27	25	5	(*)
		XIII				40	25	5	130
		XIV				30	15	5	Post
					ON X1Y1-/		1		
		Bench	Period		burden/ neral	L (m)	(m)	D (m)	
		***			al Topsoil	40	43	1	1 1
		1			H1, N. N. P. H1, H1	16	7	5	1
		11				35	7	5	1
		Ш				30	15	5	1
		IV	5 years	Descri	otoregastrono in	25	20	5	1
		V	1000 Market 1	Roug	gh stone	20	25	5	1
		VI				15	25	5] [
		VII				10	20	5	1
		VIII				5	1.5	5] [
				SECTI	ON XIYI-O	CD] [
		Bench	Period		burden/	L	W	D	
		Dench	Period	Mi	neral	(m)	(m)	(m)] [
				Residu	al Topsoil	42	47	1] [
		11			-	5	3	5	
		111				17	9	5]
		IV				33	12	5	
		V	5 years	Don	gh stone	40	14	5	
		VI		ROU	Su Stolle	35	16	5	
		VII				30	19	5	
		VIII				25	15	5	
iii)		IX	for disposal			20	10	5	
	salcable been exa of land a term use continuat activity: -			proposed	l in this l	lease are	a.	k will be	
iv)	after reco techno -e depth	very of m economica envisaged. the broad	ing of pits ineral up to Ily feasible If so, features of	() ()	may like	ly to con	ntinue fo	or further	r depth, it quarry pit.
v)	Whether envisaged	3	ing land use		quarry p	it may l er and	be utiliz may be	ed for s	over the storage of ted in to adopting

g)	Open cast mining				
i)	Describe briefly giving salient : features of the mode of working (Mechanized, Semi- Mechanized, manual)	The mining operation is opencast, semily mechanized methods are adopted and on single shift basis only. Under the regulation 106 of the Metalliferous Mines Regulations, 1961 in all opencast workings in hard rock, the benches and sides should be properly benched and sloped. The bench height should not exceed 6m and the bench width should not less than the bench height. The slope of the benches should not exceed 45° from horizontal.			
ii)	Describe briefly the layout of mine workings, the layout of faces and sites for disposal of overburden/waste. A reference to the plans enclosed under 4(b) and 4(d) will suffice	The rough stone is proposed to quarry a 5m bench height & width conventional opencast semi mechanized quarrying operation using shot hole drilling with the help of tractor mounted compresson attached with jack hammers, smooth blasting and waste and are removal using Hydraulic excavator and loaded directly to the tippers and transported to the needs customer. Bench height = 5mts. Bench width = 5mts.			
	a. Details of Topsoil/ Overburden	The residual topsoil 4486m³ shall be removed and dumbed all along the safety area			
	b. Rough Stone waste and side burden waste;-	The recovery of rough stone in this quarry is 100%. There is no rough stone waste or side burden will be removed.			
Н	Underground Mining	Not applicable			
i)	Extent of mechanization: Describe briefly including the calcul equipment proposed to be used in dif	ation for adequacy and type of machinery and			

(1) Drilling Machines:

Drilling of shot holes will be carried out using tractor mounted compressor and jack hammer. Details of drilling equipment's are given below.

Туре	Nos	Dia of hole (mm)	Size / Capacity	Make	Motive power	H.P.
Jack Hammer	2	32 mm	Hand held		Diesel	
Compressor	1	***	Air		Diesel	

(2) Loading Equipment:

Type	Nos	Size / Capacity	Make	Motive power	H.P.
Hydraulic Excavator	1	2.9-4.5m ³	777	Diesel	

(3) Haulage and Transport Equipment

(a) Haulage within the mining leasehold:

Type	Nos	Size / Capacity	Make	Motive power	H.P.
Tipper	3		対抗な	Diesel	**

Whether the dumpers are fitted with exhaust conditioner should be indicated: The dumpers not used in this quarry area, hence it's a small B2 category mine.

b)	Transport from mine head to the destination	Tipper will be used for transport rough stone from the mine head to needy customer.
c)	Describe briefly the transport system (please specify)	Hydraulic excavator and tippers utilized for internal transport sizeable rough stone lumps and deliver to the customer's area.
	i) Ore transported by: own trucks / hired trucks	Hired trucks for initially production purposes
	ii) Main destination to which ore is transported (giving to and from distance)	The excavated stone materials road metal will be supplied to the consumers like road laying, earth filling, building construction, etc

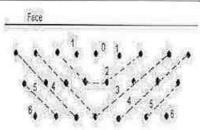
a) Details of hauling / transport equipment:

Type	pe Nos Size / Capacity		Make	Motive power	H.P.	
44	324	2.	1227			

4) (4). Miscellaneous:

Describe briefly any allied operations and machineries related to the mining of the deposit not covered earlier.

(A) Operations	The mining operation is open-cast, semi mechanized methods are adopted and or single shift basis only.
(B) Machineries deployed	Machineries like Tractor mounted compressor attached with Jack hammers is proposed to drilling and blasting Hydraulic Excavators and tippe combination are adapted.


5 BLASTING:

a) Broad blasting parameters like charge per hole, blasting pattern, charge per delay, maximum number of holes blasted in a round, manner and sequence of firing, etc.

Blasting pattern:

The quarrying operation is proposed to carried by open cast mining in conjunction with conventional method using jack hammer drilling and blasting for shattering effect and loosen the rough stone.

1	Diameter of the hole	32 mm
2	Spacing between hole	1.2m
3	Burden for hole	1.0m
4	Depth of each hole	1.5m
5	Output per hole = Spacing × Burden × depth $1.2 \times 1.0 \times 1.5 = 1.8$	1.8m
6	Output per hole = $1.8 \times 2.8 = 5.04 \text{ T}$	5.04 MT
7	Production per annum 10713m3 * 2.8= 29996MT	29996MT
8	Total handling per day (280 working day)	107MT
9	Nos. of holes per day $(107/5.04 = 21)$	21holes.
10	Meterage required per day $(21 \times 5.5 = 115)$	115meters
11	Charge per hole	0.5kg
12	Powder factor 21X 0.5 kg =10	10kg

Stagged method of mining

b) Type of explosives used / to be used:

Following explosives are recommended for efficient blasting with safe practice.

PHECTORIC

Small dia. 25mm slurry explosives are proposed to be used for shattering and heaving effect for removal and winning of rough stone. No deep hole drilling or primary blasting is proposed.

c) Measures proposed to minimize ground vibration due to blasting:

The control blasting measures is being adopted for minimizing ground vibration and fly rock.

Shallow depths jackhammer drilling and blasting is proposed to be carried out with minimum use of explosive mainly to give hearing effect in rough stone for easy excavation and to control fly rock.

Delay detonators:

Delay blasting permits to divide the shot to smaller charges, which are detonated in a predetermined millisecond sequence at specific time intervals. The major advantages of delay blasting are:

- Reduction of ground vibration
- · Reduction in air blast
- · Reduction in over break
- · Improved fragmentation
- Better control of fly rock

Blasting program for the production per day

	No of holes	3		
	Yield			
	Total explosive required			
	Charge per hole	:	0.5kg	
	Blasting at day time only	j.	12.0p.m-1.0p.m	
c)	overburden / waste / development heading / stope		Powder factor is proposed as 0.5kg per hole of explosives	
d)	Whether secondary blasting is needed, if so describe it briefly		Irrespective of the method of primary blasting employed, it may be necessary to re-blast a proportion of the rock on the quarry floor so as to reduce it to a size suitable for handling by the excavators and rock breakers.	

e)	Storage of explosives (like capacity and type of explosive magazine)	 The applicant is advised to engage a authorized explosive agency to carry out blasting. First Aid Box will be keeping ready at all the time. Necessary precautionary announcement will be carried out before the blasting operation. 		
6.	MINE DRAINAGE:	- 15 (r)		
a)	Likely depth of water table based on observations from nearby wells and water bodies			
b)	Workings expected to be m. above / reach below water table by the year	Proposed mining depth is 70m (which is 65m above base level and 5m below base level). Now, the present Mining lease shall be proposed above the water table and hence, quarrying may not affect the ground water.		
c)	Quantity and quality of water likely to be encountered, the pumping arrangements and places where the mine water is finally proposed to be discharged	The ground water may not rise immediately in this type of mining. However, the rain water percolation and collection of water from the seepage shall be less than 300 Lpm and it shall be pumped out periodically by a stand by diesel powered Centrifugal pump motivated with 7.5 H.P. Motor. The quality of water is potable and it is not contaminated with any hazardous things.		
7.	STACKING OF MINERAL REJE	CTS AND DISPOSAL OF WASTE:		
a).	Indicate briefly the nature and quantity of top soil, overburden / waste and mineral rejects likely to be generated during the next five years: No separate of topsoil or any other wastes are removed during next five years.			
b).	Land chosen for disposal of waste with proposed justification	The residual topsoil 4486m³ shall be removed and dumbed all along the safety area		
c).	Attach a note indicating the manner of disposal and	The recovery of rough stone in this quarry is 100%. If rough stone may be unsold will be		

	configuration, sequence of buildup of dumps along with the proposals for the stacking of sub-grade ore, to be indicated Year wise.		keep within the lease boundary.			
8.	USE OF MINERAL:		The excavated stone materials will be			
a).	Describe briefly the end-use of the mineral (sale to intermediary parties, captive consumption, export, industrial use)		The excavated stone materials will be supplied to the consumers like stone pillar, sized stone, etc. For instance, aggregates are mostly used for building, roads and footpaths., etc			
b).	Indicate physical and chemical specifications stipulated by buyers		Basically, the materials produced at this quarry are rough stone (charnockite) and gravel the same are used for building materials and road metal. So, there is no chemical specifications are specified. Only physical specifications are involved.			
c).	Give details in case blending of different grades of ores is being practiced or is to be practiced at the mine to meet specifications stipulated by buyers.		Not blending process is involved, after blasting the rough stone and gravel will be directly loaded to the needy customer.			
9.	OTHERS					
	Describe briefly the following a) Site services	:	Infrastructure required for such mines like office, stores, canteen, first aid station, shelter latrine and booth rooms have been provided as per the Metalliferous Mines Regulations, 1961 as a welfare amenity for our quarry laborers.			
	b) Employment potential: As per Mines safety under the provisions of Metalliferous Mines Rules,					
	As per Mines safety und		enever the workers are employed more than 10,			

•

	years p	eriod the same man	oowe	oroposed for quarrying rough will be utilize for this Mini- to comply the provisions of the	ng Plan period to	
1				class Mines Manager	101	AE TO
	1970 Seeded William (1970) 19			Geologist	INo.	
				er	1No.	
			Drive	er	3No's	
2		Unskilled	Hitac	hi Operator	1No.	
			Musc	loor / Labours	8 No's	
				Total =	15 No's	Ш
0 MIN	VERAL	PROCESSING/BI	ENEI	ICIATIONS:		
plann or ad briefl proce shoul feed (finis	jacent to by descriptions description desc	minerals mined in the conducted on sit to the extraction area tibe the nature of the /beneficiation. This ate size and grade of tal and concentrate marketable product	e i, e s of e	be used by the applicant for 1/4 and 1/2 inches Jelly which in road and building construct The recovery of rough states is 100%.	h are mainly used ction purpose. one in this quarry	
taili proo qua disc taili taili ado effe dea	ngs of the charged, ing pone ings, if the pted to ext before	e disposal method for waste from the plant (quantity and ailings proposed to be size and capacity of toxic effect of such any, with process meutralize any such presents their disposal are excess water from the ore.	d d d d d d d d d d d d d d d d d d d	No water shall be used for other processing except dri drawn from public sources of rain water in the pit of drilling and spraying haul need for tailing dam doesn' control of rain water flow do has to be done by decanting before passing the water in	nking water to be . Some stagnation shall be used for roads. Therefore training rainy season the SPM in a pi	e n r s, g
		sheet or schemat of the processing		Not applicable.		

(d)	procedure should be attached. Specify quantity and type of	•	Not applicable
/ S	chemicals to be used in the processing plant.		Net applicable
(e)	Specify quantity and type of chemicals to be stored on site / plant.	:	Not applicable
(f)	Indicate quantity (cu.m. per day) of water required for mining and processing and sources of supply of water. Disposal of water and of recycling.		Drinking is 0.3KLD, utilized water is 1.0KLD, Dust suppression is 0.75KLD and Green Belt is 0.5KLD. Minimum quantity of water 2.55KLD per day. It is proposed to make an own bore well for providing uninterrupted supply of RO drinking water, dust suppression and green belt development. The sewage water to a tune of 0.8KLD generated from the mine office toilet and mine labour toilet will be diverted to the septic tank followed by soak pit.
		/	

AN APPROL

•

0

0 0 0

0

0

•

11.0 ENVIRONMENTAL MANAGEMENT PLAN:

a) Attach a note on the status of Baseline information with regard to the following:

11.1	Fresh lease land use pattern indicating the area already degraded due to			
	quarrying /pitting, dumping, roads, processing plant, workshop, township			
	etc in a tabular form. The present land use pattern is given as below.			

Sl. No.	Land Use	Present area (Hect.)
1.	Area under Mining	0.28.73
2	Infrastructure	Nil
3	Roads	0.01.0
4	Unutilized	0.70.27
5	Green belt	Nil
6	Settling Tank & Drainage	Nil
11.04-0	Grand Total	1.00.0

		Grand Total 1.00.0
11.2 Water Regim	ie ;	Water table in this area is noticed at a depth of 55m in summer and 50m in rainy season from the general ground level and presently the quarrying of rough stone is proposed up to a depth of 70m (Which is 65m above base level and 5m below base level). Hence, it will not affect the ground water depletion of this area. It is made own borewell for providing uninterrupted supply of RO drinking water, dust suppression and green belt development.
11.3 Flora and Fa	una :	There is no major flora observed in this area and except bushes, shrubs, no other valuable trees are noticed in the lease area. Further, neither flora of botanical interest nor fauna of zoological interest is noticed in this area.
11.4 Quality of a noise level as		Air or dust expected to be generated from drilling process, hauling roads, places of excavation etc, will be suppressed by periodical wetting of land by water spraying. Quarrying of rough stone will be carried out by drilling and blasting by using low power explosives, and hence, noise will be very minimum. However, periodical noise level monitoring will be carried out every six

			mo	onths around th	e quarry site.	WIN				
11.5	Climat	ic conditions:				Z.				
	1									
	In the plains, the temperatures ranges from a minimum of 19.9°C to									
	maximum of 39.5°C. In the hills the temperatures can range from as low as 4-									
	5°C to 25°C. The mean daily minimum temperature varies from 20.9°C									
	(January) to 26.3°C (May) and mean daily maximum temperature varies from									
	29.7°C	(December) to 37.5	°C (M	ay). The distri	ct is known for	its salubrious				
		e. Theni District con		-						
	genera	l, the humidity is high	and o	during the mon	th of November	r, it is highest.				
	The re	lative humidity range:	s from	37 to 75 perce	nt.					
11.6	Human	n Settlement:								
	The no	earest villages are fo	and i	the buffer 70	one with popul:	ation as ner				
	2011 c	CONTRACTOR OF THE CONTRACTOR OF THE PARTY OF	tille ii	i ine builer 2	one will popul	anon ao per				
					Distance in					
	S.No	Village		Direction	Kms	Population				
	1	Rayappanpatti	North	4.28Km	15886					
	2	Anaipatti	Northwest	2,60Km	5212					
	3 Kamayagoundanpatti			West	2.03Km	16134				
	4	Narayanattevanpatti		Southwest	3.03km	14622				
11.7	Public	buildings, places	: No	o infrastructure	like residentia	l building, ar				
	of	worship and	for	und within rac	dius of 300m.	The places o				
	100496-0		1500							
	monur	nents	S.40		ike archeologica					
			Sa	inctuaries, etc	., are found	around 10km				
			rae	dius.						
110	7.0-1		This y	54504550M	Ambiane sin	uslitu Weta				
11.8	Attach	plans showing the		62.0	Ambient air o	1 1700 At				
	locatio	ons of sampling	qu	ality Ambient	noise level and	l vibration are				
	station	is	ne	riodically teste	d for every sea	son (6 month				
	2.30.430.4	INTER*			-43 0	4 20000 /				
					n radius as per t	Marie de de				
			M	MoEF and EIA Notification 2006 and also						
				covering DGMS norms.						
11.9	Does	area (partly or fully)			ea not fall unde	r notified are				
		(M) (N) (30)		50 100						
	fall u	nder notified area	un	ider Water ((Prevention &	Control o				
		Water /Description	Pc	Market and the second of the s	074					
	under	Water (Prevention	A	ollution), Act, 1	214					
	l	7	1	ollution), Act, 1	217					
	l	ntrol of Pollution),		ollution), Act, I	214					

PECTOR

.

0 0 0

0 0

0 0 0

•

•

•

b) Attach an Environmental Impact Assessment Statement describing the impact of Mining and beneficiation on environment on the following over the next five years (and upto conceptual plan period for 'A' category mines)

i) Land area indicating the area likely to be degraded due to quarrying / pitting, dumping, roads, workshop, processing plant, township etc:

Due to quarrying and exploitation of the rough stone, there will impact in the form i.e. change in the ground profile, pits, and dumps. The details of the land use pattern, during the ensuing plan period and till lease period is shown in the tabular form: DIRECTOR

Sl. No.	Land Use	Area in use during the quarrying period (Hect.)
1.	Area under Mining	0.63.6
2	Infrastructure	0.01.0
3	Roads	0.03.0
4	Green belt	0.24.94
5	Settling Tank & Drainage	Nil
6	Un-utilized area	0.07.46
	Grand Total	1.00.0

ii).	Air Quality	Air or dust expected to be generated from drilling process, hauling roads, places of excavation etc, will be suppressed by periodical wetting of land by water spraying.
iii).	Water quality	A water sample from the open/bore wells was tested to NABL approved lab to assess hardness, Salinity, colour, Specific gravity, etc.
iv).	Noise levels	Quarrying of rough stone and gravel will be carried out by drilling and blasting by using low power explosives, and hence, noise will be very minimum. However, periodical noise level monitoring will be carried out every six months around the quarry site.
v).	Vibration levels (due to blasting)	No deep hole blasting envisaged. Small dia shot holes are used for breaking boulders. The maximum peak particles velocity shall be recoded using mini seismograph devises as per the guidance of MoEF and EIA Notification 2006 and also covering DGMS norms.

vi). Water regime		No major river or any odai track are found around 50m radius.					
vii).	Socio-economics	To provide Employment opportunities of the nearby villagers. For the cultural development of the nearby villagers.					
viii).	Historical monuments etc.	There are no historical monuments, etc found around 300m radius.					

c) Attach an Environmental Management Plan (supported by appropriate plans and sections) defining the time bound action proposed to be taken with sequence & timing in the following areas (or diagrams should be used):

i).	temporary storage and utilization of topsoil	*	The residual topsoil 4486m ³ shall be removed and dumbed all along the safety area and may be used for plantation purpose.
ii).	Yearwise proposal for reclamation of land affected by abandoned quarries and other mining activities during first five years (and upto conceptual plan period for 'A' category mines) clarifying the extent of back filling and re-contouring and / or alternative use of unfilled / partially filled excavations / road sides / slopes and mine. In case abandoned quarries/ pits are proposed to be used as reservoir, their size, water holding capacity and proposal for utilization of such water be given.		The present mining is proposed to an average depth of 70m (Which is 65m above base level and 5m below base level) from the below ground level has been envisaged as workable depth for safe & economic mining during the lease period. The mined-out area will be fenced on top of working bench with \$1 fencing. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
iii).			wise for the initial five years (and upto

iii). Programme of afforestation, Yearwise for the initial five years (and upto conceptual plan period for 'A' category mines) indicating the number of plants with name of species to be afforested under different areas in hectares.

Green Belt Development:

Safety barrier, school and nearest panchayat roads has been identified to be utilized for Greenbelt appropriate native species of Neem, Pungan and other regional trees will be planted in a phased manner as described below

	Year	Place	Area Sq.m	in	No.of Plants	Rate of survival	Rate	Amount in Rs	2
	First	Lease Boundary	2494	1	275	80%		27,500/-	1
	Second	Approach road and Nearby Village Road			300	80%	@100 Rs Per sapling	30,000/-	
	Third	Schools			300	80%	Total	30,000/- 87,500/-	
iv).	dumps alor manageme first five	on and vegetation on and vegetation with waste on the Year wise for years (and I plan period for ines).	dump or the upto		remove safety	ed and du	soil 4486 i imbed all may be	m ³ shall be l along the e used fo	2
v).	Contract of the Contract of th	to control eros	sion / water	8		plicable. T bilize in thi		major dun irea.	nps
vi).	Treatment water fron	a managa baareedaa	al of	2	require		ment befo	d it does re discharg	
vii).	Measures for minimizing adverse effects on water regime.			*	be ver	y pure and	portable ect any	and therefore water regi	ore,
viii).	Protective ground vi caused by	ibrations / air	for blast		mecha machin smooth change	nized mi nery shall h blasting i	ning and be use is propose	open cast, so d no he ed. The o d, therefore attion or no	avy nly no
ix).	rehabilitat settlement	monuments	humar	r 1	rehabi				
x).	Socioecon arising ou	nomic be t of mining.	enefits	*		nearest v yment bene		are will	get

d). Monitoring schedules for different environmental components after commencement of mining and other related activities. (for 'A' category mines only)

Not applicable. It is B2 category quarry

12.0 PROGRESSIVE QUARRY CLOSURE PLAN:

12.1	Steps proposed for phased restoration, reclamation of already mined out area.	•	The Ultimate mining is proposed to an average depth of 70m (Which is 65m above base level and 5m below base level). The mined-out area will be fenced on top of working bench with S1 fencing to arrest the entry of cattle's and public in to the quarry site.
12.2	Measures to be under taken on mine closure as per Act & Rules		Measures will be taken as per the Acts and Rules. The quarried pit will be fenced by Barbed wire fencing. Green belt development at the rate of 275 trees will be proposed in the quarry area. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
12.3	Mitigation measures to be undertaken for safety and restoration/ reclamation of the already mined out area		The quarry is expired lease and non- operational, no mitigation measures observed.
12.4	Mine closure activity		The present mining plan is proposed to depth of 70m (Which is 65m above base level and 5m below base level) has been envisaged as workable depth for safe & economic mining during the lease period. The mined-out area will be fenced on top of open cast working with S1 fencing. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
12.5	Safety and security		Safety measures implement to the prevent access to surface opening excavations will be taken as Metalliferous mine regulations. 1961, it is a small open cast mining method adopted. Safety provisions like helmet, goggles, safety shoes, Dust mask, Ear muffs etc have to be provided as per the

Risk Assessment quarry. If the benches are made with proposed height and with no risk will there. Even then if any minor or maj accident happens the quarry staffs having First aid facilities with first aid box with a necessary medicine and stretches etc., give first aid treatment at the site and warrange immediately the vehicle to real nearest hospital, if any disaster happens to lessee is capable to meet such eventualities. At the time of any accident during minimactivity, proposal of first aid facility quarry and one vehicle always ready quarry site. 12.7 Care and maintenance during temporary discontinuance 12.8 Economic repercussions of closure of quarry and man power entrenchments 12.8 Economic repercussions of closure of quarry and man power entrenchments 12.8 Economic repercussions of closure of quarry and man power entrenchments				circulars and amendments made for Made labours under the guidance of DOMS being a mechanized operation.
during temporary discontinuance One watch man will be kept on the quararea for security purposes also look after the survival of the plants. 12.8 Economic repercussions of closure of quarry and man power entrenchments i During the five years mining period to employment potential will be generated general financial status and socious economic conditions of approx. 15 labor will be improved.	12.6			Open cast mining method is adopted in this quarry. If the benches are made with proposed height and with no risk will be there. Even then if any minor or major accident happens the quarry staffs having First aid facilities with first aid box with all necessary medicine and stretches etc., to give first aid treatment at the site and will arrange immediately the vehicle to reach nearest hospital, if any disaster happens the lessee is capable to meet such eventualities. At the time of any accident during mining activity, proposal of first aid facility at quarry and one vehicle always ready at quarry site.
closure of quarry and man power entrenchments employment potential will be generated general financial status and soci economic conditions of approx. 15 laborated will be improved.	12.7	during temporary	200	A board of discontinuance will be changed on the main entrance of the working place. One watch man will be kept on the quarry area for security purposes also look after the survival of the plants.
9 Proposed Financial Estimate / Budget for (EMP) Environment Management:	12.8	closure of quarry and man	3	economic conditions of approx. 15 labors
A Fixed Asset Cost:			get j	for (EMP) Environment Management:

A	Fixed Asset Cost:		
	1. Land Cost (Tender Cost)	:	Rs. 13,13,332/-
	2. Labour Shed		Rs. 1,00,000/-
	3. Sanitary Facility	1	Rs. 1,00,000/-
	4. Fencing	*	Rs. 1,50,000/-
	5. Other expenses (Security guard, dust bin, etc)	*	Rs. 4,00,000/-
	Total	13	Rs. 20,63,332/-

В	B. Machinery cost	:	Rs. 20,00,000/- (Hire Basis)
С	Total Expenditure of EMP cost (for five ye	ears	5)
	1. Drinking Water Facility	:	Rs. 1,00,000/-
	2. Sanitary facility & Maintenance	:	Rs. 1,00,000/-
	3. Permanent water sprinkler	:	Rs. 1,50,000/-
	4. Afforestation and its maintenance	:	Rs. 87,500/-
	5. Safety Kits	:	Rs. 1,00,000/-
	6. Provision of tyre washing facility	:	Rs. 1,00,000/-
	7. Surface runoff management structures like garland drain, settling pond & Bund	3	Rs. Nil
	8. Blasting materials with blast mat cost	:	Rs. 10,00,000/-
	9. Environment monitoring	:	Rs. 5,00,000/-
	Total	:	Rs. 21,37,500/-
D	Total Project Cost (A+B+C)	:	Rs. 62,00,832/-

13.0 FINANCIAL ASSURANCE:

Not applicable, it is a small B2 rough stone quarry.

14.0 CERTIFICATES:

All required certificates are enclosed.

15.0 PLAN AND SECTIONS, ETC:

Plan and Sections are submitted along with mining plan.

16.0 ANY OTHER DETAILS INTEND TO FURNISH BY THE APPLICANT

- Care and precautionary measures will be taken for the safety of workers as per Rules and Acts.
- (ii) The applicant will endeavor every attempt to quarry the rough stone economically without any wastage and to improve the environment and ecology.
- (iii) The Mining Plan is prepared by incorporating the conditions stipulated in the precise area communication issued by the Assistant Director, Department of Geology and Mining, Theni vide letter Rc.No.1068/Mines/2022 Dated 10.08.2023.
- (iv)Total proposed production rough stone is 53565m³ and residual topsoil is 4486m³ up to a depth of 70m (Which is 65m above base level and 5m below base level) for five years plan period.

17.0 CSR Expenditure:

CSR (Corporate Social responsibility) shall provide by the applicant @ 2.09 average net profit of the company for the last three financial years to the nearby village on the Ministry has notified the amendments in section 135 of the Act as well in the CSR Rules on 22nd January 2021 as circular no. CSR-05/01/2021-CSR-MCA dated 25th August 2021.

Place: Dharmapuri, TN

Date: 22/8/23

Signature of the Recognized Qualified Person

Dr.S.KARUPPANNAN, M.Sc., Ph.D.,
RQP/MAS/263/2014/A
GEO TECHNICAL MINING SOLUTIONS
A NABET Accredited and ISO Certified Company
1/213-B, Ground Floor, Natesan Complex,
Collectorate Post Office, Oddapattl,
Dharmapuri-636705, TamilNadu, India

This Mining Plan is approved based on incorporation of the particulars specified under guidelines given by the commission and Challegy and Mining (Inc. From No. 3865/LC/2012 Dated 19 11-2012

Assistant Director Geology and Mining Them to the condition / Stipulated and indicated in the Mining Plan Approval Roc. No: 1068 Condated: A-9 dols

Rt-3

© தமிழ்நாடு அரசு 2022

000000000

0

தேனி மாவட்ட அரசிதழ்

சிறப்பு வெளியீடு

ஆணையின்படி வெளியிடப்பட்டது

தேனி, ஆகஸ்ட் 18, 2022 ஆவணி 2, சுபகிருது, திருவள்ளுவர் ஆண்டு-2053

[எண் 16

மாவட்ட ஆட்சியர் அறிவிக்கை

(ந.க. எண்.883/கனிமம்/2022, நாள்: 16.08.2022)

கல்குவாரிகள் ஏல அறிவிப்பு

தேனி மாவட்டத்தில் உள்ள அரசு புறம்போக்கு நிலத்தில் அமைந்துள்ள கல்குவாரிக்கு பொன்விழா கிராம மகளிர் சுய வேலைவாய்ப்புத் திட்டக்குழு (SGSY) மற்றும் விடுவிக்கப்பட்ட கொத்தடிமை தொழிலாளர்களால் அமைக்கப்பட்ட சங்கம் ஆகியவற்றிற்கு முன்னுரிமை அடிப்படையில் நேரடியாக கல்குவாரி குத்தகை உரிமம் வழங்குதல் தொடர்பாக விண்ணப்பம் கோரும் அறிவிப்பு.

1959-ஆம் ஆண்டு தமிழ்நாடு சிறுவகைக் கனிமச் சலுகை விதிகளின் விதி எண் 8-ன் உள்விதி (10-A)-ன் படி இந்த அறிவிப்புடன் இணைக்கப்பட்டுள்ள அட்டவணையில் கண்டுள்ள அரசுப் புறம்போக்கு நிலத்தில் அமைந்துள்ள கல்குவாரியிலிருந்து சாதாரண பொது உபயோக சிறுவகை கனிமங்கள், அதாவது உடைகல், ஜல்லி, முண்டுக்கல், கட்டுக்கல், பலகைக்கல் முதலியவை மட்டும் குவாரியில் இருந்து வெட்டி எடுத்துச் செல்ல குத்தகை பெற 1983-ஆம் ஆண்டு தமிழ்நாடு கூட்டுறவுச் சங்கங்கள் சட்டத்தின் (1983-ஆம் ஆண்டு தமிழ்நாடு சட்டம் 30) அல்லது 1975-ஆம் ஆண்டு தமிழ்நாடு சங்கப் பதிவுச் சட்டத்தின் (1975-ஆம் ஆண்டு தமிழ்நாடு சட்டம் 27) கீழ் பதிவு செய்யப்பட்ட பொன்விழா கிராம சுய வேலைவாய்ப்புத் திட்டக்குழு (SGSY) மற்றும் விடுவிக்கப்பட்ட கொத்தடிமை தொழிலாளர்களால் அமைக்கப்பட்ட சங்கத்தினரால் கீழ்க்கண்ட நிபந்தனைகளுக்குட்பட்டு குவாரி குத்தகை உரிமம் கோரும் விண்ணப்பங்கள் தேனி மாவட்ட ஆட்சியரால் வரவேற்கப்படுகின்றன.

0

0

0

</l></l></l></l></l></

0

•

•

0

0

0

0

0

•

0

0

0

0

0

0

0

0

0

பகுதி | மனு செய்வதற்கான நிபந்தனைகள்

- மேற்குறிப்பிடப்பட்டுள்ள, குத்தகைகோரும் குழு / சங்கத்தின் எல்லா உறுப்பினர்களும் கல்குவாரிகளில் குறைந்தபட்சம் இரண்டு ஆண்டுகள் வேலை செய்திருக்க வேண்டும். இதற்கான சான்றிதழை மாவட்ட ஆட்சியரிடமிருந்து பெற்று இணைக்க வேண்டும்.
- மேற்குறிப்பிட்ட ஒவ்வொரு குழு / சங்கத்திற்கும் குவாரி குத்தகை கோரும் எல்லை வரம்பு அந்தந்த ஊராட்சி எல்லைக்கு உட்பட்டது என்று சங்கத்தின் துணை விதிகளில் குறிப்பிடப்பட்டிருக்க வேண்டும்.
- குழு / சங்க உறுப்பினர்களின் எண்ணிக்கைக்கு ஏற்ப குத்தகைக்கு வழங்கப்பட உள்ள பரப்பைத் தீர்மானிக்க மாவட்ட ஆட்சியருக்கு அதிகாரம் உண்டு.
- குவாரி குத்தகை வழங்கப்படும் பட்சத்தில் எந்தவொரு தனி நபர் பெயரிலும் வழங்கபடமாட்டாது. மனு செய்துள்ள குழு / சங்கத்தின் பெயரில்தான் குத்தகை வழங்கப்படும்.
- 5. ஒவ்வொரு குழு / சங்கத்தின் துணை விதிகளில் குறிப்பிடப்பட்டுள்ள எல்லை வரம்புக்குள் அமைந்துள்ள கல்குவாரிக்கு மட்டுமே அச்சங்கத்தினர் மனு செய்ய வேண்டும். இவ்விதிக்கு முரண்பாடாக பெறப்படும் மனுக்கள் விசாரணையின்றி தள்ளுபடி செய்யப்படும்.
- 6. குவாரி குத்தகை கோரும் மனுக்கள், 1959-ஆம் ஆண்டு தமிழ்நாடு சிறுவகைக் கனிமச் சலுகை விதிகளின் பின்னிணைப்பு VI B யில் கண்டுள்ள படிவத்தில் அசல் மற்றும் இரண்டு நகல்களுடன் கொடுக்கப்படவேண்டும். அதன் மாதிரிப்படிவம் இவ்வறிவிக்கையின் கடைசியில் இணைக்கப்பட்டுள்ளது.
- மனுவின் அசல் மற்றும் நகல்களுடன் கீழக்கண்ட சான்றிதழ் மற்றும் ஆவணங்களின் அசல் மற்றும் நகல்கள் இணைத்து கொடுக்கப்பட வேண்டும்.
 - (அ) திரும்ப பெற இயலாத விண்ணப்பக்கட்டணம் ரூ. 500/-ஐ தேனி மாவட்டத்தில் பாரத மாநில வங்கி / மாவட்ட கருவூலத்தில் செலுத்தி அதற்குண்டான அசல் சலான்
 - (ஆ) சங்கம் பதிவு செய்யப்பட்டதற்கான சான்றிதழின் ஒப்புதல் அளிக்கப்பட்ட நகல்.
 - (இ) சங்கத்தின் துணை 239 களின் ஒப்புதல் அளிக்கப்பட்ட நகல்.

0

0

0

0

0

9

0

0

0

0

- (ஈ) சங்கத்தின் வருமான வரி சான்றிதழ் அல்லது வருமான வரி சட்டம், கான்று பிரும் வருமான வரி சட்டம், கான்று பிருமான வரி சட்டம், கான்று பிருமான வரி சான்றி அல்லது வருமான வரி சட்டம், கான்றி வருமான வரி சட்டம், கான்றி அல்லது வருமான வரி சட்டம், கான்றி வருமான வரி சட்டம், கான்றி அல்லது வருமான வரி சட்டம், கான்றி வருமான வரி சான்றி வருமான வரி சட்டம், கான்றி வருமான வரி சான்றி வரும் கான்றி வருமான வரி சான்றி வருமான வரி சான்றி வருமான வரி சிரும் கான்றி வருமான வரி சிரும் கான்றி வருமான வரி சிரும் வருமான வரி சிரும் கான்றி வரும் கான்றி வருமான்றி வரும் கான்றி வரும் கான
- (உ) ஏற்கனவே சங்கத்திற்கு குவாரி குத்தகை, சுரங்க குத்தகை பெறப்பட்டிருந்தால் "சுரங்க வரி நிலுவை இன்மை" சான்று
- (ஊ) ஏற்கனவே சங்கத்தினர் குவாரி குத்தகை ஏதும் பெற்றிருக்கவில்லையெனில், சுரங்கவரி செலுத்த தேவையில்லை என்பதற்கான ஆணை உறுதி ஆவணம் சான்று உறுதி அலுவலரிடம் ஒப்புதல் பெற்று இணைக்கப்பட வேண்டும்.
- (எ) சங்க உறுப்பினர்களின் பெயர் மற்றும் முகவரிப் பட்டியல்கள்,உறுப்பினர்களின் எண்ணிக்கையுடன் இணைக்கப்பட வேண்டும்.
- (ஏ) ஒவ்வொரு உறுப்பினரும் இரண்டு ஆண்டுகளுக்கு குறையாமல் கல்குவாரி பணி செய்ததற்கான சம்பந்தப்பட்ட மாவட்ட ஆட்சியரிடம் பெறப்பட்ட சான்றின் நகல் இணைப்பட வேண்டும்.
- (ஐ) தமிழ்நாட்டில் மாவட்ட வாரியாக மனுதாரர் சங்கத்திற்கு ஏற்கனவே பெறப்பட்ட குவாரி குத்தகை விவரங்கள், குத்தகை கோரி நிலுவையில் உள்ள மனுக்கள் பற்றிய விவரங்கள் அடங்கிய ஆணை உறுதி ஆவணம், சான்று உறுதி அலுவலரிடம் ஒப்புதல் பெற்று இணைக்கப்பட வேண்டும்.
- 8. விவரங்கள் எழுதி பூர்த்தி செய்யப்பட்ட மனுவுடன் மேற்குறிப்பிட்ட ஆவணங்களை இணைத்து ஒரு அசல் மற்றும் இரண்டு நகல்களுடன் மூன்று பிரதிகளை 15.09.2022 அன்று மாலை 05.00 மணிக்குள் மாவட்ட ஆட்சியர் அவர்களுக்கு முகவரியிட்டு, கீழ் குறிப்பிடப்படும் அலுவலரிடம் ஒப்படைத்து அதற்குரிய ஒப்புகை சான்றிதழ் பெற்றுக்கொள்ள வேண்டும்.

"உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை அலுவலகம், அறை எண். 51, 2-ம் தளம், மாவட்டஆட்சியர் அலுவலக வளாகம், தேனி - 625 531

9. மேற்குறிப்பிடப்பட்டுள்ள காலத்திற்குள் பெறப்பட்ட மனுக்கள் ஆய்வு செய்யப்பட்டு மனு மற்றும் ஆவணங்களில் காணப்படும் குறைகளை நிவர்த்தி செய்யக்கோரி பதிவு அஞ்சல் மூலம் மனுதாரர் சங்கத்திற்கு இதிவல் அனுப்பப்படும்.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

- 10. நிபந்தனை 9-ல் குறிப்பிடப்படும் தகவலைப் பெற்றுக்கொண்டு பதினைந்து தினங்களுக்குள் குறைகளை நிவர்த்தி செய்து தேவைப்படும் ஆவணங்களை மனுதாரர் சங்கத்தினர் / குழுவினர் மாவட்ட ஆட்சியரிடம் ஒப்படைக்க வேண்டும்.
- 11. மேற்குறிப்பிட்டவாறு உரிய காலத்திற்குள் ஆவணங்கள் மற்றும் குறைபாடுகள் ஆகியவற்றைத் தீர்வு செய்யாத சங்கத்தினர் / குழுவினர் மனுக்கள் விசாரணையின்றி உடனடியாக தள்ளுபடி செய்யப்படும்.
- 12. மாவட்ட ஆட்சியரை தலைவராகக் கொண்டும், மாவட்ட ஊராட்சி மன்றத் தலைவர் மற்றும் குவாரி அமைந்துள்ள ஊராட்சி ஒன்றியத் தலைவர் / தனி அலுவலரை உறுப்பினராகக் கொண்டும், ஊரக வளர்ச்சித் துறையின் கூடுதல் ஆட்சியர் பதவிக்கு இணையான அலுவலர் மற்றும் புவியியல் மற்றும் சுரங்கத்துறை உதவி இயக்குநரை அலுவல் சார்ந்த உறுப்பினராகக் கொண்டும் அமைந்துள்ள சிறப்பு குழுவின் முன்னிலையில் மனு பரிசீலிக்கப்பட்டு இறுதி ஆணை பிறப்பிக்கப்படும்.
- 13 (அ). மேற்குறிப்பிடப்பட்ட மனுவை ஆய்வு செய்யும்போது குவாரி குத்தகை கோரி விண்ணப்பித்துள்ள சங்கத்தின் தலைவரோ அல்லது அவரால் நியமனம் செய்யப்பட்ட வேறு நபரோ சிறப்பு அழைப்பாளராக அனுமதிக்கப்படுவர்.
- (ஆ). சங்கத்தின் தலைவரால் சிறப்பு அழைப்பாளராக நியமிக்கப்படுபவர், சான்றுறுதி அலுவலர் முன்பு நியமனக் கடிதத்தில் மாதிரி கையொப்பமிட்டு அதனை சங்கத்தலைவரால் மேலொப்பம் செய்யப்பட்டு, சான்று உறுதி அலுவலரின் ஒப்புதல் பெற்று மனுக்களை ஆய்வு செய்யும்போது ஒப்படைக்க வேண்டும்.
- 14. மனுக்களை ஆய்வு செய்ய குறிப்பிடப்பட்ட நாள் மற்றும் நேரத்தில் குழு உறுப்பினர்கள் மற்றும் பதிவு சார்ந்த உறுப்பினர்கள் யாரேனும் ஆய்வுக்கு வரவில்லையென்றால், மனு ஆய்வுப்பணி தள்ளி வைக்கப்பட மாட்டாது.
- 15 (அ). சிறப்பு குழுவின் பரிந்துரையின் அடிப்படையில் குவாரி குத்தகை கோரும் மனுவின்மீது மாவட்ட ஆட்சியரால் ஆணை பிறப்பிக்கப்படும்.
- (ஆ). ஆய்வு செய்ய வந்திருக்கும் சிறப்புக் குழுவின் உறுப்பினர்களிடையே மனு மீது குத்தகை வழங்குவது தொடர்பாக கருத்து வேறுபாடு இருப்பின் பெரும்பாலான உறுப்பினர்கள் கருத்து மாவட்ட ஆட்சியரால் ஏற்றுக் கொள்ளப்படும்.

0

0

0

•

0

•

•

0

0

0

0

0

0

0

0

0

(இ). மனுதாரர் சங்க உறுப்பினர்களின் பணித்திறன், நடத்தைமுறை, நிதிவசதி, உறுப்பினர்களின் அனுபவம் ஆகியவற்றின் உண்மை நிலையை கருத்தில் கொண்டு சிறப்புக் குழு குத்தகை கோரும் சங்கத்தின் மனுவின்மீது அளிக்கும் பரிந்துரையை ஏற்று குவாரி குத்தகை வழங்குவது பற்றி மாவட்ட ஆட்சியரால் முடிவெடுக்கப்படும்.

(ஈ). பொன்விழா கிராம சுயவேலை வாய்ப்புத் திட்டக்குழு மற்றும் விடுவிக்கப்பட்ட கொத்தடிமை தொழிலாளர் சங்கங்கள் ஆகியோர் ஒரே குவாரிக்கு குத்தகை கோரி விண்ணப்பித்திருந்தால், விடுவிக்கப்பட்ட கொத்தடிமை தொழிலாளர் சங்கத்திற்கு விதிகளின்படி இருந்தால் முன்னுரிமை அடிப்படையில் குவாரி குத்தகை வழங்கப்படும்.

பகுதி || குத்தகை பெறுவது தொடர்பான நிபந்தனைகள்

- 1. மேற்குறிப்பிட்டவாறு முடிவு செய்யப்பட்டு வழங்கப்படும் குவாரி குத்தகை காலம் குத்தகை ஒப்பந்தப் பத்திரம் நிறைவேற்றப்பட்ட நாளிலிருந்து ஐந்து ஆண்டுகளுக்கு உரியதாகும். ஆனால் சரியான காரணங்களின் அடிப்படையில் குத்தகை காலத்தை ஐந்து ஆண்டுகளுக்கு குறைவாகவும் மாவட்ட ஆட்சியர் நிர்ணயிக்கலாம். குத்தகை காலமானது எக்காரணத்தினைக் கொண்டும் நீட்டிப்பு செய்து வழங்கப்பட மாட்டாது.
- 2. குத்தகையாளர் சங்கத்தினர் / குழுவினர் குவாரியிலிருந்து வெட்டி வெளியில் எடுத்துச்செல்லும் கனிமங்களுக்கு சீனியரேஜ் தொகை அல்லது குத்ததை பரப்பிற்குரிய முடக்குவரி (Dead rent) இரண்டில் எது அதிகமோ அதை தமிழ்நாடு சிறுவகைக் கனிமச் சலுகை விதிகள், 1959-ன் பின்னிணைப்பு-II-ல் கண்டுள்ளவாறு அவ்வப்போது அரசு நிர்ணயிக்கும் விகிதத்தில் கணக்கிட்டு அரசுக்கு செலுத்துவதுடன் பின்வரும் நிபந்தனை 3-ல் குறிப்பிட்டவாறு குத்தகைத் தொகையை அரசுக்குச் செலுத்த வேண்டும்.
- 3 (அ).குத்தகைக்கு வழங்கப்படும் குவாரி அமைந்துள்ள ஊராட்சி ஒன்றிய எல்லைக்குள் உள்ள ஏற்கனவே டெண்டர் முறையிலோ அல்லது டெண்டருடன் இணைந்த பொது ஏல முறையிலோ குத்தகைக்கு வழங்கப்பட்ட எல்லா குவாரிகளின் பொத்த குத்தகைத்தொகையின் சராசரியை கணக்கிடப்படும். குத்தகைக்கு வழங்கப்பட உள்ள புலம் அமைந்துள்ள ஊராட்சி ஒன்றிய எல்லைக்குள், டெண்டர் அல்லது டெண்டருடன் இணைந்த பொது ஏலத்தில் குவாரிகள் ஏதும் வழங்கப்பட்டிருக்காத பட்சத்தில் மாவட்டம் முழுவதும் டெண்டர் அல்லது டெண்டருடன் இணைந்த பொது ஏலமுறையில் ஏலம் விடப்பட்ட எல்லா

9

0

0

0

0

0

0

0

0

0

0

0000

0

9

0

0

0

குவாரிகளுக்கும் பெறப்பட்ட மொத்த ஏலத் தொகையின் சராசரி கணக்கிடப்படுக்க கணக்கிடப்பட்ட மொத்த குத்தகை தொகையில் 50 சதவீதம் தள்ளுபடி செய்யப்பட்டு மீதமுள்ள 50 சதவீத தொகையானது தற்போதைய வழங்கப்படும் குவாரிக்கு ஒருமுறை குத்தகைத் தொகையாக நிர்ணயம் செய்யப்படும். நிர்ணயம் செய்யப்பட்ட குத்தகையை நான்கு தவணைகளாக ஒவ்வொரு காவாண்டிற்கு ஒருமுறை அடுத்த காலாண்டு தொடங்குவதற்கு 15 நாட்களுக்கு முன்பே செலுத்தப்பட வேண்டும். இக்குத்தகைத் தொகையின் மீது 2% சதவீதத் தொகையை வருமான வரியாக கணக்கிட்டு, அதனை மட்டும் வருமான வரித்துறை கணக்குத் தலைப்பில் தனியாக செலுத்த வேண்டும்.

2022 2000

- (ஆ). மேற்படி நிர்ணயம் செய்யப்பட்ட குத்தகைத் தொகையை ஏற்று அதன் முதல் தவணையாகிய 25% குத்தகைத் தொகையையும், அதற்குரிய 2% சதவீத வருமான வரித் தொகையையும், குவாரி குத்தகை வழங்க சிறப்பு குழுவினரால் தேர்வு செயப்பட்ட சங்கமானது தேர்வு செய்து பரிந்துரைக்கப்பட்ட நாளிலிருந்து ஒரு வார காலத்திற்குள் அரசு கணக்கில் செலுத்தி அதன் அசல் செலுத்து சீட்டினை மாவட்ட ஆட்சியரிடம் ஒப்படைப்பு செய்ய வேண்டும்.
- (இ) மேற்படி முதல் தவணை குத்தகைத் தொகை பெறப்பட்டவுடன் சம்மந்தப்பட்ட கற்குவாரிக் குத்தகை வழங்கப்படவுள்ள அரிதியிடப்பட்ட குத்தகைப் பரப்பு தொடர்பான தகவல் (Precise Area Communication) தேர்வு செய்யப்பட்ட சங்கத்திற்கு மாவட்ட ஆட்சியரால் அனுப்பி வைக்கப்படும்.
- (ஈ) குத்தகை வழங்கப்படவுள்ள அரிதியிடப்பட்ட குத்தகை பரப்பு தொடர்பான மாவட்ட ஆட்சியரின் தகவல் கிடைக்கப்பெற்ற நாளிலிருந்து மூன்று மாத காலத்திற்குள் சம்மந்தப்பட்ட கல் குவாரிக்கு மாவட்ட ஆட்சியரால் அனுமதிக்கப்பட்ட குத்தகை காலத்திற்கான வரைவு சுரங்க திட்டத்தை (Draft Mining Plan) அங்கீகரிக்கப்பட்ட சுரங்க திட்ட வரைவாளரிடம் (Regonized Qualified Person- RQP) பெற்று உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, தேனி அவர்களின் ஒப்புதல் பெற சமர்ப்பிக்க வேண்டும்.
- (உ) மேற்கண்ட வரைவு சுரங்க திட்டத்தில் குத்தகை வழங்கப்பட்ட பரப்பு, குத்தகைக்கு அனுமதிக்கப்பட்ட கனிமம் தொடர்பான விபரம், ஐந்தாண்டு குத்தகைக் காலத்தில் குத்தகை பரப்பில் குவாரி தோண்டுவது தொடர்பான உத்தேச திட்டம், புவி அமைப்பியல் மற்றும் கனிம இருப்பு தொடர்பான விவரம், குவாரியில் பயன்படுத்தப்படும் இயந்திர தளவாடங்கள், இயற்கையான நீர்நிலை அமைவுகள் அருகிலுள்ள காப்பு மற்றும் வனக்காடுகளின் எல்லைகள், சுற்றுச்சூழல் பாதிப்பு தொடர்பாக மதிப்பீடு, காற்று மற்றும் நீர் மாசுபடுதல், குவாரி பகுதியில் மரங்கள் நடுவதின் மூலம் மீளக் கொணர்தல் (Afforestation), குத்தகைப் பரப்பில் சீர்திருத்தம் (Land Reclamation), பயன்படுத்தப்படும் மாசுக்கட்டுப்பாட்டு கருவிகள் (Pollution Control Devices) குத்தகை சிறப்பு நிபந்தனைகள் மற்றும் அரசால் நடைமுறைப்படுத்துவதற்காக கருதக்கூடிய தேவையான இதர விவரங்களும் கண்டிப்பாக இடம் பெற்றிருக்க வேண்டும்.

240

-

0

0

0

9

0

.

9

0

9

0

0

0

0

.

•

0

0

0

0

0

9

9

-

0

(ஊ)மேற்கண்ட விவரங்களுடன் சமர்ப்பிக்கப்பட்ட வரைவு கூரங்க திட்டத்தினை உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, தேனி அவில்குறைல ஒப்புதல் பெற்று ஏற்பளிக்கப்பட்ட நாளிலிருந்து மூன்று மாத காலத்திற்குள் மாநில அளவிலான செயல் மதிப்பீட்டு அதிகார சுற்றுச்சூழல் அமைப்பு (Sate Level Environmental Impact Assessment Authority) (SEIAA)-விடம் சுற்றுச் சூழல் தடையின்மை சான்று பெற தேர்வு செய்யப்பட்ட சங்கத்தினரால் சமர்ப்பிக்க வேண்டும்.

- (எ) தகுந்த காரணங்களின்றி குறிப்பிட்ட காலகெடுவிற்குள் மேற்கண்ட துறையினரின் தடையின்மை சான்று பெற்று மாவட்ட நிர்வாகத்திடம் சமர்ப்பிக்க தவறும் பட்சத்தில், மேற்படி சங்கத்திற்கு கல்குவாரி குத்தகை வழங்க சிறப்பு குழுவினரால் முடிவு செய்யப்பட்ட பரிந்துரையை மாவட்ட ஆட்சியரால் ரத்து செய்யப்பட்டு மேற்படி குவாரியை பொது ஏலத்திற்கு கொண்டு வர நடவடிக்கை எடுக்கப்படும். இது தொடர்பாக எவ்வித முறையீடோ, வேண்டுகோளோ ஏற்றுக் கொள்ளப்படமாட்டாது. அரசுக்கு ஏற்கனவே செலுத்திய 25% குத்தகை தொகை அரசுடைமையாக்கப்படும்.
 - 4 (அ) (i). குவாரி குத்தகை வழங்கப்பட உள்ள சங்கத்தினர் பின் குறிப்பிடப்படும் தொகைகளைச் செலுத்தவும், ஆவணங்களை உரிய காலக்கெடுவுக்குள் கொடுக்குமாறும் கோரி மாவட்ட ஆட்சியரால் அறிவிக்கை அனுப்பப்படும். நிபந்தனை 3-ல் குறிப்பிட்டவாறு கணக்கிடப்பட்ட நான்கு தவணைகளில் முதல் தவணை குத்தகைத் தொகை செலுத்த வேண்டும். மீதமுள்ள குத்தகைத் தொகையை மூன்று தவணைகளாக விதிகளின்படி உரிய காலக்கெடுவிற்குள் செலுத்த சம்மதம் தெரிவித்து ஆணையுறுதி ஆவணம் சமர்ப்பிக்க வேண்டும்.
 - (ii). முழுத் தொகையின் 10 சதவீதம் தொகையை காப்புத் தொகையாக செலுத்த வேண்டும்.
 - (iii). குத்தகைக்கு வழங்கப்பட உள்ள புலத்தின் மீதான பரப்புவரி செலுத்த வேண்டும்.
 - (iv). குத்தகை பெறுவது தொடர்பான மாதிரி வரைவு ஒப்பந்தப்பத்திரம் மற்றும் குத்தகைக்கு வழங்கப்படும் பரப்பைக் காட்டும் புலப்பட நகல் தமிழ்நாடு சிறுகனிம் சலுகை விதிகள், 1959-ன் பின்னிணைப்பு I -ல் கண்டுள்ள படிவத்தில் சரத்துகள் சேர்க்கை, நீக்கம் மற்றும் மாற்றங்கள் செய்து மனுதாரர் சங்கத்தினரின் / குழுவினரின் ஏற்புக்கு அனுப்பப்படும். அவைகளில் குத்தகை பெறவுள்ள சங்கத்தினர் ஒப்பமிட்டு ஏற்புக் கடிதத்துடன் மாவட்ட ஆட்சியருக்கு திருப்பி அனுப்ப வேண்டும்.

சட்டத்தின்படி

0

0

0

0

0

0

0

000000000

0

0

0

0

0

0

0

[2022 ஆகஸ் (v). குவாரி குத்தகை ஒப்பந்தம் நினவேற்ற இந்திய முத்திரைத்திரை மதிப்பிற்கான கணக்கிடப்படும் முத்திரைத்தாள்களை குத்தகை பெறவுள்ள சங்கத்தினர் /

மாவட்ட ஆட்சியருக்கு அனுப்பி வைக்க வேண்டும்.

குழுவினர் தங்கள் செலவில் பெற்று மேல் நடவடிக்கைக்காக

(ஆ). குவாரி குத்தகை ஒப்பந்தம் நிறைவேற்ற இந்திய முத்திரைத்தாள் சட்டத்தின் படி கணக்கிடப்படும் மதிப்பிற்கான முத்திரைத் தாள்களை குத்தகை பெறவுள்ள / குழுவினர் தங்கள் செலவில் பெற்று மேல் நடவடிக்கைக்காக மாவட்ட ஆட்சியருக்கு அனுப்பி வைக்க வேண்டும்.

5 (அ). கோரப்படும் ஆவணங்கள் மற்றும் தொகைகளை அரசுக்கு குத்தகை பெறவுள்ள சங்கத்தினர் / குழுவினர் செலுத்தியபின், அறிவிக்கை மூலம் தெரிவிக்கப்படும் நாளில் மேற்படி சங்கத்தினர் / குழுவினர் மாவட்ட ஆட்சியரின் முன்பு ஆஜராகி குத்தகை ஒப்பந்த ஆவணங்களில் கையெழுத்திட்டபின் குத்தகையாளராக அறிவிக்கப்படுவர்.

(ஆ). குத்தகை ஒப்பந்த பத்திரம் மற்றும் குத்தகை புலப்படம் ஆகியவற்றில் மேற்படி சங்கத்தினர் / குழுவினர் கையொப்பம் இட்ட பின்னர், அவைகளில் மாறுதல் செய்யவோ, அவற்றின்மீது மாற்றுக் கருத்து தெரிவிக்கவோ குத்தகையாளர் சங்கத்தினர் / குழுவினர் அனுமதிக்கப்படமாட்டார்கள்.

- 6 (அ). குத்தகை காலத்தின் ஆரம்பம் மற்றும் முடிவு தேதிகள் ஒப்பந்த ஆவணத்தில் தெளிவாக எழுதப்பட்டிருக்கும்.
- ஒப்பந்த ஆவணத்தில் குறிப்பிடப்பட்டபடி குத்தகை முடிவுறும் அடிப்படையிலும் கோரிக்கையின் தேதிக்கு பின்னர் குத்தகைகால நீட்டிப்பு எந்த செய்யப்படமாட்டா<u>கு</u>.
- (இ). குத்தகை முடிவடையும்போது இக்குத்தகை புதுப்பிக்கப்படமாட்டாது. அவ்வாறு புதுப்பிக்க மனு அனுப்பப்பட்டால் அது விசாரணையின்றி தள்ளுபடி செய்யப்படும்.
- (ஈ). பகுதி II-ன் பத்தி 1 முதல் 5 வரை உள்ள நிபந்தனைகளை நிறைவேற்றாமல் சங்கத்தினர்/குழுவினர் குவாரிப் பணி செய்தால், அப்பணி குத்தகை பெறாமல் செய்ததாகக் கருதப்பட்டு விதிமுறைகளின்படி மேல்நடவடிக்க தொடரப்படும்.

•

•

•

•

0

0

0

0

0

0

0

- 7. மாவட்ட ஆட்சியருடன் இணைந்து முத்திரைத்தாளில் கையெர்ப்பமிட்ட குத்தகை ஆவணத்தை, குத்தகைதாரர் சங்கத்தினர் / குழுவினர் தங்கள் செலவில் அமியல் சார்பதிவாளர் அலுவலகத்தில் பதிவு செய்து பதிவு செய்யப்பட்ட ஆவணத்தின் அசலை மாவட்ட ஆட்சியரிடம் ஒப்படைக்க வேண்டும்.
- குவாரி குத்தகை பெறும் சங்கத்தினர் ஏற்கனவே செலுத்திய முதல் 8. தவணை குத்தகை தொகை போக மீதமுள்ள மூன்று சமதவணைகளை மூன்று மாதத்திற்கு ஒரு தவணை வீதம் குத்தகை வழங்கிய முதல் ஒன்பது மாத காலத்திற்குள் செலுத்த வேண்டும். அவ்வாறு, செலுத்தத் தவறினால், குவாரி குத்தகை மாவட்ட ஆட்சியரால் ரத்து செய்து ஆணையிடப்படும். மேலும், அந்நாள் வரை செலுத்தப்பட்ட குத்தகைத் தொகை மேற்கண்டவாறு குத்தகைத் தொகை செலுத்தாத முழுவதும் அரசுடைமையாக்கப்படும். காரணத்தினால் ரத்து செய்யப்பட்ட குவாரி குத்தகை பெற்ற சங்கத்தினர் தமிழ்நாடு சிறுவகைக் கனிமச் சலுகை விதிகள் 1959 விதி எண் 8-ன் உள்விதி (10-A)(c)-ன் தகுதியற்றவர் முடிவு செய்யப்பட்டு. குவாரி அடிப்படையில் குத்தகை பெற **6T60T** எதிர்காலத்தில் எப்போதும் அச்சங்கத்தினரின் மனுக்கள் குவாரி குத்தகை ஏற்றுக்கொள்ளப்படாமல் தளு்ளுபடி செய்யப்படும்.

பகுதி !!! - குவாரிப்பணி செய்வது தொடர்பான விதிமுறைகள்

- குவாரிப் பணி செய்வதற்கான பொது விதிமுறைகள், மாவட்ட ஆட்சியருடன் சங்கத்தினர் / குழுவினர் கையொப்பமிடும் குத்தகை ஆவணத்தில் குறிப்பிடப்பட்டிருக்கும்.
- 2. மேலும் ஒவ்வொரு தனி குத்தகை புலத்திற்கும் சிறப்பு நிபந்தனைகள் ஏதும் இருக்குமானால் அவைகள் மாவட்ட ஆட்சியரால் குறிப்பிடப்படும் பணி அனுமதி ஆணையில் குறிக்கப்பட்டிருக்கும். குத்தகை பெற்றவர் அவ்வனுமதி ஆணையை ஏற்று நடக்க வேண்டும்.
- மேற்குறிப்பிட்டவை தவிர பின்வரும் சிறப்பு நிபந்தனைகள் குத்தகைதாரர் சங்கத்தினரால் / குழுவினரால் குத்தகை காலத்தில் கடைபிடிக்கப்பட வேண்டும்.
 - நிதியாண்டிற்கும், குத்தகையாளர் வைவொரு குத்தகைப் (A). பகுதியில் வெட்டியெடுத்து வெளியில் அனுப்பும் சிறுவகைக் கனிமத்திற்கு உரிய கணக்குகளை தேனி மாவட்ட புவியியல் மற்றும் சுரங்கத்துறை உதவி இயக்குநர், குறிப்பிடும் படிவத்தில் சுரங்க விவரப் பதிவேடு ஏற்படுத்தி விவரங்கள் எழுதி ஒவ்வொரு மாதத்திற்கும் விவரப்பட்டியல் தயாரித்து அதனை அடுத்த மாதம் உதவி புவியியல் இயக்குநர், மற்றும் தேதிக்குள் சுரங்கத்துறை, தேனி அவர்களுக்கு அனுப்ப வேண்டும்.

0

0

0

0

0

0

0

0

.

0

0

0

- (ஆ). குத்தகை காலத்தில் ஏற்படுத்தப்பட்ட சுரங்க விவரப்பதிவேக்களை குத்தகை பெற்ற சங்கத்தினர் / குழுவினர் குத்தகை கிலிந்டாலி முடிந்த பின்னரும் பாதுகாத்து அரசு அலுவலர்கள் ஆய்வுக்கு கேட்கும்போது ஒப்படைக்க வேண்டும்.
- (இ). குத்தகையாளர் கனிமங்களை வெளியில் அனுப்ப அனுப்புகை சீட்டுகளில் (பில்புக்) துணை இயக்குநர் ஒப்புதல் பெற வரும்போது உரிய மனு அளித்து, சீனியரேஜ் தொகையைச் செலுத்தி அனுப்புகை சீட்டுகளில் உரிய அலுவலரின் மேலொப்பம் பெற்றுச் சென்று பயன்படுத்த வேண்டும்.
- (FF). கனிமங்களை குத்தகைப் பகுதியிலிருந்து வெளியில் அனுப்பும்போது அனுப்பப்படும் கனிமத்தின் வகை, அதன் அளவு, கனிமம் எடுத்துச் செல்லும் வாகனத்தின் வகை மற்றும் பதிவு எண். கனிமம் கொண்டு சேர்க்கப்படும் இடம், குவாரியிலிருந்து வாகனம் புறப்படும் நேரம் மற்றும் சென்றடையும் உத்தேச நேரம் ஆகிய விவரங்களை அசல் சீட்டில் ஒரே பேனாவாலும் நகலை கார்பன் பேப்பர் மூலமும் எழுதி அசலை வாகனத்துடன் அனுப்பி நகலை (அடிக்கட்டு) அடுத்த முறை அனுமதிபெற வரும்போது ஆய்வுக்கு காண்பித்துவிட்டு திரும்பப் பெற்றுச் சென்று பாதுகாப்பாக வைத்திருக்க வேண்டும்.
- அனுப்புகைச் சீட்டில் எல்லா விவரவினாக்களுக்கும் விவரங்கள் (2_). எழுதப்படாமலோ திருத்தப்பட்டோ அல்லது அல்லது எழுதப்பட்டோ அல்லது வெவ்வேறு மையினால் எழுதப்பட்டிருப்பின் அந்த அனுப்புகைச் சீட்டு செல்லுபடியாகத்தக்கதல்ல என்பதுடன், அச்சீட்டை பயன்படுத்தி எடுத்துச் செல்லப்படும் கனிமம். அனுமதியின்றி எடுத்துச் கருதி, செல்லப்படுவதாக விதிமுறைகளின்படி நடவடிக்கை எடுக்கப்படும்.
- (ஊ). குத்தகை பகுதியிலிருந்து மெருகேற்றுவதற்கு தகுந்த கிரானைட் கற்துண்டங்கள் வெட்டுதல் கூடாது. மெருகேற்றுவதற்கு தகுந்த கிராணைட் கற்துண்டங்கள் குத்தகை பகுதியில் வெட்டியெடுக்கப்பட வாய்ப்பு ஏற்படுமானால் தற்போதைய குவாரி குத்தகை ரத்து செய்யப்படும்.

0

0

0

0

0

0

•

0

.

0

- (எ). குத்தகை பகுதிக்குச் சென்றுவர பாதைவத்திகளை குத்தகையாளர் சங்கம் / குழு தனது சொந்த பொழுப்பில், மூ ஏற்படுத்திக் கொள்ள வேண்டும்.
- (ஏ) குத்தகை தொடர்பான விவரங்கள் அடங்கிய தகவல் பலகையை குவாரி முகப்பில் நிரந்தரமாக நட்டு வைத்து பாதுகாப்பதுடன் குவாரி எல்லைகளை தெளிவாக காட்ட உயரமான கற்தூண்கள் நட்டு வண்ண மையினால் அடையாளபிட்டு பாதுகாக்கப்பட வேண்டும்.
- (ஐ) குவாரியில் பணிபுரியும் தொழிலாளர்களை தொழிலாளர் நலவாரியத்தில் பதிவு செய்தும், மற்றும் பிரதமர் மந்திரி பாதுகாப்பு காப்பீடு திட்டத்தில் பதிவு செய்து புவியியல் மற்றும் சுரங்கத்துறையிடம் சமர்ப்பிக்கப்படவேண்டும்.
- (ஒ) ஆணையர் புவியியல் மற்றும் சுரங்கத்துறை சென்னை, அவர்களின் கடிதம் ந.க.எண்.2921/எம்.எம்.4/2016, நாள்:09.03.2021-ன்படி குவாரிகுத்தகை புலத்தைச்சுற்றி எல்லைக்கற்கள் நட்டு அதனை (DGPS) மூலம் அளவீடு செய்து அதன் அறிக்கையை இவ்வலுவலகத்தில் சமர்ப்பிக்கப்படவேண்டும்.
- குத்தகையாளர் குவாரிப்பணிக்கு குழந்தை தொழிலாளர்களை வேலைக்கு அமர்த்துதல் கூடாது.
- 5. குத்தகை காலத்தில் குத்தகை ஒப்பந்த சரத்துக்கள், சுற்றுச்சூழல் செயல் விளைவு மதிப்பீட்டு குழு மற்றும் தமிழ்நாடு மாசுக்கட்டுப்பாட்டு வாரியம் ஆகியோரின் பரிந்துரையில் தெரிவிக்கப்பட்டுள்ள அனைத்து நிபந்தனைகளையும் குத்தகை காலம் முழுவதும் முறையாக கடைபிடித்து குவாரிப்பணி செய்ய வேண்டும். விதி மீறல்கள் உறுதி செய்யப்பட்டால் குத்தகையை உடனடியாக ரத்து செய்யப்படும் என்பதுடன் அரசுக்கு செலுத்திய குத்தகை தொகை முழுவதும் அரசுடைமையாக்கப்படும்.

அட்டவணை

கல்குவாரிப் பட்டியல்

விண்ணப்பம் வந்து சேருவதற்கு கடைசி நாள் 2022 ஆம் ஆண்டு செப்டம்பர் மாதம் 15-ம் நாள் மாலை 05.00 மணி.

வ. என்.	வட்டம்	கிராமம் -	புல எண்.	மொத்தப் பரப்பு	குத்தகை விடும் பரப்பு	வகைப்பாடு
1	உத்தமபாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-1	102.61.0	2.63.0	அரசு புறம்போக்கு பழைய குவாரி
2	உத்தபபாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-2	102.61.0	2.37.0	அரசு புறம்போக்கு பழைய குவாரி
3	உத்தபபாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-3	102.61.0	1.00.0	அரசு புறம்போக்கு பழைய குவாரி
4	உத்தம பாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-4	102.61.0	2.50.0	அரசு புறம்போக்கு பழைய குவாரி
5	உத்தபபாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-5	102.61.0	2.50.0	அரசு புறம்போக்கு பழைய குவாரி
6	உத்தமபாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-6	102.61.0	2.50.0	அரசு புறம்போக்கு பழைய குவாரி

ஒப்பம் மாவட்ட ஆட்சித்தலைவர், தேனி.

தேனி. 16.08.2022.

0

0

0

0

0

9

0

-

0

0

இணைப்பு - VI (B)

(விதி 8 (10-A) ஐ காணவும்)

அரசு புறம்போக்கு நிலங்களில் உள்ள சாதாரணக் கல் குவாரிகளை (SGSY) குழுக்கள் / விடுவிக்கப்பட்ட கொத்தடிமைத் தொழிலாளர்களால் அமைக்கப்பட்ட சங்கம் ஆகியவற்றிற்கு குத்தகை உரிமம் வழங்கக் கோரும் மனு

(அசல் மற்றும் 2 நகல்களில் இணைப்புகளுடன் அளிக்க வேண்டும்)

அனுப்புநர்	் பெறுநர்:	
	மாவட்ட ஆட்சியர்,	
	தேனி மாவட்டம்,	
	தேனி.	

அம்மா,

மனு தொடர்பான விவரங்கள் கீழே கொடுக்கப்பட்டுள்ளது:-

- பொன்விழா கிராம சுய வேலைவாய்ப்பு : திட்டக் (SGSY) குழு / விடுவிக்கப்பட்ட கொத்தடிமைத் தொழிலாளர் சங்கத்தின் பெயர் மற்றும் முகவரி
- 2. குழு / சங்கம் தமிழ்நாடு கூட்டுறவு : அ) சட்டம் சங்க 1983 (தமிழ்நாடு ′ சட்டம் 1983) 30, அல்லது தமிழ்நாடு சங்கங்கள் பகிவச் சட்டம் 1975 (தமிழ்நாடு சட்டம் 27. 1975) சான்றொப்பம் பெற்ற பதிவுச் சான்றிதழ் இணைக்கப்பட வேண்டும்)-ன்படி பகிவ செய்ததற்கான பதிவு எண்:
 - ஆ) குழு / சங்க உறுப்பினர் பெயர் : மற்றும் முகவரிப் பட்டியல் (உறுப்பினர் பற்றிய விவரம் மற்றும் உறுப்பினர் எண் விவரம் இணைக்கப்பட வேண்டும்
 - குழு / சங்கம் செயல்பட 247
 அனுமதிக்கப் பட்டுள்ள பஞ்சாயத்து
 விவரம்

0

0

•

•

•

3. பனுக்கட்டணம் செலுத்திய விவரம்

(சலான் எண் மற்றும் நாள்)

 மனுதாரர் சங்கத்தினர் வெட்டி எடுக்க : விரும்பும் சிறுகனியம்

5. கல்குவாரி தேவைப்படும் குத்தகை காலம் :

6. விண்ணப்பிக்கும் மொத்த பரப்பு

 குத்தகைக்கு மனு செய்யப்படும் புலம் : பற்றிய விவரம்

வட்டம்	கிராமம்	பஞ்சாயத்து விவரம்	புல எண்.	பரப்பு ஹெக்டேரில்
(1)	(2)	(3)	(4)	(5)

 ஏற்கனவே மனுதாரர் குழு / சங்கத்திற்கு தமிழ்நாட்டில் குவாரி குத்தகை இருந்தால் அதன் விவரம்

 குழு / சங்கத்திற்கான வருமான வரி நிலுவையின்மை சான்று இணைக்கப்பட்டுள்ளதா? இல்லையெனில் கீழ்க்கணடவற்றுக்கான உறுதிமொழி ஆவணம் இணைக்கப்பட்டுள்ளதா?

- அ) நடப்பு ஆண்டு வரை வருமான வரி விவரப் பட்டியல் அத்துணை கொடுக்கப்பட்டுள்ளதா?
- ஆ) துறையினரால் கணக்கிடப்பட்ட வருமானவரி செலுத்தப் பட்டுள்ளதா?
- இ) 1961-ம் வருடத்திய வருமான வரி சட்டப்படி சுய மதிப்பீடு செய்து வரி செலுத்தப்பட்டுள்ளதா?
- 10. அ) மனுதாரர் குழு / சங்கத்திற்கு : சுரங்க வரி நிலுவை இல்லை என்பதற்கான சான்று பெற்றுள்ளனரா? ஆம் எனில் நகல் இணைக்கவும்
 - ஆ) இந்த மனு கொடுக்கப்படும் நாளில் : சங்கங்களுக்கு சுரங்கக் குத்தகை இல்லை எனில் அதற்கான உறுதிமொழி ஆவனம் இணைக்கப்பட வேண்டும்.

11.

9

9 9

9

0

0

0

9

0

0

0

0

இது தவிர மனுதாரர் வேறு விவரங்கள் ஏதேனும் கொடுக்க விரும்பினால் இங்கு குறிப்பிடவும்

மேலே கொடுக்கப்பட்டுள்ள விவரங்கள் யாவும் உண்மையெனவும், இது தவிர, வேறு விவரங்கள் அரசினால் கோரப்படுமானால் அதனை அளிக்க தயாராக உள்ளோம் எனவும் உறுதியளிக்கிறோம். காப்புத் தொகையை செலுத்தத் தயாராக உள்ளோம் எனவும், குத்தகை பெறுவது தொடர்பாகவும், குவாரியில் சாதாரண கற்கள் வெட்டுவது தொடர்பாகவும் 1959-ம் வருடத்திய தமிழ்நாடு சிறுகனிம் சலுகை விதிகளையும், மாவட்ட அரசிதழில் வெளியிடப்பட்டுள்ள விதிகளையும் நன்கறிவோம் என்றும் உறுதியளிக்கிறோம்.. சாதாரணக்கற்கள் வெட்ட வழங்கப்படும் கல்குவாரியில் மெருகேற்றி அழகுப்படுத்தப் பயன்படும் வகையில் கிரானைட் கற்துண்டங்கள் எந்த அளவிலும் வெட்டமாட்டோம் எனவும் உறுதியளிக்கிறோம்.

தாங்கள் உண்மையுள்ள,

இடம் நாள்

மனுதாரர் கையொப்பம்

அனுப்புநர் மாவட்ட ஆட்சித்தலைவர், தேனி.

0

0

0

0

•

•

000000000000

0

•

பெறுநர் தி/ள்.அன்னை சத்தியா மகளிர் சுய உதவிக்குழு், திருமதி.உஷா,தலைவி, எண்.49/1, பஞ்சமர் தெரு, காமயகவுண்டன்பட்டி, உத்தமபாளையம் வட்டம், கேனி-625 516.

ந.க.எண்.1068/கனிமம்/2022, நாள்:10.08.2023.

பொருள்:

கனிமங்களும், குவாரிகளும் - சிறுவகைக் கனிமம் - உடைகல் -உத்தமபாளையம் மாவட்டம் 1 காமயகவுண்டன்பட்டி கிராமம் - அரசு புறம்போக்கு புல எண். 1372/1 (பகுதி-3) - விஸ்தீரணம் 1.00.0 ஹெக்டேர் பரப்பில் சத்தியா மகளிர் தி/ள்.அன்னை சூய விண்ணப்பித்தது அடிப்படையில் முன்னுரிமை நேரடி கற்குவாரி குத்தகை உரிமம் வழங்க சிறப்பு குழுவால் தேர்வு செய்யப்பட்டது - ஏற்பளிக்கப்பட்ட சுரங்க திட்டம் மற்றும் சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் ஒப்புதல் பெற்று சமர்பிக்க கோருதல் - தொடர்பாக.

பார்வை:

- வருவாய் கோட்டாட்சியர் (பொ), உத்தமபாளையம், கடிதம் ந.க.எண்.1841/2020/அ4, நாள்:24.11.2020.
- வனஉயிரின காப்பாளர், மேகமலை வனஉயிரின கோட்டம், தேனி கடிதம் எண்.1532/2020/டி1, நாள்:10.12.2020.
- தேனி மாவட்ட அரசிதழ் சிறப்பு வெளியீடு எண்.16, நாள்:18.08.2022.
- தி/ள்.அன்னை சத்தியா மகளிர் சுய உதவிக்குழு, திருமதி.உஷா, தலைவி, உத்தமபாளையம் விண்ணப்பம் நாள்.15.09.2022.
- 5. இவ்வலுவலக குறிப்பாணை ந.க.எண்.1068/கனிமம்/2022, நாள்:10.04.2023.
- தி/ள்.அன்னை சத்தியா மகளிர் சுய உதவிக்குழு, மனு நாள்:26.04.2023.

பார்வை 1 மற்றும் 2-ல் காணும் பரிந்துரை அறிக்கையின்படி, பார்வை 3-ல் காணும் தேனி மாவட்ட அரசிதழ் சிறப்பு வெளியீடு எண்.16, நாள்:18.08.2022-ல் தேனி மாவட்டம், உத்தமபாளையம் வட்டம், காமயகவுண்டன்பட்டி கிராமம், அரசு புறம்போக்கு எண். 1372/1 (பகுதி-3) விஸ்தீரணம் 1.00.0 ஹெக்டேர் பரப்பில் மகளிர் குவாரி உரிமம் விண்ணப்பங்கள் குத்தகை வழங்க நேரடி சங்கங்களுக்கு வரவேற்கப்பட்டது. அதனை தொடர்ந்து, பார்வை 4-ல் காணும் தி/ள்.அன்னை சத்தியா தேனி மாவட்டம், உத்தமபாளையம் உதவிக்குழுவானது வட்டம். மகளிர் **ЖШ** காமயகவுண்டன்பட்டி கிராமம், அரசு 250போக்கு புல எண். 1372/1 (பகுதி-3) விஸ்தீரணம் 1.00.0 ஹெக்டேர் பரப்பு கல்குவாரிக்கு விண்ணப்பம் செய்தது.

மாவட்ட ஆட்சித்தலைவர் அவர்களின் தலைமையில் அமைக்கு**ப்புல் APP**A சிறப்புக்குழுவானது தேனி மாவட்டம், உத்தமபாளையம் வட்டம், காமயகவுண் கிராமம், அரசு புறம்போக்கு புல எண். 1372/1 (பகுதி-3) விஸ்தீரணம் 1.00.0 இதுக்கோ நி பரப்பில் உடைகல் குவாரிப்பணி செய்ய தி/ள்.அன்னை சத்தியா மகளிர் உதவிக்குழுவினருக்கு 5 (ஐந்து) ஆண்டுகளுக்கு கற்குவாரி குத்தகை உரிமம் 🔉 பரிந்துரை செய்து மாவட்ட ஆட்சியருக்கு 27.02.2023 அறிக்கை அன்று சமர்ப்பிக்கப்பட்டது.

எனவே. வருவாய் கோட்டாட்சியர், உத்தமபாளையம், காப்பாளர், மேகமலை வனஉயிரின கோட்டம், தேனி மற்றும் சிறப்பு குழுவின் பரிந்துரை அறிக்கையின் அடிப்படையில், விண்ணப்பதாரா தி/ள்.அன்னை சத்தியா மகளிர் சுய உதவிக்குழுவினருக்கு தேனி மாவட்டம், உத்தமபாளையம் வட்டம், காமயகவுண்டன்பட்டி கிராமம், அரசு புறம்போக்கு புல எண். 1372/1 (பகுதி-3) விஸ்தீரணம் 1.00.0 ஹெக்டேர் சாதாரண உடைகற்கள் வெட்டியெடுத்து குவாரிப்பணி செய்ய தமிழ்நாடு சிறுகனிம சலுகை விதிகள் 1959-ம் விதி 8 (10-A) (b) (iii)-ன்படி 5 (ஐந்து) ஆண்டுகளுக்கு கற்குவாரி உரிமம் வழங்குவதற்குரிய தகுதியான நிலப்பரப்பாக கருதி குவாரி உரிமம் வழங்க ஏதுவாக 1959ம் வருடத்திய தமிழ்நாடு சிறுகனிம விதிகள், விதி எண்.41-ன்படி ஏற்பளிக்கப்பட்ட சுரங்கத் திட்டத்தினை 90 தினங்களுக்குள்ளும் அதனை தொடர்ந்து, 1959-ம் வருடத்திய தமிழ்நாடு சிறுகனிம விதிகள், விதி எண்.42-ன்படி சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் இசைவினையும் பெற்று சமர்பிக்க வேண்டும்.

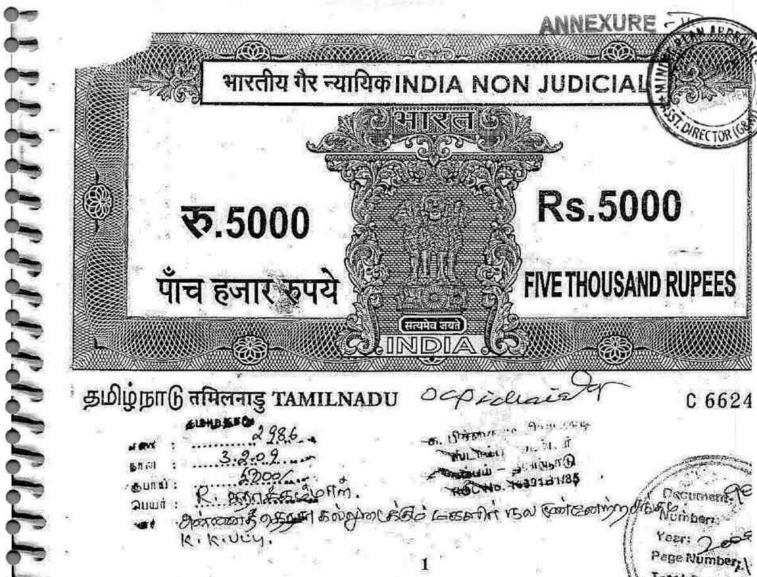
நிபந்தனைகள்:

0

0

0

000000000


- அருகிலுள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டரும், அரசு புறம்போக்கு நிலங்களுக்க 10 மீட்டரும் பாதுகாப்பு இடைவெளி விட்டு குவாரிப் பணி மேற்கொள்ள வேண்டும்.
- அருகிலுள்ள பட்டாதாரர்களுக்கு எவ்வித இடையூறுமின்றி / அருகிலுள்ள பட்டா மற்றும் அரசு புலங்களில் எவ்வித ஆக்கிரமிப்பும் இன்றி குவாரிப்பணி மேற்கொள்ள வேண்டும்.
- கற்குவாரி குத்தகை உரிமம் பெறுவதற்கு முன்பாக ஆணையர், புவியியல் மற்றும் சுரங்கத்துறை, சென்னை அவர்களின் கடிதம் ந.க.எண்.2921/எம்.எம்.4/2016, நாள்:09.03.2021-ல் தெரிவிக்கப்பட்டுள்ளவாறு குத்தகைதாரர் குவாரிபணி தொடங்குவதற்கு முன்னர் உரிமம் வழங்கப்பட்ட எல்லைகளை DGPS முறையில் அளவீடு செய்து குறுந்தட்டில் பதிவு செய்து அறிக்கையாக சமர்ப்பிக்க வேண்டும்.

ஒம்.(XXXXXXXXXXXXX) மாவட்ட ஆட்சித்தலைவர், தேனி.

/2.5.2.U./

மாவட்ட ஆட்சித்தலைவருக்காக, தேனி.

251

Distance of Same of the Creation - scatter D 160 No. 7639181/85

· Donocon & OFFIN BODD OF BOD LESSANT YOU CONTERN

ANNEXURE-I

(SEE RULE 8 AND 8(10-A)

(LEASE DEED/FOR QUARRING AND CARRYING AWAY MINOR

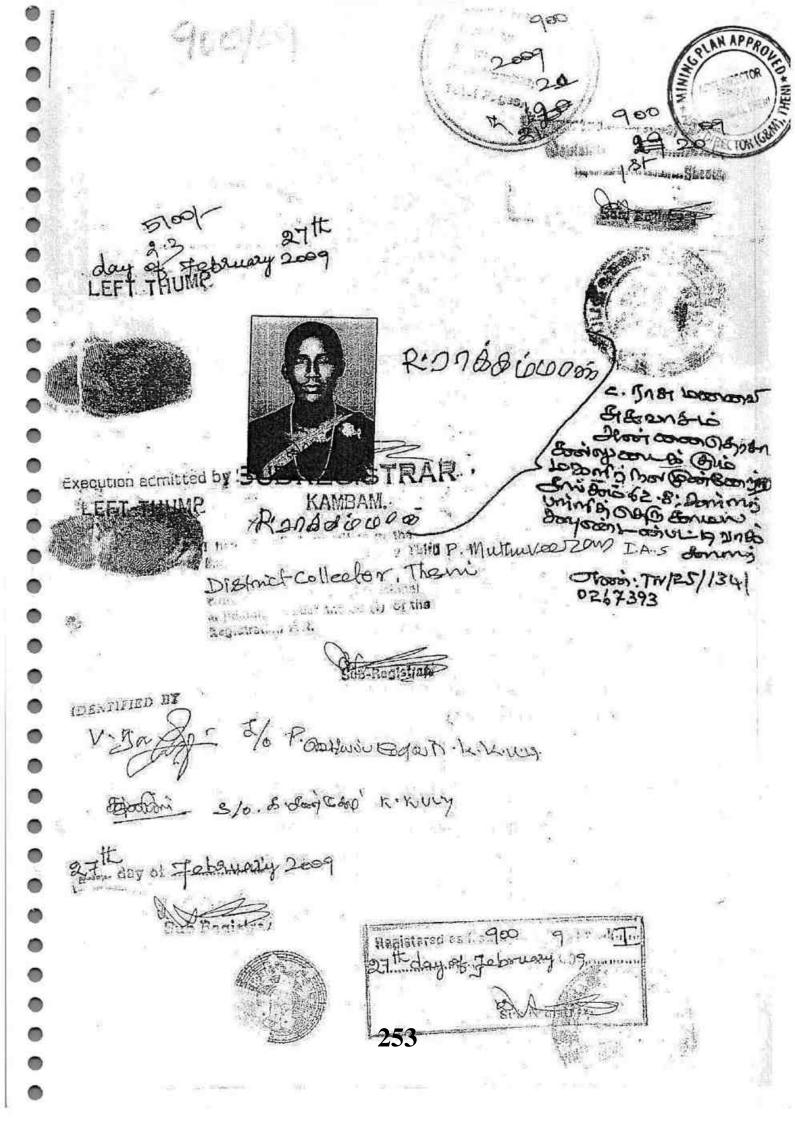
MINERALS BY SELF HELP GROUP FORMED UNDER SGSY)

Theni Collector's Proceedings Roc. No.444/2008/Mines, dated: 22.01.2009

DAY OF Debruary 2009 THIS INDENTURE MADE THIS

between the Governor of Tamil Nadu (hereinafter referred to as the "Lessor"

which expression shall where the context so admits include his successors in


R. 27 B B & 6 4 1 000

LESSEE

THENI DISTRICT THENI

Number

Total Pages

தமிழ்நாடு तमिलनाडु TAMILNADU

e. Paras res Burgina

SILL IN THE PILE

51.46 - 51.48.18

3.2.09 100/

RUC No. 10-05, 1785 · 936massabhnt. · Alimentication point point both bomin 1500 Gooden

K. K. Wy.

office and assigns) on the ONE part and Annai Therasa Kalludaikkum Mahalir through its president Tmt. R. Rakkammal w/o E. RASu Nala Munnetra Sangam, 62-8, Kallar School Street, Kamayagoundanpatti,

Uthamapalayam Taluk, Theni District (hereinafter called the "Lessee" which expression shall where the context so admits include her, executors, administrators, legal representatives and assigns) on the other part.

RONA Discon

LESSEE

OLLECTOR THENI DISTRICT THENI

Jun

पाँचःसो रुपये

RUPEES

Rs. 500

INDIA NON JUDICIAL

தமிழுநாடு तमिलनाडु TAMILNADU உறம்மக்கி

Product - M. W. W. temming outgon soughoused Lossoff 1500 College

k. k. vey.

WHEREAS the lessee has applied as per the District Gazette extraordinary Notification No.3, dated 21.02.2008 (hereinafter referred as "the Government") for a lease of lands in Theni District for the purpose of mining for Rough stone and has deposited with the Collector of Theni the sum of Rs.54,000/- (Rupees fifty four thousand only) [Rs.5,000/- KVP No.52BC 856589, Rs.5,000/- KVP No.52BC 856590, Rs.5,000/- KVP No.52BC 856591,

RIGHELOWAN LESSEE

THENI DISTRICT THENI

white was

AIDNI किशास

ਨ. 500

FIVE HUNDRED RUPEES

पाँच सौ रुपये

Rs. 500

Number:

INDIA NON JUDICIAL

्त्रितंकात पृथ्वतियात्रात्रांबक्

SULTIBLE ASSESSED

SIEULO - ALMINA

தமிழ்நாடு तमिलनाडु TAMILNADU Spillacole

.. 2987 3.2.09

500/

Of Marmed O BOSH BOUGHT SOLD BOTH TOWN OF THE PARTY OF TH k. k. wy

Rs.5,000/- KVP No.52BC 856592, Rs.5,000/- KVP No.52BC 856593,

Rs.5,000/- KVP No.52BC 856594, Rs.5,000/- KVP No.52BC 856595,

Rs.5,000/- KVP No.52BC 856596, Rs.5,000/- KVP No.52BC 856597,

Rs.5,000/- KVP No.52BC 856598, Rs.1,000/- KVP No.23AB 150435,

Rs.1,000/- KVP No.23AB 150436, Rs.1,000/- KVP No.23AB 150433,

R'DIEBGOOM

LESSEE

THENI DISTRICT THENI

- Rs.1,000/- KVP No.23AB 150434, dated 02.02.2009] Main Post Office, Theni
- as security for the due and faithful performance by the lessee of covenants and
- conditions on the part of lessee hereinafter contained.

And whereas the lessor has agreed to grant the lessee, a lease of the lands and premises hereinafter described.

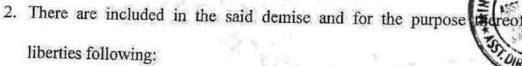
R'DABBGCOSOB

தமிழ்நாடு तमिलनाडु TAMILNADU

TOTAL PROPERTY OF THE PARTY OF

B. Miser my Durnisty

ROC No. 1943 ROC No. 1949 NAS F an illumin


3.2.09.17" 500/2.11" R. 60526561811

BEN EUROPHOLESE, PROUD LEN BOOKS

は、たためとり。 OW THESE PRESENTS WITNESS AS FOLLOWS:-

 The lessor hereby demises to the lessee all those several pieces or parcels of land situated in S.F.No.1372/1 Part-III over an extent of 2.50.0 hectares in Kamayagoundanpatti Village, Uthamapalayam Taluk, Theni District in the State Tamil Nadu being more particularly described in the schedule hereunder written and delineated in map or plan hereunto annexed and therein coloured.

RITTE BUGGES

- (1) To get from the said demised pieces of land.
- (2) For the purpose aforesaid to use any water in or under the said demised pieces of land to divert the same and to make of construct any water courses or ponds so, however, that nothing shall be done in the exercise of this authority which shall interfere with the rights of any adjoining owners or tenants of the lessor in respect of such water.
- (3) Generally to do all things which shall be convenient or necessary for getting the Rough stone hereby authorised to be got and for removing and disposing thereof as aforesaid.
- 3. There are expected from and reserved to the lessor out of this demise,
 - All earth minerals and other sub-stances not hereinbefore expressly authorised to be get from the demised lands by the lessee,
 - (2) Liberty for the lessor or other persons authorised by her to search for, work, get, carry away and dispose of the excepted minerals and other substances and for such purposes to have the right of ingress, egress and regress over the said demised pieces of lands and to make erect and use all pits, machinery, buildings, roads and other necessary works and conveniences provided that the rights hereby reserved shall be

R'ONGBOORG

exercised in such a way as to cause as little obstruction as possible to the lessee, in the use and enjoyment of their rights hereunder and that reasonable compensation for damages caused by any such obstruction shall be paid to the lessee the amount thereof in the case of difference to be settled by arbitration as hereinafter provided.

- 4. The said premises shall be held by the lessee for the term of Three Years from the 23rd day of planary 2009 to the 22rd day of clowery 2012 which shall however be determinable as hereinafter provided.
- 5. The lessee shall pay during the said term, the land assessment the cess and Seigniorage fee or deed rent whichever is greater, for the minerals removed or consumed at the rates prescribed from time to time in Appendix-II.
 - (1) The Lessee has to pay Rs.5,37,304/- (Rupees five lakhs thirty seven thousand three hundred and four only) towards one time lease amount for the said lease period. The above one time lease amount should be paid in four equal installments. The amount payable under each installment of Rs.1,34,326/- (Rupees one lakh thirty four thousand three hundred and twenty six only) should be paid fifteen days before the date of commencement of succeeding quarter of the first year lease period.
- (2) The said Seigniorage fee as prescribed in Appendix-II from time to time shall be paid the same is removed from the said demised pieces of land.

R. On B. B. 6 6000

THE STANTANT OF SANDANT STANTANT SANDANT SANDA

- 6. The Lessee hereby covenants with the lessor as follows:
 - To pay the assessment, seigniorage and other amount on the days and in the manner aforesaid.
 - (2) To bear, pay and discharge all existing and future rates, taxes, assessment, duties, impositions, outgoings and burdens whatsoever imposed or charges upon the demised premises or the produce thereof or the land assessment, the cess and the seigniorage fee hereby reserved or upon the owner of occupier in respect thereof or payable by either in respect thereof except such charges or impositions as the lessee is or may hereby be by law exempted from.
 - (3) Before digging or opening any part of the said demised pieces of land for Rough Stone carefully remove the surface soil and lay aside and store the same in some convenient part of the said demised piece of land until the land from which it has been removed is again restored to a state, fit for cultivation as hereinafter provided.
 - (4) To effectually fence off the same demised place of land from the adjoining lands and to keep the fences in good repairs and condition.
 - (5) Not to assign underlet or part with the possession of the demised premises or any part there of without the written consent of the lessor first obtained.

LESSEE

0000000

- (6) After working out any part of the said demised pieces of land for thwith to level the same and replace the surface soil thereof and slope the edges where necessary so as to afford convenient connection with the adjoining land.
- (7) That the lessee shall keep correct accounts in such form as the Collector shall from time to time require and direct showing the quantities and other particulars of the mineral obtained by the lessee from the said mining operations therein and shall from time to time when so directed by the Collector prepare and maintain complete and correct plans of all mines and workings in the said lands and shall allow any officer thereunto authorised by the Government from time to time and at any time, to examine such accounts and any such plan and shall when so required supply and furnish to the Government all such information and returns regarding all or any of the matters aforesaid the Government shall from time to time require and direct.
- (8) That the lessor's agents, servants and workmen shall be at liberty at all reasonable times during the said term to inspect and examine the works carried on by the lessee under the liberties hereinbefore granted and the lessee shall and will from time to time and at all times during the said

R'208BGGOOD

LESSEE

CARLES OF PARTIES AND STANSFORD PROPERTY SAND

term hereby granted conform to and abserve all orders and regulation which the lessor or his authorised agent as the result of such inspection may from time to time see fit to impose to keep the premises in good and substantial repair order and condition or in the interest of public health and safety.

- (9) That the lessee shall not without the express sanction in writing of the Collector cut down or injure any timber or trees on the said lands but she may clear away brush wood or undergrowth which interferes with any operation authorised by these presents.
- (10) That if the lands shall be used for any purpose other than mining for Rough Stone or, if they are not used for the said purpose the lessor shall be at liberty at any time to terminate the lease without notice.
- (11) That this lease may be terminated in respect of the Whole or any part of the premises by six months notice in writing on either side.
- (12) That on such determination the lessee shall have no right to compensation of any kind.
- (13) That the land assessment, cess and seigniorage payable under these presents shall be recoverable under the provisions of the Tamil Nadu Revenue Recovery Act, 1864 (Tamil Nadu Act II of 1964) of any subsisting statutory modification thereof.

R'20 & B 6 6 6 0 00

LESSEE

THENI DISTRICT THENI

- (14) At the determination of the lease to deliver up the demised premises in such condition as shall be in accordance with the provisions of these presents save. That the lessee shall, if so required by the lessor, restore in manner provided by the foregoing covenant in that behalf the surface of any part of the land which has been occupied by the lessee for the purpose of works hereby authorised and has not been so restored.
- (15) That the lessee shall abide by the conditions laid down in the payment of wages act, 1936 the Mines act, 1952 (Central Act XXXV of 1952) and the Indian Explosives Act, 1884 (Central Act IV of 1884) and the Theni District Gazette (Extra Ordinary) No.3, dated 21.02.2008.
- 7. The lessor hereby covenants with the lessee that the lessee paying the land assessment, cess and Scigniorage fee hereby reserved and observing and performing the several covenants and stipulations on the part of that lessee herein contained shall peacefully hold and enjoy the premises, liberties and powers hereby demised and granted during the said term without any interruption by the lessor or any persons rightfully claiming under or in trust for her.
- 8. IT IS HEREBY FURTHER AGREED BETWEEN THE PARTIES AS FOLLOWS:-

R'DIBBGODE

& COLLECTOR THENI DISTRICT THENI

Mus

(1) If any part of the land assessment, cess and seigniorage hereby restricted shall be unpaid for thirty days after becoming payable (whether formally demanded or not) or if the lessee which the demised premises or any part thereof remain vested in them shall become insolvent or if any covenant on the lessee's part herein contained shall not be performed or observed, then and any of the said cases it shall be lawful for the lessor at any time thereafter to declare the whole or any part of the said security deposit of Rs.54,000/- to be forfeited and also to reenter upon the demised premises or any part, thereof in the name of the whole and thereupon the demise shall absolutely determine but without prejudice to the right of any other action of the lessor in respect of any breach or non-observance of, the lessee's covenants herein contained.

(2) At the determination of the lease, the lessee should be at liberty to remove, carry away and dispose of all the stock of quarries said minerals ready for delivery and all engines, machinery, and all plant, articles and things whatsoever (not being buildings or brick or stones), the lessee first paying any land assessment, cess and seigniorage and other sums which may be due and performing and observing the covenants on his part hereinbefore reserved and contained and also making good any demage done by such removal but any buildings

R'ONBAGGNOS LESSEE

which shall be erected on the said demised pieces of lands by the result and left thereon at the determination of lease shall be the absolute property of the lessor who shall not be bound to pay any price for the same.

- (3) If the lessee shall have paid the land assessment, cess and seigniorage due to the Government and duly observed and performed the covenants and conditions on his part herein contained, the said deposit of Rs.54,000/- shall be returned to her at the expiration of the said term of lease period.
- (4) Should any question or dispute arise regarding an agreement executed in pursuance of these rules or any matter or thing connected therewith or the powers of the registered holders thereunder the amount or payment of the seigniorage fee or area assessment made payable thereby the matter in issue shall be decided by the Director of Geology and Mining. In case the registered holder/registered holders, lessee/lessees, is/are not satisfied with the decision of the Director of Geology and Mining, the matter shall be referred to the State Government for decision.
- If the lessee is in occupation of the lease-hold area after the expiry of the period for which the lease has been granted or after the determination of the

RIONED GODOS

lease, the lessee shall be deemed to be in unlawful possession of the area and he shall be liable to eviction from the lease hold area in addition to being liable to be charged at double the rate of the lease amount as the case may be, for the period of such occupation.

Conditions

- 1. The lessee shall remit the one time amount of Rs.5,37,304/- in four installments for one quarter in one year an amount of Rs.1,34,326/- If should be paid fifteen days before beginning the quarter lease period. The District Collector will cancel the lease if the lessee fails to remit quarterly lease amount in time. Then the lessee society can not apply for stone quarry lease in future.
- Before starting the quarry operations, the lessee should demarcate and erect boundary stone in the lease hold area at his own cost and he should maintain the boundary stone in good condition during the tenure of lease period.
- 3. The lessee should send monthly returns showing the number of workers employed, quantity of minerals quarried and transported etc., before 10th day of every succeeding month to the Assistant Director of Geology and Mining, Theni. The lessee should fix the name board at his own cost in

LESSEE

LESSOR & COLLECTOR THENI DISTRICT THENI

1 Min

the entrance of the quarry site showing the details name of the lesser.

Name of the Village and Taluk, SF. No., Extent, Collector Proceedings

No. with date, Lease period, Type of minerals etc., and should maintain in good condition during the entire lease period.

- The lessee should remit the Seigniorage fee as specified in appendix II
 to the rules in each and every vehicle transporting the minerals such as
 Rough Stone, Jelly etc.,
- The lessee shall not claim any dispute regarding the extent of stone quarry after the execution of lease deed. But the District Collector is the competent authority to decide and grant the extent of quarry.
- At any cost, the quarrying lease will not be renewed or extended beyond the stipulated lease period.
- 7. The District Collector has empowered to terminate the lease on account of public interest in the event of any breach of rule and conditions of the lease deed and security deposit etc., will be forfeited to the Government.
- 8. The lessee shall look after the pathway or road leading to the quarry.
- 9. The lessee shall not lease out the stone quarry granted to them to any other persons. If it comes to know, the stone quarry lease will be terminated at once.

RIDABBOOK

LESSEE

after getting the bulk permits and despatch slips in two sets with series of serial number with signature of the Assistant Director Geology and Mining, Theni. All columns in despatch slips such as vehicle no, dated, time, etc., should be filled in legibly and should not be any correction or overwriting before hand over to the driver of the vehicle. If not so, the vehicle will be seized and stringent action will be taken according to Act and rules in force.

- 11. The above said instructions should be followed scrupulously other wise it will be assumed as illicit quarrying and necessary actions will be taken as per Tamil Nadu Minor Mineral Concession Rules, 1959 and Mines & Minerals (Development & Reqularisation) Act 1957.
- 12. The lessee should produce only Rough stone, Jelly, stone pillars and plank stones which are directly used for building construction works and the lessee should not produce the granite blocks stone dressed or undressed which are fit for cutting and polishing either for export or for use in such industry within the country.
- The quarrying work using explosive should be done under the provision made under the explosive Act.

RIDABGODA

LESSEE

- 14. The lessee shall not carryout quarrying operations within a safety distance of 50 metres from the feature like public roads, low high tension power lines, transformers, temples, historical and archeological importance, burial grand, railway track etc., 10 metres for village roads, small streams, odais and 300 metres from the inhabited site.
- 15. The lessee should be kept the despatch slips in the quarry site and be issued to all the vehicles which transporting the rough stone, Jelly etc., from the quarry. The lessee should made entries in the pit mouth register for the quantity of minerals quarried and transported by lorry or tractor.
- 16. The Lessee shall carryout the quarrying operations in a skillful manner keeping in view of the proper safety of the labourers and preservation of environment and ecology of the area.
- 17. The Lessee shall be responsible for working the quarry in a manner, which will ensure the safety of the labourers and conservation of minerals and shall also be directly liable to Government for any wrongful act of default.
- 18. The lessee shall report without delay to the Collector any accident, which may occur at or in the said premises and also the discovery of any minerals other than the rough stone.
- 19. No child labourers should be employed in quarry operation.
- 20. For the purpose of calculation of stamp duly, article 35 (a) (iv) of the stamp act. 1% of lease amount of Rs.5,37,304/- and Anticipated Seigniorage amount of Rs.1,48,500/- and area assessment of Rs.750/- and Security deposit amount Rs.53,750/- were taken in to account.

RODABGODOS LESSEE

& COLLECTOR THENI DISTRICT

Ashur

THENI

Name of the District	Name of Taluk	Name of the Village	Survey Field Number	Extent in Hect.		-	Boundaries (a)				
Theni		Kamaya-	1372/1	2.50.0	North By		S. Dorman (P.				
					goundanpatti	345457 TOWNS	Part-III	1.000	East By	:	S.F.No. 1013/2/1 (P:
		50	THE STATE OF THE S		South By	:	S.F.No. 1372/1 (Pa				
					West By	:	S.F.No. 1372/1 (Page 1372/1)				

IN WITNESS WHEREOF THIRU. P. MUTHUVEERAN, I.A.S., District Collector, Theni acting for and on behalf of and by the order and direction of the Governor of Tamil Nadu and Annai Therasa Kalludaikkum Mahalir Nala Munnetra Sangam, 62-8, Kallar School Street, Kamayagoundanpatti, Uthamapalayam Taluk, Theni District have hereunto set their respective hands.

R.27 88661010in

LESSEE
SECRETARY
Tmt. R. Rakkammal,
Annai Therasa Kalludaikkum Mahalir
Nala Munnetra Sangam,
62-8, Kallar School Street,
Kamayagoundanpatti,
Uthamapalayam Taluk,
Theni District.

Signed by the above named in the presence of:-

& COLLECTOR

THENI DISTRICT

THENI.

named in the presence of: -வெடி பிக்கைக்கு நடித்தைக்கும் மா க.வைர் K. கித்துக்கைக்கும் 1. W-1 கேவர்க்கொள்ளிரில் கியுக்கு வைனவிக்

Signed by the above

0000000000000000000000000

Bonson sayoning with vity

2. 8. Dejemenn' \$190. M. & missi W-1 L. B. Dolling & Stilow symples will cap ASSISTANT DIRECTOR OF GEOLOGY -AND MINING THENI.

Assignt Geologist

Department of Geology and Mining
THENI.

Cherting & C. B. Tuying 2/0 4. 2. Mroograme & B. B. M. 2002.

மாவட்ட ஆட்சித்தலைவர், தேனி அவர்களின் செயல்முறை ஆணைகள்

முன்னிலை: திரு. பூ. முத்துவீரன், இ.ஆ.ப.,

ந.க.எண்.444/2008/கனிமம்

Bireir: 22.01.2009

பொருள்:

රිනුණි மாவட்டம் கனிமங்களும், குவாரிகளும் காமயகவுண்டன்பட்டி வட்டம் உத்தம்பாளையும் 1372/1 பகுதி-III — விஸ்தீரணம் கிராமம் - புல எண் 2.50.0 ஹெக்டோ் பரப்புள்ள புழம்போக்கு கல்குவாரியில் செய்ய முன்னுரிமை அடிப்படையில் பணி குவாரி **சுய** வேலைவாய்ப்புத் பொன்விழா மகளிர் கிராம திட்டத்தின்கீழ் காமயகவுண்டவ்பட்டி அன்னை தெரசா கல்உடைக்கும் மகளிர் நல முன்னேற்ற சங்கத்திற்கு செய்ய காலம் கல்குவாரி LISTON ஆண்டு குத்தகை உரிமம் வழங்கி ஆணையிடப்படுகிறது.

பார்வை: 1. வருவாய் கோட்டாட்சியர், உத்தமபாளையம் ந.க.எண்.5793/2007/அ2, நாள் 14.12.2007.

- உதவி இயக்குநர் (புவியியல் மற்றும் சுரங்கத்துறை),
 தேனி புலத்தணிக்கை அறிக்கை நாள் 26.01.2008.
- தேனி மானட்ட அரசிதழ் சிறப்பு வெளியீடு எண் 3, நாள் 21.02.2008.
- R. ராக்கம்மாள், செயலாளர், அவ்னை தெரசா கல்லுடைக்கும் மகளிர் நல முன்னேற்ற சங்கம், 62/8, கள்ளர் பள்ளி தெரு, காமபகவுண்டன்பட்டி, உத்தமபாளையும் வட்டம், தேனி மாவட்டம் விண்ணப்பும் நாள் 07.03.2008.
- வருவாய் கோட்டாட்சியர், உத்தமபாளையம் ந.க.எண்.1765/2008/அ2, நாள் 28.03.2008.
- 6. கூர்ந்தாய்வுக்குழு மதிப்பீட்டு அறிக்கை நாள் 31.12.2008.
- தேனி மாவட்ட ஆட்சியர் தலைமையில் நடைபெற்ற சிறப்புக்குழு கூட்டம் நாள் 21.01.2009.

ஆணை :

பார்வை 1-ல் காணும் உத்தமபாளையம் வருவாய் கோட்டாட்சியரின் கடிதத்தில் உத்தமபாளையம் வட்டம், காமயகவுண்டன்பட்டி கிராமம், புல எண் 1372/1 பகுதி-III-ல் 2.50.0 ஹெக்டேர் பரப்பில் உள்ள அரசு புறம்போக்கு நிலத்தில் அலமந்துள்ள அரசு கல்குவாரியினை டெண்டருடன் இணைந்த பொது ஏலத்தில் விடலாம் என பரிந்துரை செய்துள்ளார்.

மேற்படி பகுதியில் கல்குவாரி குத்தகை இதன்அடிப்படையில் கரங்கத்துறை இயக்குநர் (புவியியல் ப்றுற்வ உதவி தொடர்பாக வழங்குவது அறிக்கையில் உத்தமபாளையம் புலத்தணிக்கை செய்து பார்வை 2-ல் காணும் 137:2/1 பகுதி-III-ல் புல என் வட்டம், காமயகவுண்டன்பட்டி கிராமம், ஹெக்டோ பரப்பில் உள்ள அரசு கல்குவாரியில் கல்குவாரி குத்தகை உரிமம் வழங்க போதுமான அளவு கற்கள் உள்ளதால் கல்குவாரி குத்தகை உரிமம் வழங்கலாம் என பரிந்துரை செய்துள்ளார்.

0

0

0

•

0

0 0 0

•

0

.

0

0

0

0

தேனி மாவட்டத்தில் அரசு புறம்போக்கு நிலங்களில் அமைந்துள்ள குவாரிகளில் கல் உடைத்து எடுத்துச்செல்ல நேரடி குத்தகை உரிமம் பெற 1959-ம் வருடத்திய தமிழ்நாடு சிறுவகைக் கனிம சலுகை விதிகள் எண் 8 (10-A)-ன்படி முன்னுரிமை அடிப்படையில் பொன்விழா கிராம மகளிர் சுய வேலைவாய்ப்புத் திட்டத்தின்கீழ் பதிவு செய்யப்பட்ட சங்கங்கள் மற்றும் விடுவிக்கப்பட்ட கொத்தடிமை தொழிலாளர்களால் அமைக்கப்பட்ட சங்கங்களிடமிருந்து விண்ணப்பங்கள் கோரி மாவட்ட ஆட்சியரது அறிவிக்கை பார்வை 3-ல் குறிப்பிடப்பட்டுள்ள மாவட்ட அரசிதழில் பிரசுரம் செய்யப்பட்டது.

பார்வை 3-ல் குறிப்பிடப்பட்டுள்ள அறிவிக்கையின்படி கீழேக்குழிப்பிடப்பட்டுள்ள புலத்தில் அமைந்துள்ள கல்குவாரிக்கு குத்தகை உரிமம் வழங்கக்கோரி "காமயகவுண்டன்பட்டி அன்னை தெரசா கல்உடைக்கும் மகளிர் நல முன்னேற்ற சங்கம்" என்ற சங்கத்தினரிடமிருந்து 07.03.2008-ம் நாளன்று விண்ணப்பம் வரப்பெற்றது.

வட்டம்	கிராமம்	புல எண்	விஸ்தீரணம் (ஹெக்டேர்)
			N
உத்தம்பாளையம்	காமயகவுண்டன்பட்டி	1372/1 பகுதி-III	2.50.0

மேற்கண்ட விண்ணப்பத்துடன் கீழ்க்கண்ட ஆவணங்கள் இணைக்கப்பட்டுள்ளன.

- அ) விண்ணப்பம் (உரிய படிவத்தில்) மூன்று பிரதிகளில்
- ஆ) விண்ணப்பக் கட்டணம் ரு.500/- செலுத்தப்பட்டமைக்கான அசல் சலாவ் எண் 5384, நாள் 06.03.2008.
- இ) சங்கம் பதிவு செய்த (பதிவு எண் 28/2002) பதிவுச் சான்றிதழ் சான்றொப்பமிட்ட நகல்

- சான்றொப்பம் செய்யப்பட்ட சங்கத்தின் சட்ட விதிகள் நகல் மற்று
 செயற்குழு உறுப்பினர்கள் மற்றும் உறுப்பினர்கள் முகவர்யுடன் கூறி
 பட்டியல்
- 2_) வருமானவரி செலுத்த வேண்டிய நிலுவை ஏதும் இல்லை என்றும், தனக்கு குவாரி தமிழ்நாட்டில் ஏதும் இல்லை என்றும், குவாரி தொடர்பான நிலுவை குத்தகைத்தொகை ஏதும் அரசுக்கு செலுத்தவேண்டியதில்லை என்றும் தனித்தனியே ரூ.20/- பத்திரங்களில் நோட்டரி பப்ளிக்கிடம் பெறப்பட்ட ஆணை உறுதி ஆவணங்கள்.

இதன்தொடர்பாக உத்தமபாளையம் வருவாய் கோட்டாட்சியர் விசாரணை செய்து பார்வை 5-ல் காணும் அறிக்கையில், அன்னை தெரசா கல்லுடைக்கும் மகளிர் நல முன்னேற்ற சங்கத்தின் செயல்பாடு திருப்திகரமாகவும் மற்றும் நிதி வசதி போதுமானதாகவும், மேலும் மேற்படி சங்க உறுப்பினர்களுக்கு இரண்டு ஆண்டுகளுக்கு மேல் கல்உடைக்கும் அனுபவம் உள்ளது எனவும், மேற்படி சங்கத்திற்கு கல்குவாரி குத்தகை உரிமம் வழங்கலாம் என பரிந்துரை செய்துள்ளார்.

இதனைதொடர்ந்து மேற்படி மகளிர் கல்உடைக்கும் சங்கத்தின் செயல்பாடுகள் மற்றும் நிதிநிலை குறித்து மதிப்பீடு செய்ய கூர்ந்தாய்வுக்குழு அமைக்கப்பட்டு பார்வை 6-ல் கூர்ந்தாய்வுக்குழு மதிப்பீடு செய்த அறிக்கை பெறப்பட்டது.

மேற்படி கல்குவாரிக்கு குத்தகை உரிமம் கோரி உரிய தேதிக்குள் வரப்பெற்ற அன்னை தெரசா கல்லுடைக்கும் மகளிர் மேற்படி நல முன்னேற்ற சங்கம். காமயகவுண்டன்பட்டி என்ற சங்கத்தின் விண்ணப்பம் 21.01.2009 அன்று தேனி மாவட்ட ஆட்சியர் அலுவலகத்தில், மாவட்ட ஆட்சியர் தலைமையில் 1959-ம் வருடத்திய தமிழ்நாடு சிறுகனிம் சலுகை விதி எண் 8 (10-A) (b) (ii)-ன்படி நடைபெற்ற சிறப்புக்குழு முன் ஆய்விற்கு எடுத்துக்கொள்ளப்பட்டு, மேற்படி சிறப்புக்குழுவினால் விண்ணப்பதார்ர் சங்கம் விசாரிக்கப்பட்டு, மேற்படி சங்கத்தின் செயல்பாடு, முன் அனுபவம், கள்ந்தாய்வுக்குழு மதிப்பீடு மற்றும் நிதிவசதி குறித்து பரிசீலணை செய்து உத்தம்பாளையும் வட்டம், காமயகவுண்டன்பட்டி கிராமம், புல எண் 1372/1 பகுதி-III-ல் 2.50.0 ஹெக்டேர் பரப்புள்ள புறம்போக்கு நிலத்தில் அமைந்துள்ள கல்குவாரியினை குத்தகை உரிமம் கோரி விண்ணப்பித்துள்ள "அன்னை தெரசா கல்லடைக்கும் மகளிர் நல முன்னேற்ற சங்கம், காமயகவுண்டன்பட்டி" என்ற சங்கத்திற்கு குத்தகை உரிமம் வழங்க சிறப்புக்குழுவினால் பார்வை 7-ல் கண்டவாறு பரிந்துரைக்கப்பட்டது.

பரிந்துரையின் ஆவணங்கள், அறிக்கைகள் ப்யுற்ப மேற்கண்ட எனவே. அடிப்படையில், தேனி மாவட்டம், உத்தமபாளையம் வட்டம், காமயகவுண்டன் கிராமம், புல எண் 1372/1 பகுதி-III-ல் 2.50.0 ஹெக்டேர் பரப்புள்ள அரசு புறம்போக்கு நிலத்தில் கல் வெட்டி எடுத்துக்கொள்ள 1959-ம் ஆண்டு தமிழ்நாடு சிறுவகைக் கனிம சலுகை விதிகள் எண்-8(10-A) (c)-ன்படி ஒரே தடவையிலான மொத்த குத்தகை தொகை ரு.10,74,608/- என நிர்ணயம் செய்யப்பட்டு அதில் 50 சதவீதத்தொகையை தள்ளுபடி செய்து மீதி செலுத்தவேண்டிய குத்தகைத்தொகை ரு.5,37,304/- காலாண்டு துவணைகளில் ரு.1,34,326/-நான்கு வீதம் குத்தகைத்தொகையாக செலுத்துவதின்பேரில் 1959-ம் ஆண்டு தமிழ்நாடு சிறுவகைக் கனிம சலுகை விதிகள் எண்-8(10-A)-ன்படி, காமயகவுண்டன்பட்டி அன்னை தெரசா கல்லுடைக்கும் மகளிர் நல முன்னேற்ற சங்கத்திற்கு இணைப்பில் கண்டுள்ள நிபந்தனைகளுக்குட்பட்டு மூன்று ஆண்டு காலத்திற்கு குத்தகை ஒப்பந்தப்பத்திரம் நிறைவேற்றப்படும் நாளிலிருந்து கல் உடைத்து எடுத்துச்செல்ல குத்தகை உரிமம் வழங்கி ஆணையிடப்படுகிறது.

இணைப்பு: நிபந்தனைகள்

ஒம்/- பூ. முத்துவீரன், மாவட்ட ஆட்சித்தலைவர், தேனி.

பெறுநர் திருமதி. R. ராக்கம்மாள், செயலாளர், அன்னை தெரசா கல்லுடைக்கும் மகளிர் நல முன்னேற்ற சங்கம், 62/8, கள்ளர் பள்ளி தெரு, காமயகவுண்டன்பட்டி, உத்தமபாளையம் வட்டம், தேனி மாவட்டம் – பதிவுத்தபாலில் அஞ்சல் ஓப்புகை அட்டையுடன்

நகல்:

1) வருவாய் கோட்டாட்சியர், உத்தமபாளையம்

2) வட்டாட்சியர், உத்தமபாளையம்

/<u>9_,p.s_.u./</u>

மாவட்ட ஆட்சித்தலைவருக்காக, தேனி. ANNEXU STANDER COME STANDER COM

276

Scanned with OKEN Scanner

கி. எண். 44. காமயகவுண்டன்பட்டி.

ANNEXURE -V

_		-	_		_											SLAMAP
1		2	3	4	5	6	7	8	3		9		10		11	12mg
								g.,	பை,	രള്ള	. ஓர்ஸ்.	m,	பை.		M.	T \
1366	•••	1366	σ	H	***	8-1	4	2	77	1	11.5	3	08	1392	பெ. ராபசாமி தேவர்.	OVRECTO
1367	***	1367	σ	ч	•••	δ-1	4	2	77	0	16.0	0	44	932	இ. பெருமாயி அம்மாள்.	
1368		1368	σ	4	•••	8-1	4	2	77	0	69.0	_1	90	932	கி. பெருமாயி அம்மாள்.	
1369	•••	1369	σ	ч		8-1	4	2	77	0	15.5	0	43	371	பொ. சன்முக வேலு.	
1370	64]	1370	J	u	***	8.:	4	2	77	0	15.5	0	35			தரிக.
371	***	1371	0	ч	***	8 1	4	2	77	0	48.5	<u></u>	34	265	கு. இருஷ்ண சாயித் தேவர்.	
372	1	1372-1	,	В.O. p.		w.		199		102	61.0	300				
0	2	-2	σ	ч		8-1	4	2	77	0	97-0	2	69	327	க. குருசாமி.	
	3	-3	σ	L)	•••	8-1	4	2	7?	0	06.0	0	17	1286	அ. ராமசாடி சொம்பான்.	,
0	4	-4	U	ц		3-1	4	2	17	0	14.0	0	38	1286	அ. ராமசாமி சாம்பான்.	
	5	-5	σ	ч		8-1	4	2	77	0	79 .0	2	18	2148	மாடசாமி சாம்பான் மற்றும் ஐந்து பேர்களும். *	
	6	-6	ø	ц	ones.	€-1	4	2	77	1	18.0	3	27	770	கா. நாகம் மாள்.	
	7	-7	σ	ч		8-1	4	2	71	0	24.0	0	66	73	ஆவுடையம் மா ன்.	
•	8	-8	σ	4		8-1	4	2	77	0	31.0	0	85	1546	ம். ஸட்ச மேணன்.	
9	9	-9	σ	ч		8-i	4	2	77	0	32.5	0	90	623	வி. கப்பையன் செட்டியார்.	
0	10	-10	0	ч.		8-1	4	2	77	0	16.0	0	45	7	அழகர்சாமி சாம்பான்.	
		1/5	hunh	me B	BN											

விவரப்பட்டியலைப் பார்க்கவும்.

கோம் நிர்வாக அலுவலர் காம்யகவுண்டன்பட்டி

277

ß	ல வரி புலன்	ந் திட்ட களின்	த்தின் விபர	LIIÇ D.	*	சாகுபடி யாளரின் பெயர்.		முதல்	போகம்.		PC TORY
நில அளவை எண்.	உட்பிரிவு எண்.	urtut.	தூலை.	ஒரு போகம் அல்லது இரு போகம்.	கைப்பற்று தாரருடைய பெயரும் எண்ணும் அல்லது அனுபோக தாரருடைய பெயர்.	நிலத்தின் எந்த பகுதி யாவது சாகுபடியாளரால் பயிரிடப்பட்டுள்ளதா.	1	பமிரின் பெயர்.	பயிரான /அறுவன்ட	உண்கையான் பாய்ச்சல் ஆதாரம்.	விளைச்சல் அளவு இவிழுக்காடு.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
12	1	1026			_		-				_
_	-	No.								10	-
										1800	ymi
	-									1	20
		-					r			ETILD I	1 S116
					1						
	1									_	-
										-	+
									-		-
								_		-	+
	1										4
	1	1									-
	1		1								_
	+	+									
-	+	+	+	+							
	+	+	+	+							
-	+		+						V	V.	
	-	+	+	+							
_	-	+	-	-	-						
-	+		-	-	+						
		-	-				_				

எண் 2 எண 2 திராமத்தில் வருடவாரி புலவாரி கைப்பற்று சாகுபடி அடங்கல் கணக்கு

		டாம் பே			கைப்பற்று சாகுபடி அடங்	கீழ்க்கண்டவகையில் பயிரிடப்படத்த உள்ள நிலத்தின் தன்மை மற்று பரப்பின் விவரங்கள் ஒவ்வொரு நில அளவை எண் அல்லது அதன்	E MINING.
்ந்த மாத்ததில் புயா இசெய்யப்பட்டது எந்த மாதத்தில் அறுவடை செய்யப்பட்டது.	த் பயிரின் பெயர்.	் பாரான / அறுவடையான சூ பரப்பு.	த உண்மையான பாய்ச்சல் ஆதாரம்.	் விளைச்சல் அளவு விழுக்காடு.	கிராம அலுவலரின் குறிப்புரை:- (1) புலன்களின் பகுதிகளில் மட்டும் பயிரிடப்பட் இனங்களில் விங்குகளில் விங்குகளில் இல்வாத நிவங்- களின் சாதபடியின் பரப்பு தன்மையும் (3) முந்தைய மாதத்தில் பாய்ச்சல் உதவியின்றி பயிரிடப்பட்டவை என்று புதிலாகியுள்ள நிலங்- களுக்கு பிந்தைய மாதத்தில் பாய்ச்சல் உதவியின்றி பயிரிடப்பட்டவை என்று புதிலாகியுள்ள நிலங்- களுக்கு பிந்தைய மாதங்களில் நிட்புக்களில் நிட்பாய்ச்சப்பட்ட விவரங்கள்.	கீழ்க்கண்டவகையில் பயிரிடப்பட்டு உள்ள நிலத்தின் தன்மை மற்று பரப்பின் விவரங்கள் ஒவ்வொரு நில அளவை எண் அல்லது அதன் பகுதியில். (அ) வனம், (ஆ) பயனற்ற பயிர் செய்ய இயலாத நிலம், (இ) விவசாயம் மற்றும் இதர காரியங்களுக்கு பயன் படுத்தப் படும் நிலம், (ஈ) பயிரிடத்தக்க தரிக (உ) நிலையான புல் தரைகளும் மற்றும் இதர மேய்ச்சல் நிலங்களும், (ஊ) விதைக்கப்பட்ட நிகர பரப்பில் சேர்க்கப்படாத மரவகைப் பயிர்களும் தோப்புகளும், (எ) நடப்புத் தரிசுகள் (ஏ) இதர தரிசு நிலங்கள்.	பயிர் பார்வையிடும் குறிப்புரைகள்
1.52	(1.7	(10)	(10)	(11)	(10)	(163)	(19)
					UAWD-BIG	, mmy	
				-			
,							
	-					3 1	
	-			-			
						1	
						A	
y							
							-
				-			
	-		a a	-			1
15-				-			
1	+				-		
1	_1				279		

ANNEXURE

PHOTOCOPY OF THE APPLIED LEASE AREA

0

•

0

•


•

•

0 0

000000000000000000

Site photos in respect of rough stone quarry lease in S.F.No's: 1372/1, - Govt. over an extent of 1.00.0 hectares - Kamayagoundanpatti village - Uthamapalayam Taluk - Theni District, Tamil Nadu State in belongs to M/s.Annai Sathiya Magalir Suya Uthavikuzhu, Mrs.B.Usha (Leader).

இந்திய அரசாங்கம் Government of India

உ ஷா Usha

பிறந்த நாள்/DOB: 10/01/1976 பெண்பால் / Female

7905 5069 5577

ஆதார் - சாதாரண மனிதனின் அதிகாரம்

இந்திய தனிப்பட்ட அடையாள ஆணைய அமைப்பு

Unique Identification Authority of India

முகவரி w/o பாலமுருகன், 49/1 பஞ்சமார்தெரு, காமயகவுண்டன்பட்டி உத்தம்பாளையம், காமயகவுண்டன்பட்டி காமயகவுண்டன்பட்டி தேனீ, தமிழ் நாடு 625521 Address: W/O:
Balamurugan, 49/1,
PANJAMAR STREET,
KAMAYAGOUNDENPATTI,
uthamapalayam,
KAMAYAGOUNDANPATTI,
Kamayakoundanpatti, Theni,
Tamil Nadu, 625521

7905 5069 5577

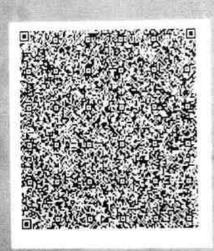
help@uidai.gov.in

www.uidai.gov.in

आयकर विभाग

INCOME TAX DEPARTMENT

भारत सरकार GOVT. OF INDIA


स्थायी लेखा संख्या कार्ड Permanent Account Number Card

APMPU9140A

नाम / Name USHA

पिता का नाम / Father's Name CUDALAI

जन्म की तारीख / Date of Birth 10/01/1976

C. Usha

हस्ताक्षर / Signature 5771611

In case this card is lost / found, kindly inform / return to :

Income Tax PAN Services Unit, UTIITSL Plot No. 3, Sector 11, CBD Belapur, Navi Mumbai - 400 614.

इस कार्ड के खोने/पाने पर कृपया सूचित करें/लौटाएं : आयकर पैन सेवा यूनीट, UTIITSL प्लाट नं: ३, सेक्टर ११, सी.बी.डी.बेलापूर, नवी मुंबई-४०० ६१४. Aaykar Sampark Kendras

For Income Tax Related
Queries call Toll Free Nos.
1961
or

18001801961

தமிழ்நாடு அரசு உணவுப்பொருள் வழங்கல் மற்றும் நுகர்வோர் பாதுகாப்ப

GOVERNMENT OF TAMILNADU CIVIL SUPPLIES AND CONSUMER PROTECTION DEPARTMENT

குடும்ப அட்டை / FAMILY CARD

NPHH

333487764424

குடும்பத் தலைவரின் பெயர்: பாலமுருகன் ஈஸ்வரன்

தந்தை / கணவரின் பெயர் : ஈஸ்வரன்

பிறந்த தேதி 15/07/1980

ஈஸ்வரன், பஞ்சமார்தெரு. முகவரி காமயகவுண்டன்பட்டி,

காமயகவுண்டன்பட்டி.

உத்தமபாளையம் (வ), தேனி -

625521

தடும்ப உறுப்பினர்கள்

பொது விநியோகத் திட்ட இ-சேவைகள்

- உஷா பாலமுருகன்
- நிவேதா B
- வினோதா в

23DP065PN

- புதிய அட்டை விண்ணப்பிக்க
- பெயர் சேர்த்தல் / நீக்கல்
- விற்பனை விவரங்கள்
- புகார் / கருத்து பதிவு
- பிற தகவல்கள்

குறிப்பு:

இந்த அட்டை காணாமல் போனால், நகல் அட்டை பெற அரசு இ-சேவை மையத்தைத் தொடர்பு கொள்ளவும்

மொத்த எண்ணிக்கை -

🛢 வலைதளம்

www.tnpds.gov.in

🙎 இலவச உதவி மைய எண் 1967 (4) 1800-425-5901

TNEPDS கைபேசி செயலி

Congle play App Store

* முகவரியின் உண்மைத்தன்மைக்கு இது சான்று அல்ல

023/ 0179945

* மாற்றத்தக்கதன்று

FORM NO.II

(See Rule 8 of the Tamil Nadu Societies Registration Rules, 1978)

CERTIFICATE OF REGISTRATION UNDER SECTION 10

OF THE TAMIL NADU SOCIETIES REGISTRATION

ACT,1975 (TAMIL NADU ACT 27 OF 1975)

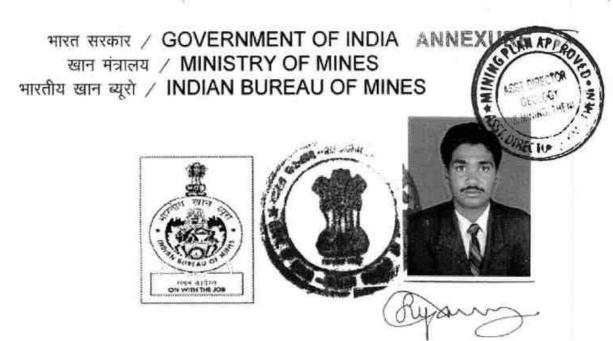
CERTIFICATE OF REGISTRATION OF SOCIETIES

Sl. No. SRG/Periyakulam/23/2021

l hereby certify that அன்னை சத்தியா மகளிர் சுய உதவிக்குழு -காமயகவுண்டன்பட்டி has this day been registered under the Tamil Nadu Societies Registration Act, 1975 (Tamil Nadu Act 27 of 1975).

Given under my hand at Periyakulam this 2nd day of February, 2021

Date :02-Feb-2021


Station: Periyakulam

Digitally Signed by Thiru/ Tmt/ Selvi

THIRUGNANAM N

Signature of the Registrar

अईता प्राप्त व्यक्ति के रूप मेंमान्यता प्रमाण पत्र (खनिज रियायत नियमावली, 1960 के नियम 22सी के तहत) CERTIFICATE OF RECOGNITION AS QUALIFIED PERSON (Under Rule 22C of Mineral Concession Rules, 1960)

श्री एस. करुपण्नण, मॉग्गनीकाडू, मुत्तमंपटटी पोस्ट, बोम्मीडी वयाँ , ओमलूर तालुक, सेलम डीस्टीक्ट, तिमलनाडू — 635 301, जिनका फोटो और हस्ताक्षर ऊपर दिया हुआ है, तथा जिनहोंने अपनी अर्हता और अनुभव का संतोष जनक साक्ष्य दिया है, को खनन योजना तैयार करने हेतु खिनज रियायत नियमावली 1960 के नियम 22सी के तहत अर्हता प्राप्त व्यक्ति के रूप में मान्यता प्रदान की जाती है ।

Shri S. Karuppannan, Manganikadu, Muthampatty (Post), Bommidi (Via), Omalur Taluk, Salem District, Tamilnadu – 635 301, whose **Photograph and signature** is affixed herein above, having given satisfactory evidence of his qualifications & experience hereby **RECOGNISED** under Rule 22C of the Mineral Concession Rule. 1960 as a Qualified Person to prepare Mining Plans.

उनकीपंजीयन संख्या है His registration number is

.

•

.

0

0

•

0

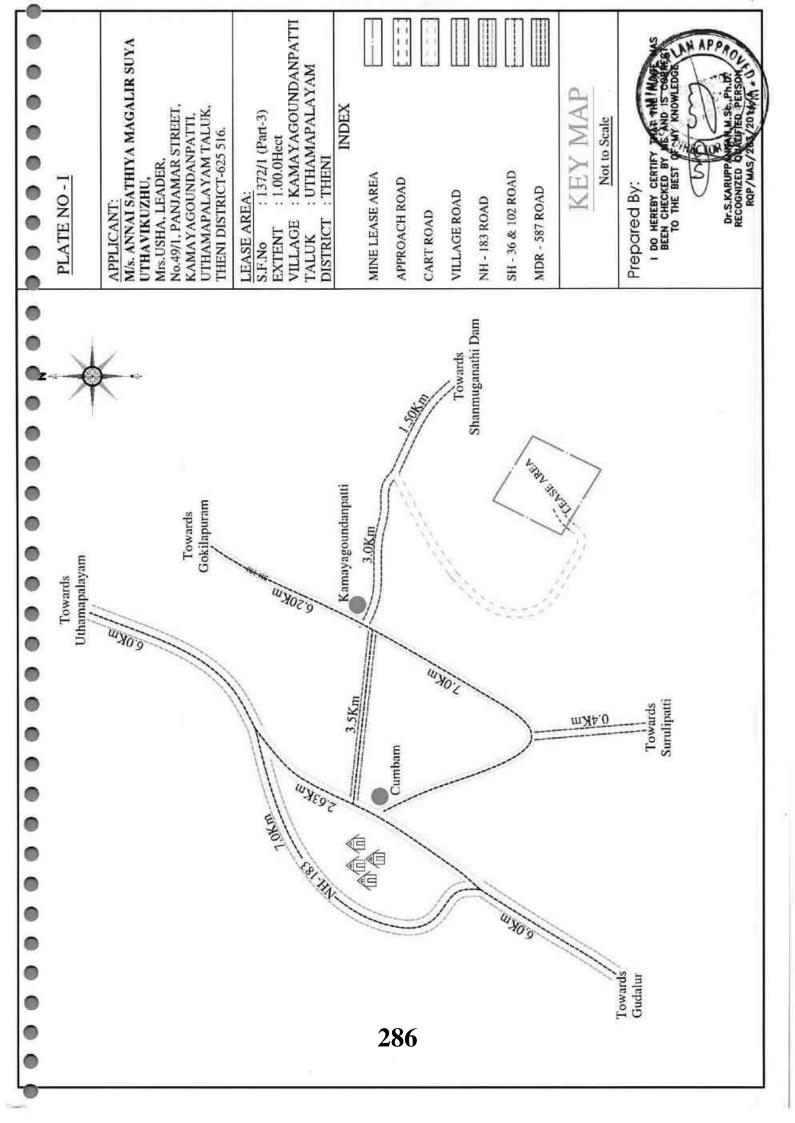
•

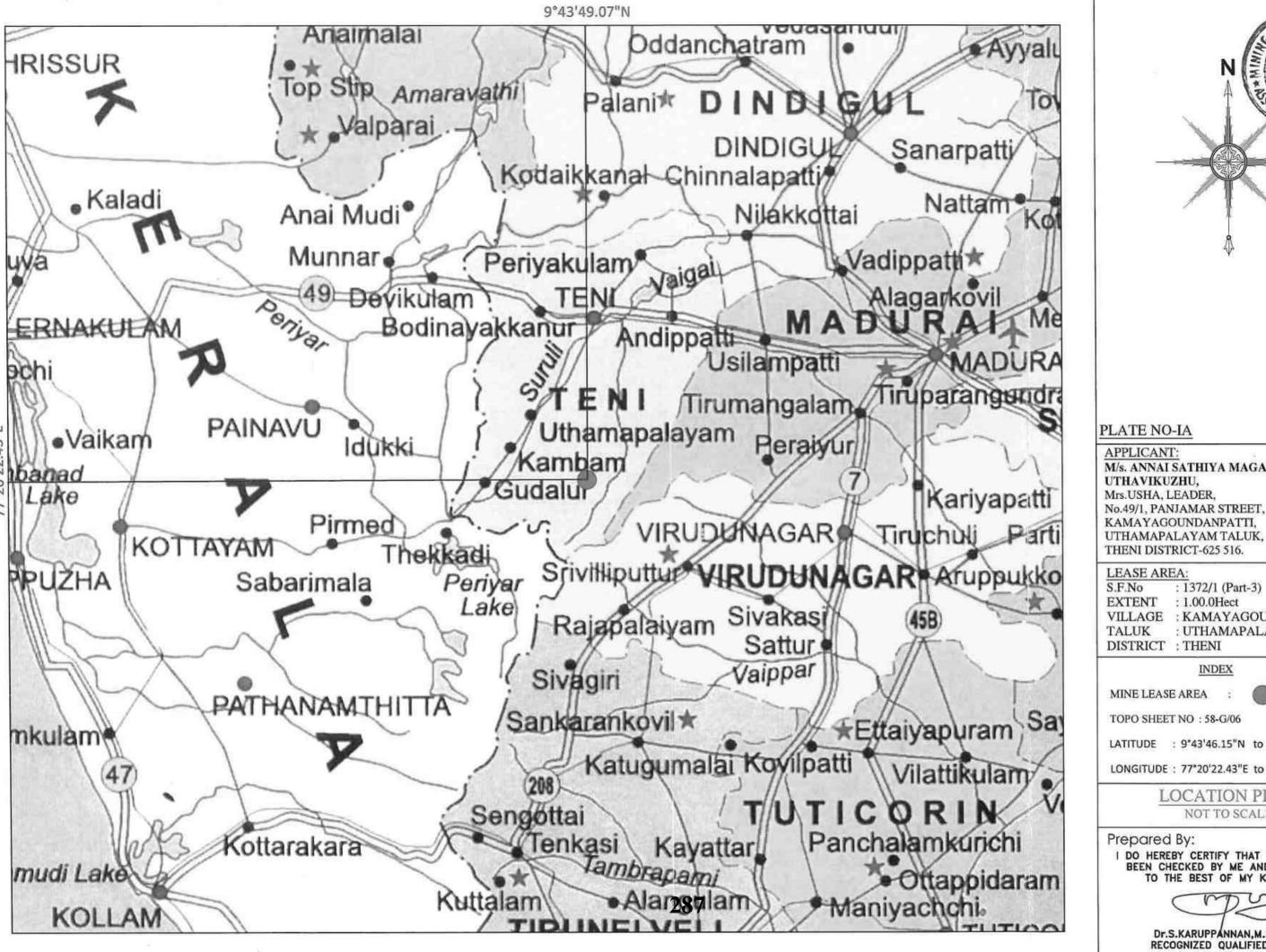
0

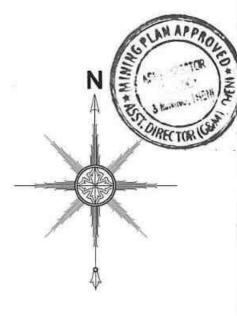
.

RQP /MAS/263/2014/A

यह मान्यता 10 वर्षों की अवधि के लिए मान्यता है जो दिनांक 15.12.2024 को समाप्त होगी। This recognition is valid for a period of 10 years ending on 15.12.2024.


उनके द्वारा प्रस्तुत खनन योजना में गलत जानकारी / दस्तावेज पाए जाने की स्थिती में यह प्रमाण पत्र वापस लिया जाएगा / निरस्त किया जाएगा।


This certificate will liable to be withdrawn / cancelled in the event of furnishing the wrong information / documents in the Mining Plan submitted by him.


स्थान/ Place : Chennai दिनांक/ Date : 16.12.2014.

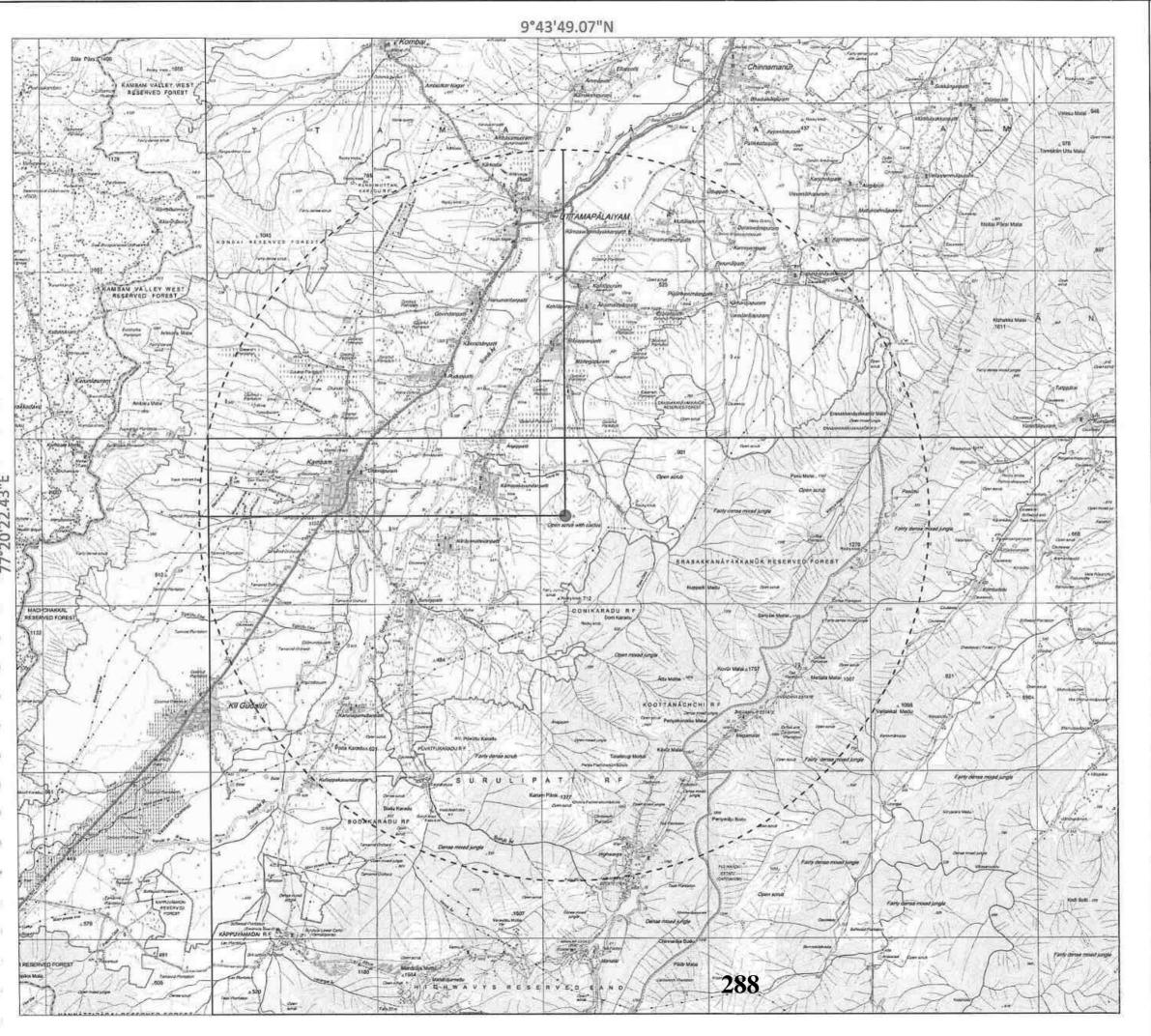
के अप्याननियंत्रक / Regional Controller of Mines भारतीय खानब्यूरो/ Indian Bureau of Mines चेन्नई क्षेत्र / Chennai Region

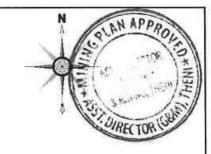
means

M/s. ANNAI SATHIYA MAGALIR SUYA

: KAMAYAGOUNDANPATTI

: UTHAMAPALAYAM


LATITUDE : 9*43'46.15"N to 9*43'49.07"N


LONGITUDE: 77°20'22.43"E to 77°20'26.67"E

LOCATION PLAN NOT TO SCALE

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

PLATE NO-IB

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU,

Mrs.USHA, LEADER,

No.49/1, PANJAMAR STREET,

KAMAYAGOUNDANPATTI,

UTHAMAPA JAYAM TALUK,

THENI DISTRICT-625 516.

LEASE ARFA:

S.F.No : 1372/1 (Part-3) EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

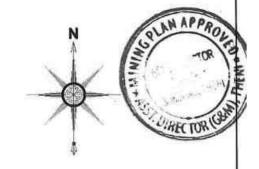
DISTRICT : THENI

TOPO SHEET NO: 58-G/06

LATITUDE : 9°43'46.15"N to 9°43'49.07"N

LONGITUDE: 77"20'22.43"E to 77°20'26.67"E

MINE LEASE AREA


10KM RADIUS

Correct great with an ange, whiteavarers	per man man
Peads minist according to imprisors	some same -
Roots assiss camagness according to murhinox	
Innerelativet Centus Pastroneric pos feetpatt	****
Sharen with their standard Case	De > -
Same makeny or real files well much Wen	
Story they will water property with asset \$ 1000 to the first	at our -
Barneyelmon Store Years Fleis	A 45 W
Well tred plonet. Toke and Spring Tests presented by	THE PERSON IN
Britis Arranto read or rectard, Brokenground	mm , de be
Makeye troop sough mobile, angle with south, under polyce	
Reterior, active proper assets; single with believe stone at	
Mayalines harrass tilk Gutig ett sprei	- · · · · · · · · · · · · · · · · · · ·
Control with the Service Printy Ripes City.	(E) (S)
And have start down ninger and discounting	g 3 F 1
Towner Wages making desired fun	-dl- ·
Note provident language flower Artispines .	* * * E*
Temple Owner Church Honore Stylli Toria Graves	A
Egyptiones Egyption Rouge Sphee, uniquest Andronia	1 4 1 4
Nine Vine or bells Diges Book	. 100
Pains sumperator Parson Dysfer Dantos Other teas	4 W - 1 - 1
drags supposed wouldn't have not the	((23)
Burday reviews	
mile immersed secondstated	-
SING SERVICE SING STEA WAS	
Survey plan serger models	•
Highly Hungschell visiter and appropriate	±200 ,200 ±
feroment pesters story sent	Secreta C-ER MS.
Post office Temporationics Confessions	1
Real House of Properties Surgicial Crisis Rouse Police Social	
Surprig ground Firest tenenal prohores	(A)
Scarefronce atministrate, lookly vince	KINN MA
Regist Disprisely Valence's Heaping I Disprisely	3 .
Accorde risked Tours are	4 =
President will public accepts with price or surregard.	

TOPOSHEET MAP SCALE- 1:1,00,000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

PLATE NO-IC

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SIJYA UTHAVIKUZHU,

Mrs. USHA, LEADER,

No.49/1, PANJAMAR STREET,

KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3)

EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE AREA

APPROACH ROAD

CART ROAD

VILLAGE ROAD

100M RADIUS

200M RADIUS

300M RADIUS

400M RADIUS

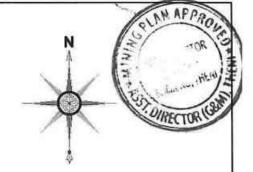
500M RADIUS

EXISTING PIT

TOPO SHEET NO: 58-G/06

LATITUDE : 9°43'46.15"N to 9°43'49.07"N

LONGITUDE: 77°20'22.43"E to 77°20'26.67"E


SATELITE IMAGERY MAP

SCALE- 1:5000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

OCTOBER TO DECEMBER 9°43'49.07"N 4 4 4 °20'22.43"E **290**

PLATE NO-ID

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZ IU,

Mrs.USHA, LLADER,

No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3)

EXTENT : 1.00.0Hect

VILLAGE: KAMAYAGOUNDANPATTI TALUK: UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE AREA

APPROACH ROAD

CART ROAD

VILLAGE ROAD []]

100M RADIUS

_ \

200M RADIUS

300M RADIUS

400M RADIUS

500M RADIUS EXISTING PIT

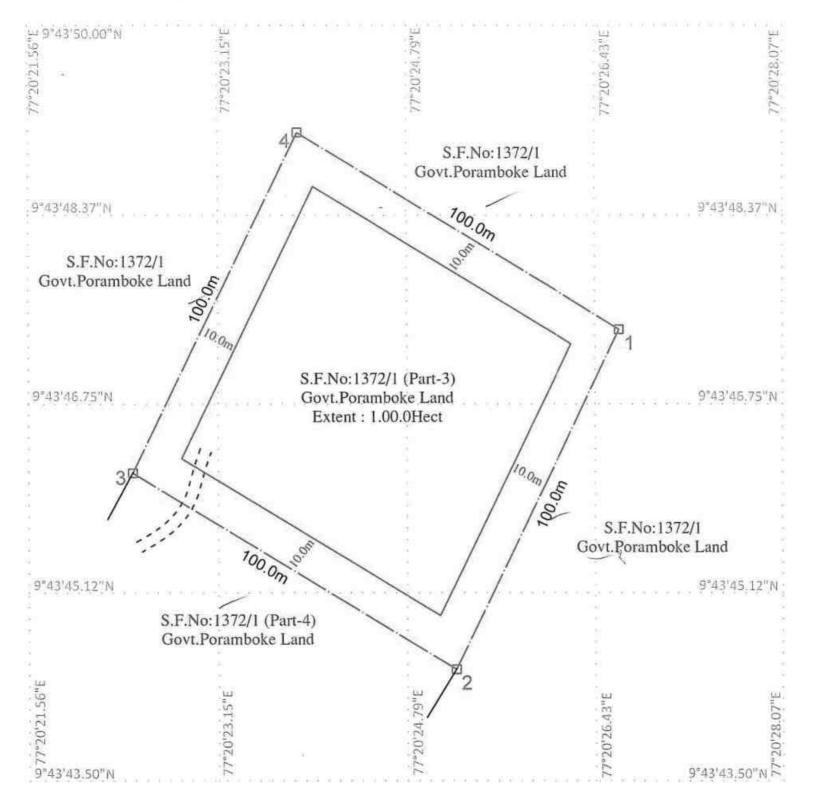
6,111113

TOPO SHEET NO: 58-G/06

LATITUDE : 9°43'46.15"N to 9°43'49.07"N

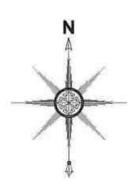
LONGITUDE: 77°20'22.43"E to 77°20'26.67"E

ENVIRONMENTAL PLAN


SCALE- 1:5000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE


> Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RECOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A

JULY TO SEPTEMBER

Pit ID	Latitude	Longitude
1	9°43'47.36"N	77°20'26.67"E
2	9°43'44.44''N	77°20'25.22"E
3	9°43'46.15"N	77°20'22.43"E
4	9°43'49.07"N	77°20'23,88"E

PLATE NO- II

APPLICANT:
M/s. ANNAI SATHIYA MAGALIR SUYA
UTHAVIKUZHU,
Mrs.USHA, LEADER,

No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LE	ASE	AR	FA.
		. 111	4.00

S.F.No : 1372/1 (Part-3) EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

TAIL	T\E	v
IIN.	DI.	Λ

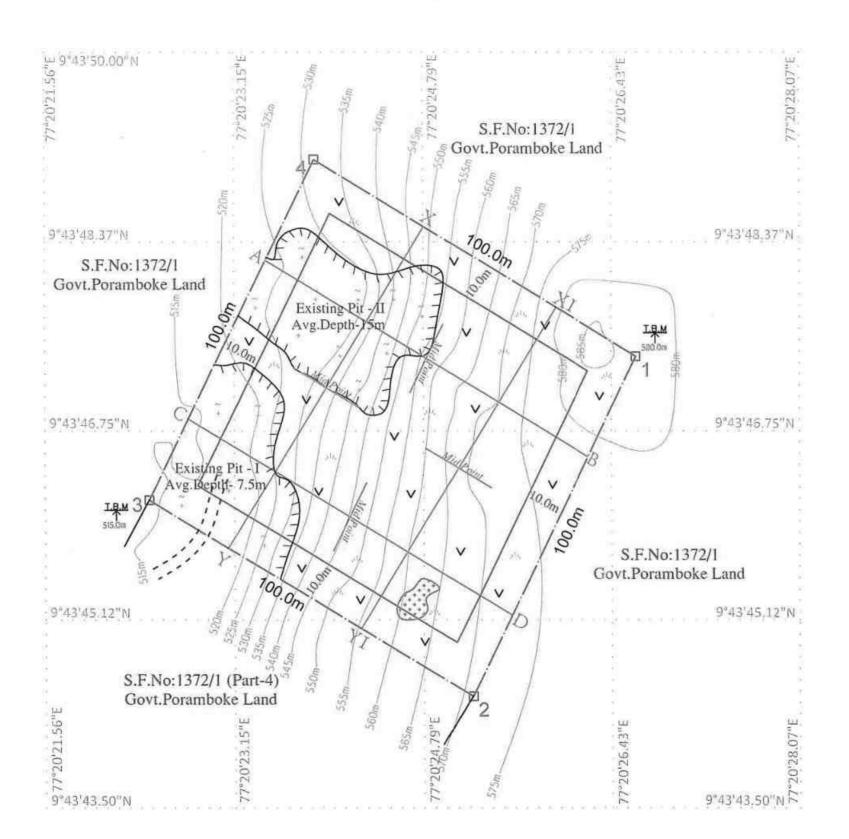
MINE LEASE BOUNDARY

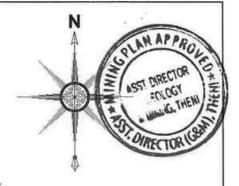
-

APPROACH ROAD

SAFETY DISTANCE

BOUNDARY PILLAR STONES


1


MINE LEASE PLAN

SCALE 1:1000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

PLATE NO- III

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU, Mrs.USHA, LEADER, No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3) EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

SAFETY DISTANCE

APPROACH & MINE HAUL ROAD

D [::::]

BOUNDARY PILLAR STONES

NES 🔯

ROUGH STONE

RESIDUAL TOP SOIL

 \vee \vee

SHRUBS

ياد باد باد

EXISTING PIT

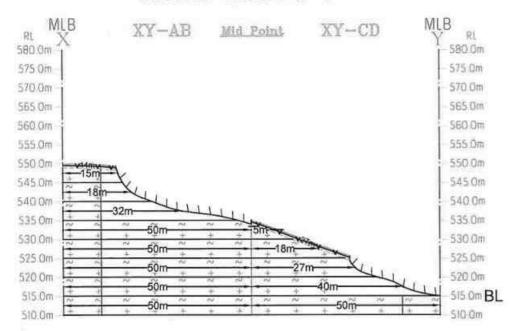
580m

CONTOUR LINES

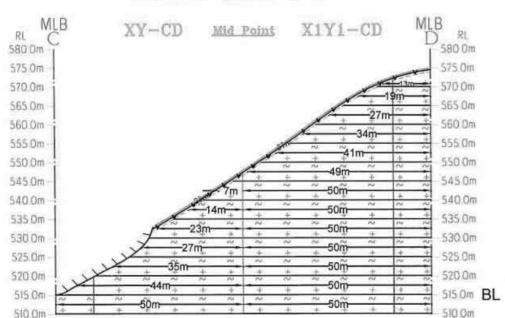
TEMPORARY BENCH MARK

T.H.M.

OUTCROP

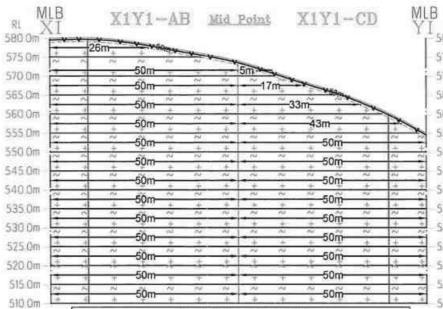

000

SURFACE & GEOLOGICAL PLAN PLAN SCALE 1: 1000


Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

SECTION ALONG X-Y



SECTION ALONG C-D

BL-BASE LEVEL

SECTION ALONG X1-Y1

RL 580.0m	Rt A		X	Y-/	B	1	fid	Poin	į.	X1	Y1-	AI	# WINNE	SET IT	OLOGY OLOGY
575.0m	575 Om											A	(0)		
570.0m	570.0m										250	Y	7	W)	CTUR
565 Om	565 Om									N	***	25n	+	+	565.0
560 Om	560.0m								1	+		5 <u>m</u>	+	+	560.0
555.0m	555 Qm							-	+	+	—45m	±	+	+	555.0
SS0.0m	550.0m						لايد	+	#	+	50m	+	+	+	550.0
545.0m	545 Om					X	9m-	-	+	+	50m	*	+	4	545.0
540 Om	540.0m				Ž	—16r	n +	+	~ +	Ť	-50m	+	+		540
535 Om	535.0m		۷, ،	حر	-	23m-	+	**	+	+	-50m	4	+	7	535.0
530.0m	530.0m	4	~		35m-	+	+	+	7.	+	-50m	+	+	+ 2	530
525 Om	525.0m	×1	+	_46m	+	+	+	- "	- C/	- 02	-50 <u>m</u>	€.	1~	+	525.0
520 Om	520.0m	2	×	50m	+	~	×.	*	+	+	-50m	~	12	2++2	520 (
	-	~	10	50m-	+	+		- 4	70	A)	-50m	*	14	10	
	3L515.0m +	- 4	10	50m	~	N.	N	N	79	20	-50m	74	N.	-70	- 515.0
510.0m	510 Om 1	- 1	-4-	5400	+	+	-40	4	+	-+		+	+	+	-510.0

SECTION ALONG A-B

		GEO	LOGIC	AL RES	OURCES		
		Length	Width	Depth	Volume	Rough	Residual
Section	Bench	Length	A-100 (177)	N. S. 10 1.74 ()	A STATE OF THE STA	Stone in	Topsoil in
119000001000		in (m)	in (m)	in (m)	In m ³	m ³	m ³
		14	9	1	126		126
1	All	15	9	5	675	675	111119
- 1	VIII	18	16	5	1440	1440	11110
- 1	1X	32	23	5	3680	3680	
XY-AB	X	50	35	5	8750	8750	11117
	XI	50	46	5	11500	11500	*****
1	XII	50	50	5	12500	12500	77774
1	XIII	50	50	5	12500	12500	10000
1	XIV	50	50	5	12500	12500	*****
	-21330	TOTAL		1	63671	63545	126
	422	27	28	1	756	*****	756
1	VIII	49	7	5	1715	1715	,,,,,
1	1X	43	14	5	3010	3010	
	X	5	23	5	575	575	
XY-CD	XI	18	27	5	2430	2430	*****
1	XII	27	35	5	4725	4725	*****
1	XIII	40	44	5	8800	8800	
	XIV	50	50	5	12500	12500	,,,,,
		TOTAL	1.		34511	33755	756
	****	50	53	1	2650		2650
1	- 1	26	20	5	2600	2600	
	11	50	17	5	4250	4250	*****
	111	50	25	5	6250	6250	*****
	IV	50	35	5	8750	8750	
	v	50	45	5	11250	11250	277111
	VI	50	50	5	12500	12500	1955
XIYI-AB	VII	50	50	5	12500	12500	17111
	VIII	50	50	5	12500	12500	
i	IX	50	50	5	12500	12500	3777
	X	50	50	5	12500	12500	20777
	XI	50	50	5	12500	12500	14(
	XII	50	50	5	12500	12500	
1	XIII	50	50	5	12500	12500	*****
	XIV	50	50	5	12500	12500	*****
		TOTAL			148250	145600	2650
		53	57	1 1	3021	91111	3021
	- 11	5	13	5	325	325	
ì	111	17	19	5	1615	1615	
	īv	33	27	5	4455	4455	
	V	43	34	5	7310	7310	
1	VI	50	41	5	10250	10250	
	VII	50	49	5	12250	12250	73144
XIY1-CD	VIII	50	50	5	12500	12500	7351
	ix	50	50	5	12500	12500	*****
	X	50	50	5	12500	12500	*****
	XI	50	20	-	12500	12500	****
	XII	50	22.		12500	12500	2000
	XIII	50	50	5	12500	12500	*****
	XIV	50	50	5	12500	12500	11111
- 4	340	TOTAL	1 -00	1	126726	123705	3021
		1011111			********		- Turke

PLATE NO- IIIA

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU,

Mrs. USHA, LEADER,

No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA: S.F.No : 1372/1 (Part-3)

EXTENT: 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

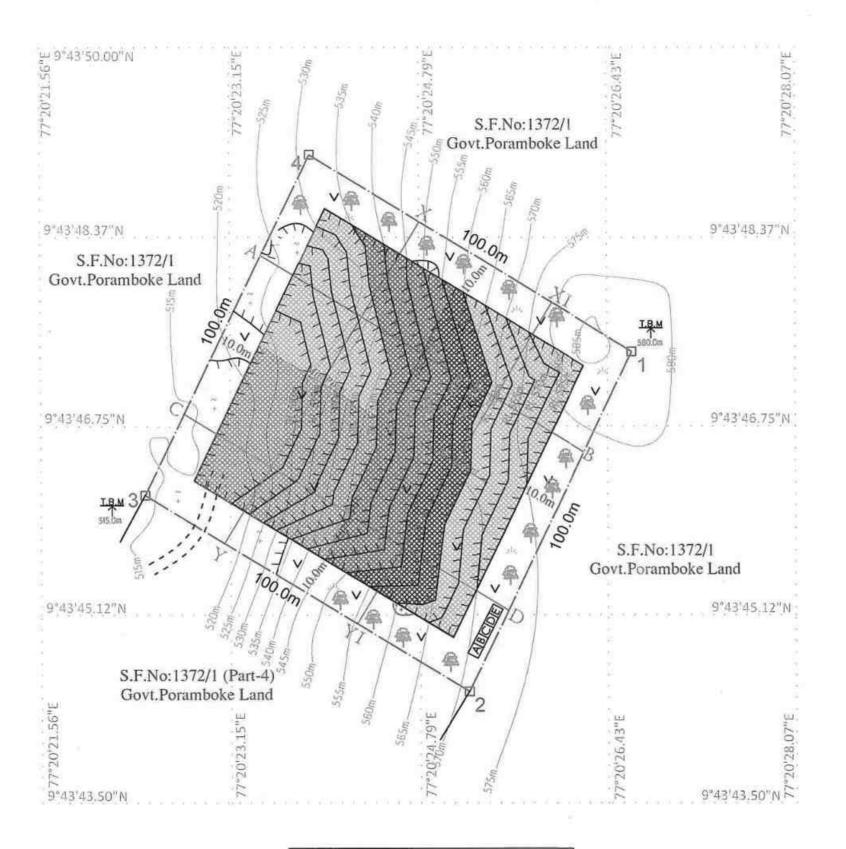
SAFETY DISTANCE

ROUGH STONE

RESIDUAL TOP SOIL

EXISTING PIT

ATTO


 \vee \vee

GEOLOGICAL SECTIONS

SECTION HOR 1:1000 & VER 1:1000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE



I - Year Proposed area to be Planted 🔑 🖣

I - Year Proposed area to be Quarried	20000
1 - Year Proposed area to be Quarried	50000
II - Year Proposed area to be Quarried	***
III - Year Proposed area to be Quarried	****
IV - Year Proposed area to be Quarried	38888
V - Year Proposed area to be Quarried	2000

A - OFFICE B - STORE C - FIRST AID D - REST ROOM E - TOILET

294

PLATE NO- IV

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU, Mrs. USHA, LEADER, No. 49/1, PANJAMAR STREET,

KAMAYAGOUNDANPATTI, UTHAMAPALAYAM TALUK, THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3) EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

BOUNDARY PILLAR STONES

SAFETY DISTANCE

APPROACH & MINE HAUL ROAD

D1

ROUGH STONE

4 t t

RESIDUAL TOP SOIL

 \vee \vee \vee

SHRUBS

عاد عاد عاد

EXISTING PIT
CONTOUR LINES

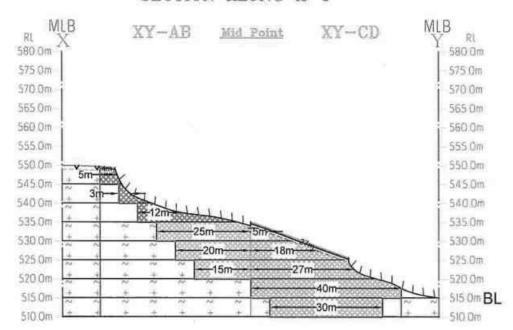
_580m

TEMPORARY BENCH MARK

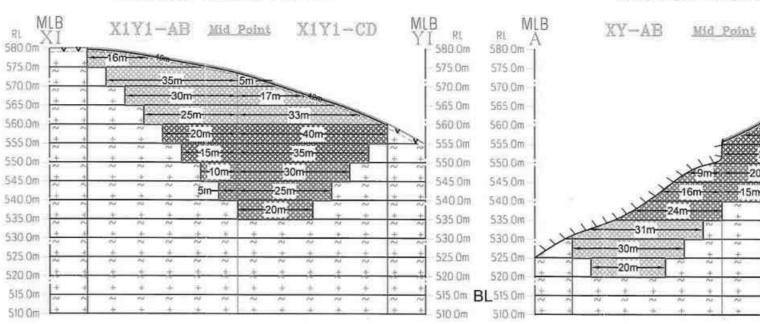
Store

OUTCROP

(I)


PROPOSED BENCH

YEARWISE DEVELOPMENT & PRODUCTION PLAN SCALE 1: 1000


Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

SECTION ALONG X-Y

SECTION ALONG X1-Y1

SECTION ALONG C-D

RL C S80 Om 1	XY-CD	Mid	Point	2	X13	71-	CD		ML	B) RL 580 0m	
575.0m								-	-	575.0m	
570 Om									+	570.0m	
565.0m						1	9m	20.4	7	565.0m	
					1	-12m	300	~	~		
550 Om				1	200		~	~	79	560.0m	
555 Om				<i>,</i>	×××	- XXX	+	+	+	555 Dm	
550 Om				XX 16	m	a +	+	+	+1	550.0m	
545.0m		1	3333 19	m	88	4	4	4	4		
and the same of th		-0000	15m	3000	~	0.0	~	00	~	545 Om	
540.0m	9		XXX	000H		#	7	100	100	540.0m	
535 Om -	100	∂ 14m 388	21 0m€		#	+	4	4	4	carne	
	2	3m	F-2	W.	30	100	10	100	~	535.0m	
530 Om :	XXXXXXXX	200000	+ 2	+	30	+	*	120	+	530.0m	
	22m	500000 +	4	4	+	+	+	4	+		
525 Om	25m	W	10	eri.	100	~	N	100	A.	525.Dm	
520 0m	5000000 *** - GGUGGGG	S +	*	*	#	- tr	+	4	+	520 Om	
	200000 25m 200000	+ +	+:	+	+	+	+	+	+1		
515.0m - 😞 - ~	15m 250 ~	~ ~	747	N	192	~	24	100	~	515 Om	BL
510.0m + +	+ [888, 1989]	+: 4:	#<	+	+	+	+	+	-	510.0m	

BL-BASE LEVEL

			YEAR	WISE F	RODUCT	ION		
Section	Year	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In M ³	Rough Stone in m ³	Residual Topsoil in M ³
		777	40	43	1	1720		1720
		1	16	7	5	560	560	3334
X1Y1-AB	ì	11	35	7	5	1225	1225	*****
		III	30	15	5	2250	2250	1,
	I-YEAR	IV	25	20	5	2500	2500	2,090
		1000	42	47	1	1974	*****	1974
X1Y1-CD		П	5	3	5	75	75	*****
AIII-CD		111	17	9	5	765	765	****
		IV	33	12	5	1980	1980	
		TOT	AL			13049	9355	3694
X1Y1-AB		V	20	25	5	2500	2500	.,,
AIII-AD	II-YEAR	VI	15	25	5	1875	1875	
X1Y1-CD	11°12AK	V	40	14	5	2800	2800	.43334
ATTT-CD		VI	35	16	5	2800	2800	******
		TOT	AL			9975	9975	0
X1Y1-AB		VII	10	20	5	1000	1000	-2711
ATTI-AD		VIII	5	15	5	375	375	
	Ĭ	VII	30	19	5	2850	2850	24.22
X1Y1-CD	i i	VIII	25	15	5	1875	1875	355500
	i	IX	20	10	5	1000	1000	****
	III-YEAR	***	4	9	1	36	*****	36
XY-AB	III-ICAK	VII	5	9	5	225	225	*****
AI-AD		VIII	3	16	5	240	240	
		IX	12	24	5	1440	1440	*****
		less.	27	28	1	756		756
XY-CD		VIII	39	7	5	1365	1365	34444
		IX	33	14	5	2310	2310	
		TOT	AL		-	13472	12680	792
		X	25	31	5	3875	3875	
XY-AB	IV-YEAR	XI	20	30	5	3000	3000	3000
		XII	15	20	5	1500	1500	
		тот	AL	-	•	8375	8375	0
i		Х	5	23	5	575	575	
	V-YEAR	XI	18	22	5	1980	1980	*****
XY-CD	V-1EM	XII	27	25	5	3375	3375	
		OXH	40	25	5	5000	5000	1
	4	YUV	30	15	5	2250	2250	1000
		TOT	AL	11		13180	13180	0
		GRAND	TOTAL			58051	53565	4486

PLATE NO- IVA

APPLICANT:

SECTION ALONG A-B

M/s. ANNAI SATHIYA MAGALIR SUYA

X1Y1-A

560.0m

555.0m

550.0m

545.0m

540 0m

535 Om.

530.0m

525.0m

520.0m

515 Dm

510.0m

VVV

GITTO

UTHAVIKUZHU,

Mrs.USHA, LEADER,

No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI,

UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3)

EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

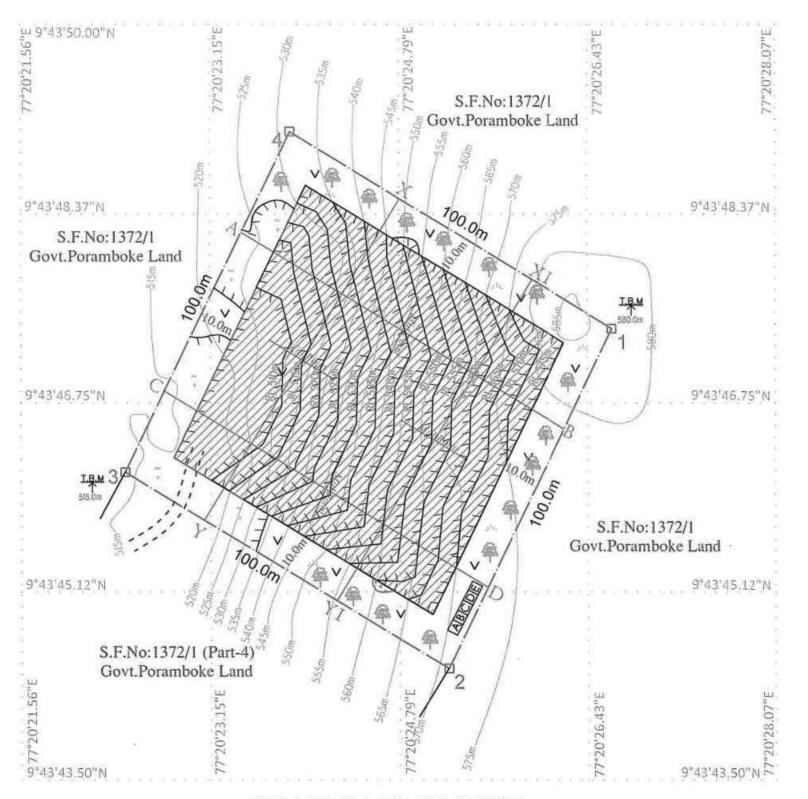
SAFETY DISTANCE

ROUGH STONE

RESIDUAL TOP SOIL

EXISTING PIT

ULTIMATE BENCH


YEARWISE DEVELOPMENT & PRODUCTION

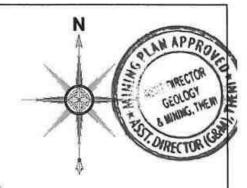
SECTIONS
SCALE 1: 1000

and the second

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

MINE LAYOUT LAND USE PATTERN


DESCRIPTION	PRESENT AREA (Hect)	AREA IN USE DURING THE QUARRYING PERIOD(Hect)	COLOR
AREA UNDER QUARRYING	0.28.73	0.63.6	
INFRASTRUCTURE	NIL	0.01.0	ANCIDE
ROADS	0.01.0	0.03.0	==:
UN-UTILIZED AREA	0.70.27	0.07.46	
GREEN BELT	NIL	0.24.94	29
GRAND TOTAL	1.00.0	1.00.0	

I - Year Proposed area to be Planted

A - OFFICE
B - STORE
C - FIRST AID
D - REST ROOM

E - TOILET

PLATE NO- V

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU,

Mrs.USHA, LEADER,

No.49/1, PANJAMAR STREET,

KAMAYAGOUNDANPATTI,

UTHAMAPALAYAM TALUK,

THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3)

EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

SAFETY DISTANCE

APPROACH & MINE HAUL ROAD [= = = :

BOUNDARY PILLAR STONES

CNDART FILLAR STORES

2 2 2

RESIDUAL TOP SOIL

ROUGH STONE

 \vee \vee \vee

SHRUBS

OUTCROP

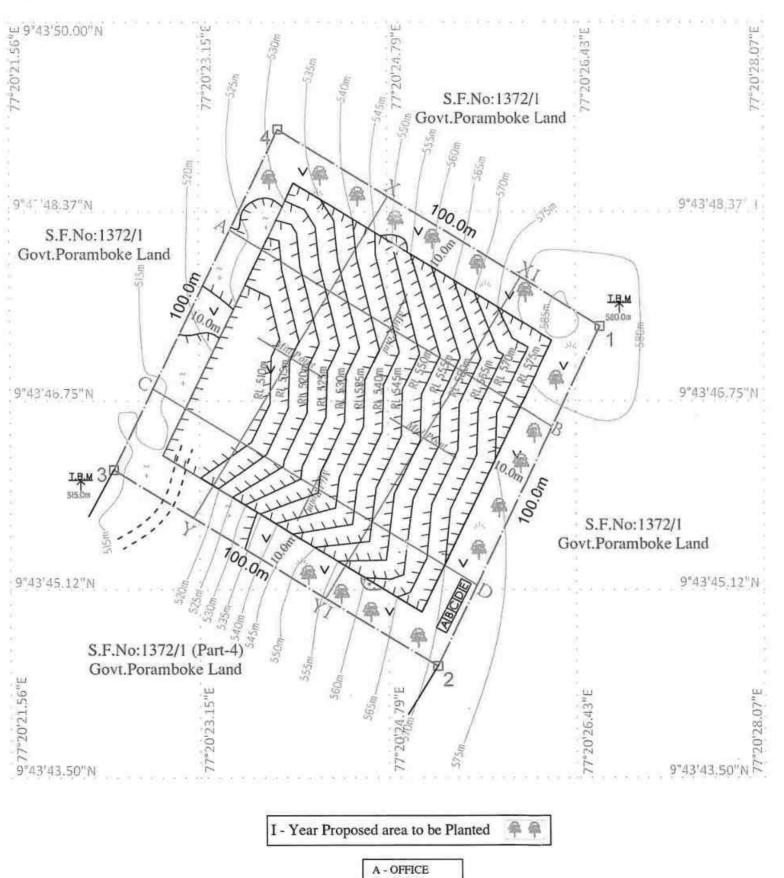
6770

EXISTING PIT

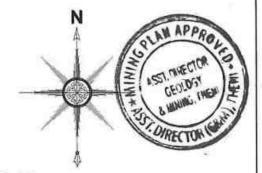
CONTOUR LINES

_580m

TEMPORARY BENCH MARK


(1)

PROPOSED BENCH


MINE LAYOUT PLAN & LAND USE PATTERN SCALE 1: 1000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

B - STORE C - FIRST AID D - REST ROOM E-TOILET

PLATE NO- VI

APPLICANT: M/s. ANNAI SATHIYA MAGALIR SUYA UTHAVIKUZHU, Mrs. USHA, LEADER, No.49/1, PANJAMAR STREET,

KAMAYAGOUNDANPATTI, UTHAMAPALAYAM FALUK, THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3) EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

SAFETY DISTANCE

APPROACH & MINE HAUL ROAD

BOUNDARY PILLAR STONES

ROUGH STONE

RESIDUAL TOP SOIL

SHRUB

EXISTING PIT

CONTOUR LINES

TEMPORARY BENCH MARK

OUTCROP

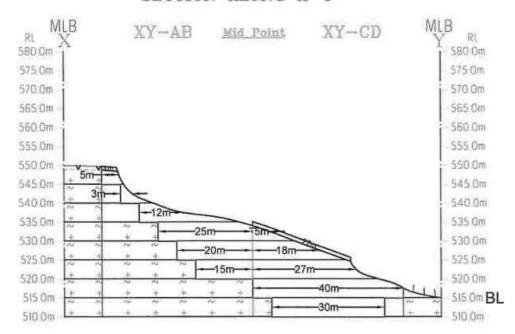
ULTIMATE BENCH

(T.T.)

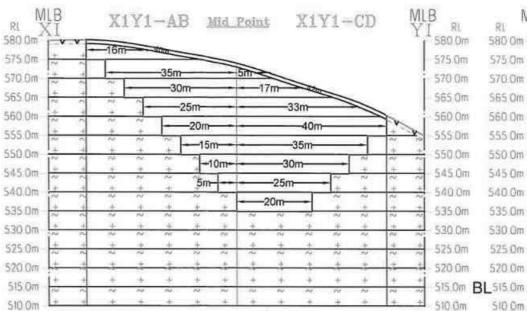
VVV

(III)

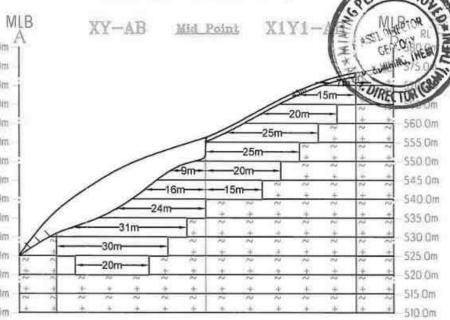
ATTR


CONCEPTUAL / FINAL MINE CLOSURE PLAN

SCALE 1:1000


Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE


SECTION ALONG X-Y


SECTION ALONG X1-Y1

SECTION ALONG C-D

BL-BASE LEVEL

		M	NEABL	E RES	ERVES		
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Residual Topsoil in m ³
	***	4	9	1	36	****	36
Ì	VII	5	9	5	225	225	*****
ŀ	VIII	3	16	5	240	240	
XY-AB	IX	12	24	5	1440	1440	******
	X	25	31	5	3875	3875	*****
t	XI	20	30	5	3000	3000	
Ì	XII	15	20	5	1500	1500	
-		TOTAL			10316	10280	36
	***	27	28	1	756	*2194	756
Ì	VIII	39	7	5	1365	1365	****
Ì	IX	33	14	5	2310	2310	50000
XY-CD	Х	5	23	5	575	575	722227
XY-CD	XI	18	22	5	1980	1980	22200
Ì	XII	27	25	5	3375	3375	*****
1	XIII	40	25	5	5000	5000	3,9334
İ	XIV	30	15	5	2250	2250	2000
		TOTAL		-	17611	16855	756
	***	40	43	1	1720	*****	1720
1	I	16	7	5	560	560	
	11	35	7	5	1225	1225	
1	III	30	15	5	2250	2250	
X1Y1-AB	IV	25	20	5	2500	2500	
1	V	20	25	5	2500	2500	
1	VI	15	25	5	1875	1875	*****
1	VII	10	20	5	1000	1000	
	VIII	5	15	5	375	375	0.000
		TOTAL	*		14005	12285	1720
	***	42	47	1	1974	****	1974
İ	11	5	3	5	75	75	17774
	III	17	9	5	765	765	rese.
-	IV	33	12	5	1980	1980	in
X1Y1-CD	V	40	14	5	2800	2800	2000
į į	VI	35	16	5	2800	2800	*****
	VII	30	19	5	2850	2850	*****
	VIII	25	15	5	1875	1875	*****
	iX	202	10	5	1000	1000	****
		TOTAL		•	16119	14145	1974
	GR/	AND TOTA	L		58051	53565	4486

PLATE NO- VIA

APPLICANT:

M/s. ANNAI SATHIYA MAGALIR SUYA

UTHAVIKUZHU,

Mrs.USHA, LEADER,

No.49/1, PANJAMAR STREET, KAMAYAGOUNDANPATTI,

UTHAMAPALAYAM TALUK, THENI DISTRICT-625 516.

LEASE AREA:

S.F.No : 1372/1 (Part-3)

EXTENT : 1.00.0Hect

VILLAGE : KAMAYAGOUNDANPATTI

TALUK : UTHAMAPALAYAM

DISTRICT : THENI

INDEX

MINE LEASE BOUNDARY

SAFETY DISTANCE

ROUGH STONE

RESIDUAL TOP SOIL

L TOI SOIL

EXISTING PIT

TITE OF

 \vee \vee

ULTIMATE BENCH

CONCEPTUAL SECTIONS
SECTION HOR 1: 1000 & VER 1: 1000

Prepared By:

I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE

Table 1.1. Flora in 10 km Radius Buffer Zone

S. No	Scientific name	Family name
1	Trees	
1	Acacia chundra	Fabaceae
2	Acacia farnesiana	Fabaceae
3	Acacia leucophloea	Fabaceae
4	Acacia mellifera	Fabaceae
5	Acacia nilotica	Fabaceae
6	Acacia pennata	Fabaceae
7	Acacia polyacantha	Fabaceae
8	Agalaia elaeagnoidea	Meliaceae
9	Ailanthus excelsa	Simaroubaceae
10	Alangium salviifolium	Alangiaceae
11	Albizia amara	Caesalpiniaceae
12	Albizia lebbeck	Caesalpiniaceae
13	Annona squamosa	Annonaceae
14	Anogeissus latifolia	Combretaceae
15	Atalantia monophylla	Rutaceae
16	Atalantia racemosa	Rutaceae
17	Azadirachta indica	Meliaceae
18	Bambusa arundinacea	Poaceae
19	Bauhinia racemosa	Caesalpiniaceae
20	Bombax malabaricum	Bombacaceae
21	Buchanania lanzan	Anacardiaceae
22	Canthium dicoccum	Rubiaceae
23	Capparis grandis	Capparidaceae
24	Cassine glauca	Celastraceae
25	Celtis philippensis	Ulmaceae
26	Chloroxylon swietenia	Rutaceae
27	Clerodendrum viscosum	Verbenaceae
28	Commiphora berryi	Burseraceae
29	Commiphora caudata	Burseraceae
30	Cordia monoica	Boraginaceae
31	Cordia rothii	Boraginaceae
32	Cordia wallichii	Boraginaceae
33	Crateva adansonii	Caryophyllaceae
34	Crateva magna	Caryophyllaceae
35	Dalbergia latifolia	Fabaceae
36	Dalbergia paniculata	Fabaceae
37	Dalbergia sissoo	Fabaceae
38	Debregaesia velutina	Urticaceae
39	Delonix regia	Mimosaceae

40	Dichrostachys cinerea	Mimosaceae
41	Diospyros chloroxylon	Ebenaceae
42	Diospyros montana	Ebenaceae
43	Dolichandrone atrovirens	Bignoniaceae
44	Dolichandrone spathacea	Bignoniaceae
45	Ehretia ovalifolia	Boraginaceae
46	Ehretia pubescens	Boraginaceae
47	Erythrina stricta	Fabaceae
48	Euphorbia antiquorum	Euphorbiaceae
49	Euphorbia trigonum	Euphorbiaceae
50	Ficus beddomei	Moraceae
51	Ficus benghalensis	Moraceae
52	Ficus hispida	Moraceae
53	Ficus microcarpa	Moraceae
54	Ficus racemosa	Moraceae
55	Ficus religiosa	Moraceae
56	Ficus tinctoria ssp. parasitica	Moraceae
57	Ficus tomentosa	Moraceae
58	Ficus tsjakela	Moraceae
59	Flacourtia indica	Flacourtiaceae
60	Gardenia gummifera	Rubiaceae
61	Gardenia latifolia	Rubiaceae
62	Gardenia resinifera	Rubiaceae
63	Givotia moluccana	Euphorbiaceae
64	Gmelina arborea	Verbenaceae
65	Gyrocarpus americanus	Hernandiaceae
66	Holoptelea integrifolia	Ulmaceae
67	Ixora arborea	Rubiaceae
68	Lepisanthes tetraphylla	Sapindaceae
69	Maba buxifolia	Ebenaceae
70	Macaranga peltata	Euphorbiaceae
71	Mallotus philippensis	Euphorbiaceae
72	Mitragyna parvifolia	Rubiaceae
73	Moringa concanensis	Moringaceae
74	Naringi crenulata	Rutaceae
75	Phyllanthus emblica	Euphorbiaceae
76	Pongamia pinnata	Fabaceae
77	Premna corymbosa	Verbenaceae
78	Premna tomentosa	Verbenaceae
79	Prosopis juliflora	Mimosaceae
80	Santalam album	Santalaceae
81	Sapindus emarginatus	Sapindaceae
82	Schefflera stellata	Araliaceae

83	Schleichera oleosa	Sapindaceae
84	Stereospermum personatum	Bignoniaceae
85	Streblus asper	Moraceae
86	Strychnos nux-vomica	Loganiaceae
87	Strychnos potatorum	Loganiaceae
88	Tectona grandis	Verbenaceae
89	Terminalia arjuna	Combretaceae
90	Terminalia bellirica	Combretaceae
91	Terminalia chebula	Combretaceae
92	Thevetia peruviana	Apocynaceae
93	Trema orientalis	Urticaceae
94	Tricalysia apiocarpa	Rubiaceae
95	Trichilia connaroides	Meliaceae
96		
	Vepris bilocularis	Rutaceae
97	Vitex altissima	Verbenaceae
98	Wrightia tinctoria	Apocynaceae
99	Ziziphus mauritiana	Rhamnaceae
100	Ziziphus rugosa	Rhamnaceae
101	Ziziphus trinervia	Rhamnaceae
	Shrubs	
1	Abutilon hirtum	Malvaceae
2	Abutilon indicum	Malvaceae
3	Acalypha fruiticosa	Euphorbiaceae
4	Ageratina adenophora	Asteraceae
5	Alstonia venenata	Apocynaceae
6	Anisomeles malabarica	Lamiaceae
7	Azima tetracantha	Salvadoraceae
8	Barleria acuminata	Acanthaceae
9	Barleria prionitis	Acanthaceae
10	Barleria tomentosa	Acanthaceae
11	Benkara malabarica	Rubiaceae
12	Breynia vitis-idaea	Euphorbiaceae
13	Cadaba trifoliata	Caryophyllaceae
14	Capparis divaricata	Capparidaceae
15	Carissa carandas	Apocynaceae
16	Carissa spinarum	Apocynaceae
17	Carmona retusa	Boraginaceae
18	Cassia auriculata	Caesalpiniaceae
19	Chromolaena odorata	Asteraceae
20	Cipadessa baccifera	Meliaceae
21	Clausena dentata	Rutaceae
22	Clerodendrum phlomoides	Verbenaceae

23	Crotalaria longipes	Fabaceae
24	Dodonaea viscosa	Sapindaceae
25	Erythroxylum monogynum	Erythroxylaceae
26	Fluggea leucopyrus	Euphorbiaceae
27	Fluggea virosa	Euphorbiaceae
28	Gmelina asiatica	Verbenaceae
29	Helicteres isora	Sterculiaceae
30	Hibiscus lunarifolius	Malvaceae
31	Hibiscus surattensis	Malvaceae
32	Hibiscus vitifolia	Malvaceae
33	Indigofera longiracemosa	Fabaceae
34	Jatropha curcus	Euphorbiaceae
35	Jatropha gossypifolia	Euphorbiaceae
36	Jatropha peltata	Euphorbiaceae
37	Justicia betonica	Acanthaceae
38	Kleinia grandiflora	Asteraceae
39	Lantana camara	Verbenaceae
40	Maytenus ovata	Celastraceae
41	Mundulia sericea	Fabaceae
42	Murraya paniculata	Rutaceae
43	Opuntia stricta	Cactaceae
44	Osbeckia aspera	Melastomataceae
45	Pavetta indica	Rubiaceae
45	Pavetta montana	Rubiaceae
47	Phoenix lourierii	Arecaceae
48	Phyllanthus polyphyllus	Euphorbiaceae
49	Phyllanthus reticulatus	Fabaceae
50	Psychotria sp.	Rubiaceae
51	Randia brandisii	Rubiaceae
52	Randia dumetorum	Rubiaceae
53	Rhus mysorensis	Rhamnaceae
54	Solanum pubescens	Solanaceae
55	Solanum surrettense	Solanaceae
56	Solanum torvum	Solanaceae
57	Solanum violaceum	Solanaceae
58	Strobilanthes consanguinea	Acanthaceae
59	Strobilanthes cuspidatus	Acanthaceae
60	Suregada angustifolia	Euphorbiaceae
61	Tarenna asiatica	Rubiaceae
62	Taxillus cuneatus	Loranthaceae
63	Taxillus heyneanus	Loranthaceae
64	Taxillus recurva	Loranthaceae

65	Triumfetta pentandra	Tiliaceae
66	Triumfetta pilosa	Tiliaceae
67	Triumfetta rotundifolia	Tiliaceae
68	Waltheria indica	Sterculiaceae
69	Xanthium indicum	Asteraceae
<u> </u>	Herbes	
1	Abutilon persicum	Malvaceae
2	Acalypha indica	Euphorbiaceae
3	Acalypha paniculata	Euphorbiaceae
4	Acanthospermum hispidum	Asteraceae
5	Achyranthes aspera	Amaranthaceae
6	Achyranthes bidentata	Amaranthaceae
7	Aerva lanata	Amaranthaceae
8	Aerva persica	Amaranthaceae
9	Ageratum conyzoides	Asteraceae
10	Aloe vera	Agavaceae
11	Alternanthera pungens	Amaranthaceae
12	Alternanthera tenella	Amaranthaceae
13	Alysicarpus monilifer	Fabaceae
14	Alysicarpus rugosus	Fabaceae
15	Amaranthus spinosus	Amaranthaceae
16	Amaranthus viridis	Amaranthaceae
17	Andrographis alata	Acanthaceae
18	Aneilema paniculata	Commelinaceae
19	Anisochilus carnosus	Lamiaceae
20	Anisochilus scaber	Lamiaceae
21	Anisomeles indica	Lamiaceae
22	Asclepias curassavica	Asclepiadaceae
23	Asystasia dalzelliana	Acanthaceae
24	Asystasia gangetica	Acanthaceae
25	Bidens pilosa	Asteraceae
26	Biophytum sensitivum	Oxalidaceae
27	Blainvillea acmella	Asteraceae
28	Blepharis maderaspatensis	Acanthaceae
29	Blepharis molluginifolia	Acanthaceae
30	Blumea lacera	Asteraceae
31	Blumea mollis	Asteraceae
32	Boerhavia diffusa	Nyctaginaceae
33	Boerhavia erecta	Nyctaginaceae
34	Borreria hispida	Rubiaceae
35	Borreria ocymoides	Rubiaceae
36	Borreria pusilla	Rubiaceae
37	Bulbostylis barbata	Cyperaceae

38	Bulbostylis puberula	Cyperaceae
39	Canscora decussata	Gentianaceae
40	Caralluma attenualta	Asclepiadaceae
41	Caralluma umbellata	Asclepiadaceae
42	Cassia hirsuta	Caesalpiniaceae
43	Cassia italica	Caesalpiniaceae
44	Cassia mimosoides	Caesalpiniaceae
45	Cassia obtusa	Caesalpiniaceae
46	Cassia occidentalis	Caesalpiniaceae
47	Cassia tora	Caesalpiniaceae
48	Celosia polygonoides	Amaranthaceae
49	Centella asiatica	Apiaceae
50	Cleome felina	Caryophyllaceae
51	Cleome viscosa	Caryophyllaceae
52	Cochorus aestuans	Tiliaceae
53	Commelina benghalensis	Commelinaceae
54	Commelina clavata	Commelinaceae
55	Commelina longifolia	Commelinaceae
56	Conyza bonariensis	Asteraceae
57	Conyza leucantha	Asteraceae
58	Conyza stricta	Asteraceae
59	Corchorus tridens	Tiliaceae
60	Crassocephalum crepedioides	Asteraceae
61	Crossandra infundibuliformis	Acanthaceae
62	Crotalaria biflora	Fabaceae
63	Crotalaria hirta	Fabaceae
64	Crotalaria mysorensis	Fabaceae
65	Crotalaria retusa	Fabaceae
66	Crotalaria sp.	Fabaceae
67	Crotalaria verrucosa	Fabaceae
68	Croton banblandianus	Euphorbiaceae
69	Cynotis tuberosa	Commelinaceae
70	Cynotis villosa	Commelinaceae
71	Cyperus articulatus	Cyperaceae
72	Cyperus corymbosus	Cyperaceae
73	Cyperus difformis	Cyperaceae
74	Cyperus exaltatus	Cyperaceae
75	Cyperus globosus	Cyperaceae
76	Cyperus iria	Cyperaceae
77	Cyperus pangorai	Cyperaceae
78	Cyperus rotundus	Cyperaceae
79	Cyperus triceps	Cyperaceae
80	Desmodium triflorum	Fabaceae

81	Dicliptera cuneata	Acanthaceae
82	Didymocarpus tomentosus	Gesneriaceae
83	Digera muricata	Amaranthaceae
84	Emelia sonchifolia	Asteraceae
85	Emelia zeylanica	Asteraceae
86	Eriocaulon thwaitsii	Eriocaulaceae
87	Eriocaulon truncatun	Eriocaulaceae
88	Euphorbia hirta	Euphorbiaceae
89	Euphorbia rothiana	Euphorbiaceae
90	Euphorbia thymifolia	Euphorbiaceae
91	Evolvulus alsinoides	Convolvulaceae
92	Exacum sessile	Gentianaceae
93	Fimbristylis complanata	Cyperaceae
94	Fimbristylis falcata	Cyperaceae
95	Fimbristylis ovata	Cyperaceae
96	Gisekia pharnaceoides	Aizoaceae
97	Gloriosa suberba	Liliaceae
98	Gomphrena decumbens	Amaranthaceae
99	Gynandropsis pentaphylla	Caryophyllaceae
100	Hibiscus micranthus	Malvaceae
101	Hybanthus enneaspermus	Caryophyllaceae
102	Hyptis suaveolens	Lamiaceae
103	Indigofera barberii	Fabaceae
104	Indigofera cassioides	Fabaceae
105	Indigofera linnaei	Fabaceae
106	Indigofera trita	Fabaceae
107	Indigofera viscosa	Fabaceae
107	Indoneesiella echioides	Acanthaceae
108	Justicia simplex	Acanthaceae
109	Justicia tranquebariensis	Acanthaceae
110	Kalanchoe laciniata	Crassulaceae
111	Lagascea mollis	Asteraceae
112	Lantana wightiana	Verbenaceae
113	Leanotis nepetifolia	Lamiaceae
114	Leucas aspera	Lamiaceae
115	Cyperus corymbosus	Cyperaceae
116	Leucas biflora	Lamiaceae
117	Leucas cephalotus	Lamiaceae
118	Leucas martinicensis	Lamiaceae
119	Leucas vestita	Lamiaceae
120	Lindernia antipoda	Scrophulariaceae
121	Ludwigia octavalis	Onagraceae
122	Ludwigia perennis	Onagraceae

123	Mariscus squarrosus	Cyperaceae
124	Martynia annua	Pedaliaceae
125	Merremia tridentata	Convolvulaceae
126	Micrargeria wightii	Scrophulariaceae
127	Mollugo cerviana	Aizoaceae
128	Mollugo nudicaulis	Aizoaceae
129	Mollugo pentaphylla	Aizoaceae
130	Monothecium aristatum	Acanthaceae
131	Nothosaerva brachiata	Amaranthaceae
132	Ocimum canum	Lamiaceae
133	Ocimum sanctum	Lamiaceae
134	Oldenlandia aspera	Rubiaceae
135	Oldenlandia biflora	Rubiaceae
136	Oldenlandia corymbosa	Rubiaceae
137	Oldenlandia umbellata	Rubiaceae
138	Orthosiphon diffuses	Lamiaceae
139	Orthosiphon pallidus	Lamiaceae
140	Osbeckia octandra	Melastomataceae
141	Oxalis corniculata	Oxalidaceae
142	Parthenium hysterophorus	Asteraceae
143	Pavonia procumbens	Malvaceae
144	Pavonia zeylanica	Malvaceae
145	Peristrophe bicalyculata	Acanthaceae
146	Phyla nodiflora	Verbenaceae
147	Phyllanthus amarus	Euphorbiaceae
148	Phyllanthus maderaspatensis	Euphorbiaceae
149	Phyllanthus wightianus	Euphorbiaceae
150	Plumbago zeylanica	Plumbaginaceae
151	Polycarpaea corymbosa	Caryophyllaceae
152	Polygala bulbothrix	Polygalaceae
153	Polygonum hydropiper	Polygonaceae
154	Portulaca oleracea	Portulacaceae
155	Portulaca quadrifida	Portulacaceae
156	Portulaca tuberosa	Portulacaceae
157	Pouzolzia bennettiana	Urticaceae
158	Pouzolzia indica	Urticaceae
159	Priva cordifolia	Verbenaceae
160	Pseudarthria viscida	Fabaceae
161	Psilotrichum elliottii	Amaranthaceae
162	Pupalia lappacea	Amaranthaceae
102	Pycreus pumilus	Cyperaceae
163		v.vin.iataad
163 164	Pycreus puncticulatus	Cyperaceae

166	Rhynchoglossum zeylanicum	Gesneriaceae
167	Ruellia patula	Acanthaceae
168	Sansevieria roxburghiana	Agavaceae
169	Scoparia dulcis	Scrophulariaceae
170	Sebastiania chamaelea	Euphorbiaceae
171	Sida acuta	Malvaceae
172	Sida cordata	Malvaceae
173	Sida cordifolia	Malvaceae
174	Sigesbeckia orientalis	Asteraceae
175	Solanum nigrum	Solanaceae
176	Sonchus oleraceous	Asteraceae
177	Sophubia trifida	Scrophulariaceae
178	Spilanthes acmella	Asteraceae
179	Stachytarpheta jamaicensis	Verbenaceae
180	Striga asiatica	Scrophulariaceae
181	Synedrella nodiflora	Asteraceae
182	Tephrosia purpurea	Fabaceae
183	Tephrosia villosa	Fabaceae
184	Trianthema decandra	Aizoaceae
185	Trianthema portulacastrum	Aizoaceae
186	Tribulus subramaniamii	Zygophyllaceae
187	Tribulus terrestris	Zygophyllaceae
188	Trichodesma indicum	Boraginaceae
189	Trichodesma zeylanicum	Boraginaceae
190	Trichurus monsoniae	Amaranthaceae
191	Tridax procumbens	Asteraceae

	Climbers/Stragglers			
No	Species	Family	Habit	
1	Abrus precatorius	Fabaceae	Straggler	
2	Acacia caesia	Mimosaceae	Straggler	
3	Acacia planifrons	Mimosaceae	Straggler	
4	Acacia torta	Mimosaceae	Straggler	
5	Argyria cuneata	Convolvulaceae	Straggler	
6	Argyria hirsuta	Convolvulaceae	Straggler	
7	Argyria pomacea	Convolvulaceae	Straggler	
8	Aristolochia indica	Euphorbiaceae	Straggler	
9	Aristolochia tagala	Euphorbiaceae	Straggler	
10	Asparagus racemosus	Asparagaceae	Straggler	
11	Butea parviflora	Fabaceae	Straggler	
12	Cadaba indica	Caryophyllaceae	Straggler	
13	Canavalia virosa	Fabaceae	Straggler	
14	Cansjeera rheedii	Opeliaceae	Straggler	
15	Capparia aphylla	Capparidaceae	Straggler	

17Capparis sepiariaCapparidaceaeStra18Capparis spinosaCapparidaceaeStra19Capparis zeylanicaCapparidaceaeStra20Cardiospermum canescensSapindaceaeCli21Cardiospermum halicacabumSapindaceaeCli22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	aggler aggler aggler aggler mber mber mber aggler mber mber aggler mber mber mber mber mber mber mber mb
18Capparis spinosaCapparidaceaeStra19Capparis zeylanicaCapparidaceaeStra20Cardiospermum canescensSapindaceaeCli21Cardiospermum halicacabumSapindaceaeCli22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mggler mber mber mber mggler mber
19Capparis zeylanicaCapparidaceaeStra20Cardiospermum canescensSapindaceaeCli21Cardiospermum halicacabumSapindaceaeCli22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mber mgler mber mggler mber mggler mber mggler mber mggler mber mber mggler mber mber mggler mber mggler mber mber mggler mber mber mggler mber mber mggler mber mggler mber
20Cardiospermum canescensSapindaceaeCli21Cardiospermum halicacabumSapindaceaeCli22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mber mggler mber mggler mber mggler mber mber mggler mggler mggler mggler mggler mggler mggler mggler
21Cardiospermum halicacabumSapindaceaeCli22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra34Cocculus pendulusMenispermaceaeCli35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mggler mber mggler mber mber mber mber mber mggler mber mber mggler mber mber mggler mber mber mggler mber mber
22Cayratia pedataVitaceaeCli23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber nggler mber mber mber mber mber mber mber mb
23Cayratia trifoliataVitaceaeCli24Celastrus paniculatusCelastraceaeStra25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber aggler mber mber mber mber mber mber aggler mber mber mber mggler mber mber mggler mber mggler mber
24Celastrus paniculatusCelastraceaeStraceae25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStraceae27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStraceae32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStraceae34Cocculus pendulusMenispermaceaeStraceae35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStraceae39Glycine javanicaFabaceaeStraceae	mber mber mber mber mber mber mggler mber mggler mber mggler mber mggler mber mggler mber mggler mber
25Centrosema pubescensFabaceaeCli26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber nggler mber mber mber mber nggler mber mggler mber nggler mber nggler mber mber
26Cissampelos parieraMenispermaceaeStra27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mber mber mggler mber nggler mggler mber mber
27Cissus bicolorVitaceaeCli28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mber mggler mber aggler mggler mggler mggler mber mber mber
28Cissus quadrangularisVitaceaeCli29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber mggler mber nggler nggler mber mber mber
29Cissus repandaVitaceaeCli30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber nggler mber nggler mggler mber mber
30Cissus vitigeneaVitaceaeCli31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber nggler mber nggler nggler mber mber
31Clematis gourianaRanunculaceaeStra32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	nggler mber nggler nggler mber mber
32Coccinia indicaCucurbitaceaeCli33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber aggler aggler mber mber
33Cocculus hirsutusMenispermaceaeStra34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	nggler nggler mber mber
34Cocculus pendulusMenispermaceaeStra35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	nggler mber mber
35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber
35Cryptolepis buchananiiAsclepiadaceaeCli36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mber mber
36Decalepis hamiltoniiAsclepiadaceaeCli37Diplocyclos palmatusCucurbitaceaeCli38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	
38Dunbaria heyneanaFabaceaeStra39Glycine javanicaFabaceaeStra	mhan
39 Glycine javanica Fabaceae Stra	HIDEI
	iggler
40 Grewia disnerma Tiliaceae Stra	nggler
	nggler
41 Grewia flavescens Tiliaceae Stra	nggler
42 Grewia hirsuta Tiliaceae Stra	nggler
43 Grewia tenax Tiliaceae Stra	nggler
44 Grewia sp. Tiliaceae Stra	iggler
45 Grewia villosa Tiliaceae Stra	iggler
46 Hemidesmus indicus Asclepiadaceae Cli	mber
47 Hugonia mystax Linaceae Stra	nggler
48 <i>Hyptage benghalensis</i> Malphigiaceae Stra	nggler
49 Ichnocarpus frutescens Asclepiadaceae Cli	mber
50 Ipomoea pescarpae Convolvulaceae Cli	mber
	mber
	mber
	ıggler
	nggler
	nggler
	nggler
	iggler
	mber
	ıggler
	iggler
	iggler
	mber
	nggler
	mber
	mber

66	Pergularia daemia	Asclepiadaceae	Climber
67	Polygonum chinensis	Polygonaceae	Straggler
68	Polygonum nepalensis	Polygonaceae	Straggler
69	Pterolobium hexapetalum	Fabaceae	Straggler
70	Rhynchosia capitata	Fabaceae	Straggler
71	Rhynchosia minima	Fabaceae	Straggler
72	Rivea hypocrateriformis	Convolvulaceae	Straggler
73	Salacia reticulata	Hippocrateaceae	Straggler
74	Sarcostemma brunoniana	Asclepiadaceae	Climber
75	Sarcostemma intermedia	Asclepiadaceae	Climber
76	Scutia myrtina	Rhamnaceae	Straggler
77	Secamone emetica	Asclepiadaceae	Climber
78	Solena amplexicaulis	Cucurbitaceae	Climber
79	Tetrastigma lanceolaria	Vitaceae	Climber
80	Tetrastigma nilagirense	Vitaceae	Climber
81	Tinospora cordifolia	Menispermaceae	Straggler
82	Toddalia asiatica	Rutaceae	Straggler
83	Tylophora indica	Asclepiadaceae	Climber
84	Watakaka volubilis	Asclepiadaceae	Climber
85	Zehnaria mysorensis	Cucurbitaceae	Climber
86	Ziziphus oenoplia	Rhamnaceae	Straggler

	Grasses		
No	Species	Family	
1	Acrachne racemosa	Poaceae	
2	Alloteropsis cimcinna	Poaceae	
3	Apluda mutica	Poaceae	
4	Aristida adscensionis	Poaceae	
5	Aristida funiculata	Poaceae	
6	Aristida hystrix	Poaceae	
7	Arthraxon micans	Poaceae	
8	Arundinella ciliata	Poaceae	
9	Arundinella setosa	Poaceae	
10	Arundinella tuberculata	Poaceae	
11	Bothriochloa pertusa	Poaceae	
12	Brachiaria ramosa	Poaceae	
13	Brachiaria remota	Poaceae	
14	Cenchrus biflorus	Poaceae	
15	Cenchrus ciliaris	Poaceae	
16	Chloris barbata	Poaceae	
17	Chloris dolichostachya	Poaceae	
18	Chloris roxburghiana	Poaceae	
19	Chrysopogon aciculatus	Poaceae	
20	Chrysopogon asper	Poaceae	
21	Chrysopogon hackelii	Poaceae	
22	Cymbopogon citratus	Poaceae	
23	Cynodon barberii	Poaceae	
24	Cynodon dactylon	Poaceae	
25	Cyrtococcum trigonum	Poaceae	
26	Dactyloctenium aegyptium	Poaceae	

	The state of the s	
27	Digitaria bicornis	Poaceae
28	Digitaria longifolia	Poaceae
29	Eleusine indica	Poaceae
30	Enneapogon schimperianus	Poaceae
31	Enteropogon monostachyas	Poaceae
32	Eragrostiella bifaria	Poaceae
33	Eragrostis amabilis	Poaceae
34	Eragrostis atrovirens	Poaceae
35	Eragrostis maderaspatana	Poaceae
36	Eragrostis plumosa	Poaceae
37	Eragrostis unioloides	Poaceae
38	Garnotia courtallensis	Poaceae
39	Garnotia elata	Poaceae
40	Garnotia tenella	Poaceae
41	Heteropogon contortus	Poaceae
42	Isachnae kunthiana	Poaceae
43	Oplismenus compositus	Poaceae
44	Oropetium thomaeum	Poaceae
45	Panicum notatum	Poaceae
46	Panicum psilopodium	Poaceae
47	Panicum trypheron	Poaceae
48	Perotis indica	Poaceae
49	Phragmites karka	Poaceae
50	Poganatherum critinum	Poaceae
51	Rhynchelytrum repens	Poaceae
52	Sacciolepis indica	Poaceae
53	Setaria pumila	Poaceae
54	Sporobolous coromandelicus	Poaceae
55	Sporobolous indicus	Poaceae
56	Sporobolous spicatus	Poaceae
57	Sporobolous wallichii	Poaceae
58	Themeda cymbaria	Poaceae
59	Themeda triandra	Poaceae
60	Trachys muricata	Poaceae
61	Tragus roxburghii	Poaceae
62	Tripogon bromoides	Poaceae
63	Zenkaria elegans	Poaceae

Table 1.2 Fauna in Buffer Zone

	Mammals reco	orded in the buffer zone	
	English name	Zoological name	IUCN status
1	Asian palm civet	Paradoxurus hermophroditus	LC
2	Bengal Fox	Vulpes bengalensis	LC
3	Black Rat	Rattus rattus	LC
4	Blackbuck	Antilope cervicapra	NT
5	Black-naped hare	Lepus nigricollis	LC
6	Bonnet macaque	Macaca radiata	LC
7	Chital	Axis axis	LC
8	Common Giant flying squirrel	Petaurista petaurista	LC
9	Common mongoose	Herpestes edwardsi	LC
10	Common Palm Squirrel	Funambulus palmarum	LC
11	Coromandel Pipistrelle	Pipistrellus coromandra	LC
12	Dhole	Cuon alpinus	EN
13	Elephant	Elephas maximus	EN
14	Eurasian Otter	Lutra lutra	NT
15	Four-horned Antelope	Tetracerus quadricornis	VU
16	Gaur	Bos gaurus	VU
17	Golden Jackal	Canis aureus	LC
18	Greater Bandicoot Rat	Bandicota indica	LC
19	Hanuman langur	Semnopithecus entellus	LC
20	House Shrew	Suncus murinus	LC
21	Indian bison	Bos gaurus	VU
22	Indian Chevrotain	Moschiola indica	LC
23	Indian crested Porcupine	Hystrix indica	LC
24	Indian Flying Fox	Pteropus giganteus	LC
25	Indian Gerbil	Tatera indica	LC
26	Indian Pangolin	Manis crassicaudata	NT
27	Indian wild pig	Sus scrofa	LC
28	Jungle cat	Felis chaus	LC
29	Leopard	Panthera pardus	NT
30	Leopard cat	Prionalilurus bengalensis	LC
31	Lion-tailed Macaque	Macaca silenus	EN
32	Little Indian Field Mouse	Mus booduga	LC
33	Long-eared Hedgehog	Hemiechinus auritus	LC
34	Madras Treeshrew	Anathana ellioti	LC
35	Malabar giant squirrel	Ratufa indica	LC
36	Nilgiri Langur	Semnopithecus johnii	VU
37	Nilgiri Marten	Martes gwatkinsii	VU
38	Nilgiri Tahr	Nilgiritragus hylocrius	EN
39	Ratel or Honey Badger	Mellivora capensis	LC
40	Sambar	Rusa unicolor	VU

41	Slender loris	Loris lydekkerianus	LC
42	Sloth bear	Melursus ursinus	VU
43	Small Indian civet	Viverricula indica	LC
44	Southern Red Muntjac	Muntiacus muntjak	LC
45	Sri Lankan Giant Squirrel	Ratufa macroura	NT
46	Striped hyena	Hyaena hyaena	NT
47	Stripe-necked Mongoose	Herpestes vitticollis	LC
48	Tiger	Panthera tigris	EN
49	White spotted Chevrotain	Tragulus meminna	LC

EN: Endangered; VU: Vulnerable; NT: Near threatened; LC: Least concern. *Not

Encountered During the Survey

	English name	Zoological name	IUCN status
1	Asian House Gecko	Hemidactylus frenatus	LR
2	Bark Gecko	Hemidactylus leschenaultii	LR
3	Beddome's Grass Skink	Mubuya beddomei	LR
4	Bengal Monitor Lizard	Varanus bengalensis	VU
5	Bronze Grass Skink	Mabuya macularia	LR
6	Brook's House Gecko	Hemidactylus brookii	LR
7	Common Cat Snake	Boiga trigonota	LR
8	Common Sand Boa	Gongylophis conicus	LR
9	Common Vine Snake	Ahaetulla nasuta	LR
10	Common Wolf Snake	Lycodon aulicus	LR
11	Fan throated Lizard	Sitanan ponticeriana	LR
12	Green forest Lizard	Calotes calotes	LR
13	Horseshoe Pit Viper	Trimeresurus strigatus	LR
14	Indian garden Lizard	Calotes versicolor	LR
15	Indian Rat Snake	Ptyas mucosa	LR
16	Indian Rock Python	Python molurus molurus	EN
17	Keeled Grass Skink	Mabuya carinata	LR
18	Large-scaled Pit Viper	Trimeresurus macrolepis	LR
19	Malabar Pit Viper#	Trimeresurus malabaricus	VU
20	Red Sand Boa	Eryx johnii	LR
21	Russell's Viper	Daboia russelii	LR
22	Saw-scaled Viper	Echis carinatus	LR
23	South Asian Chamaeleon	Chamaeleo zeylanicus	VU
24	South Indian Rock Agama	Psammophilus dorsalis	LR
25	Spectacled Cobra	Naja naja	LR
26	Termite-hill Gecko	Hemidactylus triedrus	LR
27	Three-lined Grass Skink	Mubuya trivittata	LR

	Birds recorded	d in the Buffer zone	
No	Common Name	Scientific name	Status
1	Alexandrine Parakeet	Psittacula eupatria	LC
2	Ashy drongo	Dicrurus leucophaeus	LC
3	Ashy prinia	Prinia socialis	LC
4	Ashy Woodswallow	Artamus fuscus	LC
5	Asian fairy blue bird	Irena puella	LC
6	Asian koel	Eudynamys scolopacea	LC
7	Asian palm swift	Cypsiurus balasiensis	LC
8	Asian paradise-flycather	Terpsiphone paradise	LC
9	Barn Owl	Tyto alba	LC
10	Barn Swallow	Hirundo rustica	LC
11	Barred buttonquail	Turnix suscitator	LC
12	Baya Weaver bird	Ploceus philippinus	LC
13	Baybacked Shirike	Lanius vittatus	LC
14	Black Bird	Turdus merula	LC
15	Black drongo	Dicrurus macrocercus	LC
16	Black eagle	Ictinaetus malayensis	LC
17	Black or King Vulture	Sarcogyps calvus	CE
18	Black shouldered kite	Elanus caeruleus	LC
19	Blackcapped Kingfisher	Halcyon pileata	LC
20	Black-headed Munia	Lonchura malacca	LC
21	Black-hooded oriole	Oriolus xanthornus	LC
22	Blackwinged Stilt	Himantopus himantopus	LC
23	Blossom Headed Parakeet	Psittacula cyanocephala	LC
24	Blue Rock Thrush	Monticola solitrius	LC
25	Blue-faced malkoha	Phaenicophaeus viridirostris	LC
26	Brahminy starling	Sturnus pagodarum	LC
27	Bronzewinged Jacana	Metopidius indicus	LC
28	Brown Fish Owl	Bubo zeylonensis	LC
29	Cattle egret	Bubulcus ibis	LC
30	Chestnut-headed bee-eater	Merops leschenaulti	LC
31	Chestnut-tailed starling	Sturnus malabaricus	LC
32	Collared Bushchat	Saxicola torquata	LC
33	Common babbler	Turdoides caudatus	LC
34	Common Coot	Fulica arta	LC
35	Common flame back	Dinopium javanense	LC
36	Common Hoopoe	<i>Upupa epops</i>	LC
37	Common iora	Aegithina tiphia	LC
38	Common myna	Acridotheres tristis	LC
39	Common sandgrouse	Pterocles exustus	LC
40	Common tailorbird	Orthotomus sutoris	LC
41	Coppersmith barbet	Megalaima haemacephala	LC
42	Crested Hawk-Eagle	Spizaetus cirratus	LC
43	Crested Lark	Galerida cristata	LC
44	Crested serpent eagle	Spilornis cheela	LC
45	Crested tree-swift	Hemiprocne coronata	LC
1.0	D /	4 1	N TOT
47	Dusky Crag Martine	Hirundo concolor	LC
48	Emerald dove	Chalcophaps indica	LC

49	Eurasian collared dove	Streptopelia decaocto	LC
50	Eurasian eagle owl	Bubo bubo	LC
51	Eurasian golden oriole	Oriolus oriolus	LC
52	Goldenbacked Woodpecker	Dinopium benghalense	LC
53	Greater coucal	Centropus sinensis	LC
54	Greater racket-tailed drongo	Dicrurus paradiseus	LC
55	Green bea-eater	Merops orientalis	LC
56	Green Pigeon	Treron phoenicoptera	LC
57	Greenish warbler	Phylloscopus trochiloides	LC
58	Grey nightjar	Caprimulgus indicus	LC
59	Grey Tit	Parus major	LC
80	Verditer Flycatcher	Muscicapa albicaudata	NT
81	laughing Thrush	Garrulux cachinnans	EN
82	Open-billed stork	Anastomus oscitans	LC
83	Oriental honey-buzzard	Pernis ptilorhyncus	LC
84	Oriental magpie robin	Copsychus saularis	LC
85	Oriental white-eye	Zosterops palpebrosus	LC
86	Painted stork	Mycteria leucocephala	NT
87	Pallid harrier	Circus macrourus	NT
88	Pheasent-tailed Jacana	Hydrophasianus chirurgus	LC
89	Pied bushchat	Saxicola caprata	LC
90	Pied cuckoo	Clamator jacobinus	LC
91	Pied harrier	Circus melanoleucos	LC
92	Plain Flowerpecker	Dicaeum concolor	LC
93	Plain prinia	Prinia inornata	LC
94	Pond Heron	Ardeola grayii	LC
95	Purple sunbird	Nectarinia asiatica	LC
96	Purple-rumped sunbird	Nectarinia zeylonica	LC
97	Red Munia	Estrilda amandava	LC
98	Red Turtle Dove	Streptopelia tranquebarica	LC

CE: Critically endangered; EN: Endangered; NT: Near threatened; LC: Least concern;

Amphibians recorded in the buffer zone			
	English name	Scientific name	IUCN Status
1	Beddome's Leaping Frog#	Indirana beddomei	LC
2	Bronzed Frog	Sylvirana temporalis	LC
3	Common Indian Toad	Duttaphrynus melanostictus	LC
4	Common Tree Frog	Polypedatus maculates	LC
5	Cricket Frog	Fejervarya limnocharis	LC
6	Ferguson's Toad	Bufo scaber	LC
7	Indian Bull Frog	Hoplobatrachus tigrinus	LC
8	Indian Burrowing Frog	Sphaerotheca breviceps	LC
9	Indian Painted Frog	Kaloula taprobanica	LC
10	Indian Pond or Green Frog	Euphlyctis hexadactylus	LC
11	Lessor or Marbled Balloon Frog	Uperodon systoma	LC
12	Ornate Narrow-mouthed Frog	Microhyla ornateornata	LC
13	Red Narrow-mouthed Frog	Microhyla rubra	LC
14	Water Skipper or Skipper Frog	Euphlyctis cyanophlyctis	LC
	# Endemic to West	ern Ghats. LC=Least Concern	

อสุดภิ (บาลมะเด่ , 2 สุสุดมกุดภาคมเต้ มีเะ เต้ มีกาดม มีคุณตัวเล่า มาเล มีกาดผ่ มีกาดม มากับ มาเล มาเล้า มาเล มากับ มาก

ஆராம் நாவாக அனுவகள் 113. ஒது

் . M& ha. அன்னை சந்தியா மகளிர் சுய உதவிக்குழு W- 1 பஞ்சமர் தெரு காமயகவுண்டன் நட்டி

(By E Mail (Scanned copy) / Soft Copy/ Tapal / RPAD / Courier)

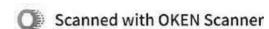
TAMIL NADU FOREST DEPARTMENT SRIVILLIPUTHUR MEGAMALAI TIGER RESERVE MEGAMALAI DIVISION, THENI DT

C.No.D1/7445/2023 Dated 11.12.2023

O/o the Deputy Director, Srivilliputhur Megamalai Tiger Reserve, Megamalai Division, Theni

Sub: Forests - Megamalai Division - Quarry - Removal of Roughstone in Government Poromboke land in S.F.No.1372/1 part I to Part VII of Kamayakoundanpatty village, Uthamapalayam Taluk, Theni district - NOC requested from Forest department - Issued during December 2020 and January 2021 - Additional details requested Sangilikaradu Kalludaikkum Mahalir Sangam, Kalludaikkum Mahalir Sangam, Annai Sathya Mahalir Suyauthavi Kulu, Annai Theresa Kalludaikkum Mahalir Munnetra Sangam, Varumaikottirkkukkeel Vazhum Mahalir Suyauthavi Sangilikaruppan Thanneerparai Kalludaikkum Mahalir Nala sangam of Kamayakoundanpatti village - Details provided -Revised - regarding - reg.,

Ref:


- Wildlife Warden, Megamalai Wildlife Division, Theni C.No.D1/1532/2020 dated 10.12.2020
- Deputy Director, SMTR, Megamalai Division, Theni C.No.D1/1532/2020 dated 07.01.2022 & 28.11.2023
- Sangilikaradu Kalludaikkum Mahalir Sangam, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023
- KK.Patti Kalludaikkum Mahalir Sangam, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023
- Annai Sathya Mahalir Suyauthavi Kulu, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023
- Annai Theresa Kalludaikkum Mahalir Nala Munnetra Sangam, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023
- Varumaikottirkkukkeel Vazhum Mahalir Suyauthavi kulu, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023
- Sangilikaruppan Thanneerparai Kalludaikkum Mahalir Nala sangam, Kamayakoundanpatti village Letter dated 10.10.2023 & 11.12.2023

An application requesting No Objection Certificate (NOC) for quarry and removal of roughstone in Government lands in S.F.No.1372/1 part I to Part VII of Kamayakoundanpatti village, Uthamapalayam Taluk, Theni district was received from the District Collector, Theni. A report in this regard was sent in references 1st and 2nd cited above. Now, the applicants in the subject mentioned had asked for additional details in the references 3rd to 8th cited above. The following remarks are offered subject to the conditions coupled to it:

- Out of the 7 parts (Part I to VII) of S.F.No.1372/1 of Kamayakoundanpatti village, Part VII falls within 1 km from the Megamalai Wildlife sanctuary i.e., 980 m. Since it is within 1 Km from the existing Sanctuary; it is not permissible to have mining activity within 1 km from the Sanctuary area as per the orders of the Hon'ble National Green Tribunal, Principal Bench, New Delhi order dated 25.09.2018.
- Thonikaradu RF and Erasakkanaickanur RF are the nearest RFs to the quarry site and they are part of the Megamalai Wildlife Sanctuary and the Srivilliputhur Megamalai Tiger Reserve which is located within 25 km from the proposed quarry site.
- 3. The said survey field in S.F.No.1372/1 is located outside the Eco-Sensitive Zone but as mentioned above S.F.No.1372/1 Part VII is located within 1 Km from the Sanctuary. Hence, quarry activity or any mining activity is not permissible in the said land.
- The lands in S.F.No.1372/1 part I to VI falls outside 1 Km and outside the Eco-Sensitive Zone of Megamalai Wildlife Sanctuary.
- The competent authority is responsible for verification of land records and its genuineness.

Sd/-S.Anand,
Deputy Director,
Srivilliputhur Megamalai Tiger Reserve,
Megamalai Division, Theni.

National Accreditation Board for Education and Training

Certificate of Accreditation

Geo Technical Mining Solutions

1/213B, Natesan Complex, Dharmapuri Salem Main Road, Oddapatti, Collectorate post office, Dharmapuri, Tamil Nadu-63670S

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA-EMP reports in the following Sectors –

S. Sector Description	Sector Description	Sector (as per)		
	Tettor Description	NABET MOEFCC Ca	Cat.	
1	Mining of minerals including opencast/ underground mining	1	1 (a) (i)	В

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated September 13, 2022 posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/23/2641 dated January 19, 2023. The accreditation needs to be renewed before the expiry date by Geo Technical Mining Solutions following due process of assessment.

Saint.

Sr. Director, NABET Dated: January 19, 2023 Certificate No. NABET/EIA/2124/SA 0184

Valid up to Dec 31, 2023

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website.