M/S. CHEMPLAST SANMAR LIMITED.

S.F NO.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A, 3B,4,12/1A, 1B, 13/1, 14/1A,2A, SULIGUNTA VILLAGE, BERIGAI 635105. SHOOLAGIRI TALUK, KRISHNAGIRI DISTRICT, TAMIL NADU, INDIA. DRAFT ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT FOR PROPOSED EXPANSION OF SYNTHETIC ORGANIC CHEMICALS & PESTICIDE SPECIFIC INTERMEDIATES (FROM 1601.4 MT/ANNUM TO 20031.4 MT/ANNUM) MANUFACTURING IN EXISTING UNIT

CATEGORY : A [5(b) & 5(f)] BASELINE STUDY PERIOD : JULY 2022 TO SEPTEMBER 2022 DETAILS OF TOR FOR INDUSTRY-III PROPOSAL NO : IA/TN/IND3/406642/2022 TOR LETTER No.J-11011/104/2009-IA-II(I) ; DATED 10TH DECEMBER, 2022 PROJECT NO.: 900048/2022 PREPARED BY:

NABET/QCI ACCREDITED EIA CONSULTANT: NABET/EIA/2023/IA0062 (REV. 03) MOEF ACCREDITED TESTING LABORATORY: 15018/24/2019 - CPW GPCB RECOGNIZED SCHEDULE-II ENVIRONMENTAL AUDITOR NABL ACCREDITED TESTING LABORATORY: TC - 7328 ISO 45001: 2018 CERTIFIED COMPANY ISO 9001: 2015 CERTIFIED COMPANY

Chemplast Sanmar Limited Sanmar Speciality Chemicals Divn.

44 Theertham Road Berigai 635 105 Shoolagiri Taluk Krishnagiri District Tamil Nadu India Tel + 91 4344 253 005 www.sanmargroup.com CIN U24230TN1985PLC011637

March 15, 2023

То

The District Environmental Engineer, Tamil Nadu Pollution Control Board, Plot No. 149-A, 1st floor, Dharga, SIPCOT industrial complex, Hosur - 635126.

SUB:

SUBMISSION OF DRAFT ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT INCORPORATING TORS FOR PUBLIC HEARING FOR PROPOSED EXPANSION OF SYNTHETIC ORGANIC CHEMICALS & PESTICIDE SPECIFIC INTERMEDIATES (FROM 1601.4 MT/ANNUM TO 20031.4 MT/ANNUM) MANUFACTURING IN EXISTING UNIT AT S.F NO.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A SULIGUNTA VILLAGE, BERIGAI 635105. SHOOLAGIRI TALUK, KRISHNAGIRI DISTRICT, TAMIL NADU, INDIA OF M/S. CHEMPLAST SANMAR LIMITED

CATEGORY: A-5(b) & 5(f)

REF: EIA NOTIFICATION OF MOEF DATED SEPT. 14, 2006

Dear Sir,

This has reference to the above mentioned subject matter. We are submitting herewith Draft Environmental Impact & Risk Assessment Report & Brief Summary for public hearing.

We hope you would find the same in order and request your kind self to guide us for further procedure and oblige.

Encl: Draft EIA report & Brief Summary

Regd Office: 9 Cathedral Road Chennai 600 086 India

(Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii) MINISTRY OF ENVIRONMENT AND FORESTS New Delhi 14th September, 2006 Notification

S.O. 1533(E). - Whereas, a draft notification under sub-rule (3) of Rule 5 of the Environment (Protection) Rules, 1986 for imposing certain restrictions and prohibitions on new projects or activities, or on the expansion or modernization of existing projects or activities based on their potential environmental impacts as indicated in the Schedule to the notification, being undertaken in any part of India1, unless prior environmental clearance has been accorded in accordance with the objectives of National Environment Policy **as approved by the Union Cabinet on 18th May, 2006** and the procedure specified in the notification, by the Central Government or the State or Union territory Level Environment Impact Assessment Authority (SEIAA), to be constituted by the Central Government in consultation

with the State Government or the Union territory Administration concerned under sub-section (3) of section 3 of the Environment (Protection) Act, 1986 for the purpose of this notification, was published in the Gazette of India ,Extraordinary, Part II, section 3, sub-section (ii) vide number S.O. 1324 (E) dated the 15th September ,2005 inviting objections and suggestions from all persons likely to be affected thereby within a period of sixty days from the date on which copies of Gazette containing the said notification were made available to the public;

And whereas, copies of the said notification were made available to the public on 15th September, 2005;

And whereas, all objections and suggestions received in response to the above mentioned draft notification have been duly considered by the Central Government;

Now, therefore, in exercise of the powers conferred by sub-section (1) and clause (v) of sub-section (2) of section 3 of the Environment (Protection) Act, 1986, read with clause (d) of sub-rule (3) of rule 5 of the Environment (Protection) Rules, 1986 and in supersession of the notification number S.O. 60 (E) dated the 27th January, 1994, except in respect of things done or omitted to be done before such supersession, the Central Government hereby directs that on and from the date of its publication the required construction of new projects or activities or the expansion or modernization of existing projects or activities listed in the Schedule to this notification entailing capacity addition with change in process and or technology shall be

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006 undertaken in any part of India only after the prior environmental clearance from the Central Government or as the case may be, by the State Level Environment

Impact Assessment Authority, duly constituted by the Central Government under sub-section (3) of section 3 of the said Act, in accordance with the procedure specified hereinafter in this notification.

Includes the territorial waters

2. Requirements of prior Environmental Clearance (EC):- The following projects or activities shall require prior environmental clearance from the concerned regulatory authority, which shall hereinafter referred to be as the Central Government in the Ministry of Environment and Forests for matters falling under Category 'A' in the Schedule and at State level the State Environment Impact Assessment Authority (SEIAA) for matters falling under Category 'B' in the said Schedule, before any construction work, or preparation of land by the project management except for securing the land, is started on the project or activity:

(i) All new projects or activities listed in the Schedule to this notification;

 Expansion and modernization of existing projects or activities listed in the Schedule to this notification with addition of capacity beyond the limits specified for the concerned sector, that is, projects or activities which cross the threshold limits given in the Schedule, after expansion or modernization;

(iii) Any change in product - mix in an existing manufacturing unit included in Schedule beyond the specified range.

3. State Level Environment Impact Assessment Authority:- (1) A State Level Environment Impact Assessment Authority hereinafter referred to as the SEIAA shall be constituted by the Central Government under sub-section (3) of section 3 of the Environment (Protection) Act, 1986 comprising of three Members including a Chairman and a Member – Secretary to be nominated by the State Government or the Union territory Administration concerned.

- (2) The Member-Secretary shall be a serving officer of the concerned State Government or Union territory administration familiar with environmental laws.
- (3) The other two Members shall be either a professional or expert fulfilling the eligibility criteria given in Appendix VI to this notification.

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

- (4) One of the specified Members in sub-paragraph (3) above who is an expert in the Environmental Impact Assessment process shall be the Chairman of the SEIAA.
- (5) The State Government or Union territory Administration shall forward the names of the Members and the Chairman referred in sub- paragraph 3 to 4 above to the Central Government and the Central Government shall constitute the SEIAA as an authority for the purposes of this notification within thirty days of the date of receipt of the names.
- (6) The non-official Member and the Chairman shall have a fixed term of three years (from the date of the publication of the notification by the Central Government constituting the authority).
- ¹ "(7) All decisions of the SEIAA shall be taken in a meeting and shall ordinarily be unanimous:

Provided that, in case a decision is taken by majority, the details of views, for and against it, shall be clearly recorded in the minutes and copy thereof sent to MoEF."

4. Categorization of projects and activities:-

- (i) All projects and activities are broadly categorized in to two categories Category A and Category B, based on the spatial extent of potential impacts and potential impacts on human health and natural and man made resources.
- (ii) All projects or activities included as Category 'A' in the Schedule, including expansion and modernization of existing projects or activities and change in product mix, shall require prior environmental clearance from the Central Government in the Ministry of Environment and Forests (MoEF) on the recommendations of an Expert Appraisal Committee (EAC) to be constituted by the Central Government for the purposes of this notification;
- (iii) All projects or activities included as Category 'B' in the Schedule, including expansion and modernization of existing projects or activities as specified in sub paragraph (ii) of paragraph 2, or change in product mix as specified in sub paragraph (iii) of paragraph 2, but excluding those which fulfill the General Conditions (GC) stipulated in the Schedule, *will* require prior environmental clearance from the State/Union territory Environment Impact Assessment Authority (SEIAA). The SEIAA shall base its decision on the recommendations of a State or Union territory level Expert Appraisal Committee (SEAC) as to be constituted for in this notification. ^{II} "In the absence of a duly constituted SEIAA

⁻⁻⁻⁻⁻⁻

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v) (a), (b), (vii), (viii) (a), (b), (x), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

or SEAC, a Category 'B' project shall be considered at Central Level as a Category 'B' project;"

5. Screening, Scoping and Appraisal Committees:-

The same Expert Appraisal Committees (EACs) at the Central Government and SEACs (hereinafter referred to as the (EAC) and (SEAC) at the State or the Union territory level shall screen, scope and appraise projects or activities in Category 'A' and Category 'B' respectively. EAC and SEAC's shall meet at least once every month.

- (a) The composition of the EAC shall be as given in Appendix VI. The SEAC at the State or the Union territory level shall be constituted by the Central Government in consultation with the concerned State Government or the Union territory Administration with identical composition;
- (b) The Central Government may, with the prior concurrence of the concerned State Governments or the Union territory Administrations, constitutes one SEAC for more than one State or Union territory for reasons of administrative convenience and cost;
- (c) The EAC and SEAC shall be reconstituted after every three years;
- (d) The authorised members of the EAC and SEAC, concerned, may inspect any site(s) connected with the project or activity in respect of which the prior environmental clearance is sought, for the purposes of screening or scoping or appraisal, with prior notice of at least seven days to the applicant, who shall provide necessary facilities for the inspection;
- (e) The EAC and SEACs shall function on the principle of collective responsibility. The Chairperson shall endeavour to reach a consensus in each case, and if consensus cannot be reached, the view of the majority shall prevail.

6. Application for Prior Environmental Clearance (EC):-

of the pre-feasibility project report except that, in case of construction projects or activities (item 8 of the Schedule) in addition to Form 1 and the Supplementary Form 1A, a copy of the conceptual plan shall be provided, instead of the pre-feasibility report.

7. Stages in the Prior Environmental Clearance (EC) Process for New Projects:-

- **7(i)** The environmental clearance process for new projects will comprise of a maximum of four stages, all of which may not apply to particular cases as set forth below in this notification. These four stages in sequential order are:-
 - Stage (1) Screening (Only for Category 'B' projects and activities)
 - Stage (2) Scoping
 - Stage (3) Public Consultation
 - Stage (4) Appraisal

I. Stage (1) - Screening:

In case of Category 'B' projects or activities, this stage will entail the scrutiny of an application seeking prior environmental clearance made in Form 1 by the concerned State level Expert Appraisal Committee (SEAC) for determining whether or not the project or activity requires further environmental studies for preparation of an Environmental Impact Assessment (EIA) for its appraisal prior to the grant of environmental clearance depending up on the nature and location specificity of the project . The projects requiring an Environmental Impact Assessment report shall be termed Category 'B1' and remaining projects shall be termed Category 'B2' and will not require an Environment Impact Assessment report. For categorization of projects into B1 or B2 except item 8 (b), the Ministry of Environment and Forests shall issue appropriate guidelines from time to time.

II. Stage (2) - Scoping:

(i) "Scoping": refers to the process by which the Expert Appraisal Committee in the case of Category 'A' projects or activities, and State level Expert Appraisal Committee in the case of Category 'B1' projects or activities, including applications for expansion and/or modernization and/or change in product mix of existing projects or activities, determine detailed and comprehensive Terms Of Reference (TOR) addressing all relevant environmental concerns for the preparation of an Environment Impact Assessment (EIA) Report in respect of the project or activity for which prior environmental clearance is sought. The Expert Appraisal Committee or State level Expert Appraisal Committee

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (xi), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

concerned shall determine the Terms of Reference on the basis of the information furnished in the prescribed application Form1/Form 1A including Terns of Reference proposed by the applicant, a site visit by a sub- group of Expert Appraisal Committee or State level Expert Appraisal Committee concerned only if considered necessary by the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned, Terms of Reference suggested by the applicant if furnished and other information that may be available with the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned. All projects and activities listed as Category 'B' in Item 8 of the Schedule (Construction/Township/Commercial Complexes /Housing) shall not require Scoping and will be appraised on the basis of Form 1/ Form 1A and the conceptual plan.

- (ii) The Terms of Reference (TOR) shall be conveyed to the applicant by the Expert Appraisal Committee or State Level Expert Appraisal Committee as concerned within sixty days of the receipt of Form 1. In the case of Category A Hydroelectric projects Item 1(c) (i) of the Schedule the Terms of Reference shall be conveyed along with the clearance for preconstruction activities .If the Terms of Reference are not finalized and conveyed to the applicant within sixty days of the receipt of Form 1, the Terms of Reference suggested by the applicant shall be deemed as the final Terms of Reference approved for the EIA studies. The approved Terms of Reference shall be displayed on the website of the Ministry of Environment and Forests and the concerned State Level Environment Impact Assessment Authority.
- (iii) Applications for prior environmental clearance may be rejected by the regulatory authority concerned on the recommendation of the EAC or SEAC concerned at this stage itself. In case of such rejection, the decision together with reasons for the same shall be communicated to the applicant in writing within sixty days of the receipt of the application.

III. Stage (3) - Public Consultation:

- (i) "Public Consultation" refers to the process by which the concerns of local affected persons and others who have plausible stake in the environmental impacts of the project or activity are ascertained with a view to taking into account all the material concerns in the project or activity design as appropriate. All Category 'A' and Category B1 projects or activities shall undertake Public Consultation, except the following:-
 - (a) modernization of irrigation projects (item 1(c) (ii) of the Schedule).

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xviii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

- (b) all projects or activities located within industrial estates or parks (item 7(c) of the Schedule) approved by the concerned authorities, and which are not disallowed in such approvals.
- (c) expansion of Roads and Highways (item 7 (f) of the Schedule) which do not involve any further acquisition of land.
- " (cc) maintenance dredging provided the dredged material shall be disposed within port limits.";
- ^{III} "(d) All Building or Construction projects or Area Development projects (which do not contain any category 'A' projects and activities) and Townships (item 8(a) and 8(b) in the Schedule to the notification)."
 - e) all Category 'B2' projects and activities.
 - f) all projects or activities concerning national defence and security or involving other strategic considerations as determined by the Central Government.
- (ii) The Public Consultation shall ordinarily have two components comprising of:-
- (a) a public hearing at the site or in its close proximity- district wise, to be carried out in the manner prescribed in Appendix IV, for ascertaining concerns of local affected persons;
- (b) obtain responses in writing from other concerned persons having a plausible stake in the environmental aspects of the project or activity.
- (iii) the public hearing at, or in close proximity to, the site(s) in all cases shall be conducted by the State Pollution Control Board (SPCB) or the Union territory Pollution Control Committee (UTPCC) concerned in the specified manner and forward the proceedings to the regulatory authority concerned within 45(forty five) of a request to the effect from the applicant.
- (iv) in case the State Pollution Control Board or the Union territory Pollution Control Committee concerned does not undertake and complete the public hearing within the specified period, and/or does not convey the proceedings of the public hearing within the prescribed period directly to the regulatory authority concerned as above, the regulatory

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (xi), (xi), (xi), (xii) (a), (b), (xivi) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

authority shall engage another public agency or authority which is not subordinate to the regulatory authority, to complete the process within a further period of forty five days,.

- (v) If the public agency or authority nominated under the sub paragraph (iii) above reports to the regulatory authority concerned that owing to the local situation, it is not possible to conduct the public hearing in a manner which will enable the views of the concerned local persons to be freely expressed, it shall report the facts in detail to the concerned regulatory authority, which may, after due consideration of the report and other reliable information that it may have, decide that the public consultation in the case need not include the public hearing.
- (vi) For obtaining responses in writing from other concerned persons having a plausible stake in the environmental aspects of the project or activity, the concerned regulatory authority and the State Pollution Control Board (SPCB) or the Union territory Pollution Control Committee (UTPCC) shall invite responses from such concerned persons by placing on their website the Summary EIA report prepared in the format given in Appendix IIIA by the applicant along with a copy of the application in the prescribed form, within seven days of the receipt of a written request for arranging the public hearing. Confidential information including non-disclosable or legally privileged information involving Intellectual Property Right, source specified in the application shall not be placed on the web site. The regulatory authority concerned may also use other appropriate media for ensuring wide publicity about the project or activity. The regulatory authority shall, however, make available on a written request from any concerned person the Draft EIA report for inspection at a notified place during normal office hours till the date of the public hearing. All the responses received as part of this public consultation process shall be forwarded to the applicant through the quickest available means.
- (vii) After completion of the public consultation, the applicant shall address all the material environmental concerns expressed during this process, and make appropriate changes in the draft EIA and EMP. The final EIA report, so prepared, shall be submitted by the applicant to the concerned regulatory authority for appraisal. The applicant may alternatively submit a supplementary report to draft EIA and EMP addressing all the concerns expressed during the public consultation.

IV. Stage (4) - Appraisal:

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xviii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

- (i) Appraisal means the detailed scrutiny by the Expert Appraisal Committee or State Level Expert Appraisal Committee of the application and other documents like the Final EIA report, outcome of the public consultations including public hearing proceedings, submitted by the applicant to the regulatory authority concerned for grant of environmental clearance. This appraisal shall be made by Expert Appraisal Committee or State Level Expert Appraisal Committee concerned in a transparent manner in a proceeding to which the applicant shall be invited for furnishing necessary clarifications in person or through an authorized representative. On conclusion of this proceeding, the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned shall make categorical recommendations to the regulatory authority concerned either for grant of prior environmental clearance on stipulated terms and conditions, or rejection of the application for prior environmental clearance, together with reasons for the same.
- (ii) The appraisal of all projects or activities which are not required to undergo public consultation, or submit an Environment Impact Assessment report, shall be carried out on the basis of the prescribed application Form 1 and Form 1A as applicable, any other relevant validated information available and the site visit wherever the same is considered as necessary by the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned.
- (iii) The appraisal of an application be shall be completed by the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned within sixty days of the receipt of the final Environment Impact Assessment report and other documents or the receipt of Form 1 and Form 1 A, where public consultation is not necessary and the recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee shall be placed before the competent authority for a final decision within the next fifteen days .The prescribed procedure for appraisal is given in Appendix V;

7(ii). Prior Environmental Clearance (EC) process for Expansion or Modernization or Change of product mix in existing projects:

All applications seeking prior environmental clearance for expansion with increase in the production capacity beyond the capacity for which prior environmental clearance has been granted under this notification or with increase in either lease area or production capacity in the case of mining projects or for the modernization of an existing unit with increase in

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (xi), (xi), (xi), (xii) (a), (b), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

the total production capacity beyond the threshold limit prescribed in the Schedule to this notification through change in process and or technology or involving a change in the product –mix shall be made in Form I and they shall be considered by the concerned Expert Appraisal Committee or State Level Expert Appraisal Committee within sixty days, who will decide on the due diligence necessary including preparation of EIA and public consultations and the application shall be appraised accordingly for grant of environmental clearance.

8. Grant or Rejection of Prior Environmental Clearance (EC):

- (i) The regulatory authority shall consider the recommendations of the EAC or SEAC concerned and convey its decision to the applicant within forty five days of the receipt of the recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned or in other words within one hundred and five days of the receipt of the final Environment Impact Assessment Report, and where Environment Impact Assessment is not required, within one hundred and five days of the receipt of the complete application with requisite documents, except as provided below.
- (ii) The regulatory authority shall normally accept the recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned. In cases where it disagrees with the recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned, the regulatory authority shall request reconsideration by the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned within forty five days of the receipt of the recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned while stating the reasons for the disagreement. An intimation of this decision shall be simultaneously conveyed to the applicant. The Expert Appraisal Committee or State Level Expert Appraisal Committee concerned, in turn, shall consider the observations of the regulatory authority and furnish its views on the same within a further period of sixty days. The decision of the regulatory authority after considering the views of the Expert Appraisal Committee or State Level Expert Appraisal Committee or State Level Expert Appraisal Committee the same within a further period of sixty days. The decision of the regulatory authority after considering the views of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned shall be final and conveyed to the applicant by the regulatory authority concerned within the next thirty days.
- (iii) In the event that the decision of the regulatory authority is not communicated to the applicant within the period specified in sub-paragraphs (i) or (ii) above, as applicable, the

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (x), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

applicant may proceed as if the environment clearance sought for has been granted or denied by the regulatory authority in terms of the final recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned.

- (iv) On expiry of the period specified for decision by the regulatory authority under paragraph
 (i) and (ii) above, as applicable, the decision of the regulatory authority, and the final recommendations of the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned shall be public documents.
- (v) Clearances from other regulatory bodies or authorities shall not be required prior to receipt of applications for prior environmental clearance of projects or activities, or screening, or scoping, or appraisal, or decision by the regulatory authority concerned, unless any of these is sequentially dependent on such clearance either due to a requirement of law, or for necessary technical reasons.
- (vi) Deliberate concealment and/or submission of false or misleading information or data which is material to screening or scoping or appraisal or decision on the application shall make the application liable for rejection, and cancellation of prior environmental clearance granted on that basis. Rejection of an application or cancellation of a prior environmental clearance already granted, on such ground, shall be decided by the regulatory authority, after giving a personal hearing to the applicant, and following the principles of natural justice.

9. Validity of Environmental Clearance (EC):

The "Validity of Environmental Clearance" is meant the period from which a prior environmental clearance is granted by the regulatory authority, or may be presumed by the applicant to have been granted under sub paragraph (iv) of paragraph 7 above, to the start of production operations by the project or activity, or completion of all construction operations in case of construction projects (item 8 of the Schedule), to which the application for prior environmental clearance refers. The prior environmental clearance granted for a project or activity shall be valid for a period of ten years in the case of River Valley projects (item 1(c) of the Schedule), project life as estimated by Expert Appraisal Committee or State Level Expert Appraisal Committee subject to a maximum of thirty years for mining projects and five years in the case of all other projects and activities. However, in the case of Area Development projects and Townships [item 8(b)], the validity

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (x), (x), (xi), (xii) (a), (b), (xiii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

period shall be limited only to such activities as may be the responsibility of the applicant as a developer. This period of validity may be extended by the regulatory authority concerned by a maximum period of five years provided an application is made to the regulatory authority by the applicant within the validity period, together with an updated Form 1, and Supplementary Form 1A, for Construction projects or activities (item 8 of the Schedule). In this regard the regulatory authority may also consult the Expert Appraisal Committee or State Level Expert Appraisal Committee as the case may be.

10. Post Environmental Clearance Monitoring:

- ^{IV} "(i)(a) In respect of Category 'A' project, it shall be mandatory for the project proponent to make public the environment clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the district or State where the project is located and in addition, this shall also be displayed in the project proponent's website permanently.
 - (b) In respect of Category 'B' projects, irrespective of its clearance by MoEF / SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environment clearance and the details of the MoEF website where it is displayed.
 - (c) The Ministry of Environment and Forests and the State/Union Territory Level Environmental Impact Assessment Authorities (SEIAAs), as the case may be, shall also place the environmental clearance in the public domain on Governmental portal.
 - (d) The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government who in turn has to display the same for 30 days from the date of receipt.";
- It shall be mandatory for the project management to submit half-yearly compliance reports in respect of the stipulated prior environmental clearance terms and conditions in hard and soft copies to the regulatory authority concerned, on 1st June and 1st December of each calendar year.
- ^{IV} (iii) All such compliance reports submitted by the project management shall be public documents. Copies of the same shall be given to any person on application to the

⁻⁻⁻⁻⁻

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (xi), (xi), (xi), (xii) (a), (b), (xivi) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

concerned regulatory authority. The latest such compliance report shall also be displayed on the web site of the concerned regulatory authority.

11. Transferability of Environmental Clearance (EC):

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor, or by the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period. No reference to the Expert Appraisal Committee or State Level Expert Appraisal Committee concerned is necessary in such cases.

12. Operation of EIA Notification, 1994, till disposal of pending cases:

From the date of final publication of this notification the Environment Impact Assessment (EIA) notification number S.O.60 (E) dated 27th January, 1994 is hereby superseded, except in suppression of the things done or omitted to be done before such suppression to the extent that in case of all or some types of applications made for prior environmental clearance and pending on the date of final publication of this notification, the Central Government may relax any one or all provisions of this notification except the list of the projects or activities requiring prior environmental clearance in Schedule I, or continue operation of some or all provisions of the said notification, for a period not exceeding one year from the date of issue of this notification.

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (xi), (xi), (xiv), (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvi); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the

Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

SCHEDULE

(See paragraph 2 and 7)

LIST OF PROJECTS OR ACTIVITIES REQUIRING PRIOR ENVIRONMENTAL CLEARANCE

Project or Activity		Category with thresho	old limit	Conditions if any	
		Α	В		
	1	Mining, extraction of natural resources and power generation (for a specified production capacity)			
(1)	(2)	(3)	(4)	(5)	
^v "1(a)	(i) Mining of minerals.	 ≥ 50 ha. of mining lease area in respect of non- coal mine lease. > 150 ha of mining lease area in respect of coal mine lease. Asbestos mining irrespective of mining area 	<50 ha ≥ 5 ha .of mining lease area in respect of non-coal mine lease. ≤ 150 ha ≥ 5 ha of mining lease area in respect of coal mine lease.	General Condition shall apply Note: Mineral prospecting Is exempted.";	
	(ii) Slurry pipelines (coal lignite and other ores) passing through national parks / sanctuaries / coral reefs, ecologically sensitive areas.	All projects.			
1(b)	Offshore and onshore oil and gas exploration, development & production	All projects		Note Exploration Surveys (not involving drilling) are exempted provided the concession areas have got previous clearance for physical survey	
1(c)	River Valley pojects	 (i) ≥ 50 MW hydroelectric power generation; (ii) ≥ 10,000 ha. of culturable command area 	 (i) < 50 MW ≥ 25 MW hydroelectric power generation; (ii) < 10,000 ha. of culturable command area 	 General Condition shall apply. Note: Irrigation projects not involving submergence or inter- state domain shall be appraised by the SEIAA as Category 'B' Projects."; 	

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

(1)	(2)	(3)	(4)	(5)
1(d)	Thermal Power Plants	^v " ≥ 500 MW (coal / lignite / naphtha & gas based); ≥ 50 MW (Pet coke diesel and all other fuels including refinery residual oil waste except biomass); ≥ 20 MW (based on biomass or non hazardous municipal waste as fuel).";	< 500 MW (coal / lignite / naphtha & gas based); <50 MW ≥ 5MW (Pet coke, diesel and all other fuels including refinery residual oil waste except biomass); ≥ 20 MW > 15 MW (based on biomass or non hazardous municipal waste as fuel).";	 ^v "General Condition shall apply. Note: (i) Power plant up to 15 MW, based on biomass and using auxiliary fuel such as coal / lignite / petroleum products up to 15% are exempt. (ii) Power plant up to 15 MW, based on non- hazardous municipal waste and using auxiliary fuel such as coal / lignite / petroleum products up to 15% are exempt. (iii) Power plants using waste heat boiler without any auxiliary fuel are exempt.";
1(e)	Nuclear power projects and processing of nuclear fuel	All projects		
2		Primary Processing		
2(a)	Coal washeries	≥ 1 million ton/annum throughput of coal	<1million ton/annum throughput of coal	General Condition shall apply (If located within mining area the proposal shall be appraised together with the mining proposal)
2 (b)	Mineral beneficiation	≥ 0.1million ton/annum mineral throughput	< 0.1million ton/annum mineral throughput	General Condition shall apply (Mining proposal with Mineral beneficiation shall be appraised together for grant of clearance)

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

3		Materials Production			
(1)	(2)	(3)	(4)	(5)	
3(a)	Metallurgical industries (ferrous & non ferrous)	a)Primary metallurgical industry All projects		 General condition shall apply. Note: (i) The recycling industrial units 	
		 b) Sponge iron manufacturing ≥ 200TPD c) Secondary 	Sponge iron manufacturing <200TPD Secondary	registered under the HSM Rules, are exempted. (ii) In case of secondary metallurgical	
		metallurgical processing industry	metallurgical processing industry i.)All toxic	processing industrial units, those projects involving operation of furnaces only such as	
		All toxic and heavy metal producing units ≥ 20,000 tonnes /annum	and heavy metal producing units <20,000 tonnes /annum ii.)All other non –toxic secondary metallurgical	induction and electrical arc furnace, submerged arc furnace, and cupola with capacity more than 30,000 tonnes per annum (TPA) would require environmental clearance.	
			<pre>processing industries >5000 tonnes/annum</pre>	 (iii) Plant / units other than power plants (given against entry no. 1(d) of the schedule), based on municipal solid waste (non- hazardous) are exempted." 	
3(b)	Cement plants	≥ 1.0 million tonnes/annum production capacity	<1.0 million tonnes/annum production capacity. All Stand alone grinding units	General Condition shall apply	
4		Materials Processing			
(1)	(2)	(3)	(4)	(5)	
4(a)	Petroleum refining industry	All projects	-	-	
4(b)	Coke oven plants	≥2,50,000 tonnes/annum	<2,50,000 & ≥25,000 tonnes/annum	* "General Condition shall apply."	
4(c)	Asbestos milling and asbestos based products	All projects	-	-	

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

(1)	(2)	(3)	(4)	(5)
4(d)	Chlor-alkali	≥300 TPD production	^v "(i) All projects	^v "General as well as
	industry	Capacity or a unit	irrespective of the	specific condition shall
		located out side the	size, if located in a	apply.
		notified industrial area/	Notified Industrial	No new Mercury Cell
		estate	Area/ Estate.	based plants will be
			(II) <300 tonnes per	permitted and existing
			day (IPD)	units converting to
			And located outside a	technology
			Area/ Estate "	are exempted from this
			Alea/ Lolale.	notification."
4(e)	Soda ash Industry	All projects	•	•
4(f)	Leather/skin/hide	New projects outside	All new or expansion	^v "General as well as
	processing	the industrial area or	of	specific condition shall
	industry	expansion of existing	projects located	apply."
		units out side the	within a notified	
		Industrial area	Industrial area/	
-				
5		Manufacturing / Fabri		1 -
5(a)	Chemical fertilizers	All projects except	Single Super	
		Single Super Phoenbate "	Phosphate.	
5(b)	Posticidos industry	All units producing	1	-
J(D)	and nesticide	technical grade	1	
	specific	pesticides		
	intermediates	poenenee		
	(excluding			
	formulations)			
5(c)	Petro-chemical	All projects	-	-
	complexes	-		
	(industries based			
	on processing of			
	petroleum			
	fractions & natural			
	gas and/or			
	aromatics)			
5(d)	Manmade fibers	Bayon	Others	General Condition shall
0(0)	manufacturing	nayon		apply
5(e)	Petrochemical	Located out side the	Located in a notified	^v "General as well as
- (-)	based processing	notified industrial area/	industrial area/ estate	specific condition shall
	(processes other	estate		apply."
	than cracking &	-		
	reformation and			
	not covered under			
	the complexes)			

I; II; III (i), (ii); IV (a), (b); V (i), (iii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (viii), (viii) (a), (b), (x), (xi), (xi), (xi), (xi), (xiv), (a), (b), (xv)

(a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and

Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

(1)	(2)	(3)	(4)	(5)
5(f)	Synthetic organic	Located out side the	Located in a notified	^v "General as well as
	chemicals industry	notified industrial area/	industrial area/ estate	specific condition shall
	intermediates: bulk	estate		appiy.
	drugs and			
	intermediates			
	excluding drug			
	formulations;			
	basic organic			
	chemicals, other			
	synthetic organic			
	chemicals and			
	chemical			
5(a)	Distilleries		All Cane juice / non-	General Condition shall
J(g)	DIStillenes	distilleries	molasses	apply
		(ii) All Cane juice/	based distilleries	abb.)
		non-molasses based	-	
		distilleries ≥30 KLD	<30 KLD	
5(h)	Integrated paint	-	All projects	General Condition shall
•(,	industry		· p. 0,000	apply
5(i)	Pulp & paper	Pulp manufacturing	Paper manufacturing	General Condition shall
	industry excluding	and Duin [®] Depor	industry without pulp	apply
	nanulaciuming of	manufacturing industry	manufacturing	
	paper and	manalactaring maastry		
	manufacture of			
	paper from ready			
	pulp with out			
5(i)	bleaching Sugar Industry		> 5000 tod cono	Gonoral Condition shall
5(])	Sugar moustry	-	≥ 5000 tcd cane	apply
			crushing capacity	~pp.)
5(k)	^v Omitted	1		
6		Service Sectors	<u></u>	1
6(a)	Oil & gas	All projects		-
	line (crude and			
	refinerv/			
	petrochemical			
	products), passing			
	through national			
	parks / sanctuaries			
	sensitive areas			
	including LNG			
	Terminal			

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

(1)	(2)	(3)	(4)	(5)
6(b)	Isolated storage & handling of	-	All projects	General Condition shall apply
	(As per			
	threshold planning			
	quantity indicated			
	schedule 2 & 3 of			
	MSIHC Rules			
	1989 amended 2000)			
7		Physical Infrastructur	e including Environm	ental Services
7(a)	Air ports	* "All projects	-	^v "Note:
		including airstrips,		Air strips, which do not
		commercial use."		refueling facility and or
				Air Traffic Control, are
7(1)		AU		exempted."
7(b)	All ship breaking	All projects	-	-
	ship breaking units			
7©	Industrial estates/	If at least one industry	Industrial estates	^v "Genral as well as
	parks/ complexes/	in the proposed	housing at least one	special conditions shall
	areas, export	industrial estate falls	Category B	apply.
	processing Zones	under the Category A,	industry and area	Noto
	Economic Zones	shall be treated as	<500 Ha.	1. Industrial Estate of
	(SEZs), Biotech	Category A,		area below 500 ha. and
	Parks, Leather	irrespective of the area.		not housing any
	Complexes.	Industrial estates with	Industrial estates of	Category 'A' or 'B' does
		area greater than 500	area> 500 ha. and not	not require clearance.
		ha. and housing at least	housing any industry	2. If the area is less
		one Category B	belonging to Category	than 500 ha. but
		muustry.	A OI D.	construction projects >
				20,000 Sq. mts. And or
				development area more
				treated as activity listed
				at serial no. 8(a) or 8(b)
				in the Schedule, as the
7(d)	Common	All integrated facilities	All facilities having	case may be."
7(a)	hazardous waste	having incineration	land fill only	apply
	treatment, storage	&landfill or		
	and disposal	incineration alone		
	facilities (TSDFs)			

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

(1)	(2)	(3)	(4)	(5)
7(e)	^v "Ports, harbours,	≥ 5 million TPA of	< 5 million TPA of	General Condition
	break waters,	cargo handling	cargo handling	shall apply.
	areaging."	capacity (excluding	capacity and/or	Note:
		lishing harbours)	>10 000 TPA of fich	inside and outside the
			handling	ports or harbors and
			capacity	channels are included;
				2. Maintenance
				dredging is exempt
				provided it formed part
				of the original proposal
				Management Plan
				(EMP) was prepared
				and environmental
			V	clearance obtained."
7(f)	Highways	i) New National High	* " i) All State	General Condition shall
		ways; and ii) Expansion of	Highway Project;	appiy. Noto:
		National High ways	ii) State Highway	Highways include
		greater than 30 KM,	expansion projects in	expressways."
		involving additional	hilly terrain (above	
		right of way greater	1,000 m AMSL) and or	
		than 20m involving	ecologically sensitive	
		nand acquisition and	areas.	
		than one State.		
7(g)	Aerial ropeways	V(xvi)(a) "(i) All projects	V(xvi)(b) "All projects	General Condition shall
		located at altitude of	except those covered	apply
		1,000 mtr. And above.	in column (3)."	
		(II) All projects located		
		sensitive areas."		
7(h)	Common Effluent		All projects	General Condition shall
	Treatment Plants			apply
7(:)	(CETPs)		All music sta	Concerct Condition shall
7(1)	Common Municipal Solid		All projects	General Condition shall
	Waste Management			appiy
	Facility			
	(CMSWMF)			
8		Building /Construction	n projects/Area Develo	opment projects and
		Townships		
8(a)	Building and		≥20000 sq.mtrs and	#(built up area for
	Construction		<1,50,000 sq.mtrs. of	covered construction;
	projecta		Suntup al can	open to the sky. it
				will be the activity area)
8(b)	Townships and		Covering an area ≥ 50	++All projects under
	Area Development		ha and or built up	Item
	projects.			8(b) shall be appraised
			≥1,50,000 sq .mtrs ++	as Category B1
				Category D1

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

Note:-

^{V(xvii)} "General Condition (GC):

Any project or activity specified in Category 'B' will be treated as Category A, if located in whole or in part within 10 km from the boundary of: (i) Protected Areas notified under the Wild Life (Protection) Act, 1972, (ii) Critically Polluted areas as identified by the Central Pollution Control Board from time to time, (iii) Eco-sensitive areas as notified under section 3 of the Environment (Protection) Act, 1986, such as, Mahabaleshwar Panchgani, Matheran, Pachmarhi, Dahanu, Doon Valley, and (iv) inter-State boundaries and international boundaries:

Provided that the requirement regarding distance of 10 km of the inter-State boundaries can be reduced or completely done away with by an agreement between the respective States or U.Ts sharing the common boundary in case the activity does not fall within 10 kilometres of the areas mentioned at item (i), (ii) and (iii) above."

Specific Condition (SC):

If any Industrial Estate/Complex / Export processing Zones /Special Economic Zones/Biotech Parks / Leather Complex with homogeneous type of industries such as Items 4(d), 4(f), 5(e), 5(f), or those Industrial estates with pre –defined set of activities (not necessarily homogeneous, obtains prior environmental clearance, individual industries including proposed industrial housing within such estates /complexes will not be required to take prior environmental clearance, so long as the Terms and Conditions for the industrial estate/complex are complied with (Such estates/complexes must have a clearly identified management with the legal responsibility of ensuring adherence to the Terms and Conditions of prior environmental clearance, who may be held responsible for violation of the same throughout the life of the complex/estate).

[No. J-11013/56/2004-IA-II (I)] (R.CHANDRAMOHAN) JOINT SECRETARY TO THE GOVERNMENT OF INDIA

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

APPENDIX I

(See paragraph – 6)

FORM 1

^{VI(a)} "(I) Basic Information

Serial	Item	Details
Number		
1.	Name of the project/s	
2.	S. No. in schedule	
3.	Proposed capacity/area/length/tonnage to be	
	handled/command area/lease area/number of	
	wells to be drilled	
4.	New/Expansion/Modernization	
5.	Existing Capacity/Area etc.	
6.	Category of Project i.e. 'A' or 'B'	
7.	Does it attract the general condition? If' Yes,	
	please specify.	
8.	Does it attract the specific condition? If' Yes,	
	please specify.	
9.	Location	
	Plot/Survey/Khasra No.	
	Village	
	Tehsil	
	District	
	State	
10.	Nearest railway station/airport along with	
	distance in kms.	
11.	Nearest Town, city, District Headquarters along	
	with distance in kms.	
12.	Village Panchayats, Zilla Parishad, Municipal	
	Corporation, Local body (complete postal	
	addresses with telephone nos. to be given)	
13.	Name of the applicant	
14.	Registered Address	
15.	Address for correspondence:	
	Name	
	Designation (Owner/Partner/CEO)	
	Address	
	Pin Code	
	E-mail	
	Telephone No.	
	Fax No.	
16	Details of Alternative Sites examined, if any.	Village-District-State
	Location of these sites should be shown on a	1.
	topo sheet.	2.
		3.
17.	Interlinked Projects	
18	Whether separate application of interlinked	
	project has been submitted?	

19.	If yes, date of submission	
20.	If no, reason	
21.	 Whether the proposal involves approval/ clearance under: If yes, details of the same and their status to be given. (a) The Forest (Conservation) Act, 1980 ? (b) The Wildlife (Protection) Act, 1972 ? (c) The C.B.Z. Notification, 1991 ? 	
22.	Whether there is any Government Order/Policy relevant/ relating to the site ?	
23.	Forest land involved (hectares)	
24.	 Whether there is any litigation pending against the project and/or land in which the project is propose to be set up ? (a) Name of the Court. (b) Case No. (c) Orders/directions of the Court, if any and its relevance with the proposed project. 	

(II) Activity

1. Construction, operation or decommissioning of the Project involving actions, which will cause physical changes in the locality (topography, land use, changes in water bodies, etc.)

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities /rates, wherever possible) with source of information data
1.1	Permanent or temporary change in land use, land cover or topography including increase in intensity of land use (with respect to local land use plan)		
1.2	Clearance of existing land, vegetation and buildings?		
1.3	Creation of new land uses?		
1.4	Pre-construction investigations e.g. bore houses, soil testing?		
1.5	Construction works?		
1.6	Demolition works?		
1.7	Temporary sites used for construction works or housing of construction workers?		
1.8	Above ground buildings, structures or earthworks including linear structures, cut And fill or excavations		

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

1.9	Underground works including	
	mining or tunneling?	
1.10	Reclamation works?	
1.11	Dredging?	
1.12	Offshore structures?	
1.13	Production and manufacturing	
	processes?	
1.14	Facilities for storage of goods or	
	materials?	
1.15	Facilities for treatment or	
	disposal of solid waste or liquid	
	effluents?	
1.16	Facilities for long term housing of	
	operational workers?	
1.17	New road, rail or sea traffic	
	during construction or operation?	
1.18	New road, rail, air waterborne or	
	other transport infrastructure	
	including new or altered routes	
	and stations, ports, airports etc?	
1.19	Closure or diversion of existing	
_	transport routes or infrastructure	
	leading to changes in traffic	
	movements?	
1.20	New or diverted transmission	
	lines or pipelines?	
1.21	Impoundment, damming,	
	culverting, realignment or other	
	changes to the ydrology of	
	watercourses or aquifers?	
1.22	Stream crossings?	
1.23	Abstraction or transfers of water	
	form ground or surface waters?	
1.24	Changes in water bodies or the	
	land surface affecting drainage	
	or run-off?	
1.25	Transport of personnel or	
	materials for construction,	
	operation or decommissioning?	
1.26	Long-term dismantling or	
	decommissioning	
	or restoration works?	
1.27	Ongoing activity during	
	aecommissioning which could	
	nave an impact on the	
4.00	environment?	
1.28	influx of people to an area in	
	either temporarily or	
1.00	permanentiy?	
1.29	introduction of alien species?	

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

1.30	Loss of native species or genetic diversity?	
1.31	Any other actions?	

2. Use of Natural resources for construction or operation of the Project (such as land, water, materials or energy, especially any resources which are non-renewable or in short supply):

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities /rates, wherever possible) with source of information data
2.1	Land especially undeveloped or agricultural land (ha)		
2.2	Water (expected source & competing users) unit: KLD		
2.3	Minerals (MT)		
2.4	Construction material – stone, aggregates, sand / soil (expected source – MT)		
2.5	Forests and timber (source – MT)		
2.6	Energy including electricity and fuels (source, competing users) Unit: fuel (MT), energy (MW)		
2.7	Any other natural resources (use appropriate standard units)		

3. Use, storage, transport, handling or production of substances or materials, which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health.

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities /rates, wherever possible) with source of information data
3.1	Use of substances or materials, which are hazardous (as per MSIHC rules) to human health or the environment (flora, fauna, and water supplies)		
3.2	Changes in occurrence of disease or affect disease vectors (e.g. insect or water borne diseases)		
3.3	Affect the welfare of people e.g. by changing living conditions?		
3.4	Vulnerable groups of people who could be affected by the project e.g. hospital patients, children, the elderly etc.,		
3.5	Any other causes		

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

4. Production of solid wastes during construction or operation or decommissioning (MT/month)

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
4.1	Spoil, overburden or mine wastes		
4.2	Municipal waste (domestic and or commercial wastes)		
4.3	Hazardous wastes (as per Hazardous Waste Management Rules)		
4.4	Other industrial process wastes		
4.5	Surplus product		
4.6	Sewage sludge or other sludge from effluent treatment.		
4.7	Construction or demolition wastes		
4.8	Redundant machinery or equipment		
4.9	Contaminated soils or other materials		
4.10	Agricultural wastes		
4.11	Other solid wastes		

5. Release of pollutants or any hazardous, toxic or noxious substances to air (Kg/hr)

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
5.1	Emissions from combustion of fossil fuels from stationary or mobile sources.		
5.2	Emissions from production processes		
5.3	Emissions from materials handling including storage or transport		
5.4	Emissions from construction activities including plant and equipment		
5.5	Dust or odours from handling of materials including construction materials, sewage and waste		

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

5.6	Emissions from incineration of	
	waste	
	Emissions from burning of waste	
5.7	in open air (e.g. slash materials,	
	construction debris)	
5.8	Emissions from any other	
	sources	

6. Generation of Noise and Vibration, and Emissions of Light and Heat:

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
6.1	From operation of equipment e.g. engines, ventilation plant, crushers		
6.2	From industrial or similar processes		
6.3	From construction or demolition		
6.4	From blasting or piling		
6.5	From construction or operational traffic		
6.6	From lighting or cooling systems		
6.7	From any other sources		

7. Risks of contamination of land or water from releases of pollutants into the ground or into sewers, surface waters, groundwater, coastal waters or the sea:

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
7.1	From handling, storage, use or spillage of hazardous materials		
7.2	From discharge of sewage or other effluents to water or the land (expected mode and place of discharge)		
7.3	By deposition of pollutants emitted to air into the land or into water		
7.4	From any other sources		
7.5	Is there a risk of long term build up of pollutants in the environment from these sources?		

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

8. Risk of accidents during construction or operation of the Project, which could affect human health or the environment

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
8.1	From explosions, spillages, fires etc from storage, handling, use or production of hazardous substances		
8.2	From any other causes		
8.3	Could the project be affected by natural disasters causing environmental damage (e.g. floods, earthquakes, landslides, cloudburst etc)?		

9. Factors which should be considered (such as consequential development) which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality

S.No.	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
9.1	Lead to development of supporting. lities, ancillary development or development stimulated by the project which could have impact on the environment e.g.: • Supporting infrastructure (roads, power supply, waste or waste water treatment, etc.) • housing development • extractive industries • supply industries • other		
9.2	Lead to after-use of the site, which could have an impact on the environment		
9.3	Set a precedent for later developments		
9.4	Have cumulative effects due to proximity to other existing or planned projects with similar effects		

(III) Environmental Sensitivity

S.No.	Areas	Name/ Identity	Aerial distance (within 15 km.) Proposed project location boundary
1	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value		
2	Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests		
3	Areas used by protected, important or sensitive species of flora or fauna for breeding, esting, foraging, resting, over wintering, migration		
4	Inland, coastal, marine or underground waters		
5	State, National boundaries		
6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas		
7	Defence installations		
8	Densely populated or built-up area		
9	Areas occupied by sensitive man- made land uses (hospitals, schools, places of worship, community facilities)		
10	Areas containing important, high quality or scarce Resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)		
11	Areas already subjected to pollution or environmental damage. <i>(those where existing legal environmental standards are exceeded)</i>		
12	Areas susceptible to natural hazard which could cause the project to present environmental Problems (<i>earthquakes</i> , <i>subsidence</i> , <i>landslides</i> , <i>erosion</i> , <i>Flooding or extreme or adverse</i> <i>climatic conditions</i>)		

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

(IV). Proposed Terms of Reference for EIA studies

^{VI(b)} "I hereby given undertaking that the data and information given in the application and enclosures are true to the best of my knowledge and belief and I am aware that if any part of the data and information submitted is found to be false or misleading at any stage, the project will be rejected and clearance give, if any to the project will be revoked at our risk and cost."

Date:

Place: _____

Signature of the applicant With Name and Full Address (Project Proponent/Authorised Signatory)

NOTE:

- 1. The projects involving clearance under Coastal Regulation Zone Notification, 1991 shall submit with the application a C.R.Z. map duly demarcated by one of the authorized agencies, showing the project activities, w.r.t. C.R.Z. (at the stage of TOR) and the recommendations of the State Coastal Zone Management Authority (at the stage of EC). Sinmultaneous action shall also be taken to obtain the requisite clearance under the provisions of the C.R.Z. Notification, 1991 for the activities to be located in the CRZ.
- 2. The projects to be located within 10 km of the National Prks, Sancturies, Biosphere Reserves, Migratory Corridors of Wile Animals, the project proponenet shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Warden thereon (at the stage of EC)."
- 3. All correspondence with the Ministry of Environment & Forests including aubmission of application for TOR/Environmental Clearance, subsequent clarifications, as may be required from time to time, participation in the EAC Meeting on behalf of the project proponent shall be made by the authorized signatory only. The authorized signatory should also submit a document in support of his claim of being and authorized signatory for the specific project."

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

APPENDIX II (See paragraph 6)

FORM-1 A (only for construction projects listed under item 8 of the Schedule)

CHECK LIST OF ENVIRONMENTAL IMPACTS

(Project proponents are required to provide full information and wherever necessary attach explanatory notes with the Form and submit along with proposed environmental management plan & monitoring programme)

1. LAND ENVIRONMENT

(Attach panoramic view of the project site and the vicinity)

- 1.1. Will the existing landuse get significantly altered from the project that is not consistent with the surroundings? (Proposed landuse must conform to the approved Master Plan / Development Plan of the area. Change of landuse if any and the statutory approval from the competent authority be submitted). Attach Maps of (i) site location, (ii) surrounding features of the proposed site (within 500 meters) and (iii) the site (indicating levels & contours) to appropriate scales. If not available attach only conceptual plans.
- 1.2. List out all the major project requirements in terms of the land area, built up area, water consumption, power requirement, connectivity, community facilities, parking needs etc.
- 1.3. What are the likely impacts of the proposed activity on the existing facilities adjacent to the proposed site? (Such as open spaces, community facilities, details of the existing landuse, disturbance to the local ecology).
- 1.4. Will there be any significant land disturbance resulting in erosion, subsidence & instability? (Details of soil type, slope analysis, vulnerability to subsidence, seismicity etc may be given).
- 1.5. Will the proposal involve alteration of natural drainage systems? (Give details on a contour map showing the natural drainage near the proposed project site)
- 1.6. What are the quantities of earthwork involved in the construction activity-cutting, filling, reclamation etc. (Give details of the quantities of earthwork involved, transport of fill materials from outside the site etc.)

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

- 1.7. Give details regarding water supply, waste handling etc during the construction period.
- 1.8. Will the low lying areas & wetlands get altered? (Provide details of how low lying and wetlands are getting modified from the proposed activity)
- 1.9. Whether construction debris & waste during construction cause health hazard? (Give quantities of various types of wastes generated during construction including the construction labour and the means of disposal)

2. WATER ENVIRONMENT

- 2.1. Give the total quantity of water requirement for the proposed project with the breakup of requirements for various uses. How will the water requirement met? State the sources & quantities and furnish a water balance statement.
- 2.2. What is the capacity (dependable flow or yield) of the proposed source of water?
- 2.3. What is the quality of water required, in case, the supply is not from a municipal source? (Provide physical, chemical, biological characteristics with class of water quality)
- 2.4. How much of the water requirement can be met from the recycling of treated wastewater? (Give the details of quantities, sources and usage)
- 2.5. Will there be diversion of water from other users? (Please assess the impacts of the project on other existing uses and quantities of consumption)
- 2.6. What is the incremental pollution load from wastewater generated from the proposed activity? (Give details of the quantities and composition of wastewater generated from the proposed activity)
- 2.7. Give details of the water requirements met from water harvesting? Furnish details of the facilities created.
- 2.8. What would be the impact of the land use changes occurring due to the proposed project on the runoff characteristics (quantitative as well as qualitative) of the area in the post construction phase on a long term basis? Would it aggravate the problems of flooding or water logging in any way?

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

- 2.9. What are the impacts of the proposal on the ground water? (Will there be tapping of ground water; give the details of ground water table, recharging capacity, and approvals obtained from competent authority, if any)
- 2.10. What precautions/measures are taken to prevent the run-off from construction activities polluting land & aquifers? (Give details of quantities and the measures taken to avoid the adverse impacts)
- 2.11. How is the storm water from within the site managed?(State the provisions made to avoid flooding of the area, details of the drainage facilities provided along with a site layout indication contour levels)
- 2.12. Will the deployment of construction labourers particularly in the peak period lead to unsanitary conditions around the project site (Justify with proper explanation)
- 2.13. What on-site facilities are provided for the collection, treatment & safe disposal of sewage? (Give details of the quantities of wastewater generation, treatment capacities with technology & facilities for recycling and disposal)
- 2.14. Give details of dual plumbing system if treated waste used is used for flushing of toilets or any other use.

3. VEGETATION

- 3.1. Is there any threat of the project to the biodiversity? (Give a description of the local ecosystem with it's unique features, if any)
- 3.2. Will the construction involve extensive clearing or modification of vegetation? (Provide a detailed account of the trees & vegetation affected by the project)
- 3.3. What are the measures proposed to be taken to minimize the likely impacts on important site features (Give details of proposal for tree plantation, landscaping, creation of water bodies etc along with a layout plan to an appropriate scale)

4. FAUNA

4.1. Is there likely to be any displacement of fauna- both terrestrial and aquatic or creation of barriers for their movement? Provide the details.

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

- 4.2. Any direct or indirect impacts on the avifauna of the area? Provide details.
- 4.3. Prescribe measures such as corridors, fish ladders etc to mitigate adverse impacts on fauna

5. AIR ENVIRONMENT

- 5.1. Will the project increase atmospheric concentration of gases & result in heat islands? (Give details of background air quality levels with predicted values based on dispersion models taking into account the increased traffic generation as a result of the proposed constructions)
- 5.2. What are the impacts on generation of dust, smoke, odorous fumes or other hazardous gases? Give details in relation to all the meteorological parameters.
- 5.3. Will the proposal create shortage of parking space for vehicles? Furnish details of the present level of transport infrastructure and measures proposed for improvement including the traffic management at the entry & exit to the project site.
- 5.4. Provide details of the movement patterns with internal roads, bicycle tracks, pedestrian pathways, footpaths etc., with areas under each category.
- 5.5. Will there be significant increase in traffic noise & vibrations? Give details of the sources and the measures proposed for mitigation of the above.
- 5.6. What will be the impact of DG sets & other equipment on noise levels & vibration in & ambient air quality around the project site? Provide details.

6. **AESTHETICS**

- 6.1. Will the proposed constructions in any way result in the obstruction of a view, scenic amenity or landscapes? Are these considerations taken into account by the proponents?
- 6.2. Will there be any adverse impacts from new constructions on the existing structures? What are the considerations taken into account?
- 6.3. Whether there are any local considerations of urban form & urban design influencing the design criteria? They may be explicitly spelt out.
- 6.4. Are there any anthropological or archaeological sites or artefacts nearby? State if any other significant features in the vicinity of the proposed site have been considered.

7. SOCIO-ECONOMIC ASPECTS

7.1. Will the proposal result in any changes to the demographic structure of local population? Provide the details.

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)
- 7.2. Give details of the existing social infrastructure around the proposed project.
- 7.3. Will the project cause adverse effects on local communities, disturbance to sacred sites or other cultural values? What are the safeguards proposed?

8. BUILDING MATERIALS

- 8.1. May involve the use of building materials with high-embodied energy. Are the construction materials produced with energy efficient processes? (Give details of energy conservation measures in the selection of building materials and their energy efficiency)
- 8.2. Transport and handling of materials during construction may result in pollution, noise & public nuisance. What measures are taken to minimize the impacts?
- 8.3. Are recycled materials used in roads and structures? State the extent of savings achieved?
- 8.4. Give details of the methods of collection, segregation & disposal of the garbage generated during the operation phases of the project.

9. ENERGY CONSERVATION

- 9.1. Give details of the power requirements, source of supply, backup source etc. What is the energy consumption assumed per square foot of built-up area? How have you tried to minimize energy consumption?
- 9.2. What type of, and capacity of, power back-up to you plan to provide?
- 9.3. What are the characteristics of the glass you plan to use? Provide specifications of its characteristics related to both short wave and long wave radiation?
- 9.4. What passive solar architectural features are being used in the building? Illustrate the applications made in the proposed project.
- 9.5. Does the layout of streets & buildings maximise the potential for solar energy devices? Have you considered the use of street lighting, emergency lighting and solar hot water systems for use in the building complex? Substantiate with details.
- 9.6. Is shading effectively used to reduce cooling/heating loads? What principles have been used to maximize the shading of Walls on the East and the West and the Roof? How much energy saving has been effected?
- 9.7. Do the structures use energy-efficient space conditioning, lighting and mechanical systems? Provide technical details. Provide details of the transformers and motor efficiencies, lighting intensity and air-conditioning load assumptions? Are you using CFC and HCFC free chillers? Provide specifications.
- 9.8. What are the likely effects of the building activity in altering the micro-climates? Provide a self assessment on the likely impacts of the proposed construction on

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

creation of heat island & inversion effects?

- 9.9. What are the thermal characteristics of the building envelope? (a) roof; (b) external walls; and (c) fenestration? Give details of the material used and the U-values or the R values of the individual components.
- 9.10. What precautions & safety measures are proposed against fire hazards? Furnish details of emergency plans.
- 9.11. If you are using glass as wall material provides details and specifications including emissivity and thermal characteristics.
- 9.12. What is the rate of air infiltration into the building? Provide details of how you are mitigating the effects of infiltration.
- 9.13. To what extent the non-conventional energy technologies are utilised in the overall energy consumption? Provide details of the renewable energy technologies used.

10. Environment Management Plan

The Environment Management Plan would consist of all mitigation measures for each item wise activity to be undertaken during the construction, operation and the entire life cycle to minimize adverse environmental impacts as a result of the activities of the project. It would also delineate the environmental monitoring plan for compliance of various environmental regulations. It will state the steps to be taken in case of emergency such as accidents at the site including fire.

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

APPENDIX III

(See paragraph 7

GENERIC STRUCTURE OF ENVIRONMENTAL IMPACT ASSESSENT DOCUMENT

S.NO	EIA STRUCTURE	CONTENTS
1.	Introduction	Purpose of the report
		 Identification of project & project proponent
		• Brief description of nature, size, location of the project and its importance to the country, region
		 Scope of the study – details of regulatory scoping carried out (As per Terms of Reference)
2.	Project Description	• Condensed description of those aspects of the project (based on project feasibility study), likely to cause environmental effects. Details should be provided to give clear picture of the following:
		Type of project
		Need for the project
		 Location (maps showing general location, specific location, project boundary & project site layout)
		 Size or magnitude of operation (incl. Associated activities required by or for the project
		Proposed schedule for approval and implementation
		Technology and process description
		• Project description. Including drawings showing project layout, components of project etc. Schematic representations of the feasibility drawings which give information important for EIA purpose
		• Description of mitigation measures incorporated into the project to meet environmental standards, environmental operating conditions, or other EIA requirements (as required by the scope)
		 Assessment of New & untested technology for the risk of technological failure
	·	•

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

3.	Description of the Environment	Study area, period, components & methodology
		Establishment of baseline for valued environmental components, as identified in the scope
		Base maps of all environmental components
4.	Anticipated Environmental Impacts & Mitigation Measures	 Details of Investigated Environmental impacts due to project location, possible accidents, project design, project construction, regular operations, final decommissioning or rehabilitation of a completed project Measures for minimizing and / or offsetting adverse impacts identified Irreversible and Irretrievable commitments of environmental components Assessment of significance of impacts (Criteria for determining significance, Assigning significance)
		Mitigation measures
5.	Analysis of Alternatives (Technology & Site)	 In case, the scoping exercise results in need for alternatives: Description of each alternative Summary of adverse impacts of each alternative Mitigation measures proposed for each alternative and Selection of alternative
6.	Environmental Monitoring Program	• Technical aspects of monitoring the effectiveness of mitigation measures (incl. Measurement methodologies, frequency, location, data analysis, reporting schedules, emergency procedures, detailed budget & procurement schedules)
7.	Additional Studies	 Public Consultation Risk assessment Social Impact Assessment. R&R Action Plans
8.	Project Benefits	 Improvements in the physical infrastructure Improvements in the social infrastructure

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi) (a), (b), (xii), (xiv) (a), (b), (xv) (a), (b), (xvi) (a), (b), (xvii); VI (a), (b); VII & VIII of the Notification, S.O. 3067(E) dated 01.12.2009 of the

Ministry of Environment and Forests, (Published in the Gazette of India, Extraordinary, Part-II, and Section 3, Sub-section (ii), No. 2002] New Delhi, Tuesday, November 1, 2009; an amendment to EC notification S.O.1533(E) dated 14.09.2006

		 Employment potential –skilled; semi-skilled and unskilled Other tangible benefits
9.	Environmental Cost Benefit Analysis	If recommended at the Scoping stage
10.	EMP	• Description of the administrative aspects of ensuring that mitigative measures are implemented and their effectiveness monitored, after approval of the EIA
11	Summary & Conclusion (This will constitute the summary of the EIA Report)	 Overall justification for implementation of the project Explanation of how, adverse effects have been mitigated
12.	Disclosure of Consultants engaged	The names of the Consultants engaged with their brief resume and nature of Consultancy rendered

APPENDIX III A

(See paragraph 7)

CONTENTS OF SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT

The Summary EIA shall be a summary of the full EIA Report condensed to ten A-4 size pages at the maximum. It should necessarily cover in brief the following Chapters of the full EIA Report: -

- 1. Project Description
- 2. Description of the Environment
- 3. Anticipated Environmental impacts and mitigation measures
- 4. Environmental Monitoring Programme
- 5. Additional Studies
- 6. Project Benefits
- 7. Environment Management Plan

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (xi), (x), (xi), (xiv) (a), (b), (xv)

APPENDIX IV

(See paragraph 7)

PROCEDURE FOR CONDUCT OF PUBLIC HEARING

1.0 The Public Hearing shall be arranged in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site(s) or in its close proximity District -wise, by the concerned State Pollution Control Board (SPCB) or the Union Territory Pollution Control Committee (UTPCC).

2.0 The Process:

2.1 The Applicant shall make a request through a simple letter to the Member Secretary of the SPCB or Union Territory Pollution Control Committee, in whose jurisdiction the project is located, to arrange the public hearing within the prescribed statutory period. In case the project site is covering more than one District or State or Union Territory, the public hearing is mandated in each District, State or Union Territory in which the project is located and the applicant shall make separate requests to each concerned SPCB or UTPCC for holding the public hearing as per this procedure.

2.2 The Applicant shall enclose with the letter of request, at least 10 hard copies and an equivalent number of soft (electronic) copies of the draft EIA Report with the generic structure given in Appendix III including the Summary Environment Impact Assessment report in English and in the official languageof the state/local language, prepared strictly in accordance with the Terms of

Reference communicated after Scoping (Stage-2). Simultaneously the applicant shall arrange to forward copies, one hard and one soft, of the above draft EIA Report along with the Summary EIA report to the following authorities or offices, within whose jurisdiction the project will be located:

- (a) District Magistrate/District collector/Deputy commissioner/s
- (b) Zila Parishad or Municipal Corporation or Panchayats Union
- (c) District Industries Office
- (d) Urban Local Bodies (ULBs) / PRIs Concerned / Development authorities.
- (d) Concerned Regional Office of the Ministry of Environment and Forests

2.3 On receiving the draft Environmental Impact Assessment report, the abovementioned authorities except the Regional Office of MoEF, shall arrange to widely publicize it within their respective jurisdictions requesting the interested persons to send their comments to the concerned regulatory authorities. They shall also make available the draft EIA Report for inspection electronically or otherwise to the public during normal office hours till the Public Hearing is over.

2.4 The SPCB or UTPCC concerned shall also make similar arrangements for giving publicity about the project within the State/Union Territory and make available the Summary of the draft Environmental Impact Assessment report (Appendix III A) for

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

inspection in select offices or public libraries or any other suitable location etc. They shall also additionally make available a copy of the draft Environmental Impact Assessment report to the above five authorities/offices as given in para 2.2.

3.0 Notice of Public Hearing:

3.1 The Member-Secretary of the concerned SPCB or UTPCC shall finalize the date, time and exact venue for the conduct of public hearing within 7(seven) days of the date of receipt of the draft Environmental Impact Assessment report from the project proponent, and advertise the same in one major National Daily and one Regional vernacular Daily / Official State Language. A minimum notice period of 30(thirty) days shall be provided to the public for furnishing their responses;

3.2 The advertisement shall also inform the public about the places or offices where the public could access the draft Environmental Impact Assessment report and the Summary Environmental Impact Assessment report before the public hearing. In places where the newspapers do not reach, the Competent Authority should arrange to inform the local public about the public hearing by other means such as by way of beating of drums as well as advertisement / announcement on radio / television.

3.3 No postponement of the date, time, venue of the public hearing shall be undertaken, unless some untoward emergency situation occurs and then only on the recommendation of the concerned District Magistrate/District collector/Deputy Commissioner, the postponement shall be notified to the public through the same National and Regional vernacular dailies and also prominently displayed at all the identified offices by the concerned SPCB or Union Territory Pollution Control Committee;

3.4 In the above exceptional circumstances, fresh date, time and venue for the public consultation shall be decided by the Member – Secretary of the concerned SPCB or UTPCC only in consultation with the District Magistrate/District collector/Deputy Commissioner and notified afresh as per procedure under 3.1 above.

4.0 Supervision and Presiding over the Hearing:

4.1 The District Magistrate/District collector/Deputy Commissioner or his or her representative not below the rank of an Additional District Magistrate assisted by a representative of SPCB or UTPCC, shall Supervise and preside over the entire public hearing process.

5.0 Videography

5.1 The SPCB or UTPCC shall arrange to video film the entire proceedings. A copy of the videotape or a CD shall be enclosed with the public hearing proceedings while Forwarding it to the Regulatory Authority concerned.

6.0 Proceedings

6.1 The attendance of all those who are present at the venue shall be noted and annexed with the final proceedings.

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

6.2 There shall be no quorum required for attendance for starting the proceedings.

6.3 A representative of the applicant shall initiate the proceedings with a presentation on the project and the Summary EIA report.

6.4 Persons present at the venue shall be granted the opportunity to seek information or clarifications on the project from the Applicant. The summary of the public hearing proceedings accurately reflecting all the views and concerns expressed shall be recorded by the representative of the SPCB or UTPCC and read over to the audience at the end of the proceedings explaining the contents in the local/vernacular language and the agreed minutes shall be signed by the District Magistrate/District collector/Deputy Commissioner or his or her representative on the same day and forwarded to the SPCB/UTPCC concerned.

6.5 A Statement of the issues raised by the public and the comments of the Applicant shall also be prepared in the local language or the Official State language, as the case may be, and in English and annexed to the proceedings:

6.6 The proceedings of the public hearing shall be conspicuously displayed at the office of the Panchyats within whose jurisdiction the project is located, office of the concerned Zila Parishad, District Magistrate/District collector/Deputy Commissioner, and the SPCB or UTPCC. The SPCB or

UTPCC shall also display the proceedings on its website for general information. Comments, if any, on the proceedings which may be sent directly to the concerned regulatory authorities and the applicant concerned.

7.0 Time period for completion of public hearing

7.1 The public hearing shall be completed within a period of 45 (forty five) days from date of receipt of the request letter from the Applicant. Thereafter the SPCB or UTPCC concerned shall sent the public hearing proceedings to the concerned regulatory authority within 8(eight) days of the completion of the public hearing.Simultaneously, a copy will also be provided to the project proponent.The applicant may also directly forward a copy of the approved public hearing proceedings to the regulatory authority concerned along with the final Environmental Impact Assessment report or supplementary report to the draft EIA report prepared after the public hearing and public consultations incorporating the concerns expressed in the public hearing along with action plan and financial allocation, item-wise, to address those concerns."

7.2 If the SPCB or UTPCC fails to hold the public hearing within the stipulated 45(forty five) days, the Central Government in Ministry of Environment and Forests for Category 'A' project or activity and the State Government or Union Territory Administration for Category 'B' project or activity at the request of the SEIAA, shall engage any other agency or authority to complete the process, as per procedure laid down in this notification.

APPENDIX –V

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

(See paragraph 7)

PROCEDURE PRESCRIBED FOR APPRAISAL

1. The applicant shall apply to the concerned regulatory authority through a simple communication enclosing the following documents where public consultations are mandatory:

- Final Environment Impact Assessment Report [20(twenty) hard copies and 1 (one) soft copy)]
- A copy of the video tape or CD of the public hearing proceedings
- A copy of final layout plan (20 copies)
- A copy of the project feasibility report (1 copy)

2. The Final EIA Report and the other relevant documents submitted by the applicant shall be scrutinized in office within 30 days from the date of its receipt by the concerned Regulatory Authority strictly with reference to the TOR and the inadequacies noted shall be communicated electronically or otherwise in a single set to the Members of the EAC /SEAC enclosing a copy each of the Final EIA Report including the public hearing proceedings and other public responses received along with a copy of Form -1or Form 1A and scheduled date of the EAC /SEAC meeting for considering the proposal.

3. Where a public consultation is not mandatory, the appraisal shall be made on the basis of the prescribed application Form 1 and EIA report, in the case of all projects and activities other than Item 8 of the Schedule. In the case of Item 8 of the Schedule, considering its unique project cycle, the EAC or SEAC concerned shall appraise all Category B projects or activities on the basis of Form 1, Form 1A and the conceptual plan and make recommendations on the project regarding grant of environmental clearance or otherwise and also stipulate the conditions for environmental clearance."

4. Every application shall be placed before the EAC/SEAC and its appraisal completed within 60 days of its receipt with requisite documents / details in the prescribed manner.

5. The applicant shall be informed at least 15 (fifteen) days prior to the scheduled date of the EAC /SEAC meeting for considering the project proposal.

6. The minutes of the EAC /SEAC meeting shall be finalised within 5 working days of the meeting and displayed on the website of the concerned regulatory authority. In case the project or activity is recommended for grant of EC, then the minutes shall clearly list out the specific environmental safeguards and conditions. In case the recommendations are for rejection, the reasons for the same shall also be explicitly stated.

Note: The principal rules were published in the Gazette of India, Extraordinary, Part II, Section 3, Sub-section (ii) vide notification number S.O. 1533 (E), dated 14th September, 2006 and amended vide S.O. 1737 (E), dated the 11th October, 2007.

APPENDIX VI

(See paragraph 5)

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

COMPOSITION OF THE SECTOR/ PROJECT SPECIFIC EXPERT APPRAISAL COMMITTEE (EAC) FOR CATEGORY A PROJECTS AND THE STATE/UT LEVEL EXPERT APPRAISAL COMMITTEES (SEACs) FOR CATEGORY B PROJECTS TO BE CONSTITUTED BY THE CENTRAL GOVERNMENT `

1. The Expert Appraisal Committees (EAC(s) and the State/UT Level Expert Appraisal Committees (SEACs) shall consist of only professionals and experts fulfilling the following eligibility criteria:

Professional: The person should have at least (i) 5 years of formal University training in the concerned discipline leading to a MA/MSc Degree, or (ii) in case of Engineering /Technology/Architecture disciplines, 4 years formal training in a professional training course together with prescribed practical training in the field leading to a B.Tech/B.E./B.Arch. Degree, or (iii) Other professional degree (e.g. Law) involving a total of 5 years of formal University training and prescribed practical training, or (iv) Prescribed apprenticeship/article ship and pass examinations conducted by the concerned professional association (e.g. Chartered Accountancy),or (v) a University degree , followed by 2 years of formal training in a University or Service Academy (e.g. MBA/IAS/IFS). In selecting the individual professionals, experience gained by them in their respective fields will be taken note of.

Expert: A professional fulfilling the above eligibility criteria with at least 15 years of relevant experience in the field, or with an advanced degree (e.g. Ph.D.) in a concerned field and at least 10 years of relevant experience.

Age: Below 70 years. However, in the event of the non-availability of /paucity of experts in a given field, the maximum age of a member of the Expert Appraisal Committee may be allowed up to 75 years

2. The Members of the EAC shall be Experts with the requisite expertise and experience in the following fields /disciplines. In the event that persons fulfilling the criteria of "Experts" are not available, Professionals in the same field with sufficient experience may be considered:

• **Environment Quality Experts**: Experts in measurement/monitoring, analysis and interpretation of data in relation to environmental quality

• **Sectoral Experts in Project Management**: Experts in Project Management or Management of Process/Operations/Facilities in the relevant sectors.

• Environmental Impact Assessment Process Experts: Experts in conducting and carrying out Environmental Impact Assessments (EIAs) and preparation of Environmental Management Plans (EMPs) and other Management plans and who have wide expertise and knowledge of predictive techniques and tools used in the EIA process

Risk Assessment Experts

- Life Science Experts in floral and faunal management
- Forestry and Wildlife Experts

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xi), (a), (b), (xiv) (a), (b), (xv)

Environmental Economics Expert with experience in project appraisal

3. The Membership of the EAC shall not exceed 15 (fifteen) regular Members. However the Chairperson may co-opt an expert as a Member in a relevant field for a particular meeting of the Committee.

4. The Chairperson shall be an outstanding and experienced environmental policy expert or expert in management or public administration with wide experience in the relevant development sector.

5. The Chairperson shall nominate one of the Members as the Vice Chairperson who shall

preside over the EAC in the absence of the Chairman /Chairperson.

6. A representative of the Ministry of Environment and Forests shall assist the Committee as its Secretary.

7. The maximum tenure of a Member, including Chairperson, shall be for 2 (two) terms of 3 (three) years each.

8. The Chairman / Members may not be removed prior to expiry of the tenure without cause and proper enquiry.

I; II; III (i), (ii); IV (a), (b); V (i), (ii), (iii)(a), (b), (c), (iv), (v), (vi) (a), (b), (vii), (viii) (a), (b), (ix), (x), (xi), (xii) (a), (b), (xiv) (a), (b), (xv)

No.J-11011/104/2009-IA-II(I)

Goverment of India Minister of Enviroment,Forest and Climate Change Impact Assessment Division

Indira Paryavaran Bhavan, Vayu Wing,3rd Floor,Aliganj, Jor Bagh Road,New Delhi-110003 10 Dec 2022

Τo,

M/s CHEMPLAST SANMAR LIMITED 9 Cathedral Road, Karaikal-600086 Puducherry

Tel.No.44-28128500; Email:gss1@sanmargroup.com

Sir/Madam,

This has reference to the proposal submitted in the Ministry of Environment, Forest and Climate Change to prescribe the Terms of Reference (TOR) for undertaking detailed EIA study for the purpose of obtaining Environmental Clearance in accordance with the provisions of the EIA Notification, 2006. For this purpose, the proponent had submitted online information in the prescribed format (Form-1) along with a Pre-feasibility Report. The details of the proposal are given below:

1. Proposal No.:	IA/TN/IND3/406642/2022
2. Name of the Proposal:	M/s. Chemplast Sanmar Limited
3. Category of the Proposal:	Industrial Projects - 3
4. Project/Activity applied for:	5(b) Pesticides industry and pesticide specific intermediates (excluding formulations) 5(f) Synthetic organic chemicals industry (dyes & dye intermediates; bulk
5. Date of submission for TOR:	03 Dec 2022

In this regard, under the provisions of the EIA Notification 2006 as amended, the Standard TOR for the purpose of preparing environment impact assessment report and environment management plan for obtaining prior environment clearance is prescribed with public consultation as follows:

ACTIVITY 5(b)- PESTICIDES INDUSTRY

SPECIFIC TERMS OF REFERENCE FOR EIA STUDIES FOR PESTICIDE INDUSTRIES

GENERIC CONDITIONS

1) Executive Summary

2) Introduction

- i. Details of the EIA Consultant including NABET accreditation
- ii. Information about the project proponent
- iii. Importance and benefits of the project

3) **Project Description**

- i. Cost of project and time of completion.
- ii. Products with capacities for the proposed project.
- iii. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.
- iv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- v. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- vi. List of raw materials required and their source along with mode of transportation.
- vii. Other chemicals and materials required with quantities and storage capacities
- viii. Details of Emission, effluents, hazardous waste generation and their management.
- ix. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)
- x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
- x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
- xi Process description along with major equipment's and machineries, process flow sheet (quantitative) from raw materials to products to be provided
- xi. Hazard identification and details of proposed safety systems.
- xii. Expansion/modernization proposals:
- a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Integrated Regional Office of the Ministry of Environment, Forest and Climate Change as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in all the existing environmental

clearances including Amendments shall be provided. In addition, copy of the latest CTO and status of compliance of Consent to Operate for the ongoing/existing operation of the project from SPCB shall be attached with the EIA-EMP report.

b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.

4) Site Details

- i. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.
- ii. A topo-sheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)
- iii. Details w.r.t. option analysis for selection of site
- iv. Co-ordinates (lat-long) of all four corners of the site.
- v. Google map-Earth download of the project site.
- vi. Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.
- vii. Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.
- viii. Land-use break-up of total land of the project site (identified and acquired), government/private agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not required for industrial area)
- ix. A list of major industries with name and type within study area (10km radius) shall be incorporated. Land use details of the study area
- x. Geological features and Geo-hydrological status of the study area shall be included.
- xi. Details of Drainage of the project upto 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects)
- xii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land. Documents related to conversion of land for Industrial purpose.

xiii. R&R details in respect of land in line with state Government policy

5. Forest, wildlife and CRZ related issues (if applicable):

- i. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)
- ii. Land-use map based on High resolution satellite imagery of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha)
- iii. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.
- iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Wardenthereon
- v. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area
- vi. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife
- vii. Recommendations and NOC from the concerned State/UT Coastal Zone Management Authority on CRZ angle

5) Environmental Status

- i. Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall.
- AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests. Study should indicate minimum, maximum value of different parameters for the period (3 months) collected. Collected data should be supported by the reference data of either CPCB or SPCB. AAQ data & GLC of pollutants from stack emissions should suggest technology/ measures- Best Practiced Technology (BPT) indicating best achieved results.
- Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with – min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.
- iii. Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.

- iv. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.
- v. Ground water monitoring at minimum at 8 locations shall be included.
- vi. Noise levels monitoring at 8 locations within the study area.
- vii. Soil Characteristic as per CPCB guidelines.
- viii. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.
- ix. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.
- x. Socio-economic status of the study area.

6) Environment Impact and Environment Management Plan

- i. Assessment of ground level concentration of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modelling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.
- ii. Water Quality Modelling in case of discharge in water body
- iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor-cum-rail transport shall be examined.
- A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules 1986.
- v. Details of stack emission and action plan for control of emissions to meet standards.
- vi. Measures for fugitive emission control
- vii. Details of hazardous waste generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.

- viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.
- ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 2,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.
- x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.
- xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.
- xii. Action plan for post-project environmental monitoring shall be submitted.
- xiii. Onsite and Offsite Disaster (natural and Man-made) Preparedness and Emergency Management Plan including Risk Assessment and damage control. Disaster management plan should be linked with District Disaster Management Plan.

7) Occupational health

- i. Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers
- ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during preplacement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.
- iii. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved,
- iv. Annual report of health status of workers with special reference to Occupational Health and Safety.

8) Corporate Environment Policy

- i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.
- ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.

- iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.
- iv. Does the company have system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report
- v. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.

10) Corporate Environmental Responsibility (CER)

i. Adequate funds, as per the Ministry's OM/Guidelines, shall be earmarked towards the Corporate Environmental Responsibility based on Public Hearing issues/socioeconomic issues and item-wise details along with time bound action plan shall be included (CER activities shall be related to environment). Socio-economic development activities need to be elaborated upon. For the projects where public hearing is not conducted, CER plan shall be provided based on socio-economic study of the area.

9) Additional studies/Measures to be considered

- (i). Provide latest and ecofriendly technology for product manufacturing.
- (ii). Emphasize on Green chemistry/Clean Manufacturing
- (iii). Provide CAS No. of products along with product list.
- (iv). Provide details of amount of carbon sequestered in their unit through greenbelt/other modes, in case of expansion project.
- (v). Life structure and sustainability for carbon and water foot print.
- (vi). Detailed pollution Load estimation.
- (vii). Transportation of Hazardous substance, effluents etc shall be carriedout through authorized and GPS enable vehicles/Trucks only.
- (viii). Category of Hazardous Wastes shall be mentioned in the EIA/EMP report and in presentation.
- (ix). Details of greenhouse gases and emissions shall be provided.
- (x). Greenbelt shall be developed in the first year of the project and wind breaks shall be erected.
- (xi). Study area map shall be overlapped with all the associated features.
- (xii). Emphasize on green fuels.
- (xiii). The project from NCR shall not use Coal as fuel. Further, PP shall avoid use of Coal in the CPAs and elsewhere also if alternatives are available.
- (xiv). Provide the Cost-Benefit analysis with respect to the environment due to the project.
- (xv). Details of carbon foot prints and carbon sequestration study w.r.t. proposed project

needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC

- 11) Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.
- **12)** A tabular chart with index for point wise compliance of above TORs and its details needs to be submitted in the EIA/EMP Report.

SPECIFIC CONDITIONS

- 1. Commitment that no banned pesticides will be manufactured.
- 2. Details on solvents to be used, measures for solvent recovery and for emissions control.
- 3. Details of process emissions from the proposed unit and its arrangement to control.
- 4. Ambient air quality data should include VOC, other process-specific pollutants* like NH3*, chlorine*, HCl*, HBr*, H2S*, HF*, CS2etc., (*-as applicable)
- 5. Work zone monitoring arrangements for hazardous chemicals.
- 6. Detailed effluent treatment scheme including segregation for units adopting 'Zero' liquid discharge.
- 7. Action plan for odour control to be submitted.
- 8. A copy of the Memorandum of Understanding signed with cement manufacturers indicating clearly that they co-process organic solid/hazardous waste generated.
- 9. Authorization/Membership for the disposal of liquid effluent in CETP and solid/hazardous waste in TSDF, if any.
- 10. Material Safety Data Sheet for all the Chemicals are being used/will be used.
- 11. Authorization/Membership for the disposal of solid/hazardous waste in TSDF.
- 12. Details of incinerator if to be installed.
- 13. Risk assessment for storage and handling of hazardous chemicals/solvents. Action plan for handling & safety system to be incorporated.
- 14. Arrangements for ensuring health and safety of workers engaged in handling of toxic materials
- 15. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analysed and submitted for further appraisal of the EAC.

ACTIVITY 5(f)- SYNTHETIC ORGANIC CHEMICALS INDUSTRY

STANDARD TERMS OF REFERENCE FOR EIA STUDIES FOR SYNTHETIC ORGANIC CHEMICALS INDUSTRY (DYES & DYE INTERMEDIATES; BULK DRUGS AND INTERMEDIATES EXCLUDING DRUG FORMULATIONS; SYNTHETIC RUBBERS; BASIC ORGANIC CHEMICALS, OTHER SYNTHETIC ORGANIC CHEMICALS AND CHEMICAL INTERMEDIATES)

GENERIC CONDITIONS

- 1) Executive Summary
- 2) Introduction
- i. Details of the EIA Consultant including NABET accreditation
- ii. Information about the project proponent
- iii. Importance and benefits of the project

3) **Project Description**

- i. Cost of project and time of completion.
- ii. Products with capacities for the proposed project.
- iii. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.
- iv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- v. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- vi. List of raw materials required and their source along with mode of transportation.
- vii. Other chemicals and materials required with quantities and storage capacities
- viii. Details of Emission, effluents, hazardous waste generation and their management.
- ix. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)
- x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
 - x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
 - xi Process description along with major equipment's and machineries, process flow sheet (quantitative) from raw materials to products to be provided
 - xi. Hazard identification and details of proposed safety systems.
 - xii. Expansion/modernization proposals:

- a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Integrated Regional Office of the Ministry of Environment, Forest and Climate Change as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in all the existing environmental clearances including Amendments shall be provided. In addition, copy of the latest CTO and status of compliance of Consent to Operate for the ongoing/existing operation of the project from SPCB shall be attached with the EIA-EMP report.
- b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.

4) Site Details

- i. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.
- ii. A topo-sheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)
- iii. Details w.r.t. option analysis for selection of site
- iv. Co-ordinates (lat-long) of all four corners of the site.
- v. Google map-Earth download of the project site.
- vi. Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.
- vii. Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.
- viii. Land-use break-up of total land of the project site (identified and acquired), government/private agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not required for industrial area)
- ix. A list of major industries with name and type within study area (10km radius) shall be incorporated. Land use details of the study area
- x. Geological features and Geo-hydrological status of the study area shall be included.
- xi. Details of Drainage of the project upto 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood

Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects)

- xii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land. Documents related to conversion of land for Industrial purpose.
- xiii. R&R details in respect of land in line with state Government policy

5. Forest, wildlife and CRZ related issues (if applicable):

- i. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)
- ii. Land-use map based on High resolution satellite imagery of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha)
- iii. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.
- iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Warden-thereon
- v. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area
- vi. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife
- vii. Recommendations and NOC from the concerned State/UT Coastal Zone Management Authority on CRZ angle

5) Environmental Status

- i. Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall.
- AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests. Study should indicate minimum, maximum value of different parameters for the period (3 months) collected. Collected data should be supported by the reference data of either CPCB or SPCB. AAQ data & GLC of pollutants from stack emissions should suggest technology/ measures- Best Practiced Technology (BPT) indicating best achieved results.

- Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with – min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.
- iii. Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.
- iv. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.
- v. Ground water monitoring at minimum at 8 locations shall be included.
- vi. Noise levels monitoring at 8 locations within the study area.
- vii. Soil Characteristic as per CPCB guidelines.
- viii. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.
- ix. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.
- x. Socio-economic status of the study area.

6) Environment Impact and Environment Management Plan

- i. Assessment of ground level concentration of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modelling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.
- ii. Water Quality Modelling in case of discharge in water body
- iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor-cum-rail transport shall be examined.
- A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules 1986.
- v. Details of stack emission and action plan for control of emissions to meet standards.
- vi. Measures for fugitive emission control

- Details of hazardous waste generation and their storage, utilization and management. vii. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, conservation, recycle/reuse/recover techniques, Energy and natural resource conservation.
- viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.
- ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 2,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.
- x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.
- xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.
- xii. Action plan for post-project environmental monitoring shall be submitted.
- xiii. Onsite and Offsite Disaster (natural and Man-made) Preparedness and Emergency Management Plan including Risk Assessment and damage control. Disaster management plan should be linked with District Disaster Management Plan.

7) Occupational health

- i. Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers
- ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during preplacement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.
- iii. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved,
- iv. Annual report of health status of workers with special reference to Occupational Health and Safety.

8) Corporate Environment Policy

- i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.
- ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.
- iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.
- iv. Does the company have system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report
- v. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.

10) Corporate Environmental Responsibility (CER)

i. Adequate funds, as per the Ministry's OM/Guidelines, shall be earmarked towards the Corporate Environmental Responsibility based on Public Hearing issues/socioeconomic issues and item-wise details along with time bound action plan shall be included (CER activities shall be related to environment). Socio-economic development activities need to be elaborated upon. For the projects where public hearing is not conducted, CER plan shall be provided based on socio-economic study of the area.

9) Additional studies/Measures to be considered

- (i). Provide latest and ecofriendly technology for product manufacturing.
- (ii). Emphasize on Green chemistry/Clean Manufacturing
- (iii). Provide CAS No. of products along with product list.
- (iv). Provide details of amount of carbon sequestered in their unit through greenbelt/other modes, in case of expansion project.
- (v). Life structure and sustainability for carbon and water foot print.
- (vi). Detailed pollution Load estimation.
- (vii). Transportation of Hazardous substance, effluents etc shall be carriedout through authorized and GPS enable vehicles/Trucks only.
- (viii). Category of Hazardous Wastes shall be mentioned in the EIA/EMP report and in presentation.
- (ix). Details of greenhouse gases and emissions shall be provided.
- (x). Greenbelt shall be developed in the first year of the project and wind breaks shall be erected.
- (xi). Study area map shall be overlapped with all the associated features.

- (xii). Emphasize on green fuels.
- (xiii). The project from NCR shall not use Coal as fuel. Further, PP shall avoid use of Coal in the CPAs and elsewhere also if alternatives are available.
- (xiv). Provide the Cost-Benefit analysis with respect to the environment due to the project.
- (xv). Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC
 - 11) Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.
 - **12**) A tabular chart with index for point wise compliance of above TORs and its details needs to be submitted in the EIA/EMP Report.

SPECIFIC CONDITION

- 1. Details on solvents to be used, measures for solvent recovery and for emissions control.
- 2. Details of process emissions from the proposed unit and its arrangement to control.
- **3**. Ambient air quality data should include VOC, other process-specific pollutants* like NH3*,chlorine*,HCl*,HBr*,H2S*,HF*,etc.,(*-as applicable)
- 4. Work zone monitoring arrangements for hazardous chemicals.
- 5. Detailed effluent treatment scheme including segregation of effluent streams for units adopting 'Zero' liquid discharge.
- 6. Action plan for odour control to be submitted.
- 7. A copy of the Memorandum of Understanding signed with cement manufacturers indicating clearly that they co-process organic solid/hazardous waste generated.
- 8. Authorization/Membership for the disposal of liquid effluent in CETP and solid/hazardous waste in TSDF, if any.
- 9. Action plan for utilization of MEE/dryers salts.
- 10. Material Safety Data Sheet for all the Chemicals are being used/will be used.
- 11. Authorization/Membership for the disposal of solid/hazardous waste in TSDF.
- 12. Details of incinerator if to be installed.
- 13. Risk assessment for storage and handling of hazardous chemicals/solvents. Action plan

for handling & safety system to be incorporated.

- 14. Arrangements for ensuring health and safety of workers engaged in handling of toxic materials.
- 15. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analysed and submitted for further appraisal of the EAC.

ACTIVITY 5(b)- PESTICIDES INDUSTRY

SPECIFIC TERMS OF REFERENCE FOR EIA STUDIES FOR PESTICIDE INDUSTRIES

GENERIC CONDITIONS

1) Executive Summary

2) Introduction

- i. Details of the EIA Consultant including NABET accreditation
- ii. Information about the project proponent
- iii. Importance and benefits of the project

3) **Project Description**

- i. Cost of project and time of completion.
- ii. Products with capacities for the proposed project.
- iii. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.
- iv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- v. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications.
- vi. List of raw materials required and their source along with mode of transportation.
- vii. Other chemicals and materials required with quantities and storage capacities
- viii. Details of Emission, effluents, hazardous waste generation and their management.
- ix. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)
- x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
- x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used
- xi Process description along with major equipment's and machineries, process flow sheet (quantitative) from raw materials to products to be provided
- xi. Hazard identification and details of proposed safety systems.
- xii. Expansion/modernization proposals:
- a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Integrated Regional Office of the Ministry of Environment, Forest and Climate Change as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in all the existing environmental

clearances including Amendments shall be provided. In addition, copy of the latest CTO and status of compliance of Consent to Operate for the ongoing/existing operation of the project from SPCB shall be attached with the EIA-EMP report.

b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.

4) Site Details

- i. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.
- ii. A topo-sheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)
- iii. Details w.r.t. option analysis for selection of site
- iv. Co-ordinates (lat-long) of all four corners of the site.
- v. Google map-Earth download of the project site.
- vi. Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.
- vii. Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.
- viii. Land-use break-up of total land of the project site (identified and acquired), government/private agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not required for industrial area)
- ix. A list of major industries with name and type within study area (10km radius) shall be incorporated. Land use details of the study area
- x. Geological features and Geo-hydrological status of the study area shall be included.
- xi. Details of Drainage of the project upto 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects)
- xii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land. Documents related to conversion of land for Industrial purpose.

xiii. R&R details in respect of land in line with state Government policy

5. Forest, wildlife and CRZ related issues (if applicable):

- i. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)
- ii. Land-use map based on High resolution satellite imagery of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha)
- iii. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.
- iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Wardenthereon
- v. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area
- vi. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife
- vii. Recommendations and NOC from the concerned State/UT Coastal Zone Management Authority on CRZ angle

5) Environmental Status

- i. Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall.
- AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests. Study should indicate minimum, maximum value of different parameters for the period (3 months) collected. Collected data should be supported by the reference data of either CPCB or SPCB. AAQ data & GLC of pollutants from stack emissions should suggest technology/ measures- Best Practiced Technology (BPT) indicating best achieved results.
- Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with – min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.
- iii. Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.

- iv. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.
- v. Ground water monitoring at minimum at 8 locations shall be included.
- vi. Noise levels monitoring at 8 locations within the study area.
- vii. Soil Characteristic as per CPCB guidelines.
- viii. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.
- ix. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.
- x. Socio-economic status of the study area.

6) Environment Impact and Environment Management Plan

- i. Assessment of ground level concentration of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modelling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.
- ii. Water Quality Modelling in case of discharge in water body
- iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor-cum-rail transport shall be examined.
- A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules 1986.
- v. Details of stack emission and action plan for control of emissions to meet standards.
- vi. Measures for fugitive emission control
- vii. Details of hazardous waste generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.

- viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.
- ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 2,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.
- x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.
- xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.
- xii. Action plan for post-project environmental monitoring shall be submitted.
- xiii. Onsite and Offsite Disaster (natural and Man-made) Preparedness and Emergency Management Plan including Risk Assessment and damage control. Disaster management plan should be linked with District Disaster Management Plan.

7) Occupational health

- i. Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers
- ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during preplacement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.
- iii. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved,
- iv. Annual report of health status of workers with special reference to Occupational Health and Safety.

8) Corporate Environment Policy

- i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.
- ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.

- iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.
- iv. Does the company have system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report
- v. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.

10) Corporate Environmental Responsibility (CER)

i. Adequate funds, as per the Ministry's OM/Guidelines, shall be earmarked towards the Corporate Environmental Responsibility based on Public Hearing issues/socioeconomic issues and item-wise details along with time bound action plan shall be included (CER activities shall be related to environment). Socio-economic development activities need to be elaborated upon. For the projects where public hearing is not conducted, CER plan shall be provided based on socio-economic study of the area.

9) Additional studies/Measures to be considered

- (i). Provide latest and ecofriendly technology for product manufacturing.
- (ii). Emphasize on Green chemistry/Clean Manufacturing
- (iii). Provide CAS No. of products along with product list.
- (iv). Provide details of amount of carbon sequestered in their unit through greenbelt/other modes, in case of expansion project.
- (v). Life structure and sustainability for carbon and water foot print.
- (vi). Detailed pollution Load estimation.
- (vii). Transportation of Hazardous substance, effluents etc shall be carriedout through authorized and GPS enable vehicles/Trucks only.
- (viii). Category of Hazardous Wastes shall be mentioned in the EIA/EMP report and in presentation.
- (ix). Details of greenhouse gases and emissions shall be provided.
- (x). Greenbelt shall be developed in the first year of the project and wind breaks shall be erected.
- (xi). Study area map shall be overlapped with all the associated features.
- (xii). Emphasize on green fuels.
- (xiii). The project from NCR shall not use Coal as fuel. Further, PP shall avoid use of Coal in the CPAs and elsewhere also if alternatives are available.
- (xiv). Provide the Cost-Benefit analysis with respect to the environment due to the project.
- (xv). Details of carbon foot prints and carbon sequestration study w.r.t. proposed project

needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC

- 11) Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.
- **12)** A tabular chart with index for point wise compliance of above TORs and its details needs to be submitted in the EIA/EMP Report.

SPECIFIC CONDITIONS

- 1. Commitment that no banned pesticides will be manufactured.
- 2. Details on solvents to be used, measures for solvent recovery and for emissions control.
- 3. Details of process emissions from the proposed unit and its arrangement to control.
- 4. Ambient air quality data should include VOC, other process-specific pollutants* like NH3*, chlorine*, HCl*, HBr*, H2S*, HF*, CS2etc., (*-as applicable)
- 5. Work zone monitoring arrangements for hazardous chemicals.
- 6. Detailed effluent treatment scheme including segregation for units adopting 'Zero' liquid discharge.
- 7. Action plan for odour control to be submitted.
- 8. A copy of the Memorandum of Understanding signed with cement manufacturers indicating clearly that they co-process organic solid/hazardous waste generated.
- 9. Authorization/Membership for the disposal of liquid effluent in CETP and solid/hazardous waste in TSDF, if any.
- 10. Material Safety Data Sheet for all the Chemicals are being used/will be used.
- 11. Authorization/Membership for the disposal of solid/hazardous waste in TSDF.
- 12. Details of incinerator if to be installed.
- 13. Risk assessment for storage and handling of hazardous chemicals/solvents. Action plan for handling & safety system to be incorporated.
- 14. Arrangements for ensuring health and safety of workers engaged in handling of toxic materials
- 15. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analysed and submitted for further appraisal of the EAC.

5(b): STANDARD TERMS OF REFERENCE FOR CONDUCTING ENVIRONMENT IMPACT ASSESSMENT STUDY FOR PESTICIDES INDUSTRY AND PESTICIDE SPECIFIC INTERMEDIATES (EXCLUDING FORMULATIONS) AND INFORMATION TO BE INCLUDED IN EIA/EMP REPORT

SR. NO.	TERMS OF REFERENCES	COMPLIANCE
1.	Executive Summary	Executive Summary is referred as Chapter-11.
2.	Introduction	
	i. Details of the EIA Consultant including NABET accreditation	EIA Consultants, M/s. Aqua-Air Environmental Engineers Pvt. Ltd. has obtained NABET- QCI accreditation scheme of MoEFCC, New Delhi. NABET accreditation certificate no. NABET/EIA/2023/IA0062 (Rev. 03) valid till October 7,2023. Please refer Annexure-7 , (Page No. A-14).
	ii. Information about the project proponent	M/s. Chemplast Sanmar Limited , having eight Partners/Directors. The detail of project proponent is refer as Section 1.1.1. of Chapter 1 (Page No.2)
	iii. Importance and benefits of the project	 Importance and benefits of the project We have well equipped and established R&D to develop and scale up the new products from the group of Synthetic Organic chemicals and Pesticide intermediates. We have both Technical and non-technical man power in existing facility and hence readily available to oversee the expansion and commissioning. Existing Manufacturing facility is well equipped with advanced technologies and this project is just the expansion similar to existing facility. Following are the benefits which may occur due to proposed project; Use of existing skills in the region for minor developments, required for the proposed project Increased transportation and handling requirements, that could benefit the local economy Increased taxes to the State and Central Governments, which would add to the public good

3.	Project Description	
	i. Cost of project and time of completion.	Total capital investment for the project will be Rs. 2292.398 Crores [Existing: 292.398 Crore + Proposed: 2000 Crore]. Time of completion =2 Year after getting EC and NOC.
	ii. Products with capacities for the proposed project.	List of Products Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) is referred as Table 2.3, Section 2.6, and Chapter-2 in EIA Report (Page No. 46).
	iii.If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.	Reference of earlier EC details is given below: Unit has obtained ECs with Past Productions EC vide letter F.No.J-11011/104/2009-IA II (I) dated 29/04/2009. Products with capacities are referred as Table 2.2, Section 2.7, and Chapter-2 in EIA Report (Page No. 46). Company has adequate land area for expansion in existing area and it is given in Section 2.2, Chapter-2 in EIA Report (Page No. 15)
	 iv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications. v. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications. 	Products with capacities are referred as Table 2.2, Section 2.7, and Chapter-2 in EIA Report (Page No. 46).
	vi.List of raw materials required and their source along with mode of transportation.	List of raw materials required and their source along with mode of transportation is referred as Table-2.3, Section 2.8 and Chapter-2 in EIA Report (Page No. 53-72). Most of the Raw Materials will be purchased from Local Market. Some Raw Material are not available in Local Market, so it will be imported. Transportation of Raw Material is Primarily by Road/ Sea/Air.
	vii.Otherchemicalsandmaterialsrequiredwithquantitiesandstoragecapacitiesviii.DetailsofEmission,	Total nos. of 30 Other chemicals and materials details with quantities, maximum storage and mode of storage are referred as Table 7.1, Chapter-7 in EIA Report (Page No. 335). Details of Effluent & its Management:
	effluents, hazardous waste	
generation and management.	their	 The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream. Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system. High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated will be disposed to TSDF (Common disposal Facility). Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.
-------------------------------	-------	--
		 In existing, company is using Furnace Oil in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector & Adequate Stack will be provided to control of flue gas emission. In proposed expansion, company will use Furnace Oil and Briquettes in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector, ESP & Adequate Stack will be provided to control of flue gas emission. The source of process gas emission will be from reactor vent.
		Details of Hazardous Waste and Its Disposal
		Management:
		 Empty barrels/ containers/liners containated with hazardous chemicals /wastes, Used / Spent Oil, spent solvents will be disposed Disposal to TNPCB Authorized Recyclers (Recyclable). Chemical sludge from waste water treatment,
		Distillation residues, Contaminated aromatic, aliphatic or naphthenic solvents may fit for

ix. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power	re cl fo 20 • Sp Co pr Total Powe be tal	euse, Conta eaning mat edium disp illowing prot D16. Dent Carbor Dommon TSD Totocol of Ha Power Requ r requireme ken from Sta	minated erials, Sp osal to C cocol of H or Filte F site / Co azardous V Jirement nt will be ate Electric	cotton rag oent Carbo Common T azardous V r medium -processor Waste Rule 14000 KVA city Depart	gs or other on or Filter SDF site by Vaste Rule – disposal to by following – 2016. which will ment.
contract)	SI.	Type of	Existin	Propose	Total
	N 0.	Fuel	g (MT/da y)	d (MT/day)	(MT/day)
	1	Furnace Oil	8	90	98
	2	Briquette s	00	250	250
	3	HSD	1.7	20.3	22
	4	LPG	0.008	0.192	0.20
	Requi Tota 12.0 Tota 25.5 Tota 207.	irement of V I Domestic KL/Day + Pro I Gardening KL/Day + Pro I Water Qu 5 KL/Day + P ce of water:	Vater: Water: 1 oposed: 8 Water: 3 oposed: 5 antity: 12 roposed: The Tota	00.0 KL/Da 8.0 KL/Day 30.5 KL/Da KL/Day] 207.5 KL/D 1000 KL/Da	ay [Existing:] ay [Existing: ay [Existing: ay] quirement is
	1207. water and gover Statu letter 4(134 01/06	5 KL/Day. r for which remaining 1 rnment wate s of Appro wide ()/SECR/CGV 5/2012 for 20	Out of the NOC from LOOO KLD er source. Init Loval: Unit Let VA/2009-3 07.5 KLD.	applied t has obta ter n 3708	KLD ground WD available o get from ined CGWA to. 21- dated:
	Wate	r Balance [Diagram i	s referred	as Fig. 2.4,

	Section 2.10.3. in Chapter-2 in EIA Report (Page No. 135).
	Man-power requirement: Company will be appointed Approximately 1350 people [Existing: 350 people + proposed: 1000 people] local skilled and unskilled people based on qualification and requirement as per prevailing
	norms of state government.
 x. Details of boiler/gensets (including stacks/exhausts) and fuels to be used 	Details of boiler is refer as Section 2.11.5 (Page No. 150-151). & fuels to be used is refer as Section 2.11.4. Chapter-2 in EIA Report (Page No. 149).
xi. Process description along with major equipments and machineries, process flow sheet (quantities) from raw material to products to be provided	Process description along with major equipments and machineries, process flow sheet (quantities) from raw material to products is referred as Section 2.9, Chapter-2 in EIA Report (Page No. 73).
xii. Hazard identification and	Hazard Identification
details of proposed safety	maior risk areas are as follows:
systems.	 Bulk storage area for Raw Materials at ambient temperature and atmospheric pressure.
	 Process Plant involving pumping, transportation, reactors, distillation, heating, cooling, etc. Bulk loading and unloading from storage tanks to road takers and vice versa.
	Safety precautions are referred as Section 7.4, Chapter-7 of EIA Assessment Report (Page No. 341)
xii. Expansion/modernization proposals: a. Copy of all the Environmental Clearance(s) including	This is an Expansion project. a. Unit has obtained EC from MOEF vide file No. J-11011/104/2009-IA-II(I) dated 29/04/2009.
Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report	Certified EC Compliance Report from MoEFCC, Tamilnadu has been obtained vide file no. E.P.12.1/862/TN/1206 dated 8th December 2021 is attached in Annexures.
of the Regional Office of the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance of conditions	Unit has obtained CTO & CTE. Renewal of CTE (Air) & (Water) vide no.: 2206241783392 dated: 03/06/2022 and Consent to establish for Expansion is valid upto March 31, 2027.
environmental clearances	Renewal of CTO (Air) & (Water) vide no.:

	provided. In addition, status of	Consent to establish for Expansion is valid
	compliance of Consent to Operate for the ongoing <i>l</i> existing operation of the project from SPCB shall be attached with the EIA-EMP report	upto March 31, 2027.
4	b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.	 b. Unit has obtained EC from MOEF vide file No. J-11011/104/2009-IA-II(I) dated 29/04/2009. Certified EC Compliance Report from MoEFCC, Tamilnadu has been obtained vide file no. E.P.12.1/862/TN/1206 dated 8th December 2021 is attached in Annexures. Visit date: 6/12/2021 Unit has obtained CTO & CTE. Renewal of CTE (Air) & (Water) vide no.: 2206241783392 dated: 03/06/2022 and Consent to establish for Expansion is valid upto March 31, 2027. Renewal of CTO (Air) & (Water) vide no.: 2208242904446 dated: 1/08/2022 and Consent to establish for Expansion is valid upto March 31, 2027.
4.	Site Details	Leastian the preject site. C.F.
	I. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.	Location the project site: S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B, 4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.
		 Justification for selecting the site: Minor site clearance activities shall be carried out to clear shrubs and weed.
		• The project site is located on level ground,
		which does not require any major land filling
		for area grading work.
		• No sanctuaries or archeological sites are
		located in the vicinity of the area.
		No rehabilitation or resettlement of local

	people required.
	• Site is very well connected by road and
	railway.
	• Availability of Fuel, Power, TSDF, etc. within
	the estate.
	Proposed Expansion activities are carried out within Existing Premises and No additional investigations are required for the present proposal. Hence no alternative sites were examined.
ii. A topo sheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco- sensitive areas and environmentally sensitive places)	A topo sheet of the study area is referred as Figure 3.13, Section 3.10, Chapter-3 in EIA Report (Page No.229).
iii. Details w.r.t. option analysis for	Major factors involved in the selection of site are
	 Proposed Expansion activities are carried out within Existing Premises and No additional investigations are required for the present proposal. Minor site clearance activities shall be carried out to clear shrubs and weed. The project site is located on level ground, which does not require any major land filling for area grading work. No sanctuaries or archeological sites are located in the vicinity of the area. No rehabilitation or resettlement of local people required. Site is very well connected by road and railway. Availability of Fuel, Power, TSDF, etc. within the estate.
iv. Co-ordinates (lat-long) of all four corners of the site.	Co-ordinates (lat-long) of all corners of the site. 12°48'21.69"N 77°59'2.03"E 12°48'18.20"N 77°59'14.32"E 12°48'17.79"N 77°59'19.40"E 12°48'14 08"N 77°59'18 40"E
	12°48'10.76"N 77°59'18.31"E

		12 48 6./U N // 59 16.68 E
		12°48'13.67"N 77°58'57.08"E
v. Goog of the p	gle map-Earth downloaded project site	Google map-Earth downloaded of the project site is referred as Figure – 2.2, Section- 2.3.1, Chapter- 2 in EIA Report (Page No.35).
vi. Layo unit as indicati greenbe located area/Es Industri of uni area/Es	ut maps indicating existing s well as proposed unit ng storage area, plant area, elt area, utilities etc. If within an Industrial tate/Complex, layout of al Area indicating location t within the Industrial tate.	Layout maps are referred as Figure – 2.1, Section- 2.2, Chapter-2 in EIA Report (Page No. 17).
vii. Pho and ex site. If o of p particul	tographs of the proposed isting (if applicable) plant existing, show photographs plantation/greenbelt, in ar.	Photographs of the proposed and existing (if applicable) plant site and greenbelt developed within the plant premises is referred as Section 2.3.1 and Chapter-2 in EIA Report (Page no. 36- 38)
viii. Lan of the acquire agricult water shall be industri	duse break-up of total land project site (identified and d), government/private - ural, forest, wasteland, bodies, settlements, etc. included. (not required for al area)	Total land area of the Unit is 16.64 Hectares and break-up of total land of the project site is referred as Table 1.3, Section 1.2.2, and Chapter-1 in EIA Report (Page No. 4).
ix. A lis name a (10km incorpo the stud	t of major industries with and type within study area radius) shall be rated. Land use details of dy area	There is no factory around 10 km of the plant surrounding. Land use details of the study area is referred as Section 3.9, Chapter-3 in EIA Report (Page No. 237).
x. Geo hydrolo area sha	logical features and Geo- gical status of the study all be included.	Geological features is referred as Section 3.8.6 (Page No. 224) and Geo-hydrological status of the study area are referred as Section 3.8.4, Chapter-3 in EIA Report (Page No. 222).
xi. Det project area. If radius c lean sea as floc based c past 30 Level c maximu shall a green fi	ails of Drainage of the up to 5 km radius of study the site is within 1 km of any major river, peak and ason river discharge as well of occurrence frequency on peak rainfall data of the D years. Details of Flood of the project site and um Flood Level of the river also be provided. (mega eld projects)	Drainage pattern of the project is referred as Section 3.8.5, and Chapter-3 in EIA Report (Page No. 223).

	xii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land. xiii. R&R details in respect of land in line with state Government policy	Unit has already obtained acquisition of land. Land possession documents are attached as Section 2.2.1., Chapter-2 in EIA Report(Page no. 20) The unit is located outside Notified Industrial Area. There is no habitation on the proposed expansion project activity area and it is inside the existing industry land. There shall not be displacement of any population in project area. The increasing industrial activity will boost the commercial and economical status of the locality up to some extent. Hence, B & B is not applicable
		to this project.
5.	Forest and wildlife related issues (if applicable)	
	 Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable) 	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	 ii. Landuse map based on High resolution satellite imagery (GPS) of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha) 	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	iii. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Warden there on.	Forest and wildlife related issues are not applicable. As, no forest and no sanctuaries are located in 10 km radial of study area.

v	r. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area	Not applicable, As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
V	i. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
V	ii. Recommendations and NOC from the concerned State/UT Coastal Zone Management Authority on CRZ angle	Not applicable.
5. E	nvironmental Status	
i. ir a r te h a	Determination of atmospheric nversion level at the project site nd site-specific nicrometeorological data using emperature, relative humidity, ourly wind speed and direction nd rainfall.	Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall is referred as Section 3.3, Chapter-3 in EIA Report (Page No. 176).
	AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests.	Ambient Air Quality Monitoring (AAQM) was carried out at eleven locations during the study period. The conventional and project specific parameters such as Suspended Particulate Matter, RSPM- PM ₁₀ , RSPM-PM _{2.5} , SO ₂ , NOx, O ₃ , Pb, C ₆ H ₆ , BaP, As, Ni, CO & VOCs were monitored at site. AAQ data is referred in Table-3.10, Section-3.4, Chapter-3 in EIA Report. (Page No. 188-189).
ii. m st th 2 a o o p R	. Raw data of all AAQ neasurement for 12 weeks of all tations as per frequency given in he NAQQM Notification of Nov. 2009 along with – min., max., verage and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA deport.	Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 is referred as Table-3.10, Section-3.4, Chapter-3 in EIA Report. (Page No. 188-189).
iii R d a	i. Surface water quality of nearby liver (100 m upstream and lownstream of discharge point) nd other surface drains at eight	11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. Surface water quality is referred in Table-3.13, Section-3.6.1, Chapter-3 in EIA Report. (Page

	locations as per CPCB/MoEF&CC guidelines.	No.196-199).
	iv. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.	No falls
	v. Ground water monitoring at minimum at 8 locations shall be included.	11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. Ground water monitoring is referred in Table- 3.13, Section-3.6.1, Chapter-3 in EIA Report. (Page No.196-199).
	vi. Noise levels monitoring at 8 locations within the study area.	Noise levels monitoring for 11 location of Residential Area, along with project site is referred as Table No. 3.12, Section 3.5, Chapter-3 in EIA Report (Page No194-195).
	vii. Soil Characteristic as per CPCB guidelines.	Soil Characteristic for 11 Location is referred as Table No. 3.14, Section 3.7.1, Chapter-3 in EIA Report (Page No. 203-207).
	viii. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.	Car/jeep/ van & four wheelers - 219 Nos. Bus/ coach -192 Nos. Heavy motor vehicle - 12 Nos. Trucks - 15 Nos. Motor cycle & scooter - 309 Nos. Three wheelers-10 Nos.
		Cycle-9 Nos. Farm vehicle (tractor/ combine harvester)-162 Nos. Detailed traffic study of the area is refer as Section 3.11, Chapter-3 in EIA report (Page no. 231-235)
	ix. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.	Flora existing in the study area is referred as Section 3.12.5, Chapter-3 in EIA Report (Page No. 243-248) and Fauna (terrestrial and aquatic) existing in the study area is referred as Section 3.12.6, Chapter-3 in EIA Report (Page No. 248- 253).
	x. Socio-economic status of the study area.	Socio-economic status of the study area is referred as Section 3.13, Chapter-3 in EIA Report (Page No. 254).
6.	Impact and Environment	
	Management Plan	
	i. Assessment of ground level concentration of pollutants from	Assessment of ground level concentration of pollutants is referred as Table 4.2, Chapter-4 in

	1
the stack emission based on site- specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of	 EIA Report (Page No. 290 to 298). Details of the model used and the input data used for modeling: Conc. of all pollutants Meteorological Data Ram file, Sam File, Met File, Mixing Height Village Co-Ordinates Predicted Ambient Air Quality is referred in Table-4.4, Section-4.2.2, Chapter-4 in EIA Report. (Page No.306). Details of the model used and the input data used for modeling and the input data used for modeling and the input data used for modeling.
the model used and the input data used for modelling shall also be provided.	for modeling also be provided in Section-4.2.2, Chapter-4 in EIA Report. (Page No.290-298).
The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.	The air quality contours is referred in Figure-4.2, Chapter-4 in EIA Report. (Page No.299-303).
ii. Water Quality modelling – in case of discharge in water body	Not Applicable, As No effluent is/will be discharged into any surface water body. Hence, Water Quality modeling is not required.
iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor-cum-rail transport shall be examined.	Impact of the transport of the raw materials and end products is referred in Section-4.8, Chapter-4 in EIA Report. (Page No. 316-317). Action plan for transportation of raw materials and products is referred in Section-10.13, Chapter-10 in EIA Report. (Page No. 502)
iv. A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules 1986.	 The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream. Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system. High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated

	wastewater will be totally recycled and the
	 soild waste generated will be disposed to TSDF (Common disposal Facility). Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment. Detailed effluent treatment scheme including segregation of effluent streams of wastewater shall be treated in effluent treatment plant
	2.10.4 & Section 2.10.5, Chapter-2 in EIA Report
v. Details of stack emission and	Details of stack emission
emissions to meet standards.	 In existing, company is using Furnace Oil in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector & Adequate Stack will be provided to control of flue gas emission. In proposed expansion, company will use Furnace Oil/Briquettes in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector, ESP / wet Scrubber & Adequate Stack will be provided to control of flue gas emission. The source of process gas emission will be from reactor vent. Company has installed adequate Scrubber systems to control process gas emission. Details of stack emission is referred as Table 4.2, Section 4.2.2, Chapter-4 in EIA Report (Page No. 290-298) and action plan for control of emissions is referred as Section 2.11.6, Chapter-2 in EIA Report (Page No. 152-153).
vi. Measures for fugitive emission	Measures for fugitive emission control:
control	 The Solvent used in the processes is handled in a closed loop and in process materials are stored in drums will be kept under structured roof.
	 Equipment where volatile solvents distilled is provided with reflux condensers and after

	coolers and the receivers are connected to the scrubber.
	 Pumps of compatible MOC with Single and Double Mechanical seals are used for handling corrosive and hazardous chemicals
	• Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab
	 All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions.
	 Proper ventilation in storage area is ensured and all materials are stored in suitable packing to prevent contamination of air due to particulates & volatile emissions from storage area.
	• All the Flange joints of the pipe lines which carry solvents are covered with flange guards.
	 Adequate Dust Suppression System including Water Sprinkling System is installed for control of fugitive emission during loading of raw material and product.
	• Work place monitoring within plant, storage & other area and AAQM will be done as per 'Post project monitoring plan' as well as regulatory requirement as per factory act.
	 Properly designed method & practices of transportation, storage & handling of materials are established and maintained along with necessary facilities to reduce airborne particle of materials and VOCs.
vii. Details of hazardous waste generation and their storage, utilization and management.	Details of hazardous waste generation and their disposal: Details of Hazardous Waste and Its Disposal
Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the	Management: • Empty barrels/ containers/liners contaminated with hazardous chemicals

concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.	 /wastes, Used / Spent Oil, spent solvents will be disposed Disposal to TNPCB Authorized Recyclers (Recyclable). Chemical sludge from waste water treatment, Distillation residues, Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse, Contaminated cotton rags or other cleaning materials, Spent Carbon or Filter medium disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016. Spent Carbon or Filter medium disposal to Common TSDF site / Co-processor by following protocol of Hazardous Waste Rule – 2016.
	Details of hazardous waste generation and their storage, utilization and management is referred as Table 2.5, Section 2.12.1, Chapter-2 in EIA Report (Page No. 153).
viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.	Fly ash (18250 MT/Annum) will be collected, stored, transported and sent for brick manufacturer or in cement industries.
ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 1,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.	Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (33 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises. Name of species planted are as below 1. Neem 2. Silver Oak 3. Eucalyptus 4. Pongamia 5. Gulmohur 6. Spathodia 7. Ashoka 8. Banyan 9. Bamboo 10. Peapal
x. Action plan for rainwater harvesting measures at plant site	Unit will harvest rainwater from the rooftop of the buildings. Rain water harvesting is under

the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.	n Section (Page no.
xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.Total capital investment for the project 2292.398vi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.Total capital investment for the project 2292.398vi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.Total capital investment for the project view 	will be Rs. Crore + ir & water ronmental 32 Crores.
xii. Action plan for post-projectPost-project environmental monitoring i environmental monitoring shall be submitted.Post-project environmental monitoring i as Table 6.1, Section 6.3 Chapter-6 in E (Page No. 323).	is referred EIA Report
xiii. Onsite and Offsite DisasterDisaster Management Plan- On site(natural and Man-made)Emergency Management Plan is refPreparedness and EmergencySection 7.10, Chapter-7 in EIA ReportManagement Plan including Risk410).Assessment and damage control.Disaster management plan shouldbe linked with District DisasterManagement Plan.	&off Site ferred as (Page No.
7. Occupational health	
i. Plan and fund allocation to Company will allot Rs. 102 Lakh per annuensure the occupational health & occupational health & safety of all contract and casual workers.	um for the ntract and
workers One time investment for Ir Occupational safety	n lakhs
Hydrant system, smoke detector & Sprinkler and Fire fighting devices	200
Process control, censor, interlock,guard and other instrumentation for safety	3000
Emergency shower, SCBA,ECC,gas detector	100
Total	3300
Annual plan for occupation Heath and safety lal	khs/An num
Annual plan for occupation Heath and safety Ial Employee periodical medical check-up Ial	khs/An num 27

	Ambulance	12
	Personal protective equipments	34
	Training and awareness	5
	Total	102
 ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during pre-placement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise. iii. Details of existing Occupational 	Health Evaluation of Workers is Section 7.12.6, Chapter-7 in EIA Rep 452). Workers are checked for physical special reference to the possible he likely to be presented where he/ expected to work before being empl purpose. Tests carried out: 1)Physical test 2)General Examination like Te Pressure, Haemoglobin/Total Platelet/others 3)Microscopic Examination 4) Systematic Examination 5) Vision Testing 6) Blood Glucose analysis 7) Haemogram Profile EMP for the Occupational Safet	referred as ort (Page No. fitness with ealth hazards she is being oyed for that mp., Pulse, W.B.C/
III. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved,	hazards so that such exposure can b permissible exposure level (PEL)/Th value (TLV) so as to protect health referred as, Section 7.12.3, Chap Report (Page No. 450).	e kept within reshold Level of workers is ter-7 in EIA
iv. Annual report of health status of workers with special reference to Occupational Health and Safety	Annual report of health status of special reference to Occupational Safety is referred as Section 7.12.6 EIA Report (Page No. 453). There was not found any abnorm employees and workers. All em	workers with Health and Chapter-7 in nality of any nployees and

-		
		workers are found fit. Occupational health surveillance program is undertaken as regular exercise for all employees specifically for those engaged in handling substances. Medical records of each employee are maintained separately.
8.	Corporate Environment Policy	
	i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.	Environment Policy is referred in Section-6.4, Chapter – 6 in EIA Report(Page No.325).
	ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.	Environment Policy is referred in Section-6.4, Chapter – 6 in EIA Report(Page No.325).
	iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.	Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions is referred in Figure-6.1, Section-6.5, Chapter-6 in EIA Report(Page No.327).
	iv. Does the company have system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report	An organogram to report of non-compliances / violations of environmental norms to the Board of Directors of the company. is referred in Section- 6.6, Chapter-6 in EIA Report(Page No.328).
	v. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.	Company will provide the sanitation facility only to the Labour force during construction as well as to the casual workers including truck drivers during operation phase.
10.	Enterprise Social Commitment	
	(ESC) i. Adequate funds (at least 2.5 % of the project cost) shall be	CER @ 0.25 % of the additional project cost (i.e. 2000 Crore) and CSR will be carried out by the

	earmarked towards the Enterprise Social Commitment based on Public Hearing issues and item- wise details along with time bound action plan shall be included. Socio-economic development activities need to be elaborated upon.	company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government.
9.	Additional studies/Measures to be considered	
	i. Provide latest and ecofriendly technology for product manufacturing.	 Latest and ecofriendly technology for product manufacturing are as follows: 1. Usage of Non-fossil fuel source for boiler (Briquettes) 2. Adiabatic Cooling Towers instead of conventional type Cooling Towers 3. Low-Power Exercise Equipment -Energy
		efficient (IE3) motors 4. Variable Speed Drives (VSD). 5. LED Lighting 6. Monofluid Temperature Control 7. Steam Condensate Recovery System and Flash Steam Recovery System 8. Rainwater harvesting
		 9. Double Scrubbing system for all reactors 10. Scrubber for all open Reactor and Chemical storage Detailed Latest and ecofriendly technology for product manufacturing is refer as Section 2.5, Chapter-2 in EIA report (Page no. 42)
	ii. Emphasize on Green chemistry/Clean Manufacturing	 Unit has emphasizing on green chemistry /clean manufacturing in following ways: 1. Scrubbing system All reaction vessels vent is connected with vent scrubber with capacity of 2500 m3/hr is installed to control fugitive emission Emphasize on green chemistry/clean manufacturing
		 Double condenser for solvent recovery For solvent recovery equipment connected with primary and secondary condensers with chilled water / brine. For filtration and drying well designed ANFD with condensers are available for minimizing solvent emission in environment. Usage of Non-fossil fuel source for boiler (Briquettes)

replacing the Usage of furnace oil by non-fossil fuel source (Briquettes) for Boiler. Using fossil fuel would generate 2.8 to 3 T of CO2 emission per ton of fuel Usage of non-fossil fuel source (Briquettes) is increasing the Energy-efficiency and Reduction of greenhouse gas emissions
4. Adiabatic Cooling Towers instead of conventional type Cooling Towers We are going with Adiabatic Cooling Towers, which is saving 75% of water consumption with compare to conventional type Cooling Towers. Adiabatic cooler uses wetted pads to precool the ambient air entering the tower. This precooled air is used to cool process water. This helps achieve a lower temperature than the ambient dry bulb temperature.
 5. Low-Power Exercise Equipment -Energy efficient (IE3) motors a. 93% efficiency as against 88% for conventional IE1 motors 5% increase in efficiency 1 GWh electrical energy accounts for releasing 790 tons of CO2[Source: as per CEA data, Govt. of India.] Yearly reduction in CO2 emissions due to IE3 otors: 2 X 790 = 1580 tonnes 6. Variable Speed Drives (VSD) Selected IE3 motors are with VSD 1 GWh electrical energy accounts for releasing 790 tons of CO2 [Source: as per CEA data, Govt. of India.] Yearly reduction in CO2 emissions due to VSD: 0 3 X 790 = 237 tonnes
VSD: 0.3 X 790 = 237 tonnes
/. LED LIGHTING
nlant it's better than other by they are brighter
Require lesser energy to function and Last longer.
 LED lamps consume 20% energy for
heating
 Metal halide lamps consume 75% energy GWb electrical energy accounts for
 I GWN electrical energy accounts for releasing 790 tones of CO2
 Yearly reduction in CO2 emissions due to
VSD : 0.3 X 790 = 237 tonnes
8. Monofluid Temperature Control

	a. F r 9. S F 10. E Com (woo	Precise tem eduction in iteam Con itash Steam – Condens receiver mechan condens – High pre will be generate option pressure Sio-degrada pany has od) for pack	perature control i lean waste generati densate Recovery Recovery System ate headers are r wherein pressu ical pump tra- sate to boiler feed w essure condensate diverted to a fla e LP steam. Therm will be validated e ble Goods to use Bio-degra	n addition to on System and routed to the ire powered/ ansfers the vater tank from process ash vessel to no compressor based on LP adable Goods urpose instead
iii. Provide CAS No. of products along with product list.	Prov list i EIA f	vide CAS No s in Table 2 Report (Page	2.2, Section 2.7, and 2.2, Section 2.7, and 2 No. 46).	g with product d Chapter-2 in
iv. Provide details of amount of carbon sequestered in their unit through greenbelt/other modes, in case of expansion project.v. Lifestructureand	Amount of carbon sequestered in their unit is 20.36 ton CO2 eq./year. Calculation of CO2 sequestered per is referred as Section 10.14, Chapter-10 in EIA Report (Page no. 503-506)			
sustainability for carbon and water foot print. vi. Detailed pollution Load	wate repo For p	er foot print ort.(Page no. oroposed pr	t is attached in Ann A-15) oject,	exure-8 in EIA
estimation.	Wor	st case scen	ario for water cons	umption:
	sr n o.	Group	Product name	voter consum ption (KL/Day)
	1.	Group-1	COLCHICINE & THIOCOICHICOSI DE	1.07
	2.	Group-2 Total Wate	M-ANISIDINE er consumption	598.90 599.98 KL/Day
	Wor (Qua	st case scer alitative and	nario for waste wa I Quantitative):	ter generation
	Sr n	Group	Product name	Waste water generati

		0.				on (KL/Day)	
		1.	Group-1	COLCHIC THIOCO	CINE & ICHICOSI	1.18	
		2.	Group-2	M-ANIS	IDINE	598.90	
			Total Wast	tewater		600.09	
			generation	n		KL/Day	
V	ii. Transportation of Hazardous	All I	nazardous G	ioods ve	hicles/ tru	cks had be	een
	substance, effluents etc shall	insta	alled with G	iPS and t	the monite	ored by Ni	cer
	be carried out through	Glob	e.i.e as men	itioned be	elow		٦
	authorized and GPS enable	S.	Name of	Туре	Loca	ation	
	Vehicles/Trucks only.	N	the		From	To	
		0	chemicals				-
		1	Caustic Soda	Truck	Mettur, TN	Berigai, TN	_
		2	Sodium Hypochlori	Tank er	Mettur, TN	Berigai, TN	
			te				
		3	Hydrogen	Truck	Mettur, TN	Berigai, TN	
		4	Hydrochlo	Tank	Mettur,	Berigai,	
			ric acid	er	TN	TN	_
		5	Sodium	Tank	Mettur,	Berigai,	
		Oth	nyaroxiae	er Safatu ini	IN tiativo'o	IN	
		_	Journey Ris for all major Sanmar Ltd. Restriction of 05:00 AM f fatigue. Even All drivers a card was iss	k Manag distribut , Mettur driving ho for drive ry 5 Hrs. / re trained ued for a	ement Stu tion routes ours betwee r to mana / 2 Hrs. res d and drive Il drivers.	dy conduct by Chempl en 11:00 PM ge the dri ting er compete	ted last vl – ver ncy
V	iii. Category of Hazardous Wastes shall be mentioned in the EIA/EMP report and in presentation.	Cate 2.5, No.	gory of Haza Section 2.12 153).	ardous W 2.1, Chapt	astes is ref ter-2 in EIA	erred as Ta A Report (Pa	ble age
	ix. Details of greenhouse gases and emissions shall be provided.	• ei bi th di m	Greenhouse osorbing infr mitted from ack to Earth e greenhous oxide, meth ost importa f processe	e gas rared rac Earth's s n's surfac se ane, and ant green s influe	is the liation (net surface and ce, thus co d water vap shouse gas ence gree	property theat ener reradiatin ontributing effect. Cark oour are es. A num enhouse	of rgy) g it to pon the ber gas

x. Greenbelt shall be developed in the first year of the project and wind breaks shall be erected. xi. Study area map shall be overlapped with all the associated features.	 concentrations. Industrial activities increase atmospheric CO₂ levels primarily through the burning of fossil fuels. Greenhouse gas emissions from existing unit are Carbon dioxide (CO₂), PM, SO2, NO₂ & CO Company has planted trees which helps to reduce greenhouse gases through photosynthesis absorbing large quantities of CO₂ and producing oxygen. Agreed, Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) Company has planted trees in a row or shrubs planted in such a manner as to provide shelter from the wind and to protect soil from erosion. The windbreaks are formed in North-West direction. The baseline parameters such as Land use / Land cover, Ecological status, Geology, Hydrology, Soil, Drainage Pattern and infrastructure
	map depicting major land use/ land cover classes comprising lands under agriculture, allow land, open/degraded vegetation; lands falling under water bodies, scrub and lands under inhabitations is presented. The map also marks the area within 10 km of the project site as the area of interest. Area and distance calculations have been carried out using GIS software after geo-referencing the interpreted data with the help of Survey of India (SoI) topographical maps of the scale 1:50,000.
	Study area map overlapped with all the associated features are referred in Figure 3.13, Section 3.10, Chapter-3 in EIA Report (Page No.229).
xii. Emphasize on green fuels.	As of now company is using FO & HSD. However, company will review the viability of other fuels.
not use Coal as fuel. Further,	Nadu.

	PP shall avoid use of Coal in	
	the CPAs and elsewhere also	
	if alternatives are available.	
	xiv. Provide the Cost-Benefit	CER @ 0.25 % of the additional project cost (i.e.
	analysis with respect to the	2000 Crore) and CSR will be carried out by the
	environment due to the	company in the surrounding villages. This fund
	project.	will be administered by a local area development
		committee in accordance with the orders of the
		appropriate Government.
	xv. Details of carbon foot prints	Details of carbon foot prints and carbon
	and carbon sequestration	sequestration as Section 10.14, Chapter-10 in EIA
	study w.r.t. proposed project	Report (Page no. 503-506)
	needs to spelled out.	
	Proposed mitigation	
	measures also needs to be	
	analyzed and submitted for	
	further appraisal of the EAC	
11.	Any litigation pending against the	There is no any litigation pending against the
	project and/or any direction/order	project and/or any direction/order passed by any
	passed by any Court of Law against	Court of Law against the project.
	the project, if so, details thereof	
	shall also be included. Has the unit	
	received any notice under the	
	Section 5 of Environment	
	(Protection) Act, 1986 or relevant	
	Sections of Air and Water Acts? If	
	so, details thereof and	
	compliance/ATR to the notice(s)	
	and present status of the case.	
12.	'A tabular chart with index for	Complied
	point wise compliance of above	
	TORs.	

SPECIFIC TERMS OF REFERENCE

SR.	TERMS OF REFERENCES	COMPLIANCE
1 NU.	Commitment that no hanned	Undertaking stating that no hanned nesticides
	pesticides will be manufactured.	will be manufactured is referred as Annexure-15 , (Page No. A-108).
2	Details on solvents to be used, measures for solvent recovery and for emissions control.	Solvents such as Toluene, TBA, MCB, MTBE, ODCB, Methanol & Benzene will be used, measures for solvent recovery is referred in Section-7.12, Chapter-7 in EIA Report (Page No. 499).
3	Details of process emissions from the proposed unit and its arrangement to control.	Process gas emissions from the proposed unit are SO ₂ , NO ₂ & CO and Measures for fugitive emission control are as following:
		 The Solvent used in the processes is handled in a closed loop and in process materials are stored in drums will be kept under structured roof.
		 Equipment where volatile solvents distilled is provided with reflux condensers and after coolers and the receivers are connected to the scrubber.
		 Pumps of compatible MOC with Single and Double Mechanical seals are used for handling corrosive and hazardous chemicals
		 Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab
		• All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions.
		 Proper ventilation in storage area is ensured and all materials are stored in suitable packing to prevent contamination of air due to particulates & volatile emissions from storage area.
		• All the Flange joints of the pipe lines which carry solvents are covered with flange

		guards.
		 Adequate Dust Suppression System including Water Sprinkling System is installed for control of fugitive emission during loading of raw material and product.
		 Work place monitoring within plant, storage & other area and AAQM will be done as per 'Post project monitoring plan' as well as regulatory requirement as per factory act.
		 Properly designed method & practices of transportation, storage & handling of materials are established and maintained along with necessary facilities to reduce airborne particle of materials and VOCs.
		Details of process emissions proposed scenario is referred as section - 2.11.1, Chapter-2 in EIA Report (Page No. 147).
4	Ambient air quality data should include VOC, other process- specific pollutants* like NH ₃ *,chlorine*, HCl*, HBr*, H ₂ S*, HF*, CS2 etc., (*- as applicable)	Ambient air samples were collected and analyzed for SPM, PM ₁₀ , PM _{2.5} , SO ₂ , NO _X , O ₃ , Pb, CO, NH ₃ , C ₆ H ₆ , Benzo (a) Pyrene (BaP), Arsenic (As), Nickel (Ni) & VOCs for identification, prediction, evaluation and assessment of potential impact on ambient air environment. Ambient air quality data is referred in Table-3.10 Section-3.4, Chapter-3 in EIA Report (Page No.188).
5	Work zone monitoring arrangements for hazardous chemicals.	Work zone monitoring arrangements is referred in Table 6.1, Section 6.3 Chapter-6 in EIA Report (Page No. 323).
6	Detailed effluent treatment scheme including segregation of effluent streams for units adopting 'Zero' liquid discharge.	Unit has full-fledged Effluent Treatment Plant to treat the wastewater with multiple effect evaporators (MEE),Biological conventional treatment and RO system. The water recovered is totally reused in the process plant itself. The domestic waste water is also treated in the STP. The cyanide bearing wastewater is chemically treated with Sodium hypochlorite solution and taken for evaporation in the MEE. No effluent is/will be discharged into any surface water body. Hence, this unit is/will be total Zero Liquid Discharge unit. Detailed effluent treatment scheme including

	l .	
7	Action plan for odor control to be	segregation of effluent streams of wastewater shall be treated in effluent treatment plant consist of MEE treatment is referred as section- 2.10.4 & Section 2.10.5, Chapter-2 in EIA Report (Page No. 102 to 104). Action plan for odour control measure are as follows:
	submitted.	 All liquid raw materials charged into Reactors with pumps or under gravity through closed pipes. Suction Hoods placed near the Man-holes & Charging funnels of Reactors & Filters so that chemical vapors and dust do not escape into the Plant & surroundings, when the man- hole covers are opened for inspection or charging of RM. All storage tanks of low boiling chemicals provided with Conservation Vents. Vent lines of Dosing vessels shall be connected back to the vents of storage tanks to prevent contaminated air release during material transfer. All pumps handling hazardous chemicals provided with mechanical seals to prevent fugitive emission. Wherever possible magnetic coupled pumps are used. Any spillage from drums etc. absorbed with saw dust / soda ash and moped clean. The contaminated absorbent are safely dispose off along with hazardous waste.
8	A copy of the Memorandum of Understanding signed with cement manufacturers indicating clearly that they co-process organic solid/hazardous waste generated.	Unit has agreement with TNWML for co- processing of hazardous waste is referred as section-2.12.3 Chapter-2 in EIA Report (Page No.180)
9	Authorization/Membership for the disposal of liquid effluent in CETP and solid/hazardous waste in TSDF, if any.	Authorization/Membership for the disposal of liquid effluent in CETP is not applicable as this is zero liquid discharge unit and Unit has agreement with TNWML referred as Section-2.11.4, Chapter-2 in EIA Report (Page No.158).
10	Material Safety Data Sheet for all the Chemicals are being used/will	Material Safety Data Sheet for all the Chemicals is referred to Annexure-15, (Page No. A-98).

	be used.	
11	Authorization/Membership for the	Unit has agreement with TNWML referred as
	disposal of solid/hazardous waste	Section-2.11.4, Chapter-2 in EIA Report (Page
	in TSDF.	No.158).
12	Details of incinerator if to be	Not Applicable, Unit will not install the
	installed.	incinerator for existing as well as Proposed
		scenario. Incinerable Waste will be disposed to
		M/s. TNWML
13	Risk assessment for storage and	Risk assessment for storage and handling of
	handling of hazardous	hazardous chemicals are referred as Section-
	chemicals/solvents. Action plan for	7.3.4.3, Chapter-7 in EIA Report (Page No. 333)
	handling & safety system to be	& Action plan for handling & safety system to be
	incorporated.	incorporated are referred as Section-7.4,
		Chapter-7 in EIA Report (Page No. 341)
14	Arrangements for ensuring health	Arrangements for ensuring health and safety of
	and safety of workers engaged in	workers engaged in handling of toxic materials is
	handling of toxic materials.	referred in Section-7.12.4, Chapter-7 in EIA
		Report (Page No. 451)
15	Details of carbon foot prints and	Details of carbon foot prints and carbon
	carbon sequestration study w.r.t.	sequestration as Section 10.14, Chapter-10 in
	proposed project needs to spelled	EIA Report (Page no. 503-506).
	out. Proposed mitigation measures	
	also needs to be analysed and	
	submitted for further appraisal of	
	the EAC.	
L		

5(f): STANDARD TERMS OF REFERENCE FOR EIA STUDIES FOR SYNTHETIC ORGANIC CHEMICALS INDUSTRY (DYES & DYE INTERMEDIATES; BULK DRUGS AND INTERMEDIATES EXCLUDING DRUG FORMULATIONS; SYNTHETIC RUBBERS; BASIC ORGANIC CHEMICALS, OTHER SYNTHETIC ORGANIC CHEMICALS AND CHEMICAL INTERMEDIATES)

SR. NO.	TERMS OF REFERENCES	COMPLIANCE
1.	Executive Summary	Executive Summary is referred as Chapter-11.
2.	Introduction	
	iii. Details of the EIA Consultant including NABET accreditationii. Information about the project	EIA Consultants, M/s. Aqua-Air Environmental Engineers Pvt. Ltd. has obtained NABET- QCI accreditation scheme of MoEFCC, New Delhi. NABET accreditation certificate no. NABET/EIA/2023/IA0062 (Rev. 03) valid till October 7,2023. Please refer Annexure-7, (Page No. A-14) M/s. Chemplast Sanmar Limited, having eight
	proponent	proponent is refer as Section 1.1.1. of Chapter 1 (Page No. 2)
	iii. Importance and benefits of the project	 Importance and benefits of the project We have well equipped and established R&D
		 to develop and scale up the new products from the group of Synthetic Organic chemicals and Pesticide intermediates. We have both Technical and non-technical man power in existing facility and hence readily available to oversee the expansion and commissioning. Existing Manufacturing facility is well equipped with advanced technologies and this project is just the expansion similar to existing facility. Following are the benefits which may occur due to proposed project; Use of existing skills in the region for minor developments, required for the proposed project Increased transportation and handling requirements, that could benefit the local economy Increased taxes to the State and Central Governments, which would add to the public good
3.	Project Description	
	ii. Cost of project and time of	Total capital investment for the project will be Rs.

	Γ
completion.	2292.398 Crores [Existing: 292.398 Crore + Proposed: 2000 Crore]. Time of completion =2 Year after getting EC and NOC.
iv. Products with capacities for the proposed project.	List of Products Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) is referred as Table 2.3, Section 2.6, and Chapter-2 in EIA Report (Page No. 46).
xiii. f expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.	Reference of earlier EC details is given below: Unit has obtained ECs with Past Productions EC vide letter F.No.J-11011/104/2009-IA II (I) dated 29/04/2009. Products with capacities are referred as Table 2.2, Section 2.7, and Chapter-2 in EIA Report (Page No. 46). Company has adequate land area for expansion in existing area and it is given in Section 2.2, Chapter-2 in EIA Report (Page No. 15).
xiv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA Notifications. xv. Details of existing products and production, if any, along with present product/production details in tabular format, to verify the compliance of the EIA	Products with capacities are referred as Table 2.2, Section 2.7, and Chapter-2 in EIA Report (Page No. 46).
xvi. ist of raw materials required and their source along with mode of transportation.	List of raw materials required and their source along with mode of transportation is referred as Table-2.3, Section 2.8 and Chapter-2 in EIA Report (Page No. 53-72). Most of the Raw Materials will be purchased from Local Market. Some Raw Material are not available in Local Market, so it will be imported. Transportation of Raw Material is Primarily by Road/ Sea/Air.
xvii. Other chemicals and materials required with quantities and storage capacities	Total nos. of 30 Other chemicals and materials details with quantities, maximum storage and mode of storage are referred as Table 7.1, Chapter-7 in EIA Report (Page No. 335).
xviii. Details of Emission, effluents, hazardous waste	Details of Effluent & its Management:

generation and their management.	 The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream. Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system. High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated will be disposed to TSDF (Common disposal Facility). Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.
	 In existing, company is using Furnace Oil in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector & Adequate Stack will be provided to control of flue gas emission. In proposed expansion, company will use Furnace Oil and Briquettes in Steam Boiler & HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector, ESP & Adequate Stack will be provided to control of flue gas emission. The source of process gas emission will be from reactor vent.
	Details of Hazardous Waste and Its Disposal Management:
	 Empty barrels/ containers/liners contaminated with hazardous chemicals /wastes, Used / Spent Oil, spent solvents will be disposed Disposal to TNPCB Authorized Recyclers (Recyclable). Chemical sludge from waste water treatment, Distillation residues, Contaminated aromatic,

xix. equirement of water, power, with source of supply, status of approval, water balance diagram, man-power	Total Powe be ta	 reuse, Contaminated cotton rags or other cleaning materials, Spent Carbon or Filter medium disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016. Spent Carbon or Filter medium disposal to Common TSDF site / Co-processor by following protocol of Hazardous Waste Rule – 2016. Total Power Requirement Power requirement will be 14000 KVA which will be taken from State Electricity Department. 			
requirement (regular and contract)	SI. N o.	Type of Fuel	Existin g (MT/da y)	Propose d (MT/day)	Total (MT/day)
	1	Furnace Oil	8	90	98
	2	Briquette s	00	250	250
	3	HSD	1.7	20.3	22
	4	LPG	0.008	0.192	0.20
	Requ Tota 12.0 Tota 25.5 Tota 207.	irement of V I Domestic KL/Day + Pr I Gardening KL/Day + Pr I Water Qu 5 KL/Day + P	Vater: Water: 1 oposed: 8 Water: 5 oposed: 5 antity: 12 roposed:	00.0 KL/Da 8.0 KL/Day 30.5 KL/Da KL/Day] 207.5 KL/D 1000 KL/Da	ay [Existing:] ay [Existing: ay [Existing: ay]
	Sourd 1207 wate and gover	ce of water: .5 KL/Day. r for which remaining 1 rnment wate	The Tota Out of the NOC from LOOO KLD er source.	al water rec hat 207.5 h CGWA/PV applied t	quirement is KLD ground ND available to get from
	Statu letter 4(134 01/06	s of Appro wide)/SECR/CGV 5/2012 for 20	v al: Unit let VA/2009-: 07.5 KLD.	: has obta ter r 3708	iined CGWA no. 21- dated:

	Section 2.10.3. in Chapter-2 in EIA Report (Page No. 135).
	Man-power requirement: Company will be appointed Approximately 1350 people [Existing: 350 people + proposed: 1000 people] local skilled and unskilled people based on qualification and requirement as per prevailing norms of state government.
xx. etails of boiler/gensets (including stacks/exhausts) and fuels to be used	Details of boiler is refer as Section 2.11.5 (Page No. 150-151). & fuels to be used is refer as Section 2.11.4. Chapter-2 in EIA Report (Page No. 149).
 xxi. Process description along with major equipments and machineries, process flow sheet (quantities) from raw material to products to be provided 	Process description along with major equipments and machineries, process flow sheet (quantities) from raw material to products is referred as Section 2.9, Chapter-2 in EIA Report (Page No. 73).
xxii. Hazard identification and details of proposed safety systems.	 Hazard Identification major risk areas are as follows: Bulk storage area for Raw Materials at ambient temperature and atmospheric pressure. Process Plant involving pumping, transportation, reactors, distillation, heating, cooling, etc. Bulk loading and unloading from storage tanks to road takers and vice versa. Safety precautions are referred as Section 7.4, Chapter-7 of EIA Assessment Report (Page No. 341)
xiii. xpansion/modernization proposals: c. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Regional Office of the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance	 This is an Expansion project. c. Unit has obtained EC from MOEF vide file No.J-11011/104/2009-IA-II(I) dated 29/04/2009. Certified EC Compliance Report from MoEFCC, Tamilnadu has been obtained vide file no. E.P.12.1/862/TN/1206 dated 8th December 2021 is attached in Annexures. Unit has obtained CTO & CTE. Renewal of CTE (Air) & (Water) vide no.: 2206241783392 dated: 03/06/2022 and Consent to establish for Expansion is valid unto March 31, 2027.

	1	
	stipulated in all the existing environmental clearances including Amendments shall be provided. In addition, status of compliance of Consent to Operate for the ongoing <i>l</i> existing operation of the project from SPCB shall be attached with the EIA-EMP report.	Renewal of CTO (Air) & (Water) vide no.: 2208242904446 dated: 1/08/2022 and Consent to establish for Expansion is valid upto March 31, 2027.
	d. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.	 d. Unit has obtained EC from MOEF vide file No.J-11011/104/2009-IA-II(I) dated 29/04/2009. Certified EC Compliance Report from MoEFCC, Tamilnadu has been obtained vide file no. E.P.12.1/862/TN/1206 dated 8th December 2021 is attached in Annexures. Visit date: 6/12/2021 Unit has obtained CTO & CTE. Renewal of CTE (Air) & (Water) vide no.: 2206241783392 dated: 03/06/2022 and Consent to establish for Expansion is valid upto March 31, 2027. Renewal of CTO (Air) & (Water) vide no.: 2208242904446 dated: 1/08/2022 and Consent to establish for Expansion is valid upto March 31, 2027.
4	Site Details	
	i. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.	Location the project site: S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B, 4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.
		Justification for selecting the site:Minor site clearance activities shall be carried
		out to clear shrubs and weed.
		• The project site is located on level ground,
		which does not require any major land filling
		for area grading work.
		 No sanctuaries or archeological sites are
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	1
	located in the vicinity of the area.
	No rehabilitation or resettlement of local
	people required.
	• Site is very well connected by road and
	railway.
	• Availability of Fuel, Power, TSDF, etc. within
	the estate.
	Proposed Expansion activities are carried out within Existing Premises and No additional investigations are required for the present proposal. Hence no alternative sites were examined.
ii. A topo sheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco- sensitive areas and environmentally sensitive places)	A topo sheet of the study area is referred as Figure 3.13, Section 3.10, Chapter-3 in EIA Report (Page No.229).
iii. Details w.r.t. option analysis for selection of site	Major factors involved in the selection of site are
	<ul> <li>Proposed Expansion activities are carried out within Existing Premises and No additional investigations are required for the present proposal.</li> <li>Minor site clearance activities shall be carried out to clear shrubs and weed.</li> <li>The project site is located on level ground, which does not require any major land filling for area grading work.</li> <li>No sanctuaries or archeological sites are located in the vicinity of the area.</li> <li>No rehabilitation or resettlement of local people required.</li> <li>Site is very well connected by road and railway.</li> <li>Availability of Fuel, Power, TSDF, etc. within the estate.</li> </ul>
iv. Co-ordinates (lat-long) of all four corners of the site.	Co-ordinates (lat-long) of all corners of the site. 12°48'21.69"N 77°59'2.03"E 12°48'18.20"N 77°59'14.32"E

		12°48'17.79"N 77°59'19.40"E 12°48'14.08"N 77°59'18.40"E 12°48'10.76"N 77°59'18.31"E 12°48'6.70"N 77°59'16.68"E
v. of	Google map-Earth downloaded the project site	<b>Google map-Earth</b> downloaded of the project site is referred as Figure – 2.2, Section- 2.3.1, Chapter- 2 in EIA Report (Page No.35).
vi. un inc gre loc are Inc of are	Layout maps indicating existing nit as well as proposed unit dicating storage area, plant area, eenbelt area, utilities etc. If cated within an Industrial ea/Estate/Complex, layout of dustrial Area indicating location unit within the Industrial ea/Estate.	<b>Layout maps</b> are referred as Figure – 2.1, Section- 2.2, Chapter-2 in EIA Report (Page No. 17).
vii. an site of pa	. Photographs of the proposed of existing (if applicable) plant ie. If existing, show photographs plantation/greenbelt, in articular.	Photographs of the proposed and existing (if applicable) plant site and greenbelt developed within the plant premises is referred as Section 2.3.1 and Chapter-2 in EIA Report (Page no. 36-38)
viii of acc ag wa sha inc	i. Landuse break-up of total land the project site (identified and quired), government/private - ricultural, forest, wasteland, ater bodies, settlements, etc. all be included. (not required for dustrial area)	<b>Total land area of the Unit is 16.64 Hectares and break-up of total land of the project site</b> is referred as Table 1.3, Section 1.2.2, and Chapter-1 in EIA Report (Page No. 4).
ix. na (10 inc the	A list of major industries with me and type within study area 0km radius) shall be corporated. Land use details of e study area	There is no factory around 10 km of the plant surrounding. Land use details of the study area is referred as Section 3.9, Chapter-3 in EIA Report (Page No. 237).
x. hy are	Geological features and Geo- drological status of the study ea shall be included.	<b>Geological features</b> is referred as Section 3.8.6 (Page No. 224) <b>and Geo-hydrological status</b> of the study area are referred as Section 3.8.4, Chapter-3 in EIA Report (Page No. 222).
xi. pro are rac lea as ba pa	Details of Drainage of the oject up to 5 km radius of study ea. If the site is within 1 km dius of any major river, peak and an season river discharge as well flood occurrence frequency used on peak rainfall data of the st 30 years. Details of Flood	<b>Drainage pattern</b> of the project is referred as Section 3.8.5, and Chapter-3 in EIA Report (Page No. 223).

	Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects)	
	xii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land.	Unit has already obtained acquisition of land. Land possession documents are attached as Section 2.2.1. , Chapter-2 in EIA Report(Page no. 20)
	xiii. R&R details in respect of land in line with state Government policy	The unit is located outside Notified Industrial Area. There is no habitation on the proposed expansion project activity area and it is inside the existing industry land. There shall not be displacement of any population in project area. The increasing industrial activity will boost the commercial and economical status of the locality up to some extent. Hence, R & R is not applicable to this project.
5.	Forest and wildlife related issues (if applicable)	
	viii. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	ix. Landuse map based on High resolution satellite imagery (GPS) of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha)	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	<ul> <li>x. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.</li> </ul>	Forest and wildlife related issues are not applicable. As, no forest and no wildlife sanctuaries are located in 10 km radial of study area.
	xi. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project	Forest and wildlife related issues are not applicable. As, no forest and no sanctuaries are located in 10 km radial of study area.

	1	
	location and the	
	of the Chief Wildlife Warden	
	there on.	
	xii. Wildlife Conservation Plan	Not applicable, As, no forest and no wildlife
	duly authenticated by the Chief	sanctuaries are located in 10 km radial of study
	Wildlife Warden of the State	area.
	Government for conservation	
	of Schedule I fauna, if any exists	
	in the study area	
	xiii. Copy of application	Forest and wildlife related issues are not
	submitted for clearance under	applicable. As, no forest and no wildlife
	the Wildlife (Protection) Act,	sanctuaries are located in 10 km radial of study
	1972, to the Standing	died.
	Board for Wildlife	
	xiv. Recommendations and	Not applicable.
	NOC from the concerned	
	State/UT Coastal Zone	
	Management Authority on CRZ	
	angle	
5.	Environmental Status	
	i. Determination of atmospheric	Determination of atmospheric inversion level at
	and site-specific	micrometeorological data using temperature
	micrometeorological data using	relative humidity hourly wind speed and
	temperature. relative humidity.	direction and rainfall is referred as Section 3.3.
	hourly wind speed and direction	Chapter-3 in EIA Report (Page No. 176).
	and rainfall.	
	• AAQ data (except monsoon) at 8	Ambient Air Quality Monitoring (AAQM) was
	locations for PM10, PM2.5, SO2,	carried out at eleven locations during the study
	NOX, CO and other parameters	period.
	relevant to the project shall be	The conventional and project specific parameters
	collected. The monitoring	such as Suspended Particulate Matter, RSPM-
	guidelines and take into account	PM ₁₀ , RSPM-PM _{2.5} , SO ₂ , NOx, O ₃ , Pb, C ₆ H ₆ , BaP,
	the pre-dominant wind direction	As, Ni, CO & VOCs were monitored at site.
	population zone and sensitive	AAQ data is referred in Table-3.10. Section-3.4.
	receptors including reserved	Chapter-3 in EIA Report. (Page No. 188-189).
	forests.	
	ii. Raw data of all AAQ	Raw data of all AAQ measurement for 12 weeks
	measurement for 12 weeks of all	of all stations as per frequency given in the
	stations as per frequency given in	NAQQM Notification of Nov. 2009 is referred as
	the NAQQM Notification of Nov.	I able-3.10, Section-3.4, Chapter-3 in EIA Report.
	2009 along With - min., max.,	(Page No. 188-189).
	of the AAO parameters from data	
	of all AAQ stations should be	
	S. an Arta Stations Should DC	
provided as an annexure to the EIA Report.		
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	
iii. Surface water quality of nearby River (100 m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.	11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. Surface water quality is referred in Table-3.13, Section-3.6.1, Chapter-3 in EIA Report. (Page No.196-199).	
iv. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.	No falls	
v. Ground water monitoring at minimum at 8 locations shall be included.	11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. Ground water monitoring is referred in Table-3.13, Section-3.6.1, Chapter-3 in EIA Report. (Page No.196-199).	
vi. Noise levels monitoring at 8 locations within the study area.	Noise levels monitoring for 11 location of Residential Area, along with project site is referred as Table No. 3.12, Section 3.5, Chapter-3 in EIA Report (Page No194-195).	
vii. Soil Characteristic as per CPCB guidelines.	<b>Soil Characteristic for 11 Location</b> is referred as Table No. 3.14, Section 3.7.1, Chapter-3 in EIA Report (Page No. 203-207).	
viii. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.	Car/jeep/ van & four wheelers - 219 Nos. Bus/ coach -192 Nos. Heavy motor vehicle - 12 Nos. Trucks - 15 Nos. Motor cycle & scooter - 309 Nos. Three wheelers-10 Nos. Cycle-9 Nos. Farm vehicle (tractor/ combine harvester)-162 Nos. Detailed traffic study of the area is refer as Section 3.11, Chapter-3 in EIA report (Page no. 231-235)	
ix. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.	<b>Flora</b> existing in the study area is referred as Section 3.12.5, Chapter-3 in EIA Report (Page No. 243-248) and <b>Fauna (terrestrial and aquatic)</b> existing in the study area is referred as Section 3.12.6, Chapter-3 in EIA Report (Page No. 248- 253).	
x. Socio-economic status of the study area.	<b>Socio-economic</b> status of the study area is referred as Section 3.13, Chapter-3 in EIA Report	

		(Page No. 254).
6.	Impact and Environment	
	Management Plan	
	i. Assessment of ground level concentration of pollutants from the stack emission based on site- specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ.	<ul> <li>Assessment of ground level concentration of pollutants is referred as Table 4.2, Chapter-4 in EIA Report (Page No. 290 to 298).</li> <li>Details of the model used and the input data used for modeling: <ul> <li>5) Conc. of all pollutants</li> <li>6) Meteorological Data</li> <li>7) Ram file, Sam File, Met File, Mixing Height</li> <li>8) Village Co-Ordinates</li> </ul> </li> <li>Predicted Ambient Air Quality is referred in Table-</li> </ul>
	Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modelling shall also be provided.	<ul><li>4.4, Section-4.2.2, Chapter-4 in EIA Report. (Page No.306).</li><li>Details of the model used and the input data used for modeling also be provided in Section-4.2.2, Chapter-4 in EIA Report. (Page No.290-298).</li></ul>
	The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.	The air quality contours is referred in Figure-4.2, Chapter-4 in EIA Report. (Page No.299-303).
	ii. Water Quality modelling – in case of discharge in water body	Not Applicable, As No effluent is/will be discharged into any surface water body. Hence, Water Quality modeling is not required.
	iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor-cum-rail transport shall be examined.	Impact of the transport of the raw materials and end products is referred in Section-4.8, Chapter-4 in EIA Report. (Page No. 316-317). Action plan for transportation of raw materials and products is referred in Section-10.13, Chapter-10 in EIA Report. (Page No. 502)
	iv. A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules 1986.	<ul> <li>The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream &amp; Low COD stream.</li> <li>Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system</li> </ul>

	T
	<ul> <li>and the pass through RO system.</li> <li>High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the soild waste generated will be disposed to TSDF (Common disposal Facility).</li> <li>Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.</li> </ul>
	Detailed effluent treatment scheme including segregation of effluent streams of wastewater shall be treated in effluent treatment plant consist of MEE treatment is referred as section- 2.10.4 & Section 2.10.5, Chapter-2 in EIA Report (Page No. 102 to 104).
v. Details of stack emission and	Details of stack emission
action plan for control of emissions to meet standards.	<ul> <li>In existing, company is using Furnace Oil in Steam Boiler &amp; HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector &amp; Adequate Stack will be provided to control of flue gas emission. In proposed expansion, company will use Furnace Oil/Briquettes in Steam Boiler &amp; HSD in Thermic Fluid Heater and DG Set. Mechanical Dust collector, ESP / wet Scrubber &amp; Adequate Stack will be provided to control of flue gas emission.</li> </ul>
	• The source of process gas emission will be from reactor vent. Company has installed adequate Scrubber systems to control process gas emission.
	Details of stack emission is referred as Table 4.2, Section 4.2.2, Chapter-4 in EIA Report (Page No. 290-298) and action plan for control of emissions is referred as Section 2.11.6, Chapter-2 in EIA Report (Page No. 152-153).
vi. Measures for fugitive emission	Measures for fugitive emission control:
control	• The Solvent used in the processes is handled

	in a closed loop and in process materials are stored in drums will be kept under structured roof.
	• Equipment where volatile solvents distilled is provided with reflux condensers and after coolers and the receivers are connected to the scrubber.
	<ul> <li>Pumps of compatible MOC with Single and Double Mechanical seals are used for handling corrosive and hazardous chemicals</li> </ul>
	• Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab
	• All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions.
	<ul> <li>Proper ventilation in storage area is ensured and all materials are stored in suitable packing to prevent contamination of air due to particulates &amp; volatile emissions from storage area.</li> </ul>
	• All the Flange joints of the pipe lines which carry solvents are covered with flange guards.
	• Adequate Dust Suppression System including Water Sprinkling System is installed for control of fugitive emission during loading of raw material and product.
	• Work place monitoring within plant, storage & other area and AAQM will be done as per 'Post project monitoring plan' as well as regulatory requirement as per factory act.
	<ul> <li>Properly designed method &amp; practices of transportation, storage &amp; handling of materials are established and maintained along with necessary facilities to reduce airborne particle of materials and VOCs.</li> </ul>
vii. Details of hazardous waste	Details of hazardous waste generation and their

generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.	<ul> <li>disposal:</li> <li>Details of Hazardous Waste and Its Disposal Management:</li> <li>Empty barrels/ containers/liners contaminated with hazardous chemicals /wastes, Used / Spent Oil, spent solvents will be disposed Disposal to TNPCB Authorized Recyclers (Recyclable).</li> <li>Chemical sludge from waste water treatment, Distillation residues, Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse, Contaminated cotton rags or other cleaning materials, Spent Carbon or Filter medium disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016.</li> <li>Spent Carbon or Filter medium disposal to Common TSDF site / Co-processor by following protocol of Hazardous Waste Rule – 2016.</li> <li>Details of hazardous waste generation and their storage utilization and management is referred</li> </ul>
viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided	as Table 2.5, Section 2.12.1, Chapter-2 in EIA Report (Page No. 153 ). Fly ash (18250 MT/Annum) will be collected, stored, transported and sent for brick manufacturer or in cement industries.
ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 1,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.	Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (33 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises. Name of species planted are as below 1. Neem 2. Silver Oak 3. Eucalyptus 4. Pongamia 5. Gulmohur 6. Spathodia

		8. Banyan	
		9. Bamboo	
		10. Peapal	
	x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.	Unit will harvest rainwater from the buildings. Rain water harvest process. Rainwater harvesting is attached 10.4.3.1 in Chapter 10 of EIA reported 488).	ne rooftop of ing is under I in Section ort (Page no.
	xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.	Total capital investment for the proje 2292.398 Crores [Existing: 292.3 Proposed: 2000 Crore]. Capital cost of pollution control system and e monitoring equipments will be Rs. 112	ect will be Rs. 98 Crore + of air & water environmental 8.482 Crores.
	xii. Action plan for post-project environmental monitoring shall be submitted.	Post-project environmental monitori as Table 6.1, Section 6.3 Chapter-6 (Page No. 323).	ng is referred in EIA Report
	xiii. Onsite and Offsite Disaster (natural and Man-made) Preparedness and Emergency Management Plan including Risk Assessment and damage control. Disaster management plan should be linked with District Disaster Management Plan.	Disaster Management Plan- On si Emergency Management Plan is Section 7.10, Chapter-7 in EIA Repo 410).	ite &off Site referred as ort (Page No.
7.	Occupational health		
	i. Plan and fund allocation to ensure the occupational health & safety of all contract and casual	Company will allot Rs. 102 Lakh per a occupational health & safety of all casual workers.	nnum for the contract and
	workers	One time investment for	In lakhs
		Uccupational safety Hydrant system, smoke detector & Sprinkler and Fire fighting devices	200
		Process control, censor, interlock,guard and other instrumentation for safety	3000
		Emergency shower, SCBA, ECC, gas	100
		Total	3300
		Annual plan for occupation Heath	In

	and safety	lakhs/An num
	Employee periodical medical check-up	27
	OHC operating cost	24
	Ambulance	12
	Personal protective equipments	34
	Training and awareness	5
	Total	102
ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during pre-placement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.	Health Evaluation of Workers is Section 7.12.6, Chapter-7 in EIA Rep 452). Workers are checked for physical special reference to the possible he likely to be presented where he/ expected to work before being empl purpose. Tests carried out: 1)Physical test 2)General Examination like Te Pressure, Haemoglobin/Total Platelet/others 3)Microscopic Examination 4) Systematic Examination 5) Vision Testing 6) Blood Glucose analysis 7) Haemogram Profile	referred as ort (Page No. fitness with ealth hazards she is being oyed for that mp., Pulse, W.B.C/
iii. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved, iv. Annual report of health status	EMP for the Occupational Safet hazards so that such exposure can b permissible exposure level (PEL)/Th value (TLV) so as to protect health referred as, Section 7.12.3, Chap Report (Page No. 450).	y & Health e kept within reshold Level of workers is ter-7 in EIA workers with
of workers with special reference to Occupational Health and Safety	special reference to Occupational Safety is referred as Section 7.12.6 EIA Report (Page No. 453). There was not found any abnorm employees and workers. All em	Health and Chapter-7 in nality of any pployees and

		workers are found fit. Occupational health surveillance program is undertaken as regular exercise for all employees specifically for those engaged in handling substances. Medical records of each employee are maintained separately.
8.	Corporate Environment Policy	
	i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.	Environment Policy is referred in Section-6.4, Chapter – 6 in EIA Report(Page No.325).
	ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.	Environment Policy is referred in Section-6.4, Chapter – 6 in EIA Report(Page No.325).
	iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.	Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions is referred in Figure-6.1, Section-6.5, Chapter-6 in EIA Report(Page No.327).
	iv. Does the company have system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report	An organogram to report of non-compliances / violations of environmental norms to the Board of Directors of the company. is referred in Section- 6.6, Chapter-6 in EIA Report(Page No.328).
	v. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.	Company will provide the sanitation facility only to the Labour force during construction as well as to the casual workers including truck drivers during operation phase.
10.	Enterprise Social Commitment	
	(ESC) i. Adequate funds (at least 2.5 % of the project cost) shall be	CER @ 0.25 % of the additional project cost (i.e. 2000 Crore) and CSR will be carried out by the

	1	
	earmarked towards the Enterprise Social Commitment based on Public Hearing issues and item- wise details along with time bound action plan shall be included. Socio-economic development activities need to be elaborated upon.	company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government.
9.	Additional studies/Measures to be considered	
	vi. Provide latest and ecofriendly technology for product manufacturing.	<ul> <li>Latest and ecofriendly technology for product manufacturing are as follows:</li> <li>11. Usage of Non-fossil fuel source for boiler (Briquettes)</li> <li>12. Adiabatic Cooling Towers instead of conventional type Cooling Towers</li> </ul>
		<ol> <li>13. Low-Power Exercise Equipment -Energy efficient (IE3) motors</li> <li>14. Variable Speed Drives (VSD).</li> <li>15. LED Lighting</li> <li>16. Monofluid Temperature Control</li> <li>17. Steam Condensate Recovery System and</li> </ol>
		Flash Steam Recovery System 18. Rainwater harvesting 19. Double Scrubbing system for all reactors
		<ul> <li>20. Scrubber for all open Reactor and Chemical storage</li> <li>Detailed Latest and ecofriendly technology for product manufacturing is refer as Section 2.5, Chapter-2 in EIA report (Page no. 42)</li> </ul>
	kvii. Emphasize on Green chemistry/Clean Manufacturing	Unit has emphasizing on green chemistry /clean manufacturing in following ways: <b>11. Scrubbing system</b> All reaction vessels vent is connected with vent scrubber with capacity of 2500 m3/hr is installed to control fugitive emission Emphasize on green chemistry/clean manufacturing
		<ul> <li>12. Double condenser for solvent recovery</li> <li>For solvent recovery equipment connected with primary and secondary condensers with chilled water / brine.</li> <li>For filtration and drying well designed ANFD with condensers are available for minimizing solvent emission in environment.</li> <li>13. Usage of Non-fossil fuel source for boiler (Briquettes)</li> </ul>

replacing the Usage of furnace oil by non-fossil fuel source (Briquettes) for Boiler. Using fossil fuel would generate 2.8 to 3 T of CO2 emission per ton of fuel Usage of non-fossil fuel source (Briquettes) is increasing the Energy-efficiency and Reduction of greenhouse gas emissions
<ul> <li>14. Adiabatic Cooling Towers instead of conventional type Cooling Towers</li> <li>We are going with Adiabatic Cooling Towers, which is saving 75% of water consumption with compare to conventional type Cooling Towers. Adiabatic cooler uses wetted pads to precool the ambient air entering the tower. This precooled air is used to cool process water. This helps achieve a lower temperature than the ambient dry bulb temperature.</li> </ul>
<ul> <li>15. Low-Power Exercise Equipment -Energy efficient (IE3) motors</li> <li>a. 93% efficiency as against 88% for conventional IE1 motors <ul> <li>5% increase in efficiency</li> <li>1 GWh electrical energy accounts for releasing 790 tons of CO2[Source: as per CEA data, Govt. of India.]</li> <li>Yearly reduction in CO2 emissions due to IE3 otors: 2 X 790 = 1580 tonnes</li> </ul> </li> <li>16. Variable Speed Drives (VSD) <ul> <li>Selected IE3 motors are with VSD</li> <li>1 GWh electrical energy accounts for releasing 790 tons of CO2 [Source: as per CEA data, Govt. of India.]</li> </ul> </li> </ul>
<ul> <li>17. LED Lighting</li> <li>We are going with 100% of LED lightings over the plant, it's better than other by, they are brighter, Require lesser energy to function and Last longer.</li> <li>– LED lamps consume 20% energy for heating</li> <li>– Metal halide lamps consume 75% energy</li> <li>– 1 GWh electrical energy accounts for releasing 790 tones of CO2</li> <li>– Yearly reduction in CO2 emissions due to VSD : 0.3 X 790 = 237 tonnes</li> </ul>
18. Monofluid Temperature Control

	a. F 19. S F 20. F Com (woo of p	Precise tem reduction in <b>Steam Con</b> Flash Steam – Condens receiver mechan condens – High pre will be generat option pressure <b>Sio-degrada</b> npany has od) for pack lastic	perature control i lean waste generati <b>densate Recovery</b> <b>Recovery System</b> sate headers are not wherein pressu- ical pump tr sate to boiler feed we essure condensate diverted to a fl e LP steam. Therm will be validated e <b>ble Goods</b> to use Bio-degra king and palleting point	n addition to on <b>System and</b> routed to the ire powered/ ansfers the vater tank from process ash vessel to no compressor based on LP
iii. Provide CAS No. of product along with product list.	s Prov list EIA	vide CAS No is in Table 2 Report (Page	b. of products along 2.2, Section 2.7, an e No. 46).	g with product d Chapter-2 in
ix. Provide details of amount of carbon sequestered in their un through greenbelt/othe modes, in case of expansio project.	f Amo t 20.3 r Calc n Sect 503	ount of car 6 ton CO2 e ulation of C ion 10.14, C -506)	bon sequestered in eq./year. O2 sequestered per Chapter-10 in EIA Re	n their unit is r is referred as eport (Page no.
xx. Life structure an sustainability for carbon an water foot print.	d Life d wate repo	structure a er foot prin ort.(Page no	and sustainability fo t is attached in Anr .A-15)	or carbon and nexure-8 in EIA
xxi. Detailed pollution Loa	d For	proposed pr	oject,	
estimation.	Woi	rst case scer	Dreduct news	umption:
	5r n o.	Group	Product name	consum ption (KL/Day)
	1.	Group-1	COLCHICINE & THIOCOICHICOSI DE	1.07
	2.	Group-2	M-ANISIDINE	598.90
		Total Wat	er consumption	599.98 KL/Day
	Woi (Qua	rst case sce alitative and	nario for waste wa d Quantitative):	ter generation
	Sr	Group	Product name	Waste
				water
	n			generati

		0.				on (KL/Day)	
		1.	Group-1	COLCHIO THIOCO DE	CINE & ICHICOSI	1.18	
		2.	Group-2	M-ANIS	IDINE	598.90	
			Total Wast	tewater		600.09	
			generatior	า		KL/Day	
xii.	Transportation of Hazardous	All I	nazardous G	Goods ve	hicles/ tru	cks had be	een
	substance, effluents etc shall	insta	alled with G	SPS and	the monit	ored by Ni	cer
	be carried out through	Glob	e.i.e as men	tioned be	elow		1
	authorized and GPS enable	S.	Name of	Туре	Loca	ation	
	venicles/Trucks only.	N	the		From	To	-
		0	Chemicais				
		1	Caustic Soda	Truck	Mettur, TN	Berigai, TN	_
		2	Sodium	Tank	Mettur,	Berigai,	
			Hypochlori	er	TN	TN	
		3	Hydrogen	Truck	Mottur	Borigai	-
		J	nyurogen	THUCK	TN	TN	
		4	Hydrochlo	Tank	Mettur,	Berigai,	
			, ric acid	er	TN	TN	
		5	Sodium	Tank	Mettur,	Berigai,	
			hydroxide	er	TN	TN	
		Othe	er transport	Safety ini	tiative's		_
		<ul> <li>Journey Risk Management Study conduct for all major distribution routes by Chempla Sanmar Ltd. Mettur</li> </ul>					ted last
		_	Restriction of	, driving ho	ours betwe	en 11:00 PN	- N
			05:00 AM 1	for drive	r to mana	ige the dri	ver
1			fatigue. Eve	ry 5 Hrs. /	2 Hrs. res	ting	
		—	All drivers a	re traine	d and drive	er competer	ncy
 <u> </u>			card was iss	ued for a	ll drivers.		
xiii.	Category of Hazardous Wastes shall be mentioned in the EIA/EMP report and in presentation.	Cate 2.5, No.	gory of Haza Section 2.12 153 ).	ardous W 2.1, Chapt	astes is ref ter-2 in El <i>l</i>	ferred as Ta A Report (Pa	ble age
xiv.	Details of greenhouse gases	•	Greenhouse	e gas	is the	property	of
1	and emissions shall be	al	osorbing infr	ared rad	liation (net	heat ener	gy)
1	provided.	e	mitted from	Earth's s	urface and	reradiatin	g it
1		ba	ack to Earth	n's surfac	ce, thus c	ontributing	to
		th	ne greenhou	se	J	ettect. Cark	on
1		di	oxide, meth	ane, and	a water vaj	pour are	tne
1		m	iusi importa	int green	nouse gas	es. A num	ver
1		U	piocesse	5 mmut	LICE BIE	CHINOUSE	gas

· · · · ·		
xvi.	Greenbelt shall be developed in the first year of the project and wind breaks shall be erected. Study area map shall be overlapped with all the associated features.	<ul> <li>concentrations. Industrial activities increase atmospheric CO₂ levels primarily through the burning of fossil fuels.</li> <li>Greenhouse gas emissions from existing unit are Carbon dioxide (CO₂), PM, SO₂, NO₂ &amp; CO</li> <li>Company has planted trees which helps to reduce greenhouse gases through photosynthesis absorbing large quantities of CO₂ and producing oxygen.</li> <li>Agreed, Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %)</li> <li>Company has planted trees in a row or shrubs planted in such a manner as to provide shelter from the wind and to protect soil from erosion. The windbreaks are formed in North-West direction.</li> <li>The baseline parameters such as Land use / Land cover, Ecological status, Geology, Hydrology, Soil, Drainage Pattern and infrastructure establishment is studied within the 10 km aerial radius from the center where the site is located. A map depicting major land use/ land cover classes comparising lands under agriculture allow land</li> </ul>
		map depicting major land use/ land cover classes comprising lands under agriculture, allow land, open/degraded vegetation; lands falling under water bodies, scrub and lands under inhabitations is presented. The map also marks the area within 10 km of the project site as the area of interest. Area and distance calculations have been carried out using GIS software after geo-referencing the interpreted data with the help of Survey of India (Sel) tenegraphical maps of the scale 1:50,000
		Study area map overlapped with all the associated features are referred in Figure 3.13, Section 3.10, Chapter-3 in EIA Report (Page No.229).
vii.	Emphasize on green fuels.	As of now company is using FO & HSD. However, company will review the viability of other fuels.
V111.	The project from NCR shall not use Coal as fuel. Further,	Not Applicable, as unit is located in Berigai, Tamil Nadu.

PP shall avoid use of Coal in the CPAs and elsewhere also if alternatives are available.         xix. Provide the Cost-Benefit analysis with respect to the environment due to the project.       CER @ 0.25 % of the additional project cost (i.e. 2000 Crore) and CSR will be carried out by the company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government.         xxx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC       Report (Page no. 503-506)         11.       Any litigation pending against the project, if so, details thereof shall also be included. Has the unit received any notice under the Sections 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.       Tompled         12.       'A tabular chart with index for point wise compliance of above TORs.       Complied			
<ul> <li>the CPAs and elsewhere also if alternatives are available.</li> <li>xix. Provide the Cost-Benefit analysis with respect to the environment due to the project.</li> <li>Xx. Details of carbon foot prints and carbon sequestration as carbon sequestration as tudy w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>Ya tabular chart with index for point wise compliance of above TORs.</li> </ul>		PP shall avoid use of Coal in	
if alternatives are available.xix.Provide the Cost-Benefit analysis with respect to the environment due to the project.CER @ 0.25 % of the additional project cost (i.e. 2000 Crore) and CSR will be carried out by the company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government.xxx.Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EACDetails of carbon foot prints and carbon sequestration as Section 10.14, Chapter-10 in EIA Report (Page no. 503-506)11.Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.Torplied12.'A tabular chart with index for point wise compliance of above TORs.Complied		the CPAs and elsewhere also	
<ul> <li>xix. Provide the Cost-Benefit analysis with respect to the environment due to the project.</li> <li>Xix. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>Ya tabular chart with index for point wise compliance of above TORs.</li> </ul>		if alternatives are available.	
<ul> <li>analysis with respect to the environment due to the project.</li> <li>xx. Details of carbon foot prints and carbon sequestration as tudy w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>YA tabular chart with index for point wise compliance of above TORs.</li> </ul>		xix. Provide the Cost-Benefit	CER @ 0.25 % of the additional project cost (i.e.
<ul> <li>environment due to the project.</li> <li>company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government.</li> <li>xx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		analysis with respect to the	2000 Crore) and CSR will be carried out by the
project.will be administered by a local area development committee in accordance with the orders of the appropriate Government.xxx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EACDetails of carbon foot prints and carbon sequestration as Section 10.14, Chapter-10 in EIA Report (Page no. 503-506)11.Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.Complied Complied12.'A tabular chart with index for point wise compliance of above TORs.Complied		environment due to the	company in the surrounding villages. This fund
cxx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EACDetails of carbon foot prints and carbon sequestration as Section 10.14, Chapter-10 in EIA Report (Page no. 503-506)11.Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.Complied compliance ATR with index for point wise compliance of above TORs.Compliance/ATR		project.	will be administered by a local area development
appropriate Government.xxx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EACDetails of carbon foot prints and carbon sequestration as Section 10.14, Chapter-10 in EIA Report (Page no. 503-506)11.Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.Complied12.'A tabular chart with index for point wise compliance of above TORs.Compliance/ATR			committee in accordance with the orders of the
<ul> <li>xxx. Details of carbon foot prints and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>			appropriate Government.
<ul> <li>and carbon sequestration study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		xxx. Details of carbon foot prints	Details of carbon foot prints and carbon
<ul> <li>study w.r.t. proposed project needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		and carbon sequestration	sequestration as Section 10.14, Chapter-10 in EIA
<ul> <li>needs to spelled out. Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		study w.r.t. proposed project	Report (Page no. 503-506)
<ul> <li>Proposed mitigation measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		needs to spelled out.	
<ul> <li>measures also needs to be analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		Proposed mitigation	
<ul> <li>analyzed and submitted for further appraisal of the EAC</li> <li>Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		measures also needs to be	
further appraisal of the EAC <b>11.</b> Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.There is no any litigation pending against the project and/or any direction/order passed by any Court of Law against the project. <b>12.</b> 'A tabular chart with index for point wise compliance of above TORs.Compliance/ATR		analyzed and submitted for	
<ul> <li>11. Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		further appraisal of the EAC	
<ul> <li>project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>	11.	Any litigation pending against the	There is no any litigation pending against the
<ul> <li>passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		project and/or any direction/order	project and/or any direction/order passed by any
the project, if so, details thereof         shall also be included. Has the unit         received any notice under the         Section 5 of Environment         (Protection) Act, 1986 or relevant         Sections of Air and Water Acts? If         so, details thereof and         compliance/ATR to the notice(s)         and present status of the case.         12.       'A tabular chart with index for         point wise compliance of above         TORs.		passed by any Court of Law against	Court of Law against the project.
<ul> <li>shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		the project, if so, details thereof	
received any notice under the         Section 5 of Environment         (Protection) Act, 1986 or relevant         Sections of Air and Water Acts? If         so, details thereof and         compliance/ATR to the notice(s)         and present status of the case.         12.       'A tabular chart with index for         point wise compliance of above         TORs.		shall also be included. Has the unit	
Section       5       of       Environment         (Protection)       Act, 1986 or relevant         Sections of Air and Water Acts? If       so,       details         so,       details       thereof       and         compliance/ATR       to       the notice(s)       and present status of the case.         12.       'A tabular chart with index for point wise compliance of above TORs.       Complied		received any notice under the	
<ul> <li>(Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		Section 5 of Environment	
Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case. <b>12.</b> 'A tabular chart with index for point wise compliance of above TORs.		(Protection) Act, 1986 or relevant	
<ul> <li>so, details thereof and compliance/ATR to the notice(s) and present status of the case.</li> <li>12. 'A tabular chart with index for point wise compliance of above TORs.</li> </ul>		Sections of Air and Water Acts? If	
compliance/ATR to the notice(s) and present status of the case.         12.       'A tabular chart with index for point wise compliance of above TORs.		so, details thereof and	
and present status of the case.       12.     'A tabular chart with index for point wise compliance of above TORs.		compliance/ATR to the notice(s)	
<ul> <li>12. 'A tabular chart with index for Complied</li> <li>point wise compliance of above</li> <li>TORs.</li> </ul>		and present status of the case.	
point wise compliance of above TORs.	12.	'A tabular chart with index for	Complied
TORs.		point wise compliance of above	
		TORs.	

### **SPECIFIC CONDITION**

SR. NO.	TERMS OF REFERENCES	COMPLIANCE		
1	Details on solvents to be used, measures for solvent recovery and for emissions control.	<b>Solvents such as</b> Toluene, TBA, MCB, MTBE, ODCB, Methanol & Benzene will be used, <b>measures for solvent recovery</b> is referred in Section-7.12, Chapter-7 in EIA Report (Page No. 499).		
2	Details of process emissions from the proposed unit and its arrangement to control.	<ul> <li>Process gas emissions from the proposed unit are SO₂, NO₂ &amp; CO and Measures for fugitive emission control are as following:</li> <li>The Solvent used in the processes is handled in a closed loop and in process materials are stored in drums will be kept under</li> </ul>		

structured roof
structured root.
<ul> <li>Equipment where volatile solvents distilled is provided with reflux condensers and after coolers and the receivers are connected to the scrubber.</li> </ul>
<ul> <li>Pumps of compatible MOC with Single and Double Mechanical seals are used for handling corrosive and hazardous chemicals</li> </ul>
<ul> <li>Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab</li> </ul>
<ul> <li>All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions.</li> </ul>
<ul> <li>Proper ventilation in storage area is ensured and all materials are stored in suitable packing to prevent contamination of air due to particulates &amp; volatile emissions from storage area.</li> </ul>
• All the Flange joints of the pipe lines which carry solvents are covered with flange guards.
<ul> <li>Adequate Dust Suppression System including Water Sprinkling System is installed for control of fugitive emission during loading of raw material and product.</li> </ul>
<ul> <li>Work place monitoring within plant, storage &amp; other area and AAQM will be done as per 'Post project monitoring plan' as well as regulatory requirement as per factory act.</li> </ul>
<ul> <li>Properly designed method &amp; practices of transportation, storage &amp; handling of materials are established and maintained along with necessary facilities to reduce airborne particle of materials and VOCs.</li> </ul>
Details of process emissions proposed scenario is referred as section - 2.11.1, Chapter-2 in EIA

		Report (Page No. 147)
2	Ambient air quality data should	Amhient air samples were collected and analyzed
5	include VOC, other process- specific	for SPM_PM ₁₀ PM ₁₀ SO ₂ NO ₂ O ₂ Ph CO_NH ₂
	pollutants* like NH ₃ *.chlorine*.	$\begin{bmatrix} 101 & SFW1, FW10, FW2.5, SO2, WOX, O3, FD, CO, W13, \\ C & L & Depres (c) Durane (DeD) Areania (Ac) Nickel$
	HCl*, HBr*, H ₂ S*, HF*, CS2 etc., (*-	$C_6 \Pi_6$ , Benzo (a) Pyrene (BaP), Arsenic (AS), Nicker
	as applicable)	(NI) & VOCs for identification, prediction,
		evaluation and assessment of potential impact on
		ambient air environment.
		Ambient air quality data is referred in Table-3.10
		Section-3.4, Chapter-3 in EIA Report (Page
		No.188).
4	Work zone monitoring	Work zone monitoring arrangements is referred
	chomicals	(Dago No. 222)
5	Detailed effluent treatment scheme	(Fage NO. 525).
5	including segregation of effluent	treat the wastewater with multiple effect
	streams for units adopting 'Zero'	evaporators (MEE). Biological conventional
	liquid discharge.	treatment and RO system. The water recovered is
		totally reused in the process plant itself. The
		domestic waste water is also treated in the STP.
		The cyanide bearing wastewater is chemically
		treated with Sodium hypochlorite solution and
		taken for evaporation in the MEE. No effluent
		is/will be discharged into any surface water body.
		Hence, this unit is/will be total Zero Liquid
		Discharge unit.
		peraled endent treatment scheme including
		shall be treated in effluent treatment plant
		consist of MEE treatment is referred as section-
		2.10.4 & Section 2.10.5. Chapter-2 in EIA Report
		(Page No. 102 to 104).
6	Action plan for odor control to be	Action plan for odour control measure are as
	submitted.	follows:
		• All liquid raw materials charged into Reactors
		with pumps or under gravity through closed
		pipes.
		• Suction Hoods placed near the Man-holes &
		Charging funnels of Reactors & Filters so that
		chemical vapors and dust do not escape into
		the Plant & surroundings when the man-hole
		covers are onened for inspection or charging
		of PM
		• All storage tanks of low boiling chemicals
		provided with Conservation Vents.
		Vent lines of Dosing vessels shall be

		<ul> <li>connected back to the vents of storage tanks to prevent contaminated air release during material transfer.</li> <li>All pumps handling hazardous chemicals provided with mechanical seals to prevent fugitive emission.</li> <li>Wherever possible magnetic coupled pumps are used.</li> <li>Any spillage from drums etc. absorbed with saw dust / soda ash and moped clean.</li> <li>The contaminated absorbent are safely dispose off along with hazardous waste.</li> </ul>
7	A copy of the Memorandum of Understanding signed with cement manufacturers indicating clearly that they co-process organic solid/hazardous waste generated.	Unit has agreement with TNWML for co- processing of hazardous waste is referred as section-2.12.3 Chapter-2 in EIA Report (Page No.180)
8	Authorization/Membership for the disposal of liquid effluent in CETP and solid/hazardous waste in TSDF, if any.	Authorization/Membership for the disposal of <b>liquid effluent</b> in CETP is not applicable as this is zero liquid discharge unit and Unit has agreement with TNWML referred as Section-2.11.4, Chapter-2 in EIA Report (Page No.158).
9	Action plan for utilization of MEE/dryers salts.	MEE salt will be collected, Store, Transport and disposed at TNWML.
10	Material Safety Data Sheet for all the Chemicals are being used/will be used.	Material Safety Data Sheet for all the Chemicals is referred to Annexure-14, (Page No. A-98).
11	Authorization/Membership for the disposal of solid/hazardous waste in TSDF.	Unit has agreement with TNWML referred as Section-2.11.4, Chapter-2 in EIA Report (Page No.158).
12	Details of incinerator if to be installed.	Not Applicable, Unit will not install the incinerator for existing as well as Proposed scenario. Incinerable Waste will be disposed to M/s. TNWML
13	Risk assessment for storage and handling of hazardous chemicals/solvents. Action plan for handling & safety system to be incorporated.	Risk assessment for storage and handling of hazardous chemicals are referred as Section- 7.3.4.3, Chapter-7 in EIA Report (Page No. 333) & Action plan for handling & safety system to be incorporated are referred as Section-7.4, Chapter-7 in EIA Report (Page No. 341)

DRAFT	E	NVIRONMENTAL IMPACT & RISK	
		ASSESSMENT REPORT	
CLIENT	:	M/S. CHEMPLAST SANMAR LIMITED. S.F NO.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A, 3B,4,12/1A, 1B, 13/1, 14/1A,2A, SULIGUNTA VILLAGE, BERIGAI 635105. SHOOLAGIRI TALUK, KRISHNAGIRI DISTRICT, TAMIL NADU, INDIA.	
PROJECT TITLE	:	PROPOSED SYNTHETIC ORGANIC CHEMICALS & PESTICIDE SPECIFIC INTERMEDIATES (FROM 1601.4 MT/ANNUM TO 20031.4 MT/ANNUM) MANUFACTURING IN EXISTING UNIT	
TOTAL PLOT AREA	:	16.64 hectors	
PROJECT COST	:	Rs. 2292.398 Crores	
PROJECT NO.	:	900048/2022	
CATEGORY	•	A-5(b) & 5(f)	
environmental Engine		Prepared By: Aqua-Air Environmental Engineers P. Ltd. 403, Centre Point, Nr. Kadiwala School, Ring Road, Surat – 395002 (NABET Accredited EIA Consultant by QCI): NABET/EIA/2023/IA0062 (rev.03) valid till 7 th October 2023 (MoEF Accredited Testing Laboratory): 15018/24/2019-CPW (NABL Accredited Testing Laboratory): TC - 7328 (GPCB Recognized Schedule-II Environmental Auditor)	
Pipid ing en		ISO 45001: 2018 Certified Company	

### NABET CERTIFICATE OF ACCREDITATION

Cardificante of Assess				
Certificate of Accredi	tation	l.		
Aqua-Air Environmental Engineers F 403, Centre Point, Nr. Kadiwala School, Ring Road, Su organization is accredited as Category-A under the QCI-NABE	P <mark>vt. Ltd.</mark> rat, Gujarat-39 T Scheme fo	95002 or Accredita	tion of EIA	
sultant Organizations, Version 3: for preparing EIA-EMP reports	in the follow Secto	ing Sectors - r (as per)	-	
Mining of minarals, operant mining	NABET	MoEFCC	cat,	
Mining of minerals including opencast / underground mining		a (a) (i)	5	
Onshore oil and gas exploration, development & production	2	1 (b)	A	
Thermal power plants	4	1 (d)	<u>A</u>	
Metallurgical industries (ferrous only)	8	3(a)	A .	
Cement plants	9	3 (b)	Б	
Petroleum refining industry	10	4 (a)	A	
Chlor-alkali industry	13	(d)	A	
Soda ash Industry	14	4 [e]	A	
Chemical fertilizers	15	5(a)		
Petro-chemical complexes	1/	5 (c)	A	
Manmade fibers manufacturing	19	5 (d)	В	
Petrochemical based processing	20	5 (e)	A	
Synthetic organic chemicals industry	21	5 (f)	A	
Distilieries	22	5 (g) 5 //)		
Sugar Industry	24	5(0)	8	
Oil & gas transportation pipeline	27	5 (a)	Ä	
Air.ports	29	7 (a)	A.	
Industrial estates/ parks/ complexes/areas	31	7 (c)	Ä	
Common hazardous waste treatment, storage and disposal facilities (TSBF)	32	7 (d)	A	
Ports, harbours, break waters and dredging	33	7 (6a)	A	
Highways,	34	7(0	Ä	
Common Effluent Treatment Plants (CETPs)	36	7 (h)	8	
Common Municipal Solid Waste Management Facility (CMSWMF)	37	70	8	
		10 Each 11	E.	
	Aqua-Air Environmental Engineers F 403, Centre Point, Nr. Kadiwala School, Ring Road, Sur organization is accredited as Category-A under the QCI-NABB ultant Organizations, Version 3: for preparing EIA-EMP reports Sector Description Mining of minerals- opencast mining Mining of minerals- opencast mining Onshore oil and gas exploration, development & production Thermal power plants Mineral beneficiation Metallurgical industries (ferrous only) Cement plants Petroleum refining industry Chor-alkali industry Soda ach Industry Soda ach Industry Chor-alkali industry Soda ach Industry Chor-alkali industry Soda ach Industry Soda ach Industry Detroleum refining and gase pecific intermediates Petro-chemical complexes Marmade fibers manufacturing Petrochemical based processing Synthetic organic chemicals industry Distilleries Pulp & paper industry Oil & gas transportation pipeline Air parts Industrial estates/ parks/ complexes/areas Common hazardoou waste treatment, storage and disposal facilities (TSDF) Bio-medical waste treatment facilities Pigtways, Common Effluent Treatment Plants (CETPs)	Aqua-Air Environmental Engineers Pvt. Ltd.         Adda, Centre Point, Nr. Kadiwala School, Ring Road, Surat, Gujarat-38         organization is accredited as Category-A under the QCI-NABET Scheme for ultant Organizations, Version 3: for preparing EIA-EMP reports in the follow         Sector Description       Sector         Mining of minerals opencast mining       1         Mining of minerals inducting opencast / underground mining       1         Onshore oil and gas exploration, development & production       2         Thermal power plants       4         Mineral beneficiation       7         Metallugical industries (ferrous only)       8         Cement plants       9         Petroleum refining industry       10         Chlor-alkali industry       13         Soda ach industry       14         Chernical fertilizers       15         Petroleum refining industry       13         Soda ach industry       14         Chernical fertilizers       15         Petroleum refinical sindustry       21         Distilleries       22         Petroleum refinical sindustry       21         Distilleries       22         Petroleum refinical sindustry       21         Distilleries       22	AgacaAir Environmental Engineers Pvt. Ltd.         Add, centre Point, Nr. Kadiwala School, Ring Road, Surat, Gujarat-395002         organization is accredited as Category-A under the QCI-NABET Scheme for Accreditate ultant Organizations, Version 3: for preparing EIA-EMP reports in the following Sectors -         Sector Description         Sector Description         NABET ModeScc         Mining of minerals- opencast mining         Onshore oil and gas exploration, development & production         Thermal bound running         Onshore oil and gas exploration, development & production         Thermal bound running in the following Sector (se perimang bound running industry         Onshore oil and gas exploration, development & production         Thermal bound running industry         Onshore oil industry         Cement plants         Advector of the production         Thermal bound running industry         Onside oil industry         Cement plants         Advector only         Sola and mustry         Onside oil industry         Onside oil industry         Devecobanical complexes <td col<="" td=""></td>	

 Sr. Director, NABET
 Certificate No.
 Valid up to

 Dated: May 12, 2022
 NABET/EIA/2023/IA 0062 (Rev.03)
 October 7, 2023

 For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website
 October 7, 2023

#### **MoEF&CC CERTIFICATE FOR LABORATORY ACCREDITATION**

F. No: Q-15018/04/2019-CPW Government of India Ministry of Environment, Forest and Climate Change (CP Division)

> Agni-233, Indira Paryavaran Bhavan, Jor Bagh Road, New Delhi – 110 003, Dated, the 14th October, 2019

To

M/s ABC Techno Labs India Private Limited ABC Tower No. 400, 13th Street, SIDCO Industrial Estate North Phase, Ambattur Chennai, TamilNadu-600098

Subject: -Recognition of M/s ABC Techno Labs India Private Limited, ABC Tower No. 400, 13th Street, SIDCO, Industrial Estate North Phase, Ambattur, Chennai, TamilNadu-600098, as Environmental Laboratory under the Environment (Protection) Act, 1986 – regarding.

#### Sir.

1 am directed to refer to your application dated:04.02.2019 for renewal of recognition of your laboratory under Environment (Protection) Act, 1986, Based on the recommendations of the Expert Committee for Recognition of Environmental Laboratories in its 60th meeting held on 30.08.2019 and your acceptance of the revised terms and conditions at Annexure-III & 1V of the Guidelines for recognition of Environmental Laboratories, this Ministry approves the renewal of recognition of M/s ABC Techno Labs India Private Limited, ABC Tower No. 400, 13th Street , SIDCO, Industrial Estate North Phase , Ambattur, Chennai, TamilNadu-600098, for five years, as shall be notified in the Gazette of India.

 As sought in your aforementioned application, M/s ABC Techno Labs India Private Limited, Chennai may undertake the following tests:

- Physical Tests: Conductivity, Colour, pH, Fixed & volatile solids, Total solids, Total dissolved solids, Total suspended solids, Torbidity, Temperature, Velocity & discharge measurement of industrial effluent stream, Flocculation test (Jar Test), Odour, Salinity, Settleable solids and Sludge volume index.
- Inorganic (General & Non-metallic): Acidity, Alkalinity, Ammoniacal nitrogen, Chloride, Chlorine residual, Dissolved oxygen, Fluoride, Total hardness, Total kjehldal nitrogen (TKN), Nitrite nitrogen, Nitrate nitrogen, Phosphate, Sulphate, Bromide, Carbon dioxide, Chlorine demand, Iodine, Sulphite, Silica, Cyanide and Sulphide.
- Inorganic (Trace metals): Boron, Cadmium, Calcium, Chromium Total, Chromium Hexavalent, Copper, Iron, Lead, Magnesium, Mercury, Nickel, Potassium, Sodium, Sodium absorption ratio, Zinc, Arsenic, Aluminum, Beryllium, Barium, Lithium, Manganese, Selenium, Silver, Strontium, Tin, Antimony, Cobalt and Vanadium.
- iv. Organics (General) and Trace Organics: Bio-chemical oxygen demand (BOD), Chemical oxygen demand (COD), Oil & grease, Phenol, Pesticide ((Organo-chlorine, Organo nitrogen-phosphorous), Total organic carbon, Surfactants, Tannin & Iignin, Poly-Chlorinated biphenyl (PCB's) each, Polynuclear aromatic hydrocarbon (PAH), Organic Carbon (in Solid) and Carbon/Nitrogen ratio.
- Microbiological Tests: Total Coliform, Faecal Coliform, Faecal streptococci, E. coli, Total Plate count and Enterococcus.
- Toxicological Tests: Bioassay method for evaluation of toxicity using fish, Bio-accumulation, bio magnification and bio-transformation studies. Measurement of toxicity using Daphnia or other organism.
- viii. Biological Tests: Benthic organism identification and count, Planktonic identification count, Measurement of various diversity index, Chlorophyll and Primary productivity.
- viii. Hazardous Waste: Preparation of Leachate (TCLP extract/water extract), Corrosivity, Ignibility (Flash Point), Reactivity, Toxicity and Measurement of heavy metals/ pesticides in the waste/ leachate
- Soil/ Sludge/ Sediment and Solid Waste: Boron, Cation Exchange Capacity (CEC), Electrical Conductivity, Nitrogen available, Organic carbon/ matter (chemical method), pH, Phosphorus

(available), Phosphate (ortho), Phosphate (total), Potassium, SAR in soil extract, Sodium, Soil moisture, TKN, Calorific value, Ammonia, Bicarbenate, Calcium, Calcium Carbonate, Chloride, Colour, Exchangeable Sodium Percentage, Heavy metal, Magnesium, Nitrate, Nitrite, PAH, Pesticide, Potash (available), Sulphate, Sulphate, Sulphate, TOC, Total water soluble salt and Water holding capacity.

- Ambient Air/ Fugitive Emissions: Nitrogen dioxide (NO₂), Sulphur dioxide (SO₂), Suspended particulate matter, Respirable suspended particulate matter (PM₁₀), Ammonia, Carbon monoxide, Chlorine, Fluoride, Lead, Ozone, Benzene Toluene Xylene, Polycyclic aromatic hydrocarbon (PAH), Benzoapyrine & others. Fine Particulate Matter PM_{2,5} and Volatile Organics Compounds.
- xi. Stack Gases/ Source Emission: Particulate matter, Sulphur dioxide, Velocity & flow, Carbon dioxide, Carbon Monoxide, Temperature, Oxygen, Oxides of nitrogen, Acid mist, Ammonia, Chlorine, Fluoride(Gaseous), Hydrochloric acid, Total Hydro Carbon, Hydrogen Sulphide.

xil. Noise Level: Noise level measurement (20 to 130 dba), Ambient Noise & Source-specific Noise .

xiii. Meteorological: Ambient temperature, Wind direction, Wind speed, Relative Humidity and Rainfall.

Further, the following analysts have been approved for recognition as Government Analysts.

- Mr. S. Ravi
- (ii) Mr. K.G. Swaminathan
- (iii) Mr. A. Robson Chinnadurai

4. The laboratory shall compulsorily participate in the Analytical Quality Control (AQC) exercise conducted by the Central Pollution Control Board (CPCB) at least once a year to ascertain the capability of the laboratory and analyses carried out and shall submit quarterly progress reports to this Ministry.

 Periodic surveillance of the recognized environmental laboratory will be undertaken by this Ministry. CPCB to assess its proper functioning, systematic operation and reliability of data generated at the laboratory.

 It is also mandatory for the laboratory to have requisite accreditations of the NABL/ ISO 9001 and OHSAS and its renewal as per accreditation rules. Permission in para 2 above is subject to such accreditations and renewal, as applicable.

7. The laboratory should compulsorily follow the accepted Terms & Conditions. In case of serious noncompliance of any of the Terms and Conditions, the laboratory may be black-listed for a minimum period of two years and civil/ criminal proceedings, as applicable, may be initiated for performing functions on behalf of the Government in an unauthorized manner.

Yours faithfully,

(Dp Susan George K.) Scientist 'D' Tel. No. 011-24695327 Email: susan.george@nic.in

Copy to:

3

- Member Secretary, Central Pollution Control Board, Parivesh Bhawan, East Arjun Nagar, New Delhi - 110032.
- Member Secretary, Tamil Nadu Pollution Control Board (TNPCB), 76 Anna Salai, Guindy, Chennai-600032
- Additional Principal Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (SEZ),1st and 2nd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai-34.
- 4. Director, IT Division, MoEF&CC, New Delhi-110003: for uploading on MoEF&CC website

	NABL CERTIFICATE
	National Accreditation Board for Testing and Calibration Laboratories
	CERTIFICATE OF ACCREDITATION
ABC	FECHNO LABS INDIA PRIVATE LIMITED
has l	been assessed and accredited in accordance with the standard
	ISO/IEC 17025:2017
"General	Requirements for the Competence of Testing & Calibration Laboratories"
	for its facilities at
ABC TOWER, NO	) 400, 13TH STREET, SIDCO INDUSTRIAL ESTATE-NORTH PHASE, AMBATTUR, CHENNAL TAMIL NADU, INDIA
	in the field of
	TESTING
Certificate Number:	TC-5770
Issue Date:	03/04/2022 Valid Until: 02/04/2024
This certificate rema satisfacto (To see the s	ins valid for the Scope of Accreditation as specified in the annexure subject to continued ry compliance to the above standard & the relevant requirements of NABL. cope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)
Same of Legal Identity	: ABC Techno Lubs India Private Limited
	Signed for and on behalf of NABL
	Lienlitton N. Venkateswaran Chief Executive Officer

### UNDERTAKING BY PROJECT PROPONENT

	Chemplast Sanmar J imited
SANIMAR	Sanmar Speciality Chemicals Divn.
i di	44 Theertham Road Berigal 635 105 Shootagin Taluk Krishnagin District Tamil Nadu India Tel + 91 4344 253 005 www.sanmargroup.com Can u24230TN1985PLC011637
UNDERTAKING	
We <b>M/s. Chemplast Sanmar Limited</b> , own this EIA report fo Organic Chemicals & Pesticide Specific Intermediates (From MT/Annum) manufacturing in existing unit at S.F M 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, I Krishnagiri District, Tamil Nadu, India.	r proposed expansion of Synthetic m 1601.4 MT/Annum to 20031.4 No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, Berigai 635105. Shoolagiri Taluk,
Thanking You,	
Yours faithfully,	
For Chemplast Sanmar Limited	
Regd Office: 9 Cathedral Road Chennai 600	086 India
Hesponsible Caro	15

#### DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA REPORT

Declaration by expert contributing to the draft EIA for Proposed Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit AT S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India of M/s. Chemplast Sanmar Limited [Industrial Sector: III; Category: 5(f) & 5(b) " A"].

### EIA CO-ORDINATOR

Name	Signature
Mr. Chetan R. Kabariya	012/2023

### FUNCTIONAL AREA EXPERTS

Sr. No:	Name of the Exports	Qualification	Involvement (Task)	Signature
1	Mr. Jayeshkumar S. Patel	B.E.(Civil),M.E.(En vironmental),MIE, CE	Solid and Hazardous Waste Management (SHW)	Fullion
2	Mr. Jatin Dalal	D.M.E., B.E. (Mechanical)	Noise and Vibration (NV)	AR 8/2/2023
3	Mr. Henil M. Lankapati	M.Sc. (Chemistry)	Air Pollution Monitoring, Prevention And Control (AP)	gratettiirones
4	Mr. Navinchandra Patel	B.E. (Chemical)	Water Pollution Monitoring, Prevention And Control(WP)	6/2/2023
5	Mr. Dhaval V. Jhaveri	B.E. (Chemical)	Risk assessment and hazards management (RH), Air Quality Modeling And Prediction(AQ)	8 Juppes
6	Mrs. Archana J. Patel	B.E.(Civil), AMIPHE	Soil Conservation (SC)	Al atel 20/2/22.
7	Mr. Pritesh Patel (Emp)	M.Sc. (Geomatics), B.Sc. (Environment science)	Land Use (LU), Ecology and Biodiversity(EB)	P. K. Parel 3/2/23
8	Mr. Bhavin D. Shah (Emp)	B.Sc.(Geology), M.Sc.(Geology), M.Sc. Tech. (Geotech)	Geology (Geo) &Hydrology, Ground Water And Water Conservation(HG)	2423
9	Mrs. Shital Tamakuwala (Emp)	MSW, PhD (Sociology), M.A. (Sociology)	Socio Economics(SE)	Chik 12/2023

FUNCTIONAL AREA ASSOCIATES	FUNCTIONAL	L AREA	ASSOCIATES
----------------------------	------------	--------	------------

Sr. No.	Name of the Associates	Qualification	Involvement (Task)	Signature
L	Mr. Bhavin D. Bhagat	M.Sc. (Industrial Chemistry)	Air Pollution Monitoring & Control (AP) &Water Pollution (WP)	B D.Bhagat 3/2/2023
2.	Mr. Neel N. Patel	B.E. (Mechanical)	Noise and Vibration (NV)& Hydrology, Ground Water And Water Conservation (HG)	-3100 12003
3.	Mrs. Miral Surti	B.E. (Environmental)	Air Pollution Monitoring & Control (AP) & Water Pollution (WP)	DK1.44 03/+2/2+23

### IN-HOUSE TEAM MEMBER

Sr. No.	Name of the Associates	Qualification	Involvement (Task)	Signature
I	Mr. Chiragkumar D. Chauhan	M.A. (Economics)	Socio Economics (SE)	C. D. Chardhann +3/12/2+22

I EMINI IVIEN	VIDER	s
---------------	-------	---

Sr. No.	Name of the Members	Qualification	Signature
1	Mr. Kirtan Patel	B.E. (Chemical), PDIS, PDIET	Wal ostar 2023
2	Mrs. Pinky J. Dalal	B.E. (Electrical)	Celul PJ
3	Mr. Nalin Kabaria	P.G. Diploma in Health, Safety & Environment, M.Sc. (Env. Scl.)	Bundy 1/2 /2023
4	Mr. Mitesh A. Patel	B.E. (Environmental)	Wh day 03.02 4023
5	Mr. Mehul Dekate	B.E. (Chemical)	11/02/2023
б	Mr. Chirag H. Lavana	B.Sc. (Chemistry)	JE 11.2.23
7	Ms. Purva V. Patel	M.E. (Environmental)	PM 11.02.2023
8	Mr. Ghanshyam Dhola	M.Sc. (Environmental)	(h) 03102/2023
9	Mr. Mit.N. Randeria	M.E. (Environmental)	Reduce 3-2-2025
10	Ms. Pooja P. Kanani	M.Sc. (Environmental)	dam to 123
11	Mr. Sunny Y. Jariwala	M.E. (Environmental)	F-3/2/23
12	Mr. Ankit D. Rəkholiya	B.E. (Civil)	Portanla?
13	Mr. Jaykumar S. Patel	B.E. (Mechanical)	Ant the sa
14	Mr. Ankit G. Talaviya	B.Sc. (Chemistry), M.Sc. (Organic Chemistry)	Antu (
15	Mr. Romin M. Gandhi	B.E. (Environmental)	Amfundis

1

Aqua-Air[®] Environmental Engineers Pvt. Ltd. (Pollution Control Consultants & Engineers)



IPCE Recognized Spreckae-8 Environmental Auditor = 150 45001 - 2018 Centred Company = 150 9001-2015 Centrest Company NARET ISCA Accession Eth Consultant + NABL Accessible Teeting Laboratory = MOEFCC Approved Environmental Laboratory

#### Declaration by Head of the Organization

I, Jayeshkumar S. Patel hereby confirm that the above mentioned EIA Coordinator, Functional Area Experts, Functional Area Associates & team members were involved in preparation of draft EIA Report of M/s. Chemplast Sanmar Limited for Proposed expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit at S.F. No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India. 1 also confirm that I shall be fully accountable for any misleading information mentioned in this statement.

Name of Consultant	Aqua Air Environmental Engineers Pvt. Ltd., Surat
Name of Concerned Person	Mr. Jayesh Patel
Designation	Chairman & Managing Director
Signature	F 15/3/2023
Contact Information	aquaalr_surat@hotmail.com aqua_ela@yahoo.com

- HEG. DFFICE

403 & 404. Centre Point, Nr. Kadiwala School, Ring Road, Surat-395002. Golarat, India. T : +91 (261) 2460854 / 2461241 | E : aquasir surat@hotmail.com | W : www.aqua-alinco.in

### INDEX

SR. NO.	TITLE	PAGE
		NO.
		<u> </u>
		1-4
	ION BY EPERTS CONTRIBUTING TO THE EIA REPORT	1-6
	ION BY HEAD OF THE ORGANIZATION	<u> </u>
DECLARA		1 10
		l-11
		<u> </u>
LIST OF FI	GURF	1-22
1	CHAPTER 1: INTRODUCTION	
1.1	BACKGROUND	1
1.1.1	PROMOTERS AND THEIR BACKGROUND	2
1.1.2	REGULATORY FRAMEWORK	3
1.1.3	JUSTIFICATION OF PROJECT	3
1.2	PROJECT DETAILS	3
1.2.1	TOTAL PROJECT COST	3
1.2.2	PLOT AREA	4
1.2.3	EXACT DETAILS ABOUT INFRASTRUCTURAL FACILITIES, PLANT MACHINERIES,	5
	ETC. REQUIRED FOR THE PROPOSED PROJECT	
1.3	PURPOSE OF EIA	9
1.4	OBJECTIVES OF EIA	9
1.5	METHODOLOGIES FOR EIA	9
1.5.1	BASE LINE CONDITION	10
1.5.2	AMBIENT AIR ENVIRONMENT	10
1.5.3	GROUND AND SURFACE WATER ENVIRONMENT	10
1.5.4	NOISE ENVIRONMENT	10
1.5.5	SOIL ENVIRONMENT	10
1.5.6	BIOLOGICAL ENVIRONMENT	10
1.5.7	SOCIO-ECONOMIC ENVIRONMENT	11
1.5.8	IDENTIFICATION OF POLLUTION SOURCE	11
1.5.9	EVALUATION OF POLLUTION CONTROL AND ENVIRONMENTAL MANAGEMENT	
	SYSTEM	11
1.5.10	EVALUATION OF IMPACT	11
1.5.11	PREPARATION OF ENVIRONMENTAL MANAGEMENT PLAN	11
1.6	STRUCTURE OF REPORT	11

2	CHAPTER 2: PROJECT DESCRIPTION	
2.1	BACKGROUND	14
2.2	LAND REQUIREMENT FOR THE PROJECT INCLUDING ITS BREAK UP FOR	14
	VARIOUS PURPOSES, ITS AVAILABILITY	
2.2.1	LAND POSSESSION DOCUMENTS. COPY OF NA ORDER SHOWING PERMISSION	19
	TO USE THE PROJECT LAND FOR INDUSTRIAL PURPOSE. IF LOCATED IN GIDC,	
	COPY OF PLOT HOLDING CERTIFICATE OBTAINED FROM GIDC AUTHORITY	
2.3	PROJECT SETTING	33
2.3.1	PROJECT SITE AND PLANT LAYOUT	33
2.4	LOCATION OF THE PROJECT SITE AND NEAREST HABITATS WITH DISTANCES	38
	FROM THE PROJECT SITE TO BE DEMARCATED ON A TOPOSHEET (1: 50000	
	SCALE)	
2.4.1	DISTANCE OF NEAREST KEY INFRASTRUCTURE FEATURES FROM PROJECT SITE	38
2.5	TECHNICAL DETAILS OF THE PLANT/S ALONG WITH DETAILS ON BEST	41
	AVAILABLE TECHNOLOGIES (BAT), PROPOSED TECHNOLOGY AND REASONS	
	FOR SELECTING THE SAME.	
2.6	PHASE WISE PROJECT IMPLEMENTATION SCHEDULE WITH BAR CHART AND	44
	TIME FRAME, IN TERMS OF SITE DEVELOPMENT, INFRASTRUCTURE	
	PROVISION, EMS IMPLEMENTATION ETC	
2.7	CHEMICAL NAME OF EACH PROPOSED PRODUCT TO BE MANUFACTURED.	46
	DETAILS WITH LD50 OF EACH PRODUCT	
2.8	DETAILS ON RAW MATERIALS, SOURCE AND STORAGE WITHIN THE PREMISES	53
2.9	MANUFACTURING PROCESS, CHEMICAL REACTION AND MASS BALANCE OF	70
	EACH PRODUCTS	
2.10	WATER REQUIREMENT, WASTEWATER GENERATION AND MANAGEMENT	129
2.10.1	ASSESSMENT OF SOURCE OF THE WATER SUPPLY WITH ADEQUACY OF THE	129
	SAME TO MEET WITH THE REQUIREMENTS FOR THE PROJECT. PERMISSION	
	OBTAINED FROM THE CONCERN AUTHORITY FOR SUPPLY OF RAW WATER	
2.10.2	WATER AND WASTEWATER	130
2.10.3	SEGREGATION OF WASTE STREAMS, CHARACTERIZATION AND QUALITY WITH	134
	SPECIFIC TREATMENT AND DISPOSAL OF EACH STREAM INCLUDING ACTION	
	PLAN FOR MAXIMUM RECYCLE OF TREATED WASTE WATER AND MINIMUM	
	DISCHARGE FOR EFFLUENT TO MAINTAIN QUALITY OF RECEIVING WATER	
	BODY.	
2.10.4	DETAILS OF ETP INCLUDING DIMENSIONS OF EACH UNIT ALONG WITH	136
	SCHEMATIC FLOW DIAGRAM.	
2.10.5	EFFLUENT TREATMENT SCHEME INCLUDING SEGREGATION OF EFFLUENT	144
	STREAMS FOR UNITS ADOPTING 'ZERO' LIQUID DISCHARGE.	
2.10.7	PLANS FOR MANAGEMENT, COLLECTION AND DISPOSAL OF WASTE STREAMS	144
	TO BE GENERATED FROM SPILLAGE, LEAKAGES, VESSEL WASHING, USED	
	CONTAINER WASHING ETC. MEASURES PROPOSED FOR PREVENTING	
	EFFLUENT DISCHARGE DURING UNFORESEEN CIRCUMSTANCES.	
2.11	AIR POLLUTION AND CONTROL SYSTEM	145
2.11.1	PROCESS GAS EMISSION DETAILS	145

244.2		4 4 7
2.11.2	DETAILS OF THE UTILITIES REQUIRED	147
2.11.3	TYPE AND QUANTITY (MIT/HR & MIT/DAY) OF FUEL TO BE USED FOR EACH	147
244.4		1.10
2.11.4	FLUE GAS EMISSION RATE EMISSION FROM EACH UTILITY	148
2.11.5	LIST THE PROJECT SPECIFIC SOURCES OF FUGITIVE EMISSION ALONG WITH ITS	150
2 1 1 0		1 - 1
2.11.0		151
2.12	HAZARDOUS WASTE GENERATION AND MANAGEMENT	151
2.12.1	MANAGEMENT PLAN FOR HAZARDOUS/SOLID WASTE INCLUDING STORAGE,	151
	HANDLING, UTILIZATION AND SAFE DISPOSAL AS PER THE HAZARDOUS AND	
	OTHER WASTES (MANAGEMENT AND TRANSBOUNDARY MOVEMENT) RULES	
	2016. CPCB GUIDELINES IN RESPECT OF SPECIFIC TREATMENT, SUCH AS SULAR	
	EVAPORATION, INCINERATION, ETC., NEED TO BE FOLLOWED	450
2.12.2	METHODOLOGY OF DE-CONTAMINATION AND DISPOSAL OF DISCARDED	153
2.12.3	MANAGEMENT OF BY-PRODUCTS WHICH FALL UNDER THE PURVIEW OF THE	154
	HAZARDOUS AND OTHER WASTES (MANAGEMENT AND TRANSBOUNDARY	
	MOVEMENT) RULES 2016 AS PER THE SAID RULES AND NECESSARY	
	PERMISSIONS FROM THE CONCERN AUTHORITY.	
2.12.4	MEMBERSHIP OF COMMON ENVIRONMENTAL INFRASTRUCTURE LIKE TSDF,	155
	COMMON INCINERATION FACILITY (CHWIF), ETC.	
2.13	NOISE LEVEL AND CONTROL SYSTEM	169
2.14	SUMMARY	169
3	CHAPTER 3: DESCRIPTION OF THE ENVIRONMENT	
3.1		170
3.2		1/0
3.2.1	STUDY PERIOD & FREQUENCY OF SAMPLING	1/0
3.2.2	METHOD OF ENVIRONMENTAL SAMPLING & ANALYSIS	172
3.2.3	BASELINE ENVIRONMENTAL STATUS	173
3.3	MICROMETEOROLOGY	173
3.3.1	TEMPERATURE DETAILS	174
3.3.2	RELATIVE HUMIDITY (RH)	175
3.3.3	RAINFALL	176
3.3.4	WIND SPEED	177
3.3.5	SUMMARY OF THE METEOROLOGICAL DATA	177
3.3.6	TEMPERATURE, RELATIVE HUMIDITY & WIND SPEED	178
3.3.7	WIND ROSE	180
3.4	AIR ENVIRONMENT	184
3.4.1	AIR SUMMARY	189
3.5	NOISE ENVIRONMENT	190
3.5.1	METHODOLOGY FOR NOISE MONITORING	191
3.5.2	NOISE SUMMARY	192
3.5.2.1	INTERPRETATION	192

3.6	WATER ENVIRONMENT	193
3.6.1	METHODOLOGY FOR WATER QUALITY MONITORING	193
3.6.2	BASELINE GROUND WATER QUALITY	197
3.6.3	BASELINE SURFACE WATER QUALITY	198
3.7	LAND ENVIRONMENT	201
3.7.1	SOIL QUALITY	201
3.7.2	SUMMARY OF SOIL QUALITY	205
3.8	REPORT ON ENVIRONMENTAL PARAMETERS SUCH AS GEOLOGY, SOIL, HYDROLOGY, LAND USE PATTERN, DRAINAGE NETWORK AND KEY- INFRASTRUCTURE AND ECOLOGY AND BIODIVERSITY	218
3.8.1	INTRODUCTION	218
3.8.2	SOIL INFORMATION	218
3.8.3	HYDROLOGY	220
3.8.4	DRAINAGE PATTERN	221
3.8.5	GEOLOGICAL INFORMATION	222
3.9	LAND USE PATTERN	223
3.10	TOPOSHEET & KEY-INFRASTRUCTURE MAP	227
3.11	TRAFFIC STUDY	229
3.12	TERRESTRIAL ECOLOGY	234
3.12.1	INTRODUCTION	234
3.12.2	OBJECTIVES	235
3.12.3	REGIONAL BIODIVERSITY	235
3.12.4	BIOGEOGRAPHIC ZONE, PROVINCE AND FOREST TYPE	239
3.12.5	FLORISTIC COMPOSITION WITHIN THE STUDY AREA	241
3.12.5.1	FLORA	242
3.12.5.2	ECONOMICALLY IMPORTANT FLORA OF THE STUDY AREA	246
3.12.6	FAUNA	246
3.12.6.1	FAUNAL COMMUNITIES	246
3.13	SOCIO - ECONOMIC ENVIRONMENT	252
3.13.1	DEMOGRAPHY	252
3.13.2	LITERACY RATE	258
3.13.3	OCCUPATIONAL STRUCTURE	265
3.13.4	AMENITIES	272
4	CHAPTER 4: ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASUR	ES
4.1	IDENTIFICATION OF IMPACTS	284
4.2	PREDICTIONS AND EVALUATION OF IMPACTS	284
4.2.1	WATER ENVIRONMENT	285
4.2.2	AIR ENVIRONMENT	285
4.2.3	NOISE ENVIRONMENT	304
4.2.4	HAZARDOUS WASTE DETAILS	305
4.2.5	INFRASTRUCTURE AND SERVICES	305
4.2.6	ENVIRONMENTAL HAZARD	305
4.2.7	HOUSING	305

120	F60100V	200
4.2.8		306
4.2.0.1		306
4.2.0.2		300
4.2.8.3		306
4.2.8.4		306
4.2.8.5	DEMOGRAPHY, ECONOMICS, SOCIOLOGY AND HUMAN SETTLEMENT	306
4.2.8.6	FOREST, NATIONAL PARKS / SANCTUARIES	308
4.2.8.7	PLACES OF ARCHAEOLOGICAL/HISTORICAL/RELIGIOUS/TOURIST INTEREST	308
4.2.8.8	BENEFICIAL IMPACT OF GREEN-BELT	308
4.3		309
4.4	IMPACT AND MITIGATION MEASURES OF GEOLOGY	309
4.5	IMPACT AND MITIGATION MEASURES OF GEOHYDROLOGY	310
4.6	IMPACT ON ECOLOGICAL ENVIRONMENT	310
4.7	TRAFFIC MANAGEMENT	311
4.8	MATRIX REPRESENTATION	312
4.8.1	CUMULATIVE IMPACT CHART	312
4.9	SUMMARY	314
	1	
5	CHAPTER 5: ANALYSIS OF ALTERNATIVES (TECHNOLOGY & SITE)	
	1	
5.1	ANALYSIS OF ALTERNATIVES (TECHNOLOGY)	315
5.2	ANALYSIS OF ALTERNATIVES (SITE)	315
	1	
6	CHAPTER 6: ENVIRONMENTAL MONITORING PROGRAM	
6.1	PROJECT ENVIRONMENT MONITORING PLAN	316
6.2	LABORATORY FACILITIES	316
6.2.1	DOCUMETATION & RECORDS	317
6.3	POST PROJECT MONITORING PLAN	318
6.3.1	MONITORING METHODOLOGIES	319
6.4	ENVIRONMENT POLICY	320
6.5	ENVIRONMENTAL MANAGEMENT CELL	321
6.6	SYSTEM OF REPORTING OF NON-COMPLIANCES / VIOLATIONS OF	323
	ENVIRONMENTAL NORMS TO THE BOARD OF DIRECTORS OF THE COMPANY	
	AND / OR SHAREHOLDERS OR STAKEHOLDERS AT LARGE	
	1	
7	CHAPTER 7: ADDITIONAL STUDIES	
7.1	PUBLIC HEARING	324
7.2	REHABILITATION AND RESETTLEMENT (R & R)	324
7.3	RISK ASSESSMENT	324
7.3.1	INTRODUCTION	324
7.3.2	APPROACH TO THE STUDY	325

## **ENVIRONMENTAL IMPACT &**

### **RISK ASSESSMENT REPORT**

7.3.4	HAZARD IDENTIFICATION	328
7.3.4.1	IDENTIFICATION OF HAZARDOUS AREAS	328
7.3.4.2	IDENTIFICATION OF FAILURE CASES FOR HAZARDOUS AREAS	328
7.3.4.3	MAJOR HAZARDOUS AREAS AND SAFETY PRECAUTIONS	328
7.4	SAFETY PRECAUTIONS DURING STORAGE AND TRANSPORTATION OF	336
	HAZARDOUS CHEMICALS	
7.4.1	CONTROL MEASURES PROVIDED FOR SOLVENT TANK FARM	336
7.4.2	CONTROL MEASURES PROVIDED FOR ACID / ALKALI TANK FARM	336
7.5	HAZARD CONTROL MEASURES	339
7.6	CONSEQUENCE ANALYSIS	340
7.6.1	DAMAGE CRITERIA	341
7.6.2	MAXIMUM CREDIBLE LOSS ACCIDENT SCENARIOS	344
7.6.2.1	CONSEQUENCE ANALYSIS CALCULATIONS	345
7.6.2.2	SOFTWARE USED FOR CALCULATIONS	345
7.7	SCENARIOS	347
7.7.1	RISK ASSESSMENT SUMMARY	395
7.8	DISASTER MANAGEMENT PLAN	395
7.8.1	DEFIING THE NATURE OF EMERGENCY	395
7.8.2	OBJECTIVES OF EMERGENCY MANAGEMENT SYSTEM	395
7.8.3	CLASSIFICATION OF EMERGENCY	395
7.9	DETAILS OF THE SEPARATE ISOLATED STORAGE AREA FOR FLAMMABLE	
	CHEMICALS.	399
7.10	ON-SITE EMERGENCY PLAN	407
7.10.1	GENERAL	407
7.10.2	STATUTORY REQUIREMENT	407
7.10.3	PREPAREDNESS OF ON-SITE EMERGENCY PLAN	408
7.10.4	EMERGENCY TIME ACTIVITIES	408
7.10.5	EMERGENCY FACILITIES	408
7.10.6	IDENTIFICATION AND ASSESSMENT OF HAZARDS	409
7.10.7	EMERGENCY ORGANISATION AND RESPONSIBILITIES	415
7.10.8	EMERGENCY CONTROL ROOM: -MAIN SECURTY OFFICE	422
7.10.9	COMMUNICATION SYSTEM	423
7.10.10	EMERGENCY RESPONSE PLAN / ACTION ON SITE	427
7.10.11	NATURAL CALAMITIES AND BOMB THREATS	434
7.10.12	TRAINING, REHEARSAL AND RECORDS	438
7.11	OFF – SITE EMERGENCY PLAN	439
7.11.1	NEED OF THE SITE EMERGENCY PLAN	439
7.11.2	STRUCTURE OF THE OFF-SITE EMERGENCY PLAN	439
7.11.3	ROLE OF THE FACTORY MANAGEMENT	439
7.11.4	ROLE OF EMERGENCY CO-ORDINATION OFFICE (ECO)	439
7.11.5	ROLE OF LOCAL AUTHORITY	440
7.11.6	ROLE OF FIRE AUTHORITIES	440
7.11.7	ROLE OF THE POLICE AND EVACUATION AUTHORITIES	440
7.11.8	ROLE OF HEALTH AUTHORITIES	440
7.11.9	ROLE OF MUTUAL AID AGENCIES	440

7 1 1 1 0		
7.11.10	ROLE OF FACTORY INSPECTORATE	440
7.12	OCCUPTIONAL HEALTH AND HAZARD AND SAFETY MESUARES	440
7.12.1		441
7.12.2	PERIODIC MEDICAL EXAMINATION	447
7.12.3	EXPOSURE CAN BE KEPT WITHIN PERMISSIBLE EXPOSURE LEVEL (PEL)/THRESHOLD LEVEL VALUE (TLV) SO AS TO PROTECT HEALTH OF WORKERS	447
7.12.4	ARRANGEMENTS FOR ENSURING HEALTH & SAFETY OF WORKERS ENGAGED IN	
	HANDLING OF TOXIC MATERIALS	448
7.12.5	WORKPLACE MONITORING PLAN	448
7.12.6	HEALTH EVALUATION OF WORKERS	449
7.13	SAFETY PLAN	458
7.14	HEALTH AND SAFETY MONITORING PLAN	459
7.15	TRAINING, REHERASAL & RECORDS	459
7.15.1	NEED OF TRAINNING & REHEARASAL	459
7.15.2	RECORDS AND UPDATING THE PLAN	460
7.16	CHECKLIST IN THE FORM OF DO'S & DON'TS OF PREVENTIVE MAINTENANCE.	400
	STRENGTHENING OF HSE. MANUFACTURING UTILITY STAFF FOR SAFETY	
	RELATED MEASURES.	460
7.17	DETAILS ON VARIOUS SOP	463
7.18	PROCESS SAFETY	465
7.18.1	FOR HAZARDOUS STORAGE FARM	466
7.18.2	FOR DRUM/CARBOY STORAGE AREA	467
7.18.3	TRANSPORTATION	467
8	CHAPTER 8: PROJECT BENEFITS	
0 1	PACKEPOLIND	169
8.1	IMPROVEMENTS IN THE PHYSICAL INFRASTRUCTURE	408
8.3	IMPROVEMENTS IN THE SOCIAL INFRASTRUCTURE	468
8.4	EXPORT	468
8.5	EMPLOYMENT GENERATION	469
8.6	SOCIO-ECONOMIC DEVELOPMENTAL ACTIVITIES	470
8.7	CONCLUSION	472
9	CHAPTER 9: ENVIRONMENTAL COST BENEFIT ANALYSIS	
9.1	ENVIRONMENTAL COST BENEFIT ANALYSIS	473

10.1	BACKGROUND	474
10.2	OBJECTIVES OF ENVIRONMENTAL MANAGEMENT PLAN	474
10.3	ENVIRONMENTAL MANAGEMENT CELL	475
10.4	ENVIRONMENTAL MANAGEMENT PLAN	476
10.4.1	WATER ENVIRONMENT	484
10.4.1.1	WATER CONSERVATION AND RECHARGING	484
10.4.2	AIR ENVIRONMENT	486
10.4.2.1	ODOR CONTROL MEASURES	486
10.4.3	NOISE ENVIRONMENT	486
10.4.4	LAND ENVIRONMENT	487
10.4.4.1	HAZARDOUS WASTE MANAGEMENT	487
10.5	SOCIO-ECONOMIC ENVIRONMENT	487
10.6	ECOLOGICAL ENVIRONMENT	488
10.7	IDENTIFICATION OF RECYCLE/REUSE, CLEANER PRODUCTION AND CO-	488
	PROCESSING OPTION OF HAZARDOUS WASTE	
10.8	GREEN BELT DEVELOPMENT	488
10.9	MEASURES FOR CONSERVATION OF ENERGY	494
10.10	SKILLED AND TRAINED MANPOWER	494
10.11	CAPITAL COST FOR ENVIRONMENTAL MANGEMENT	495
10.12	SOLVENT MANAGEMENT PLAN	495
10.12.1	LEAK DETECTION AND REPAIR (LDAR) PROGRAM	497
10.13	ACTION PLAN FOR TRANSPORTATION OF RAW MATERIALS AND PRODUCTS	498
10.14	DETAILS OF CARBON FOOTPRINT AND CARBON SEQUSTRATION STUDY	499
	· · · · · ·	
11	CHAPTER 11: SUMMARY& CONCLUSION	
11.1	INTRODUCTION	503
11.1 11.2	INTRODUCTION PROJECT DESCRIPTION	503 503
11.1 11.2 11.3	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY	503 503 505
11.1 11.2 11.3 11.4	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT	503 503 505 513
11.1         11.2         11.3         11.4         11.5	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT	503 503 505 513 520
11.1         11.2         11.3         11.4         11.5         11.6	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT AIR POLLUTION SOURCE AND CONTROL MANAGEMENT	503 503 505 513 520 521
11.1         11.2         11.3         11.4         11.5         11.6         11.7	INTRODUCTION         PROJECT DESCRIPTION         PRODUCT AND CAPACITY         DESCRIPTION OF THE ENVIRONMENT         WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT         AIR POLLUTION SOURCE AND CONTROL MANAGEMENT         HAZARDOUS WASTE	503 503 505 513 520 521 524
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT AIR POLLUTION SOURCE AND CONTROL MANAGEMENT HAZARDOUS WASTE GREEN BELT	503 503 505 513 520 521 524 526
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT AIR POLLUTION SOURCE AND CONTROL MANAGEMENT HAZARDOUS WASTE GREEN BELT POWER & FUEL REQUIREMENTS	503 503 505 513 520 521 524 526 526
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9         11.10	INTRODUCTIONPROJECT DESCRIPTIONPRODUCT AND CAPACITYDESCRIPTION OF THE ENVIRONMENTWATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENTAIR POLLUTION SOURCE AND CONTROL MANAGEMENTHAZARDOUS WASTEGREEN BELTPOWER & FUEL REQUIREMENTSDETAILS OF HAZARDOUS CHEMICALS STORAGE	503 505 513 520 521 524 526 526 526 527
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9         11.10         11.11	INTRODUCTIONPROJECT DESCRIPTIONPRODUCT AND CAPACITYDESCRIPTION OF THE ENVIRONMENTWATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENTAIR POLLUTION SOURCE AND CONTROL MANAGEMENTHAZARDOUS WASTEGREEN BELTPOWER & FUEL REQUIREMENTSDETAILS OF HAZARDOUS CHEMICALS STORAGECAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTAL	503 503 505 513 520 521 524 526 526 526 527 529
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9         11.10         11.11	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT AIR POLLUTION SOURCE AND CONTROL MANAGEMENT HAZARDOUS WASTE GREEN BELT POWER & FUEL REQUIREMENTS DETAILS OF HAZARDOUS CHEMICALS STORAGE CAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTAL PROTECTION MEASURES	503 505 513 520 521 524 526 526 526 527 529
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12	INTRODUCTIONPROJECT DESCRIPTIONPRODUCT AND CAPACITYDESCRIPTION OF THE ENVIRONMENTWATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENTAIR POLLUTION SOURCE AND CONTROL MANAGEMENTHAZARDOUS WASTEGREEN BELTPOWER & FUEL REQUIREMENTSDETAILS OF HAZARDOUS CHEMICALS STORAGECAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTALPROTECTION MEASURESCONCLUSION	503 505 513 520 521 524 526 526 526 527 529 530
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12	INTRODUCTION         PROJECT DESCRIPTION         PRODUCT AND CAPACITY         DESCRIPTION OF THE ENVIRONMENT         WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT         AIR POLLUTION SOURCE AND CONTROL MANAGEMENT         HAZARDOUS WASTE         GREEN BELT         POWER & FUEL REQUIREMENTS         DETAILS OF HAZARDOUS CHEMICALS STORAGE         CAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTAL         PROTECTION MEASURES         CONCLUSION	503 505 513 520 521 524 526 526 526 527 529 530
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9         11.10         11.11         11.12	INTRODUCTIONPROJECT DESCRIPTIONPRODUCT AND CAPACITYDESCRIPTION OF THE ENVIRONMENTWATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENTAIR POLLUTION SOURCE AND CONTROL MANAGEMENTHAZARDOUS WASTEGREEN BELTPOWER & FUEL REQUIREMENTSDETAILS OF HAZARDOUS CHEMICALS STORAGECAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTALPROTECTION MEASURESCONCLUSIONCHAPTER 12: DISCLOSURE OF CONSULTANTS ENGAGED	503 505 513 520 521 524 526 526 527 529 530 531
11.1         11.2         11.3         11.4         11.5         11.6         11.7         11.8         11.9         11.10         11.11         11.12	INTRODUCTION PROJECT DESCRIPTION PRODUCT AND CAPACITY DESCRIPTION OF THE ENVIRONMENT WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT AIR POLLUTION SOURCE AND CONTROL MANAGEMENT HAZARDOUS WASTE GREEN BELT POWER & FUEL REQUIREMENTS DETAILS OF HAZARDOUS CHEMICALS STORAGE CAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTAL PROTECTION MEASURES CONCLUSION CHAPTER 12: DISCLOSURE OF CONSULTANTS ENGAGED	503 505 513 520 521 524 526 526 526 527 529 530 531
#### LIST OF TABLES

NO.	TITLE						
		NO.					
1.1	BREAK UP OF PROJECT COST	4					
1.2	LAND BREAKUP						
1.3	LIST OF MACHINERIES AND EQUIPMENTS	5					
1.4	SALIENT FEATURES OF THE PROJECT	6					
2.1	DISTANCE OF NEAREST KEY INFRASTRUCTURE FEATURES FROM PROJECT SITE						
2.2	LIST OF PRODUCTS WITH PRODUCTION CAPACITY	46					
2.3	LIST OF RAW MATERIALS	53					
2.4	WATER CONSUMPTION AND WASTEWATER GENERATION	130					
2.5	HAZARDOUS WASTE GENERATION & DISPOSAL	150					
3.1	FREQUENCY OF ENVIRONMENTAL MONITORING	171					
3.2	METHOD OF ENVIRONMENTAL SAMPLING & ANALYSIS	172					
3.3	TEMPERATURE DATA	174					
3.4	RELATIVE HUMIDITY DATA	175					
3.5	RAINFALL DATA	176					
3.6	WIND SPEED DATA	177					
3.7	SUMMARY OF THE METEOROLOGICAL DATA	177					
3.8	SUMMARY OF THE METEOROLOGICAL DATA GENERATED AT SITE						
3.9	LOCATIONS OF THE AMBIENT AIR QUALITY MONITORING STATIONS						
3.10	AMBIENT AIR QUALITY STATUS	185					
3.11	AMBIENT AIR QUALITY STATUS- MINIMUM, MAXIMUM, 98 TH	187					
	PERCENTILE VALUE & AVERAGE						
3.12	BACKGROUND NOISE LEVELS	191					
3.13	GROUND WATER QUALITY + SURFACE WATER QUALITY ANALYSIS	193					
	RESULTS						
3.14	PHYSICO-CHEMICALS CHARACTERISTICS OF SOIL	201					
3.15	AREA UNDER DIFFERENT LAND USE	225					
3.16	DEMOGRAPHIC DATA	252					
3.17	POPULATION DENSITY	256					
3.18	LITERACY RATE	258					
3.19	OCCUPATIONAL STRUCTURE	265					
3.20	DETAILS OF AMMENITIES AVAILABLE IN STUDY AREA	272					
3.21	ABBREVIATIONS	285					
4.1	DETAILS OF EMISSION FROM STACK & VENTS	289					
4.2	SUMMARY OF ISCST3 MODEL OUTPUT FOR SPM, SO2, NOX, ETC.	300					
4.3	PREDICTED AMBIENT AIR QUALITY FOR SPM, SO2, NOX & HCL	302					
4.4	ENVIRONMENTAL IMPACT MATRIX	312					
4.5	CUMULATIVE IMPACT CHART	313					
6.1	PROJECT ENVIRONMENT MONITORING PLAN	320					
7.1	STORAGE AND HANDLING DETAILS OF HAZARDOUS CHEMICALS	330					
7.2	OTHER HAZARDS AND CONTROL	333					
7.3	HAZARDOUS PROPERTIES OF THE CHEMICALS, COMPATIBILITIES,	334					

	SPECIAL HAZARD	
7.4	POSSIBLE ACCIDENT SCENARIOS	347
7.5	EMERGENCY TYPES	397
10.1	ENVIRONMENT MANAGEMENT PLAN	476
10.2	SOLVENT RECOVERY	497

#### LIST OF FIGURES

FIGURE	TITLE				
NO.		NO.			
1.1	ACTIVITIES, SOURCES OF INFORMATION AND CONTENTS OF EIA	13			
	REPORT				
2.1	LAYOUT OF THE PLANT	16			
2.2	LOCATION OF THE PROJECT SITE	33			
2.3	TOPOSHEET	39			
3.1	WIND ROSE DIAGRAM	180			
3.2	STABILITY CLASS DISTRIBUTION	181			
3.3	LOCATIONS OF THE AMBIENT AIR, NOISE, WATER AND SOIL	182			
	MONITORING STATIONS				
3.4	AIR SUMMARY	190			
3.5	SUMMARY OF NOISE LEVEL	192			
3.6	SUMMARY OF GROUND WATER QUALITY	198			
3.7	SUMMARY OF SURFACE WATER QUALITY	199			
3.8	SUMMARY OF SOIL QUALITY	206			
3.9	MONITORING PHOTOGRAPHS	207			
3.10	SOIL MAP	219			
3.11	HYDROLOGY MAP	220			
3.12	LANDUSE / LANDCOVER	225			
3.13	TOPOSHEET	227			
3.14	POPULATION DENSITY	257			
3.15	LITERACY DATA	264			
4.1	METHODOLOGY FOR AQM	287			
4.2	ISOPLETHS	296			
6.1	ORGANOGRAM OF ENVIRONMENT MANAGEMENT CELL	324			
7.1	QRA METHODOLOGY	326			
7.2	FLOW CHART FOR QUANTITATIVE RISK ASSESSMENT	327			
7.3	HAZARDOUS CHEMICAL STORAGE AREA	328			
7.4	LOCATION OF FIRE NEAREST STATION	403			
10.1	FLOW DIAGRAM OF SOLVENT MANAGEMENT SYSTEM	496			

CHAPTER – 1 INTRODUCTION

#### **1.1 BACKGROUND**

Chemplast Sanmar is over fifty years old and is a part of the SHL Chemicals Group, which in turn is a constituent of the Sanmar Group, one among the oldest and most prominent corporate groups in South India. It is a major manufacturer of Speciality Chemicals such as Specialty Paste PVC resin and Custom Manufactured Chemicals for agro-chemical, pharmaceutical and fine chemicals sector. The company also produces other chemicals such as Caustic Soda, Chlorochemicals, Hydrogen Peroxide, Refrigerant gas and Industrial Salt. The manufacturing facilities are located at Mettur, Berigai and Vedaranyam in Tamil Nadu and Karaikal in the Union Territory of Puducherry.

Chemplast Sanmar Limited, is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators. These intermediates involve complex multistep synthesis using unique chemistries.

The manufacturing facility is located at Berigai, Tamil Nadu.

#### **Organic Chemicals**

- Custom manufacturing of organic intermediates supplying into Pharmaceutical, Agrochemical and other fine chemical applications.
- Exclusive custom development and manufacturing of key intermediates
- Organic synthesis building blocks with capacity ranging from 100 kgs to 100's of MTPA

#### **Phyto Chemicals**

- Manufactures Active Pharmaceutical Ingredients (API) extracted from locally available biomass.
- Phyto Chemical APIs are sold globally to the Pharmaceutical industry.

**M/s. Chemplast Sanmar Limited**, Proposing expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.

## 1.1.1 PROMOTERS AND THEIR BACK GROUND

List of directors as on 16th October 2021

Sr.	Names with address of the Directors of the	Designation	Nationality	Age
no.	company			
1.	Mr. Vijay Sankar	Chairman	Indian	49 Years
	No.194 T T K Road Alwarpet, Chennai - 600 018			
	DIN: 00007875			
2.	Mr. Ramkumar Shankar	Managing	Indian	55 Years
	G 10, B Block, Jains Sagarika Apartments Satyadev Avenue, MRC Nagar, Chennai 600 028 DIN: 00018391	Director		
3.	Mr. Amarnath Ananthanarayanan	Director	Indian	51 Years
	2nd C Green EDGE Old No. 12, New No. 21 Masilamani Road, Royapettah, Chennai 600 014			
4	Mr. Aditya lain	Director	Indian	60 Years
	F-63 Radhe Mohan Drive Gadaipur Bund Road Mehrauli, New Delhi-100 074 DIN: 00835144	Director		
5.	Mr. Chandran Ratnaswami	Director	Canadian	73 Years
	177 Mckee Avenue, Ontario M2N4C6, Toronto, Canada - M2N4C6 DIN:00109215			
6.	Mr. Sanjay Vijay Bhandarkar	Director	Indian	54 Years
	33 Moonreach Apartment, 11th Floor, Prabha Nagar Tata Press Lane, Prabhadevi, Mumbai 400 025 DIN: 01260274			
7.	Mr. Prasad Raghava Menon	Director	Indian	76 Years
	264/A Road No 12, MLA Colony Khariatabad, Banjara Hills Hyderabad-500 034 DIN: 00005078			
8.	Ms. Lakshmi Vijayakumar	Director	Indian	67 Years
	25 Ranjit Road Kotturpuram Chennai 600 085 DIN: 09115998			

#### **1.1.2 REGULATORY PROVISION**

For proposed expansion project; following assumptions have been considered:

- 1) The reason of applying in category A [5(b) & 5(f)] Environmental Clearance at MoEF & CC, New Delhi.
  - Chemplast Sanmar Limited has proposed for the Pesticide Industrial Product [Sector-17; 5(b)],
  - Unit is located outside Industrial estate, &
  - Inter-state boundary was there within 10 Kms from the existing project site (i.e. Karnataka state boundary at 0.89 km from the project site)
- 2) Capacity of Plant Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in existing unit.
- 3) Consent to Establish/Consent to operate for proposed expansion project from TNPCB, Tamil Nadu.
- 4) Total working days in a year 365
- 5) Raw material storage facility for 30 days
- 6) Finished product storage for 15 days
- 7) Solvent Storage facility for 30 days
- 8) Factory Act License
- 9) Public Liability Insurance
- 10) The Motor Vehicles Act
- 11) The Bureau of Indian Standards Act
- 12) The Petroleum Act 1934 & The Petroleum Rules 2002.
- 13) Poisons act, 1919
- 14) Hazardous Waste management rule, 2016
- 15) Manufacturing, storage and import of hazardous chemical rules 2016
- 16) Chemical Weapons Convention 1997

#### **1.1.3 JUSTIFICATION OF PROJECT**

Chemplast Sanmar Limited, is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators. These intermediates involve complex multistep synthesis using unique chemistries.

The manufacturing facility is located at Berigai, Tamil Nadu.

## 1.2 PROJECT DETAILS

## 1.2.1 TOTAL PROJECT COST

Total capital investment for the project will be Rs. 2292.398 Crores [Existing: 292.398 Crore + Proposed: 2000 Crore]. Capital cost of air & water pollution control system and environmental monitoring equipments will be Rs. 118.482 Crores.

#### TABLE 1.1

#### **BREAK UP OF PROJECT COST**

Sr. No.	Particulars	Existing Amount	Proposed Amount	Total Proposed
		(Rs. In Crore)	(Rs. In Crore)	Amount
				(Rs. In Crore)
1	Land	5.915	-	5.915
2	Building and site development	81.446	374	455.446
3	Plant and machinery	186.555	1526	1712.555
4	Total Capital cost Environment	18.482	100	118.482
	protection measures (includes cost of			
	ETP, Tree Plantation, Evaporator System			
	and Rain Water Harvesting etc.)			
	Total Cost of Project	292.398	2000	2292.398
5	Recurring Cost of Environment protection	6.932		
	Tree Plantation, Evaporator System etc.)	Crores/Annum		

#### 1.2.2 PLOT AREA

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectares area) for green belt (3.33 %) within the plant premises.

#### **TABLE 1.2**

#### **BREAK UP OF DIFFERENT LAND USE OF FACTORY**

		Area				
Sr. No.	land use	(sq. mt.)				
		Existing	Proposed	Total		
1	Production Plants	33467	23201	56668		
2	Parking	40	1160	1200		
3	Security Building	20	280	300		
4	Effluent Treatment plant	4800	625	5425		
5	Utility	460	525	985		
6	Raw Material and Finished Products Storage	611	2002	2613		
8	Tank Farm Area	6325	4575	10900		
9	Green Belt	53400	5400	58800		
10	Road	8577	7632	16209		

11	Solid waste storage / disposal area	1700	6600	8300
12	Vacant area	57000	-52000	5000
	Total	166400	0	166400

# 1.2.3 EXACT DETAILS ABOUT INFRASTRUCTURAL FACILITIES, PLANT MACHINERIES, ETC. REQUIRED FOR THE PROPOSED PROJECT

TABLE 1.3

C. No.	Equipment Description	11	Existing		Proposed		Total proposed	
5. NO	Equipment Description	Unit	No	Capacity	No	Capacity	No	Capacity
1	Air compressor	CFM	7	2100	5	4000	12	6100
2	Agitated Nutsche Filter	KL	10	63	10	100	20	163
3	Autoclave	KL	8	62	5	50	13	112
4	Boiler	T/Hr	1	9	2	100	3	109
5	Chilled brine compressor	TR	6	583	10	1400	16	1983
6	Chilled water compressor	TR	6	1160	10	2600	16	3760
7	Cooling tower	TR	17	3800	10	5000	27	8800
8	DG set	KVA	6	3470	5	10000	11	13470
9	Distillation column	KL	8	80	10	100	18	180
10	FBD	KL	2	1	0	0	2	1
11	Mixing vessel	KL	31	200	100	1000	131	1200
12	Multiple Effect Evaporator	KLD	2	220	2	780	4	1000
13	N2 Compressor	Nm3/Hr	3	350	5	1250	8	1600
14	RCVD	KL	2	6	3	15	5	21
15	Reactor	KL	52	520	100	1200	152	1720
16	RO plant (Process)	m3/Hr	3	47	2	50	5	97
17	RO plant (ETP)	m3/Hr	3	17	2	50	5	67
18	RPVD	KL	5	29	10	100	15	129
19	Scrubber	m3/Hr	16	53860	25	87500	41	141360
20	STP plant	KLD	1	25	1	100	2	125
21	Thermic Fluid Heater	Kcal/Hr	2	2	2	4	4	6

#### TABLE 1.4

## SALIENT FEATURES OF THE PROJECT

Sr.	Salient Features	Detai	ls				
No.							
1	Location of project	S.F No. 5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India					
	Co-ordinates	12°48'21.69"N 77°59'2.03"E 12°48'18.20"N 77°59'14.32"E 12°48'17.79"N 77°59'19.40"E 12°48'14.08"N 77°59'18.40"E 12°48'10.76"N 77°59'18.31"E 12°48'6.70"N 77°59'16.68"E 12°48'13.67"N 77°58'57.08"E					
2	Status of Land acquisition	Land is already acquired					
3	Land area of project site	16.64 Hectors					
4	Fuel to be used	SI.	Type of	Existing	Proposed	Total	
		No.	Fuel	( MT/day)	( MT/day)	( MT/day)	
		1	Furnace Oil	8	90	98	
		2	Briquettes	00	250	250	
		3	HSD	1.7	20.3	22	
		4	LPG	0.008	0.192	0.20	
5	Source of Water	The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source					
6	Total Water Quantity	Total KL/Da	Water Quar av + Proposed	ntity: 1207.5 : 1000 KL/Da	KL/Day [Ex	kisting: 207.5	
		<ul> <li>Process water consumption: 600 KL/Day [Existing: 48 KL/Day + Proposed: 552 KL/Day]</li> <li>Washing water: 75 KL/Day [Existing: 10 KL/Day + Proposed: 65 KL/Day]</li> <li>Boiler &amp; Cooling water: 402 KL/Day [Existing: 112 KL/Day + Proposed: 290 KL/Day]</li> </ul>					

		Total Domestic Water: 100.0 KL/Day [Existing: 12.0 KL/Day			
		+ Proposed: 88.0 KL/Day]			
		Total Gardening Water: 30.5 KL/Day [Existing: 25.5 KL/Day			
		+ Proposed: 5 KL/Day]			
7	Quantity of industrial	Total Industrial Wastewater: 705 KL/Day [Existing: 68.0			
	effluent generation and	KL/Day + Proposed: 637 KL/Day]			
	domestic wastewater	<ul> <li>Process waste water generation: 600 KL/Day [Existing:</li> </ul>			
	generation	48 KL/Day + Proposed: 552 KL/Day]			
		$\circ$ Washing waste water generation: 75 KL/Day [Existing:			
		10 KL/Day + Proposed: 65 KL/Day]			
		$\circ$ Boiler & Cooling waste water generation: 30 KL/Day			
		[Existing: 10 KL/Day + Proposed: 20 KL/Day]			
		Total Domestic Wastewater generation: 100.0 KL/Day			
		[Existing: 12.0 KL/Day + Proposed: 88.0 KL/Day]			
8	Treatment of effluent	ETP, RO & MEE			
9	Disposal of treated effluent	The total wastewater generation will be 705 KL/Day and			
		will be segregated into two stream High COD Stream &			
		Low COD stream.			
		• Low COD stream: Low COD effluent will be treated			
		through the conventional wastewater treatment			
		system and the pass through KU system.			
		• High IDS Stream: Neutralized concentrate entuent			
		effective evaporator (MFE). The treated wastewater			
		will be totally recycled and the solid waste generated			
		will be disposed to TSDF (Common disposal Facility).			
		• Domestic wastewater (100 KL/Day) will send to STP			
		and Reuse in domestic and gardening purpose after			
		treatment.			
10	Details of process emissions	• In existing, company is using Furnace Oil in Steam			
		Boiler & HSD in Thermic Fluid Heater and DG Set.			
		Mechanical Dust collector & Adequate Stack will be			
		<ul> <li>In proposed expansion company will use Eurnace</li> </ul>			
		Oil/Briguettes in Steam Boiler & HSD in Thermic Fluid			
		Heater and DG Set. Mechanical Dust collector, ESP /			
		wet Scrubber & Adequate Stack will be provided to			
		control of flue gas emission.			
		• The source of process gas emission will be from reactor			
		vent.			

11	Hazardous waste generation Non- Hazardous waste generation Disposal of hazardous waste	There are 10 nos. of hazardous wastes disposed as per Hazardous & other Wastes management & Transboundry movement rules, 2016. Empty barrels/ containers/liners contaminated with hazardous chemicals /wastes, Used / Spent Oil, Chemical sludge from waste water treatment, Spent solvents, Distillation residues, Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse, Spent catalyst, Contaminated cotton rags or other cleaning materials, Spent Carbon or Filter medium, Process wastes or residues There is 01 no. of non hazardous waste (i.e. Fly Ash ) disposed as per Fly ash notification rule Company will Collect, Store, Handling & disposal to					
		Common TSDF site / Co-processor by following protocol of Hazardous Waste Rule – 2016.					
13	Power requirement & source	Source - State Electricity Department, Tamil Nadu Power required					
		Sr. No	Descripti on	Existing Require ment ( KVA)	Propos ed Require ment ( KVA)	TOTAL Requir ement ( KVA)	
		1	State Electricit Y Departm ent	2000	12000	14000	
		2	D.G. Set	3470	10000 (5 x 2000 kVA)	13470	
		Note:					
		1. Pro Nadu	posed powe Electricity Be	er requiren	nent appro	oval to ge	t from Tamil
		2.DG	Set will be k	ept for em	ergency p	ower bacl	cup.
14	Names & distance of National parks, Wildlife sanctuaries, Reserve Forests etc. Located within 10 Km from the plant boundary	There Reser bound	2.DG Set will be kept for emergency power back up. There are no National parks, Wildlife sanctuaries, and Reserve Forests etc. located within 15 km from the plant boundary.				

15	Any litigation/Court case	No litigation/Court case pertaining to the industry.		
	pertaining to the project:			
16	Total Cost of the Project:	Total capital investment for the project will be Rs.		
	Rs. (Crores)	2292.398 Crores [Existing: 292.398 Crore + Proposed: 2000		
		Crore].		
17	Nearest Town	22 Kms Hosur		
18	Nearest Railway station	25 Kms Hosur Railway station		
19	Nearest Airport	53 Kms Bengaluru International Airport		

#### **1.3 PURPOSE OF EIA**

The EIA study is carried out to assess the pollution potential and evaluate the adequacy and efficiency of proposed Pollution Control & Environmental Management System.

Environmental Impact Assessment (EIA) is the process of evaluating likely environmental impacts, both positive and negative, of proposed expansion project by taking into account natural, social and economic aspects. It also comprises of suggesting mitigation measures, for the possible negative impacts, before implementation of the project.

The purpose of the EIA study is identifying existing environmental condition in the study area, predicting and assessing environmental impacts due to the proposed expansion project and suggesting measures to mitigate the adverse impacts and to delineate a comprehensive environment management plan along with recommendations and suggestions. The different activities that are likely to take place in the proposed expansion project have been identified and mitigation measures have been proposed.

This report is prepared based on Generic Structure of EIA Document' given in Appendix III and IIIA to EIA Notification dated 14th September 2006.

## **1.4 OBJECTIVES OF EIA**

Detailed EIA/EMP report has been prepared in line with approved ToR issued by MOEFFCC, New Delhi and as per generic structure as per the guideline provided by MoEF & CC. The EIA/EMP report includes collection of baseline data with respect to major environmental components, viz. Air, Noise, Water, Land, Biological and Socio-economic components for one season.

## **1.5 METHODOLOGIES FOR EIA**

Taking into consideration proposed expansion project activities and guidelines, an area of 10 km radius from the center of the project has been selected and is designated as the study area for the purpose of EIA studies.

#### **1.5.1 BASE LINE CONDITION**

The samples of ambient air, ground and surface water and soil are collected and analyzed as per the standard methods for establishing the baseline data and to determine the impact of proposed activity on the same.

#### **1.5.2 AMBIENT AIR ENVIRONMENT**

The air environment around the plant was studied by setting up eleven locations within the study area of 10 km radius from the project site and collection and monitoring the site specific meteorological data, viz. wind speed, wind direction, humidity, rainfall and ambient temperature was carried out. Design of network for ambient air quality monitoring locations is based on guidelines provided by CPCB. The ambient air samples were collected and analyzed for SPM, PM₁₀, PM_{2.5}, SO₂, NO₂, O₃, Pb, CO, NH₃, C₆H₆, Benzo (a) Pyrene (BaP), Arsenic (As), & Nickel (Ni), for identification, prediction, evaluation and assessment of potential impact on ambient air environment.

#### **1.5.3 GROUND AND SURFACE WATER ENVIRONMENT**

The water required for domestic and industrial use is being made available from the CGWA & State government Water Authority. Hence, to assess the physico-chemical quality of the water, a number of water samples were collected and analyzed for pollution parameters viz., pH, Temperature, TDS, Turbidity, BOD, COD, TSS, DO, fluorides, Chlorides, Sulphates, Nitrates, Ammonical Nitrogen, Total Hardness, Total Alkalinity, Oil & Grease, Calcium, Mg, Ni, T-Cr+3, Cu, Hg, As, Mn, Pb, Fe, Zn, Cd and Microbiological Parameter.

#### **1.5.4 NOISE ENVIRONMENT**

Noise pollution survey was conducted in the study zone. The anticipated noise sources were industrial activities, which are likely to be increased due to proposed activity. Noise levels were also recorded in surrounding villages for evaluating general scenario of the study area. Hourly equivalent sound levels (Leq) were also recorded for calculating Day and Night noise levels in the surrounding villages.

#### **1.5.5 SOIL ENVIRONMENT**

Soil sampling and analysis was carried out to assess physico-chemical characteristics of the soils and delineate existing cropping pattern, existing land use and topography, within the study area.

#### **1.5.6 BIOLOGICAL ENVIRONMENT**

Keeping in view, the importance of biological component of total environment due to the proposed expansion project, biological characterization of terrestrial and aquatic environments, changes in species diversity of flora and fauna in terrestrial as well as aquatic systems were studied for impact analysis due to proposed expansion project activity, if any.

#### **1.5.7 SOCIO-ECONOMIC ENVIRONMENT**

Demographic and related socio-economic data was collected from census handbook to assess socio-economic status of the study area. Assessment of impact on significant historical, cultural, and archeological sites/places in the area and economic and employment benefit arisen out from the project is given special attention.

#### **1.5.8 IDENTIFICATION OF POLLUTION SOURCE**

Detailed study of manufacturing process for proposed expansion scenario is carried out along with input and output of materials, water and wastewater as well as infrastructure facilities available.

# **1.5.9 EVALUATION OF POLLUTION CONTROL AND ENVIRONMENTAL MANAGEMENT SYSTEM**

The qualitative and quantitative analysis of various pollution sources as well as evaluation of pollution control system is carried out.

#### **1.5.10 EVALUATION OF IMPACT**

A comprehensive evaluation of environmental impact with reference to proposed expansion activities is carried out.

#### **1.5.11 PREPARATION OF ENVIRONMENTAL MANAGEMENT PLAN**

A comprehensive Environmental Management Plan has been prepared covering all the aspects of pollution prevention measures, Air and Water Pollution Control measures, Hazardous Waste Management, Environmental Surveillance and Environmental Management Plan.

The present report is an EIA conducted during Pre Monsoon Season, 2022 (July, 2022 to September, 2022). The baseline environmental conditions have been established through field monitoring and literature survey.

## **1.6 STRUCTURE OF REPORT**

The objective of the EIA study is preparation of Environment Impact Assessment (EIA) report based on the guidelines of the Ministry of Environment, Forests & Climate Change (MOEFCC), CPCB and TNPCB. It incorporates the following.

- **Chapter 1** is an Introduction to the Industry and its premises. It also expresses the basic objectives and methodologies for EIA studies and work to be covered under each Environmental component.
- **Chapter 2** presents Project Description and Infrastructural facilities including all industrial and environmental aspects of M/s. Chemplast Sanmar Limited, as well as

manufacturing process details. This chapter also gives information about raw material storage and handling, water and wastewater quantitative details, air pollution and control system, Hazardous Waste generation, storage facility and disposal and utilities for proposed plant capacity. It also provides information about proposed Environmental Management Facilities available at the project site.

- Chapter 3 covers Description of the environment including meteorological details, Identification of baseline status of Environmental components of the surrounding area covering air, water and land environment. Also presents a study of land use pattern, Biological Environment & Socio-Economic Environment giving details about District Krishnagiri, Taluka Shoolagiri and the study area in terms of land use pattern, biological environment, and socio-economic environment.
- Chapter 4 deals with Anticipated Environmental Impacts & Mitigation Measures, which provides quantification of significant impacts of the proposed activities of plant on various environmental components. Evaluation of the proposed pollution control facilities has been presented.
- **Chapter 5** describes Analysis of Alternatives (Technology & Site) considered with respect to Technology & Site.
- Chapter 6 deals with Environmental Monitoring Program
- **Chapter 7** describes Additional studies w.r.t Risk assessment and Disaster Management Plan that shall be adopted by the company, Public consultation, R&R action plan.
- Chapter 8 describes Project Benefits
- Chapter 9 deals with Environmental Cost Benefit Analysis
- **Chapter 10** describes Environment Management Plan (EMP) to be adopted for mitigation of anticipated adverse impacts if any and to ensure acceptable impacts.
- Chapter 11 describes Executive Summary & Conclusion of the Project.
- Chapter 12 describes Disclosure of Consultants Engaged.

#### FIGURE - 1.1

#### ACTIVITIES, SOURCES OF INFORMATION AND CONTENTS OF EIA REPORT



# Chapter – 2 Project Description

#### 2.1 BACKGROUND

Chemplast Sanmar is over fifty years old and is a part of the SHL Chemicals Group, which in turn is a constituent of the Sanmar Group, one among the oldest and most prominent corporate groups in South India. It is a major manufacturer of Speciality Chemicals such as Specialty Paste PVC resin and Custom Manufactured Chemicals for agro-chemical, pharmaceutical and fine chemicals sector. The company also produces other chemicals such as Caustic Soda, Chlorochemicals, Hydrogen Peroxide, Refrigerant gas and Industrial Salt. The manufacturing facilities are located at Mettur, Berigai and Vedaranyam in Tamil Nadu and Karaikal in the Union Territory of Puducherry.

Chemplast Sanmar Limited, is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators. These intermediates involve complex multistep synthesis using unique chemistries.

The manufacturing facility is located at Berigai, Tamil Nadu.

**M/s. Chemplast Sanmar Limited**, Proposing expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.

# 2.2 LAND REQUIREMENT FOR THE PROJECT INCLUDING ITS BREAK UP FOR VARIOUS PURPOSES, ITS AVAILABILITY

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises.

Sr. No.	land use	Area (sq. mt.)			
		Existing	Proposed	Total	
1	Production Plants	33467	23201	56668	
2	Parking	40	1160	1200	
3	Security Building	20	280	300	
4	Effluent Treatment plant	4800	625	5425	

#### **BREAK UP OF DIFFERENT LAND USE OF FACTORY**

5	Utility	460	525	985
6	Raw Material and Finished Products Storage	611	2002	2613
8	Tank Farm Area	6325	4575	10900
9	Green Belt	53400	5400	58800
10	Road	8577	7632	16209
11	Solid waste storage / disposal area	1700	6600	8300
12	Vacant area	57000	-52000	5000
	Total	166400	0	166400

FIGURE – 2.1

#### LAYOUT OF THE PLANT



#### **GREENBELT WITHIN PLANT PREMISES**



Green Belt area

#### **PROPOSED PROJECT AREA**



2.2.1 LAND POSSESSION DOCUMENTS. COPY OF NA ORDER SHOWING PERMISSION TO USE THE PROJECT LAND FOR INDUSTRIAL PURPOSE.

1. IORS. TEN RUPEES : 6 SALE DEED FOR Re.9.96.734/-THIS DEED OF ABSOLUTE SALE executed at Sulagiri, Hosur Taluk, this the 24K day of December, 1993, by M/s. SANMAR CHEMPLAST LIMITED (formerly known as Viny) Investments (Alpha) Limited), a Company incorporated under the Companies Act and having its Registered Office at No.8, Cathedral Road, Madras-600 OB6. duly represented by its Director, Mr R Sukumaran, son of D Ramamoorthy, hereinafter called the "VENDOR" which term shall mean and include the said Company, For SANMAR CHEMPLAST LIMITED 1100

19

**ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT** 115/94 Oncument to P. 21 1889 at Book / PRESENTED IN THE OFFICE OF THE ADE THE ALL STORE ALL STORE CONTAINS 9 SHEETS 63 (St -Sheet UN REGISTER N ADMITTED BY ryect LEFT THUMD 7.4 10220-001 DRa NOON IW chomplan Director an TO. 2014 - 91 IDENTIFIED BT Nacob Lennder, 29/16 Trivis. Hora. 21 trynu 9. aj 5 Gurne Annual human . CN Sto Normanappa No 678 13th mine B' lover 2 35 Euroice 245 December 199 SUIL REDAKTER

20

its successors-in-title and assigns; TO AND IN FAVOUR OF M/s. CHEMICALS AND PLASTICS INDIA LIMITED, a Company Incorporated under the Companies Act and having its Registered Diffice at No.8, Cathedral Road, Madras-600 086, and represented horein by its Power of Attorney. Hr P Vasudevan, son of .V. Pattabhiraman, hereinafter called the "PURCHABER" which term shall mean and include the said Company. its successors-in-title and assigns; MITNESEETH:

WHEREAS the Vendor herein purchased Punja Lands situated in No.44. Suligunta Village. Hosur Taluk. Dharmapuri District, measuring a total extent of 17.66 Acres under various sale deeds as per details given below and the said sale deeds were registered in the Office of the Sub-Registrar. Shoolagiris

-1

81. No.	Survey No.	Extent A. Cent	Sale Deed Dated	Regn. No. of the Sale Deed
á.	49/4		10121000000000000000000000000000000000	an a suite ann an
ž.	12/18	1.20	28.3.1990	196/1990 202/1990
31	7/1	2.60		
	8/1	0.03		
	8/2B	1.09	28.3.1990	203/1990
4.	12/1A	1.25	28.3.1990	204/1990
5.	8/1	1.72	(E2022)//05-1	
	9/2	0.40	28.3.1990	209/1990
6.	10/38	1.40	4, 10, 1990	682/1990/
7	10/4	2.73	4.10.1990	683/1990
ö.	8/2A	0.96	4.10.1990	684/1990
9.	10/3A	1.48	5.10.1990	492/1990
	TOTAL	17.66		

WHEREAS out of the aforesaid lands, the Vendor herein sold an extent of 32 cents out of 2.60 acres comprised in Survey

Fet SANMAR CHEMPLAST LIMITED ACTOR.

Anoverse and an Mo 1115 or 1980 of Basick Vourne (3) Page 4 22 to 483 73 NOVEMber 1980 (4) Anoverse and the state of 198 (4) Anoverse and the state of the

Note: Two corries have been neglatery along with this document Booi 20min obij ni Dani vgarni

Donitan 15930 ----CONTAINS 9 SILETS and Sheet SUB-REGISTRAL

-3-

No.7/1 and another extent of 1.80 Acres out of 2.80 acres comprised in Europy No.13/1 in No.44, Suligunta Village, totally measuring an extent of 2.12 Acres, to M/s. Drachem Speciality Chemicals Limited under the Sale Deed dated 28.8.1991 which was registered as Document No.720 of 1991 in the Diffice of the Sub-Registrar, Shoolagirii

WHEREAS after the aforesaid sale. the Vendor herein owned the remaining lands measuring a total extent of 15.54 Acres or thereabouts:

WHEREAS Mr Khader Sahib and Mrs. Ratia Be requested the Vondor to provide 3.75 Mtrs. wide and 372 Mtrs. long passage to have an access for the land owned by them behind the lands owned by the Vendor herein and they had offered to give in exchange their lands to the Vendor herein and the Vendor had acceded to the said request;

Sec. 2

also be

WHEREAS the aforesaid Mr Khader Sahib and Mrs. Ratia Be and the Vendor herein executed a Deed of Exchange on 24.12.1993 and the same was registered in the Office of the Sub-Registrar. Shoolagiri. Under the said Deed of Exchange the Vendor has transferred a total extent of 35.49 cents of land situated in No.44. Suligunta Village to Mr Khader Sahib and Mrs. Ratia Be for using the said land as pathway and the said Mr. Khader Sahib and Mrs. Ratia Be. in exchange. transferred their land comprised in Survey No.9/1 situated in No.44. Suligunta Village. measuring an extent of 35.44 cents or thereabouts in favour of the Vendor herein:

For SANMAR CHEMPLAST LOWTED

**ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT** A da 3. B Struger ŝ ummin farkars 10 TO SHIDD Autor ailma g 30695. Anno gland gapa entugarent argineati 8=44. ANT. 3.11. 94 ٠. 11 Donume-t No. Pe 15930 wook 1 CONTAINS 9 SILLETS 3rd Sheet a -2 SUB-REGISTRAR

WHEREAS after the execution of the aforesaid Deed of Exchange, the Vendor harein is in absolute possession and sole enjoyment of the remaining lands measuring a total extent of 15 Acres and 53.75 Cents or thereabouts, which is more fully described in the Schedule hereunder and which is hereinafter referred to as "Schedule Property", as its absolute owner:

WHEREAS the Vendor offered to sell the Schedule Property to the Purchaser herein for a price of Rs.9,96,734/-(Rupees Nine lacs minetysix thousand seven hundred and thirtyfour only), (the Vendor herein is the wholly owned subsidiary of the Purchaser herein) and the Purchaser herein agreed to purchase the Schedule Property for the said price, without any encumbrance whatsoever:

WHEREAS the Vendor has authorised and empowered its Director, Mr R Bukumaran, to execute this sale deed in favour of the Furchaser;

NON THIS DEED OF ABSOLUTE SALE WITNESSETH AS FOLLOWS!

That in pursuance of the aforesaid agreement and in consideration of the sum of Rs.9,96,734/- (Rupees Nine lacs ninetysix thousand seven hundred and thirtyfour only) already paid by the Purchaser to the Vendor herein, the receipt of which sum the Vendor doth hereby acknowledge and release the Purchaser from any further payments, the Vendor doth hereby sell, transfer and assign unto the Purchaser by way of this Deed of Absolute Sale of that Punja Lands of a

For SANMAR CHEMPLAST LIMITED DIRECTOR

total extent of 15 Acres and 53.95 Cents or thereabouts, which is more fully described in the Schedule hereunder, together with all hedges, ridges, ditches, ways, waters, waterways and water courses, and all the easements, privileges, advantages, and appurtenances whatsoever appertaining thereto and all the estate, right, title and interest of the Vendor in and upon the said piece and parcel of lands and every part thereof TO HAVE AND TO HOLD the same unto the Purchaser absolutely and forever free from all encumbrances.

-

The Vendor hereby assures the Purchaser that the Vendor is absolutely entitled to the Schedule Property hereby conveyed and have full powers to convey the same and that it has not done knowingly suffered any act or thing whereby the Schedule Property hereby conveyed is encumbered or charged in any manner. The Vendor doth hereby declare and assure the Purchaser that the Property described in the Schedule hereby conveyed is not subject to any encumbrance, charge or lien or mortgage or agreement for sale or lispendens or the subject matter of any pending proceedings or litigation or acquisition by State or Central Government or attachment in or by any Court or any Municipal Panchayat or Revenue or other authority.

The Vendor further covenants with the Purchaser that the Purchaser shall and may at all times hereinafter peaceably and quietly possess and enjoy the property described in the Schedule hereunder without any lawful eviction,

Security

So: SANMAR CHEMPLAST LIMITED

DIRECTOR

-6-

interruption, claim or demand whatsoever from or by the Vendor or any one claiming from. under or in trust for the Vendor and the Vendor shall indemnify and save hermless the Purchaser from injury of any kind on account of any such claim or demand or defect in title or encumbrance over or in relation to the said property described in the Schedule hereunder.

The Vendor hereby undertakes and assures the Purchaser that in case the Purchaser is deprived of the whole or any portion of the property described in the Schedule by reasons of the action in law or any defect in title found in the title of the Vendor or any encumbrance or charge, on the same coming to light, the Vendor shall repay the whole of the sale price or any part of it as shall be proportionate to the portion of the property described in the Schedule so affected.

AND THE VENDOR shall and will from time to time and at all times hereinafter at the request and cost of the Purchaser execute and register and cause to be done or executed and registered all such acts, deeds and things whatsoever for further and more perfectly assuring the said property described in the Schedule unto the Purchaser in the manner aforesaid as shall and may reasonably required.

The Vendor hereby declares that the Vendor shall pay or has paid all taxes, rates, levies, charges, public returns and assessments payable to the Government or any authority in

For SANMAR CHEMPLAST LUNTED NOTOTAL

-7--

respect of the said land hereby conveyed upto the date of registration of this deed and should any taxes, rates, levies, charges, public returns and assessments be found to be due the Vender undertakes to properly discharge the same.

The Vendor has this day delivered full and complete possession of the Schedule Property to the Purchaser herein. The Vendor has also delivered to the Purchaser all the original documents of title.

#### SCHEDULE OF PROPERTY

All that piece and parcel of Punja Lands situated in No.44. Buligunta Village, Hosur Taluk, Dharmapuri District, measuring a total extent of 15 Acres and 53.95 cents or thereabouts, comprised in

Survey No.		Extent A. Cent	
			and the second
12 (1.8., 12/	1A!	Deca	44.84
8 (i.e., 8/1,		<b>.</b>	44,31
8/28 & 8/2A/		3.	74.45
9/2		0.	39.53
7/1/		2.	28
13/1		1.	00
10/38	- C.C.	1.	37.72
10/4		2.	67.23
10/3A		1.	27.27
9/1/		٥.	35.44
	TOTAL	15.	33.95

and bounded on the

North by : Survey Nos. 2, 9 and 4

East by : Lands belonging to Drachem Speciality Chemicals Limited

For SANMAR CHEMPLAST LIMITED

1

x

E.

West by I Survey No.1 South by : Berikai Theertham Road and situated within the Registration District of Dharmapuri and Sub-Registration District of Shoolagiri. The Present market value of the Property is Rs.9.96.734/-IN WITNESS WHEREOF the Vendor has signed, sealed and

-8-

executed on the day, month and year first above written.

The Common Seal of Sanmar Chemplast Limited has been affixed hereto purusant to a Resolution passed by the Board of Directors of the Company at its meeting held on 5th November, 1993, in the presence of Mr R Sukumaran, Director, and Mr P Vasudevan, Authorised Signatory.



For SANMAR CHEMPLAST LIMITED.

Sukunaran Director war

P Vasudevan Authorised Signatory VENDOR

#### Witnessest

ş,

1. J. Lin Ner 1. 3 moil LEAMACE, in 116 2184 per, 1445. Orgin Real Hoson

2. Anoul Kempli CN No 618 18th main Road I I Black 5 Stage wash of Chard Road B. Lore 79

4111 Drafted by: (S.SUBKAMAN PN) STUR BA (Hom). BA. ADV 20275 Si Bheemasaaa Gardens

SI Bheemasson Gardens Royapetiah II Street, MYLAPORE. MADMAS - 800 006.



12 peop on 29/03/10 by Post

அனுப்பு நர்

திரு.சொ.ஜீவானந்தம், டி.சி.இ., நகர் ஊரணம்ப்பு துணை இயக்குநர்(பொ), தருப்புரி மண்டலம், 83, பிடமனேரி ரோகு, அப்பாவு நகர், தருமபுரி - 636 703.

பெறுதர்

ஆணையாளர், ரூளகிரி ஊராட்சி ஒன்றியம், as an hall. கிருஜண்கிரி மாவட்டம்.

15.4. stassi, 143/2010/310.

prai 21.03.2010

ஐயா, பொருள்,

நிறுவனம் . நகர் ஊரமைப்பு துணை இயக்குநர் அலுவலகம், தருமபுரி மண்டலம் . கிருஜ்ணகிரி மாவட்டம் . ஒசூர் வட்டம் . குளகிரி ஊராட்சி ஒள்றியம் - சூலிகுணடா கிராமம் - ச.எண்கள்.5, 7/1,2,3எ,3பி, 8/1,2ஏ,2பி,9/1,2,3, 10/1பா,2பா,3ஏ,3பி,4, 12/1ஏ,1பி, 13/1, 14/1ஏ,2ஏ . இடத்தில் அமையவுள்ள கூருதல் உத்தேச நிறுவன கட்டிட வரைபடங்களுக்கு ஒப்புதல் வழங்குதல் - குறித்து.

பார்வை, 1) ஆணையாளர், சூளகிரி ஊராட்சி ஒன்றியம் கடிதம் p.a. arani. 855/2009/ 312, parai 16.2.2010.

2) மனுதாரர் நன்னிலை வரி, உள்கட்டமைப்பு மற்றும் அடிப்படை வசதி கட்டணம் செலுத்திய விபரம் பெறப்பட்ட நாள 19.3.2010.

பாரவை (1)ல் கண்ட தங்கள் கடிதத்துடன் பெறப்பட்ட உத்தேச நிறுவன வரைபடங்கள் பரிசீலிக்கப்பட்டு கீழ்கண்டவாறு உத்தரவு வழங்கப்படுகிறது.

1994 ஆம் ஆண்டு ஊராட்சி சட்டத்தில் 160 வது பிரிவின்படி தொழிற்சாலைக் கட்டிடங்கனை முறைப்படுத்துவதற்கான பிறப்பிக்கப்பட்ட விதி 8(எ)ன்படி கிருஷ்ணகிரி மாவட்டம் மற்றும் ஒஞர் வட்டம், சூளகிரி ஊராட்சி ஒன்றியம், சூளிகுண்டா கிராமம், F storts at 5, 7/1,2,3 at 31, 8/1,2 at 21,9/1,2,3, 10/11. 21. 3 at 31,4, 12/1 at 1.1, 13/1, 14/1ஏ.2ஏ.ல் அமையும் மனைக்கு ம.வ.ந.ஊ.து.இ(தம)எண. 13/2010 என எண்ணிடப்பட்டு மனை ஒப்புதலும் அம்மனையில் அமையும் 2193 H.P. கூருதல பரித்திறன் கொண்ட கூரு தல உத்தேச நிறுவன கட்டிட வரைபடங்களுக்கு தொவப/நஊது.இ. (தம) எண். 10 அ முதல் ஊ வரை /2010 என எண்ணிடப்பட்டு கீழ்கண்ட நிபந்தனையுடன் ஒப்புதல் அளிக்கப்பட்டு இத்துடன் இணைத்து அனுப்பப்படு கிறது.

#### BUIDESENSI

. ஒப்புதல் அளிக்கப்பரும் வரைபடத்தில் இத்துறையின் முன் அனுமதியின்றி மாற்றங்கள் ஏதும் செய்யனாகாது.

pai entrancial grammer (Sur),

தருமபுரி மண்டலம், தருமபுரி.

இணைப்பு வரைபடங்கள் . 2 தொகுப்பு

313/2010

5.5.00 தின் சனமார் ஸ்பெஜாலிட்டி கெயிக்கல்ஸ் லிட்., எஸ். 14 தீர்த்தம் ரோடு. Ginhama - 635 105. ஒருர் வட்டம், கிருஷ்ணகிரி மாவட்டம்.

#### From

Mr. S. Jeevanandham, D.C.E., Assistant Director District Town and Country Planning Office, 83, Pidamaneri Road, Appavu Nagar, Dharmapuri – 636 703

To

The commissioner,

Shoolagiri Panchayat Union, Shoolagiri, Krishnagiri District.

#### N.K.No.143/2010/T

Dated 23.03.2010

#### Sir,

#### Subject:

Company - Office of the Deputy Director of Urban Development, Dharmapuri Zoue -Krishnagiri District - Hosur Circle - Shoolagiri Panchayat Union - Shoolagonda village S.Nos.5, 7/1,2,3A,3B, 8/1,2A,2B,9/1, 2,3, 10/1PA, 2PA, 3A, 3B, 4, 12/1A, 1B, 13/1, 14/1A, 2A - Approving additional proposed institutional building plans to be located at the site - Regarding.

#### Reference: 1) Shoolagiri Panchayat Union letter No.885 2009/A2, dated 16.2 2010.

 The date of receipt of details of payment of gratuity tax, infrastructure and basic facility fee by the petitioner is 19.3.2010.

The proposed company drawings received along with their letter given in reference (1) are considered and orders are issued as follows.

Pursuant to Rule 8(a) issued for regularization of industrial buildings under Section 160 of the Panchayat Act, 1994, Krishnagiri District and Hosur Circle, Choolagiri Panchayat Union, Chulikunda Village, S.Nos.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1PA,2PA,3A,3B,4,12/1A,B, 13/1,14/1A, 2A land was approved by District Town and Country Planning Office (Dhannapuri) Letter. No. 13/2010 and for additional proposed institutional building plans of 2193 HP capacity located in the said building by was approved by department of Deputy Director of Urban Development, Dharmopuri Zone letter No. 10 A to F of 2010 numbered and approved subject to the following conditions are attached hereto.

Note: No changes shall be made in the drawings to be approved without the prior approval of the department,

Deputy Director (i/c) District Town and Country Planning, Dharmapuri

Encl. Maps -2 sets. <u>Copy To:</u> Deputy Director of Urban Development (P.O.), Dharmapuri Zone, Dharmapuri, Mr. Sanmar Specialty Chemicals Ltd, No. 44 Theertham Road Hosur Circle, Parikai 635105. Krishmagiri District.

#### 2.3 PROJECT SETTING

**M/s. Chemplast Sanmar Limited**, **Berigai**, Tamil Nadu is located at longitude 77°59'9.12"E and latitude 12°48'14.27"N. Detailed Layout map of the plant is shown in Figure – 2.2.

Land area of project is 16.64 ha. and this land is developed and used as a non agricultural activity. The buildings are designed considering seismic zone II. The land is plain terrain – no scope of landslide.

There is no protected area, important or sensitive species within 15 kms from the proposed project boundary. Hosur City is about 22 kms away and has a population of about 4.95 lakh.

#### 2.3.1 PROJECT SITE AND PLANT LAYOUT

LOCATION (MAP SHOWING GENERAL LOCATION, SPECIFIC LOCATION AND PROJECT BOUNDARY & PROJECT SITE LAYOUT) WITH COORDINATES. FIGURE - 2.2


FIGURE - 2.2 (CONT.)



#### PHOTOGRAPHS OF THE EXISTING PLANT SITE



**Process Building** 



Power and Utilities area



Admin



ETP and STP

#### PHOTOGRAPHS OF GREENBELT DEVELOPED WITHIN PREMISES:





## 2.4 LOCATION OF THE PROJECT SITE AND NEAREST HABITATS WITH DISTANCES FROM THE PROJECT SITE TO BE DEMARCATED ON A TOPOSHEET (1: 50000 SCALE).

The Land Use Land Cover study has been carried out for Chemplast Sanmar is located at Berigai, Krishnagiri District, Tamilnadu State, India.

The mapping of Land use Land Cover has been carried out with help of Bhuvan Data and Google Earth Imagery using QGIS Software and verified by reconnaissance survey.

The 10 Km Aerial buffer area was identified in with the help of Lat-Lon using Google Earth Pro. The same area is than identified from Bhuvan database and the both the layers were super imposed using Geo Reference technique in QGIS. Based on Visual interpretation the Land use classes were identified and the same was verified with the help of field survey. The area calculation was also done for each land use classes occurring in that region.

The area of industrial settlements are there in this study area along with it human settlements forms the key infrastructure in this region. As the area is having mainly industrial development the transportation facilities by Road network is quite well developed and it is well connected with villages all over in the study area. Almost every villages in this region is well connected with metalled road network. Apart from road network development the railway also present in the study area.

#### 2.4.1 DISTANCE OF NEAREST KEY INFRASTRUCTURE FEATURES FROM PROJECT SITE

The distance of railways and National and State highways are presented in Table 2.1 below. **TABLE 2.1** 

ISTANCE		
Sr. No.	Nearest Infrastructure Feature	Distance from Project Area
1	Hosur Railway Station	20.28 km South - West
2	National Highway NH-44	14.50 km South - West
3	State Highway SH-17C	7.56 km North-West
4	Hosur town	22 km South - West
5	Krishnagiri District Head quarter	40 km South - East
6	Bengaluru International Airport	52.41 Km North-West
7	Ponnaiayr River	11.35 km South-West

#### DISTANCE OF NEAREST KEY INFRASTRUCTURE FEATURES FROM PROJECT SITE

FIGURE – 2.3

#### TOPOSHEET



#### **KEY INFRASTRUCTURE**



#### SATELLITE IMAGERY



2.5 TECHNICAL DETAILS OF THE PLANT/S ALONG WITH DETAILS ON BEST AVAILABLE TECHNOLOGIES (BAT), PROPOSED TECHNOLOGY AND REASONS FOR SELECTING THE SAME.

#### The plant capabilities include the following:

- Glass lined and Stainless steel reactors
- Glass and Stainless Steel Distillation Columns with Structured and Random Packing
- High Pressure Hydrogenation reactors
- Supporting process equipment typically suited for the manufacture of speciality chemicals involving complicated multi-stage synthesis

#### Utilities

- Stand-by power generation facility
- Brine chilling facilities
- Thermic fluid heating system
- Boiler and compressed air systems
- Chilled water facility

#### **Eco-Friendly Technology for product manufacturing**

- 1. Usage of Non-fossil fuel source for boiler (Briquettes)
- replacing the Usage of furnace oil by non-fossil fuel source (Briquettes) for Boiler.
  Using fossil fuel would generate 2.8 to 3 T of CO2 emission per ton of fuel
- Usage of non-fossil fuel source (Briquettes) is increasing the Energy-efficiency and Reduction of greenhouse gas emissions

#### 2. Adiabatic Cooling Towers instead of conventional type Cooling Towers

We are going with Adiabatic Cooling Towers, which is saving 75% of water consumption with compare to conventional type Cooling Towers. Adiabatic cooler uses wetted pads to pre-cool the ambient air entering the tower. This pre-cooled air is used to cool process water. This helps achieve a lower temperature than the ambient dry bulb temperature.

3. Low-Power Exercise Equipment -Energy efficient (IE3) motors

- 93% efficiency as against 88% for conventional IE1 motors
- 5% increase in efficiency

Estimated Power	Energy consumption/	Energy Saving	
Demand (kW)	88% Efficiency	93% Efficiency	(GWh)
2000	17	15	2

- 1 GWh electrical energy accounts for releasing 790 tons of CO2 [Source: as per CEA data, Govt. of India.]
- Yearly reduction in CO2 emissions due to IE3 motors: 2 X 790 = 1580 tonnes

#### 4. Variable Speed Drives (VSD)

Selected IE3 motors are with VSD

Estimated Power	Energy consumption	Energy		
Demand (kW)	Without VSD	With VSD	Saving (GWh)	
1565	11	9	2	

- 1 GWh electrical energy accounts for releasing 790 tons of CO2 [Source: as per CEA data, Govt. of India.]
- Yearly reduction in CO2 emissions due to VSD: 2 X 790 = 1580 tonnes

#### 5. LED Lighting

Company is going with 100% of LED lightings over the plant, it's better than other by, they are brighter, Require lesser energy to function and Last longer.

- LED lamps consume 20% energy for heating
- Metal halide lamps consume 75% energy

Estimated Dower	Energy consumption/year (GWh Metal halide	on/year (GWh)	Enorgy Souing
Demand (kW)	Metal halide lamps	LED	(GWh)
25	0.6	0.3	0.3

• 1 GWh electrical energy accounts for releasing 790 tones of CO2 [Source: as per CEA data, Govt. of India.]

• Yearly reduction in CO2 emissions due to VSD : 0.3 X 790 = 237 tonnes

#### 6. Monofluid Temperature Control

- Precise temperature control in addition to reduction in lean waste generation
- By considering cooling water changeover in one 16KL reactor, one 10KL reactor and one final product dryer (three products at a time)

Cooling water drained per day per product	2845	L/day
Cooling water drained per day for all three products	8535	L/day
Cooling water sent to ETP per month as lean waste	85350	L/month
Total reduction of Cooling water as lean waste with MFS per year	1024	KL/year

#### 7. Steam Condensate Recovery System and Flash Steam Recovery System

- Condensate headers are routed to the receiver wherein pressure powered/ mechanical pump transfers the condensate to boiler feed water tank
- High pressure condensate from process will be diverted to a flash vessel to generate LP steam. Thermo compressor option will be validated based on LP pressure

Steam condensate recovery metrics	Qty	Units	Remarks
Condensate available	5600	Kg/hr	80% out of 7000 kg/hr
Total Sensible Heat available	718.24	Mcal/Hr	2.84 MMBTU
Fuel equivalent/Hr	83.6	Kg of FO	13.2 % of boiler fuel consumption/hr
Co2 emission reduction per Annum	2081	MT of CO2	8000 Hrs of operation
Total flash steam available @3.5 bar as LP steam	498	Kg/hr	8% of condensate qty

#### 8. Rainwater harvesting

Up to 80 % of rainwater goes into underground

9. Double Stage Scrubbing system for all reactors

Double stage scrubbing system for all reactors for reduce the emission from the stack and

Reduction of polluting substances and greenhouse gas emissions

#### 10. Scrubber for all open Reactor and Chemical storage

All reactor vent and bulk storage tank vent will be connected with wet scrubbing system for reduce polluting substance to atmosphere.

# 2.6 PHASE WISE PROJECT IMPLEMENTATION SCHEDULE WITH BAR CHART AND TIME FRAME, IN TERMS OF SITE DEVELOPMENT, INFRASTRUCTURE PROVISION, EMS IMPLEMENTATION ETC.

All activities related to proposed project shall be started soon after getting Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board.

#### PROJECT BAR CHART

	-						-							Scł	nedule				-													
Year	20	22					20	23																20	024						20	)25
Activity	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
Environment clearance from MoEF																																
Finalizing of engineering contractor																																
Basic Engineering																																
Detailed engineering and placing of order for long lead items																																
Progressive detailed engineering																																
Obtaining CTE from local PCB																																
Site preparation																																
Construction to mechanical completion																																
Obtaining CTO from TNPCB																																
Commissioning																																
Commercial production																																

2.7 CHEMICAL NAME OF EACH PROPOSED PRODUCT TO BE MANUFACTURED. DETAILS ON END USE OF EACH PRODUCT (PROVIDE CAS NUMBER OF ALL THE PRODUCTS & RAW MATERIALS).

TABLE 2.2

#### LIST OF PRODUCTS WITH PRODUCTION CAPACITY

S.No	PROPOSED PRODUCTS LIST FOR EC	CAS No.	LD50	As per Existing CTE (MTPA)	Additional (MTPA)	Total Proposed (MTPA)	Category
Α	PHYTO CHEMICALS						
1	COLCHICINE	64-86-8	5.87 mg/kg	1.4	0	1.4	5(f)
2	THIOCOICHICOSIDE	602-41-5	300 mg/kg				5(f)
В	ORGANIC CHEMICALS						
3	2-(1- CYLCOCHEXENY)LETHYLA MINE (CHEA)	3399-73-3	2.5 mg/kg	1600	18400	20000	5(f)
4	3-[1,3,3-TRIS-(2-CARBOXY- ETHYL)-2-OXO- CYCLOHEXYL]-PROPIONIC ACID (T4C)	5107-67-5	36 mg/kg				5(f)
5	SUBSTITUTED ARYL ALKYL AMINE	3625-06-7	1540 mg/kg				5(f)

6	2-AMINO-2-	94133-84-3	36		5(f)
	PHENYLBUTYRIC ACID	/39068-93-4	mg/kg		
	SODIUM SALT /METHYL 2-				
	(N,N-DIMETHYLAMINO)-2-				
	PHENYLBUTYRATE				
	(TR1600/TR1400)				
7	4-CHOLO-BUTYL	69788-75-6	1540		5(f)
	VERATRATE		mg/kg		
8	4-(2-AMINOETHYL)-2-	554-52-9	5000		5(f)
	METHOXYPHENOL (AE		mg/kg		
	PHENOL)				
9	METHYL-2 PHENOXY	103-60-6	5000		5(f)
	ISOBUTYRATE		mg/kg		
10	(4R)- 2- OXOOXAZOLIDINE	83841-00-3	5000		5(f)
	-4- CARBOXYLIC ACID		mg/kg		
	(COX)				
11	4-t	3288-99-1	236		5(f)
	BUTYLPHENYLACETONITRI		mg/kg		
	LE				
12	1-BROMO-3,5-	19752-55-7	1070		5(f)
	DICHLOROBENZENE		mg/kg		
	(DCBB)				
13	4-CHLORO-2-NITRO	6280-88-2	71 mg/kg		5(f)
	BENZOIC ACID				
14	4-BROMO PHENYL	25574-11-2	1020		5(f)
	PROPANOL (BPP)		mg/kg		

15	2-CHLORO-5-	105827-91-6	1020
	CHLOROMETHYL-1,3-		mg/kg
	THIAZOLE (CCMT)		
16	TETRACHLORO BUTYRIC	97055-35-1	2940
	ACID (TCBA)		mg/kg
17	IONOPHOR	133338-85-9	88 mg/kg
18	4-BROMO-2-FLUORO	41604-19-7	1540
	HYDROXY BIPHENYL (BFB)		mg/kg
19	PARA METHYL PHENCYL	2196-99-8	8750
	CHLORIDE (PMPC)		mg/kg
20	SODIUM 4-(2,4-DICHLOR	172343-40-7	8750
	M-TOLUOYL)-1,3-DI		mg/kg
	METHYL -5-PYRAZOLATE		
	(MY710Na)		
21	2-TRIFLUOROMETHYL	1869-24-5	180
	BENZENE SULFONAMIDE		mg/kg
	(TBSA)		
22	METHYL CARBAZATE	6294-89-9	5000
		ļ	mg/kg
23	TETRALONE IMINE	79560-20-6	810
			mg/kg
24	4-[2(4-CHLORO-2,6-	1644459-63-1	5000
	DIMETHYLPHENYL)ACETTY		mg/kg
	L]METHYLAMINO]-1-		
	METHOXY-N-		
	PHENYLPIPERIDIN-4-		
	CARBOXAMIDE (DIAMIDE)		

25	3(2,2,2-	227605-94-9	5000		5(f)
	TRIFLUOROETOXY)2-		mg/kg		
	PYRIDINE SULFONAMIDE				
	SODIUM SALT				
	(SULFONAMIDE)				
26	5-CHLORO-8-HYDROXY-	130-16-5	5000		5(f)
	QUINOLINE (CHQ)		mg/kg		
27	PHENYLGUANIDINE	14018-90-7	1000		5(f)
	CARBONATE (PGC)		mg/kg		
28	FE (III) ACETYL	14024-18-1	1872		5(f)
	ACETANOATE		mg/kg		
29	MANGANESE(II)HEXACYAN	Not available	1020		5(f)
	OMANGANATE(II)SODIUM		mg/kg		
	SALT (ANODE)				
30	IRON(II)MANGANESE(II)	Not available	1020		5(f)
	HEXACYANOFERRATE(II)		mg/kg		
	SODIUM SALT				
	TETRADECAHYDRATE				
	(CATHODE)				
31	1-CHLORO-3-	121-73-3	1000		5(f)
	NITROBENZENE		mg/kg		
32	2,4,6- TRICHLORO ANILINE	634-93-5	1000		5(f)
			mg/kg		
33	PIVALOYL CHLORIDE	3282-30-2	5000		5(f)
			mg/kg		
34	5-CHLORO VALEROYL	1575-61-7	1000		5(f)
	CHLORIDE		mg/kg		

35	4-FLUORO PHENYL ACETIC	405-50-5	5000			5(f)
	ACID		mg/kg			
36	4-BROMO	460-00-4	2700			5(f)
	FLUOROBENZENE		mg/kg			
37	3-FLUOROTOLUENE	352-70-5	7000			5(f)
			mg /kg			
38	4-FLUOROTOLUENE	352-32-9	7000			5(f)
			mg /kg			
39	ORTHO NITRO ANISOLE	91-23-6	2000			5(f)
			mg/kg			
40	PARA NITRO ANISOLE	100-17-4	2300			5(f)
			mg/kg			
41	O-CHLORO P-NITRO	121-86-8	1400			5(f)
	TOLUENE		mg/kg			
42	3-AMINO- 4- METHYL	40872-87-5	1700			5(f)
	BENZOIC ACID METHYL		mg/kg			
	ESTER			-		
43	3-AMINO 4-METHYL	21447-47-2	2000			5(f)
	BENZOIC ACID ISOPROPYL		mg/kg			
	ESTER			-		
44	5-AMINO-2-METHYL	1089339-15-0	1400			5(f)
	BENZENE SULPHONIC ACID		mg/kg			
	PHENYL ESTER					
45	(3-AMINOPHENYL)	26408-93-5	1400			5(f)
	BENZENESULFONATE		mg/kg			
46	4 -AMINO BENZOIC ACID	619-45-4	1700			5(f)
	METHYL ESTER		mg/kg			

	Total			1601.4	18430	20031.4	
	Products						
	R&D and Pilot scale			00	30	30	
С	R&D PRODUCTS				1		
	BENZOIC ACID (AMBA)		mg/kg				
58	4-ACETYL-2-METHYL	55860-35-0	1400				5(f)
	O BENZENE (DCFBB)		mg/kg				
57	DICHLOROFLUOROBROM	17318-08-0	1400				5(f)
	GLYCINE (PCPG)		mg/kg				
56	PARA CHLORO PHENYL	6212-33-5	1400				5(f)
			mg/kg				
55	HYDROXY ESTER (HES)	27513-35-5	1400	]			5(f)
	PHENOL (4-CAP)		mg/kg				
54	4-CHLORO,2 AMINO	95-85-2	1400	1			5(f)
			mg/kg				
53	M-ANISIDINE	536-90-3	1400	1			5(f)
			mg/kg				
52	P-TOLUIDINE	106-49-0	1400	1			5(f)
			mg/kg				
51	4-AMINO BENZAMIDE	2835-68-9	1500	1			5(f)
			mg/kg				- ( /
50	SPIROPIDION (SPID)	1229023-00-0	1000	-			5(b)
15		1,30 10 3	mg/kg				5(1)
49	2-PHENOXYETHYLAMINE	1758-46-9	800	_			5(f)
40		439-00-9	mg/kg				5(1)
18		459-60-9	3700	_			5(f)
47	Z-I LOOKOANISOLL	521-21-0	3700 mg/kg				5(1)
17		371-71-8	3700				5(f)

D	BY-PRODUCTS				
1	Dil. Hydrochloric Acid	1050	12090	13140	
2	Dil. Sulphuric Acid	750	8630	9380	
3	Dil. Acetic acid	00	22000	22000	
4	Potassium salt	00	11400	11400	

#### **2.8 DETAILS ON RAW MATERIALS, SOURCE AND STORAGE WITHIN THE PREMISES.** TABLE 2.3

#### LIST OF RAW MATERIAL

S. N	Proposed products list for EC	Raw material	CAS	ТРА	Mode of Transport	Distance from	Type of Linkage
о.						project site (Km)	
Α	PHYTO CHEMICALS						
1	COLCHICINE	Caustic Soda	1310-73-2	1.134	Road	157	Local
		Hyflo	68855-54- 9	1.778	Road	1060	Local
		Sodium Chloride	7440-23-5	1.638	Road	1060	Local
		Acetic acid	64-19-7	0.196	Road	1060	Local
		Activated carbon	7440-44- 0.	0.224	Road	60	Local
		Chloroform	67-66-3	10.64	Road	157	Local
		DNS	609-99-4	11.97	Road	1060	Local
		Ethyl acetate	141-78-6	5.67	Road	60	Local
		Hexane	110-54-3	1.778	Road	1060	Local
		Methanol	67-56-1	15.12	Road	1060	Local
2	THIOCOICHICOSIDE	Caustic Soda	1310-73-2	3.5	Road	157	Local

3

		Calcium carbonate	471-34-1	2.52	Road	160	Local
		Hyflo	68855-54- 9	1.08	Road	1060	Local
		Sodium Carbonate	497-19-8	2.31	Road	1060	Local
		Sodium Chloride	7440-23-5	9.11	Road	1060	Local
		Sodium methyl mercaptide	5188-7-8	1.92	Road	1060	Local
		Sodium Hypochlorite	7681-52-9	16.91	Road	407	Local
		Acetic acid	64-19-7	2.13	Road	1060	Local
		Activated Carbon	7440-44- 0.	0.62	Road	60	Local
		Chloroform	67-66-3	65.8	Road	157	Local
		DNS	609-99-4	42.7	Road	1060	Local
		Ethyl acetate	141-78-6	3.36	Road	60	Local
		G.S. Seed	NA	377.86	Road	50	Local
		Hexane	110-54-3	4.72	Road	1060	Local
		Isopropyl alcohol	67-63-0	7.49	Road	60	Local
		Methanol	67-56-1	16.56	Road	1060	Local
В	ORGANIC CHEMICALS						
3	2-(1- CYLCOCHEXENY)LET	Cyano Acetic acid	99 372-09- 8	20520	Sea/Air	8597	Import
	HYLAMINE (CHEA)	Cyclohexanone	108-94-1	26000	Road	60	Local
		Hydrogen	1333-74-0	1300	Road	157	Local
		Ammonium acetate	631-61-8	140	Road	60	Local

					•			
			Toluene	108-88-3	120	Road	60	Local
			Ammonium gas	7664-41-7	1300	Road	30	Local
			Raney cobalt	7440-48-4	60	Road	1060	Local
	4	3-[1,3,3-TRIS-(2-	ТВА	75-65-0	9900	Road	1060	Local
			Acrylonitrile	107-13-1	19000	Road	1060	Local
		PROPIONIC ACID	Potassium Hydroxide	1310-58-3	1000	Road	1060	Local
		()	Cyclohexanone	108-94-1	7800	Road	1060	Local
			Caustic soda	1310-73-2	7500	Road	157	Local
			Hydrochloric acid	7647-01-0	20000	Road	157	Local
			Hyflo+ Activated carbon	7440-44- 0.	400	Road	1060	Local
	5	SUBSTITUTED ARYL ALKYL AMINE	4-Methoxy phenyl acetone	122-84-9	18220	Road	1060	Local
			Mono Ethyl amine	75-04-7	13340	Road	1060	Local
			Hydrogen	1333-74-0	300	Road	157	Local
			Pd/c	7440-05-3	40	Air	1792	Local
Ī	6	2-AMINO-2-	Toluene	108-88-3	16880	Road	60	Local
		PHENYLBUTYRIC	DMS	77-78-1	13600	Road	60	Local
		ACID SODIUM SALT	Methanol	67-56-1	4000	Road	1060	Local
		DIMETHYL 2-(N,N- DIMETHYLAMINO)-	Ammonium carbonate	506-87-6	23600	Road	60	Local
		(TR1600/TR1400)	Sodium hydroxide	1310-73-2	33200	Road	157	Local
			Formic acid	64-18-6	16000	Road	60	Local

		Formaldehyde	50-00-0	19800	Road	60	Local
		Propiophenone	93-55-0	14800	Road	1060	Local
		Sodium cyanide	143-33-9	5020	Road	1346	Local
7	4-CHOLO-BUTYL VERATRATE	3,4-Dimethoxy Benzoic acid	93-07-2	21000	Road	1060	Local
		Thionyl chloride	98 7719- 09-7	17600	Road	1060	Local
		EDC	25952-53- 8	21000	Road	60	Local
		Tetrahydrofuran	109-99-9	11000	Road	60	Local
		Zinc chloride	7646-85-7	1000	Road	60	Local
		Sodium bicarbonate	144-55-8	3400	Road	60	Local
		Toluene	108-88-3	12600	Road	60	Local
8	4-(2-AMINOETHYL)-	Vanilin	121-33-5	21200	Sea	8192	Import
	2-METHOXYPHENOL	Sodium cyanide	143-33-9	9600	Road	1346	Local
	(AE PHENOL)	Sulphuric acid	7664-93-9	19600	Road	280	Local
		MTBE	1634-04-4	21200	Road	813	Local
		Chloro acetic acid	79-11-8	400	Road	60	Local
		Methanol	67-56-1	21600	Road	1060	Local
		Palladium carbon	7440-05-3	400	Road	1792	Local
		Sodium hydroxide	1310-73-2	10600	Road	157	Local
		Hydrogen	1333-74-0	800	Road	157	Local
9	METHYL-2 PHENOXY	Phenol	108-95-2	16800	Road	1060	Local
	ISOBUTYRATE	Sodium methoxide	108-95-2	10200	Road	1060	Local
		Sourann methoxide					

		Methyl -2-Bromo iso utyrate	547-63-7	23400	Road	1060	Local
		Caustic soda	1310-73-2	2800	Road	157	Local
10	(4R)- 2-	D-serine	312-84-5	16020	Sea	8100	Import
	OXOOXAZOLIDINE -	Dimethyl carbonate	616-38-6	13780	Road	1060	Local
	4- CARBOXYLIC ACID (COX)	Potassium methoxide 32 % in Methanol	865-33-8	10680	Road	1060	Local
		Hydrochloric acid	7647-01-0	5560	Road	157	Local
		МІВК	108-10-1	7260	Road	1060	Local
		Acetone	67-64-1	22200	Road	1060	Local
11	4-t BUTYLPHENYLACETO	4-tert butylbenzaldehyde	97 939-97- 9	18800	Road	1660	Local
	NITRILE	Hydrogen	1333-74-0	200	Road	157	Local
		Hydrochloric Acid	7647-01-0	4200	Road	157	Local
		Sodium cyanide	143-33-9	5600	Road	1660	Local
12	1-BROMO-3,5-	3,5 Dichloroaniline	626-43-7	14400	Road	1660	Local
	DICHLOROBENZENE	Hydrobromicacid	7647-01-0	14400	Road	1060	Local
	(DCBB)	Sodium nitrite	7632-00-0	6200	Road	1451	Local
13	4-CHLORO-2-NITRO BENZOIC ACID	4-Chloro-2-Nitro toluene	89-59-8	15200	Road	1660	Local
		Potasium permanganate	7722-64-7	28400	Road	1060	Local
14	4-BROMO PHENYL PROPANOL (BPP)	4-Bromo benzyl bromide	589-15-1	15200	Sea/Air	8597	Import

		Diethyl malonate	105-53-3	9800	Road	1207	Local
		Sodium methoxide	124-41-4	3200	Road	1060	Local
		Benzene	71-43-2	2000	Road	1060	Local
		potassium Hyodroxide	1310-58-3	4200	Road	1060	Local
		Hydrochloric acid	7647-01-0	22600	Road	157	Local
		Bromo phenyl propionic acid	1643-30-7	15600	Sea	8597	Import
		Thionyl chloride	7719-09-7	28000	Road	1660	Local
		Methanol	67-56-1	14000	Road	1060	Local
15	2-CHLORO-5- CHLOROMETHYL-	2,3-Dichloro propane	78-88-6	16600	Sea	8597	Import
	1,3-THIAZOLE	Sodium Thiocyanate	540-72-7	12200	Sea	8597	Import
	(CCMT)	Sulfuryl chloride	7791-25-5	36000	Road	1660	Local
16	TETRACHLORO BUTYRIC ACID	Carbon tetra chloride	56-23-5	13600	Road	157	Local
	(TCBA)	Acetonitrile	75-05-8	4800	Road	1060	Local
17	IONOPHOR	Dicyclohexyl amine	101-83-7	14000	Road	1060	Local
		Chloro acetyl chloride	98 79-04-9	8800	Road	1660	Local
18	4-BROMO-2-FLUORO HYDROXY BIPHENYL	4-bromo-2- Fluoro Biphenyl	41604-19- 7	17200	Road	8597	Local
	(BFB)	Acetylchlorite	75-36-5	5400	Road	1060	Local
		Bromine	7726-95-6	2000	Road	1060	Local
		Nitro benzene	98-95-3	2000	Road	1660	Local
		Hydrogen peroxide	7722-84-1	22200	Road	157	Local

		Sodium Hydroxide	1310-73-2	5400	Road	157	Local
19	PARA METHYL	Toluene	108-88-3	11000	Road	60	Local
	PHENCYL CHLORIDE (PMPC)	Chloro acetyl chloride	98 79-04-9	13400	Road	1660	Local
20	20 SODIUM 4-(2,4- DICHLOR M-	2,6-Dichloro toluene	99 118-69- 4	10000	Road	1660	Local
	TOLUOYL)-1,3-DI METHYL -5-	Carbon tetrachloride	99 56-23-5	9600	Road	157	Local
	PYRAZOLATE (MY710Na)	1,3-Dimethyl pyrazolone	2749-59-9	7000	Sea	8597	Import
		Sodium carbonate	497-19-8	6600	Road	39	Local
21	2- TRIFLUOROMETHYL BENZENE	2- Aminobenzotrifluori de	88-17-5	13200	Road	1030	Local
	SULFONAMIDE	Sodium nitrite	7632-00-0	11200	Road	1451	Local
	(TBSA)	Thionyl chloride	98 7719- 09-7	9800	Road	1660	Local
		Sodium Meta bi sulphite	7681-57-4	2000	Road	60	Local
		HCI	7647-01-0	58200	Road	157	Local
		Ammonia solution	1336-21-6	21400	Road	30	Local
22	METHYL CARBAZATE	Dimethyl carbonate	616-38-6	20000	Road	60	Local
		Hydrazine hydrate	7803-57-8	11200	Road	60	Local
23	TETRALONE IMINE	1-Naphthol	90-15-3	10000	Sea/Air	8597	Import
		1,2-dichloro benzene	95-50-1	10000	Sea/Air	8597	Import

24	24 4-[2(4-CHLORO-2,6- DIMETHYLPHENYL)A CETTYL]METHYLAMI NO]-1-METHOXY-N- PHENYLPIPERIDIN-4- CARBOXAMIDE	MTA HCl	593-56-6	11200	Sea/Air	8597	Import
		Methyl acrylate	96-33-3	15800	Sea/Air	8597	Import
		CDPAA	76811-97- 7	10800	Sea/Air	8597	Import
		Phenyl isonitrile	931-54-4	7600	Sea/Air	8597	Import
		Methyl amine	74-89-5	4200	Road	1060	Local
		Dimethylaniline	75-21-8	4000	Road	60	Local
		Chlorobenzene	108-90-7	6000	Sea/Air	8597	Import
		Sodium bromide	7647-15-6	2000	Sea/Air	8597	Import
		Magnesium	7439-95-4	6000	Road	606	Local
		Ethylene oxide	75-21-8	3000	Road	1060	Local
		4-Acetamido TEMPO catalyst	14691-89- 5	200	Sea/Air	8597	Import
		Psuedocumene	95-63-6	400	Road	1008	Local
		MTAAC	79-20-9	4400	Road	1060	Local
25	3(2,2,2-	Trifluoroethanol	75-89-8	11200	Sea/Air	8597	Import
	TRIFLUOROETOXY)2- PYRIDINE	Methanesulfonyl chloride	124-63-0	12800	Sea/Air	8597	Import
	SULFONAMIDE	Triethylamine	121-44-8	11400	Road	1060	Local
	SODIUM SALI	Furfurylomine	617-89-0	14800	Road	1060	Local
	(SOLFONAIVIDE)	n-Butanol	71-36-3	2000	Road	1060	Local
		Chlorine gas	7782-50-5	15800	Road	157	Local
		Sodium hydroxide	1310-73-2	35000	Road	157	Local

		Sodium Hypo chloride	7681-52-9	11600	Road	157	Local
		Hydrochloric acid	7647-01-0	25600	Road	157	Local
		Ethyl ester (TFEMS)	533-23-3	16800	Sea/Air	8597	Import
		lsopropyl mercaptan	75-33-2	6000	Road	1060	Local
		n-Heptane	142-82-5	2000	Road	1060	Local
		pottasium hydroxide	1310-58-3	4400	Road	60	Local
		Ammonia	1336-21-6	1200	Road	30	Local
26	5-CHLORO-8- HYDROXY-	4 Chloro 2-amino phenol	95-85-2	16000	Road	1660	Local
	QUINOLINE (CHQ)	Glycerol	56-81-5	10200	Road	1060	Local
		Sulphuric acid	7664-93-9	41020	Road	280	Local
		Sodium hydroxide	1310-73-2	4400	Road	157	Local
		Acetone	67-64-1	20000	Road	1660	Local
27	PHENYLGUANIDINE	Aniline	62-53-3	10600	Road	1660	Local
	CARBONATE (PGC)	Hydrochloric Acid	7647-01-0	4200	Road	157	Local
		30% Cyanamide soln	420-04-2	4800	Sea/Air	8597	Import
		Sodium carbonate	497-19-8	6000	Road	39	Local
28	FE (III) ACETYL ACETANOATE	Acetylacetone	123-54-6	17000	Road	60	Local
		Iron III chloride	7705-08-0	9200	Road	1660	Local

		Ammonium hydroxe soln	1336-21-6	2000	Road	30	Local
29	MANGANESE(II)HEX ACYANOMANGANAT	Manganese acetate tetra hydrate	6156-78-1	13000	Road	1060	Local
	E(II)SODIUM SALT (ANODE)	Sodium cyanide	143-33-9	9400	Road	1660	Local
30	IRON(II)MANGANESE (II)	Iron sulfate hydrate	13463-43- 9	13400	Road	1660	Local
	HEXACYANOFERRAT E(II) SODIUM SALT TETRADECAHYDRAT	Sodium Ferro cyanide decahydrate	14434-22- 1	4200	Road	1660	Local
	E (CATHODE)	Manganese sulfate monohydrate	10034-96- 5	2800	Road	60	Local
		Sodium sulfate	7757-82-6	2200	Road	60	Local
31	1-CHLORO-3-	Nitro benzene	98-95-3	15600	Road	1660	Local
	NITROBENZENE	Chlorine	7782-50-5	9000	Road	157	Local
		Sodium hydroxide	1310-73-2	5000	Road	157	Local
32	2,4,6- TRICHLORO	Aniline	62-53-3	9480	Road	1660	Local
	ANILINE	Chlorine	7782-50-5	21640	Road	157	Local
		Sodium hydroxide	1310-73-2	12220	Road	157	Local
33	PIVALOYL CHLORIDE	Thionyl chloride	98 7719- 09-7	19720	Road	1660	Local
		Pivalic Acid	75-98-9	16920	Road	1060	Local
		Sodium hydroxide	1310-73-2	6600	Road	157	Local

34	5-CHLORO VALEROYL CHLORIDE	Aluminium chloride powder	7446-70-0	14000	Road	1660	Local
		Valeroyl chloride	638-29-9	13600	Sea/Air	8597	Import
		Solvent (MCB)	108-90-7	13600	Road	60	Local
35	4-FLUORO PHENYL ACETIC ACID	Para fluorobenzaldehyde	459-57-4	16000	Sea/Air	8597	Import
		H2 gas	1333-74-0	200	Road	157	Local
		Phosphorus tribromide	7789-60-8	11800	Sea/Air	8597	Import
		Soda ash	497-19-8	5000	Road	39	Local 60 Local
		Sodium cyanide	143-33-9	6400	Road	1660	Local
		Sodium hydroxide	1310-73-2	5200	Road	157	Local
		Sulfuric acid	7664-93-9	6400	Road	280	Local
36	4-BROMO	FluoroBenzene	462-06-6	10980	Sea/Air	8597	Import
	FLUOROBENZENE	Bromine	7726-95-6	18260	Road	1060	Local
		Sodium hydroxide	1310-73-2	4580	Road	157	Local
37	3-FLUOROTOLUENE	m-Toluidine	108-44-1	19460	Sea/Air	8597	Import
		HF	7664-39-3	3620	Road	269	Local
		Solid NaNO2	7632-00-0	12520	Road	1660	Local
		Hydrochloric acid	1310-73-2	6620	Road	157	Local
38	4-FLUOROTOLUENE	P-Toluidine	106-49-0	19460	Sea/Air	8597	Import
		HF	7664-39-3	3620	Road	269	Local
		Solid NaNO2	7632-00-0	12520	Road	1660	Local
		Hydrochloric acid	1310-73-2	6620	Road	157	Local

39	ORTHO NITRO	ONCB	88-73-3	20600	Road	1660	Local
	ANISOLE	Methanol	67-56-1	4180	Road	1060	Local
		Caustic Flakes	1310-73-2	16480	Road	157	Local
40	PARA NITRO	PNCB	100-00-5	20600	Road	1660	Local
	ANISOLE	Methanol	67-56-1	4180	Road	1060	Local
		Caustic Flakes	1310-73-2	16480	Road	157	Local
41	O-CHLORO P-NITRO	P-Nitro Toluene	99-99-0	15980	Road	1660	Local
	TOLUENE	Chlorine gas	7782-50-5	8260	Road	157	Local
		Sodium hydroxide	1310-73-2	4640	Road	157	Local
		Methanol	67-56-1	20000	Road	1060	Local
42	3-AMINO- 4-	3- Nitro -4- Methyl	618-95-1	19140	Sea/Air	8597	Import
	METHYL BENZOIC	Benzoic Acid				4050	
	ACID METHYLESTER	Methanol	67-56-1	6360	Road	1060	Local
		Iron Powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	220	Road	157	Local
43	3-AMINO 4-METHYL BENZOIC ACID	3- Nitro -4- Methyl Benzoic Acid	618-95-1	19140	Sea/Air	8597	Import
	ISOPROPYL ESTER	Iso Propyl Alcohol	67-63-0	6360	Road	60	Local
		Iron Powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	220	Road	157	Local
44	5-AMINO-2-METHYL BENZENE SULPHONIC ACID	2- Methyl -5- Nitro Benzene Sulphonyl Chloride	1694-92-4	17000	Sea/Air	8597	Import
	PHENYL ESTER	Phenol	108-95-2	6780	Road	1060	Local
		Sodium Hydroxide	1310-73-2	14140	Road	157	Local

		Iron Powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	140	Road	157	Local
		Sulphuric acid	7664-93-9	13800	Road	280	Local
45	(3-AMINOPHENYL)	3- Nitro Phenol	554-84-7	11340	Road	1660	Local
	BENZENESULFONAT E	Benzene Sulfonic Acid	98-11-3	14400	Road	1660	Local
		Sodium Hydroxide	1310-73-2	14520	Road	157	Local
		Iron Powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	160	Road	157	Local
		Sulfuric acid	7664-93-9	13800	Road	280	Local
46	4 -AMINO BENZOIC ACID METHYL ESTER	4 - Nitro Benzoic Acid	98 62-23-7	23020	Road	1660	Local
		Methanol	67-56-1	4420	Road	1060	Local
		Sulfuric Acid	7664-93-9	29744	Road	280	Local
		Iron Powder	1310-73-2	20	Road	1660	Local
		Solvent - ODCB	497-19-8	28000	Road	1660	Local
		Sodium Hydroxide	1310-73-2	24244	Road	157	Local
47	2-FLUOROANISOLE	2-Bromo Fluoro Benzene	95-50-1	27760	Sea/Air	8597	Import
		Sodium Methoxide	124-41-4	8560	Road	1060	Local
48	4-FLUOROANISOLE	4-Bromo Fluoro Benzene	460-00-4	27760	Sea/Air	8597	Import
		Sodium Methoxide	124-41-4	8560	Road	1060	Local
49	2-	Acetonitrile	75-05-8	5980	Road	1060	Local
	PHENOXYETHYLAMI	Ethanolamine	141-43-5	8920	Road	1060	Local

	NE	Phenol	108-95-2	13740	Road	1060	Local
		NaOH	1310-73-2	5880	Road	157	Local
		Methanol	67-56-1	20000	Road	1060	Local
50	SPIROPIDION (SPID)	Diamide	10465-78- 8	27400	Sea/Air	8597	Import
		NMP (N-Methyl pyrolidine)	872-50-4	31600	Sea/Air	8597	Import
		Potassium hydroxide 85 %	872-50-4	4400	Road	60	Local
		DDOL (1- Dodecanol)	112-53-8	47000	Sea/Air	8597	Import
		MCH (Methylcyclohexane )	108-87-2	4800	Sea/Air	8597	Import
		ECF (Ethyl chloroformate)	541-41-3	8200	Road	1660	Local
		Caustic lye 25%	1310-73-2	4000	Road	157	Local
		32% Hcl	7647-01-0	1200	Road	157	Local
		Sodium chloride 25 %	7647-14-5	12400	Road	1660	Local
		BHT (Butylated hydroxytoluene) (d : 1.048)	128-37-0	20	Sea/Air	8597	Import
		Me-THF (2- Methyltetrahydrofu ran) (d: 0.854)	96-47-9	37200	Sea/Air	8597	Import

		MCH-2 (Methylcyclohexane ) (d : 0.77)	108-87-2	42600	Sea/Air	8597	Import
51	4-AMINO	4-Nitro benzamide	2835-68-9	25140	Sea/Air	8597	Import
	BENZAMIDE	Iron powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	300	Road	157	Local
52	P-TOLUIDINE	P-Nitro Toluene	99-99-0	26600	Road	1660	Local
		Iron powder	7439-89-6	20	Road	1660	Local
		Hydrogen	1333-74-0	400	Road	157	Local
53	M-ANISIDINE	M-Aminophenol	591-27-5	17723	Road	1660	Local
		Acetic Anhydride	108-24-7	18710	Road	1660	Local
		Potassium Carbonate	77-78-1	25282	Road	1660	Local
		Dimethyl Sulphate	584-08-7	23116	Road	1660	Local
		Hydrochloric acid	67-64-1	6689	Road	157	Local
		Sodium Hydroxide	1310-73-2	7340	Road	157	Local
		Ethylene DiChloride	7647-01-0	13760	Road	157	Local
54	4-CHLORO,2 AMINO PHENOL (4-CAP)	Aromatic substituted/ unsubstituted halides		20600	Sea/Air	8597	Import
		Nitric acid	7697-37-2	25000	Road	334	Local
		Sulfuric acid	7664-93-9	24000	Road	280	Local
		Sodium Hydroxide flakes	1310-73-2	22000	Road	157	Local

		Fe powder	7439-89-6	2000	Road	1660	Local
		Con. HCl	7647-01-0	20000	Road	157	Local
		Methylene dichloride	75-09-2	48700	Road	157	Local
55	Hydroxy Ester (HES)	Aliphatic diester	79-20-9	30000	Sea/Air	8597	Import
		Sodium ethoxide	141-52-6	10400	Road	639	Local
		Ethanol	64-17-5	35000	Road	334	Local
		Ethyl acetate	141-78-6	14400	Road	1060	Local
		Xylene	95-47-6	50000	Road	1060	Local
		Sulfuric acid	7664-93-9	20000	Road	280	Local
		Butyl acetate	123-86-4	42400	Road	1060	Local
		Caustic lye (48%)	1310-73-2	50000	Road	157	Local
56	Dichloro Fluoro Bromo Benzene (DCFBB)	Aromatic substituted nitrohalides	1694-92-4	34000	Sea/Air	8597	Import
		Nitric acid	7697-37-2	37000	Road	334	Local
		Sulfuric acid	7664-93-9	38000	Road	280	Local
		Ferric Chloride	7705-08-0	43200	Road	1660	Local
		Chlorine gas	7782-50-5	12000	Road	157	Local
		Potassium Fluoride	7789-23-3	16000	Road	1060	Local
		Tetrabutyl Ammonium Bromide	1643-19-2	4000	Road	1060	Local
		NMP	872-50-4	80000	Sea/Air	8597	Import

		Raney Nickel	7440-02-0	2000	Road	1060	Local
		HBr in Water (48%)	10035-10- 6	20000	Road	1060	Local
		Hydrogen peroxide (50%)	7722-84-1	12000	Road	157	Local
		Copper(I)oxide	1317-39-1	3000	Road	1060	Local
		Sodium nitrite	7632-00-0	24000	Road	1451	Local
		Isopropyl alcohol	67-63-0	100000	Road	1060	Local
		Caustic lye (48%)	1310-73-2	38000	Road	157	Local
57	Para chloro phenyl glycine (PCPG)	4- Chlorobenzaldehyd	97 104-88- 1	15140	Road	1060	Local
		Sodium cyanide	143-33-9	5280	Road	1346	Local
		Ammonium bicarbonate	1066-33-7	8522	Road	1060	Local
		Methanol	67-56-1	20000	Road	1060	Local
		Sodium hydroxide	1310-73-2	4310	Road	157	Local
		Sulphuric acid	7664-93-9	10560	Road	280	Local
58	AMBA: 4-Acetyl-2-	2-Fluorotoluene	95-52-3	12200	Road	1060	Local
	Methyl Benzoic Acid	Acetyl chloride	98 79-04-9	8800	Road	1660	Local
		Sodium Cyanide	1310-73-2	5400	Road	1346	Local
		МІВК	108-10-1	40000	Road	1060	Local
		Sodium hydroxide	1310-73-2	4400	Road	157	Local
# **ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT** Hydrochloric acid 1310-73-2 4000 Road 157 Local

## 2.9 MANUFACTURING PROCESS, CHEMICAL REACTION AND MASS BALANCE OF EACH PRODUCTS

#### i) PHYTO CHEMICALS

#### 1) COLCHICINE AND THIOCOLCHICOSIDE

Solvent extraction of Gloriosa superba seed followed by removal of solvent (concentration) by distillation will give the plant seed concentrate, which mainly contains Colchicine and Colchicoside. These two components were then separated by selective solvent extraction. Crude Colchicoside was converted by a synthetic reaction to Thiocolchicoside using Sodium methylmercaptide as reagent.

## Colchicine Chloroform Concentrate



#### **Material Balance**

1.Product: Colchicine					
Material balance Per kg output o	of product				
Input	Input qty in Kg	Output	Out put in Kg		
Caustic Soda	0.810	Product	1.000		
Hyflo	1.270	Solvent recovery	5.100		
Sodium Chloride	1.170	Spent solvent (Mixed Solvent)	1.250		
Acetic acid	0.140	Effluent Streams	308.220		
Activated carbon	0.160				
Chloroform	7.600				
DNS	8.550				
Ethyl acetate	4.050				
Hexane	1.270				
Methanol	10.800				
Water	279.750				
Total Input	315.570	Total Output	315.570		

#### **Material Balance**

#### 2) Product: Thiocolchicoside

Material balance Per kg output of product				
Input	Input qty in Kg	Output	Out put in Kg	
Caustic Soda	2.500	Product	1.000	

Calcium carbonate	1.800	Solvent recovery	90.405
Hyflo	0.770	Spent solvent (Mixed Solvent)	10.046
Sodium Carbonate	1.650	Solid waste	269.059
Sodium Chloride	6.510	Effluent Streams	308.230
Sodium methyl mercaptide	1.370		
Sodium Hypochlorite	12.080		
Acetic acid	1.520		
Activated Carbon	0.440		
Chloroform	47.000		
DNS	30.500		
Ethyl acetate	2.400		
G.S. Seed	269.900		
Hexane	3.370		
Isopropyl alcohol	5.350		
Methanol	11.830		
Water	279.750		
Total Input	678.740	Total Output	678.740

#### 3) Organic Chemicals

#### 3) CHEA

Cyclohexanone is condensed with cyanoacetic acid to get Cyclohexenylacetonitrile, which is then hydrogenated to get Cylcochexenylethylamine. The product is purified by fractional distillation.

3.Product: CHEA				
Material balance Per kg output of	product			
Input	Input qty in Kg	Output	Out put in Kg	
Cyano Acetic acid	1.026	Product	1.000	
Cyclohexanone	1.300	Solvent recovery	0.004	
Hydrogen	0.065	Solid waste	0.966	
Ammonium acetate	0.007	Effluent Streams	1.000	
Toluene	0.006	Distillation residues	0.002	
Ammonium gas	0.065			
Raney cobalt	0.003			
Water	0.500			
Total Input	2.972	Total Output	2.972	

### 4) T4C

Cyclohexanone is condensed with acrylonitrile in the presence of potassium hydroxide using tert. butyl alcohol as solvent. The resulting tetra cyano compound is hydrolysed with sodium hydroxide. The product T4C is isolated by acidification of the reaction mixture.



4.Product: T4C					
Material balance Per kg output of pro	oduct				
Input	Input qty in Kg	Output	Out put in Kg		
ТВА	0.495	Product	1.000		
Acrylonitrile	0.950	Solvent recovery	0.347		
Potassium Hydroxide	0.050	Spent solvent (TBA)	0.149		
Cyclohexanone	0.390	Solid waste	1.764		
Caustic soda	0.375	Effluent Streams	1.820		
Hydrochloric acid	1.000	Spent Hyflo	0.100		
Hyflo+ Activated carbon	0.020	Spent Carbon	0.100		
Water	2.000				
Total Input	5.280	Total Output	5.280		

#### 5) SUBSTITUTED ALKYL ARYL AMINE

4-MPA is reacts with Mono Ethyl amine abd followed by reductive ammonisation using ethylamine and 5% palladium on carbon to give Substituted Alkyl Aryl amine

-

C₁₀H₁₂O₂ + Mol. Wt.: 164.20

C₂H₇N Mol. Wt.: 45.08 C₁₂H₁₉NO Mol. Wt.: 193.29

5.Product: Substituted Alkyl Aryl amine					
Material balance Per kg output of pr	oduct				
Input	Input qty in Kg	Output	Out put in Kg		
4-Methoxy phenyl acetone	0.911	Product	1.000		
Mono Ethyl amine	0.667	Solvent recovery	0.197		
Hydrogen	0.015	Spent solvent (Mono Ethyl amine)	0.200		
Pd/c (Catalyst)	0.002	Effluent Streams	0.198		
Total Input	1.595	Total Output	1.595		

## 6) TR-1600/TR-1400:

Toluene reacts with DMS is presence of Ammonium carbonate and Sodium cyanide followed Methylation reaction to give **TR-1600** 



6. Product: TR 1600/TR 1400					
Material balance Per kg output	of product				
Input	Input qty in Kg	Output	Out put in Kg		
Toluene	0.844	Product	1.000		
DMS	0.680	Spent solvent (Methanol)	0.197		
Methanol	0.200	Contaminated aromatic, aliphatic or naphthenic solvents may or may not fit for reuse (Toluene)	0.003		
Ammonium carbonate	1.180	Solid waste	1.645		
Sodium hydroxide	1.660	Effluent Streams	8.500		
Formic acid	0.800				
Formaldehyde	0.990				
Propiophenone	0.740				
Sodium cyanide	0.251				
Water	4.000				
Total Input	11.345	Total Output	11.345		

## 7) 4-CHLORO-BUTYL VERATRATE

Condensation of 3,4-Dimethoxybenzoic acid with Tetrahydrofuran in the presence of zinc chloride gives 4-Chlorobutyl veratrate.

$C_9H_{10}O_4$	SOCI2	C ₉ H ₉ ClO ₃	7nCl2/THF	C ₁₃ H ₁₇ ClO ₄
Mol. Wt.: 182.17	Toluene	Mol. Wt.: 200.62		Mol. Wt.: 272.72

7.Product: : 4-Chloro-butyl veratrate					
Material balance Per kg output of	product				
Input	Input qty in Kg	Input qty in Kg Output			
3,4-Dimethoxy Benzoic acid	1.050	Product	1.000		
Thionyl chloride	0.880	Solvent recovery	1.080		
EDC	1.050	Spent solvent (Mixed solvent)	0.600		
Tetrahydrofuran	0.550	Solid waste	1.700		
Zinc chloride	0.050	Effluent Streams	5.000		
Sodium bi carbonate	0.170				
Toluene	0.630				
Water	5.000				
Total Input	9.380	Total Output	9.380		

## 8) AE PHENOL

Vanillin reacts with sodium cyanide to give cyanohydrin and followed by reduction to give Substituted amino ethyl phenol.

	NaCN	C ₉ H ₉ NO ₃	Pd/c	C ₉ H ₁₃ NO ₂
C ₈ H ₈ O ₃ Mol. Wt.: 152.15	H2SO4	Mol. Wt.: 179.17	Methanol	Mol. Wt.: 167.21
			H2SO4	

8.Product: AE PHENOL					
Material balance Per kg output of p	product				
Input	Input qty in Kg	Output	Out put in Kg		
Vanilin	1.060	Product	1.000		
Sodium cyanide	0.480	Solvent recovery	1.520		
Sulphuric acid	0.980	Spent solvent (Methanol)	0.620		
МТВЕ	1.060	Solid waste	2.110		
Chloro acetic acid	0.020	Effluent Streams	10.500		
Methanol	1.080	Spent Catalyst	0.00200		
Palladium carbon (Catalyst)	0.020	Recovered catalyst	0.01800		
Sodium hydroxide	0.530				
Hydrogen	0.040				
Water	10.500				
Total Input	15.770	Total Output	15.770		

## 9) Methyl 2 phenoxy isobutyrate:

Phenol reacts with methyl 2 –bromo isobutyrate followed phenol and sodium methoxide reaction to give Methyl 2 phenoxy isobutyrate

 $\begin{array}{cccc} C_{6}H_{6}O & + & C_{5}H_{9}BrO_{2} & & \\ Mol. Wt.: 94.11 & Mol. Wt.: 181.03 & & Toluene & & C_{11}H_{14}O_{3} \\ & & Mol. Wt.: 194.23 \end{array}$ 

9.Product: Methyl 2 phenoxy isobutyrate					
Material balance Per kg output of pr	oduct				
Input	Input qty in Kg	Output	Out put in Kg		
Phenol	0.840	Product	1.000		
Sodium methoxide	0.510	Solvent recovery	0.660		
Toluene	0.880	Spent solvent (Toluene)	0.216		
Methyl -2-Bromo iso utyrate	1.170	Contaminated aromatic, aliphatic or naphthenic solvents may or may not fit for reuse (Toluene)	0.004		
Caustic soda	0.140	Solid waste	0.360		
Water	3.500	Effluent Streams	4.800		
Total Input	7.040	Total Output	7.040		

## 10) (4R)-2-OXOOXAZOLIDINE-4-CARBOXYLIC ACID (COX)

D-Serine reacts with DMC in presence of potassium methoxide to give Potassium salt and followed with addition of MIBK and reaction with HCl to give COX.

C ₃ H ₇ NO ₃	+	$C_3H_6O_3$	+	CH ₃ O K	$\longrightarrow$	C ₄ H ₄ KNO ₄	+	3	CH ₄ O ₁	
Mol. Wt.: 105.	. ⁰⁹ M	ol. Wt.: 90.	08	Mol. Wt.:	70.1	Mol. Wt.: 169.	18		Mol. Wt.: 3	32.0
C ₄ H	H ₄ KNO ₄	+ H	ICI			C ₄ H ₅ NO ₄	+		KCI	
Mol. V	Vt.: 169	.18 Mol.	Wt.:	36.5		Mol. Wt.: 131.09	Ð	Mc	ol. Wt.: 74.5	,

10.Product: 4-R-2-Oxaoxazolidine-4-Carboxylic Acid (COX)				
Material balance Per kg output of proc	duct			
Input	Input qty in Kg	Output	Out put in Kg	
D-serine	0.801	Product	1.000	
DMC	0.689	Solvent recovery	2.207	
Potassium methoxide	0.534	Solid waste	0.568	
Hydrochloric acid	0.278			
МІВК	0.363			
Acetone	1.110			
Total Input	3.775	Total Output	3.775	

## 11) 4-t-BUTYLPHENYL ACETONITRILE (CP)

t-Butyl benzaldehyde via reduction followed by cyanation methodology to give 4-(t-Butyl phenyl acetonitrile

 $\begin{array}{c} C_{11}H_{14}O\\ Mol. Wt.: 162.23 \end{array} \xrightarrow{i) Al(OiPr)_{3,}IPA} C_{11}H_{15}Cl\\ \hline Mol. Wt.: 182.69 \end{array} \xrightarrow{NaCN/TBAB} C_{12}H_{15}N\\ \hline Mol. Wt.: 173.25\\ \hline Toluene/H_2O \end{array}$ 

11.Product: 4-Tert Butylphenyl Acetonitrile						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
4-tert butylbenzaldehyde	0.940	Product	1.000			
Hydrogen	0.010	Solid waste	0.580			
Hydrochloric Acid	0.210	Effluent Streams	0.960			
Sodium cyanide	0.280					
Water	1.100					
Total Input	2.540	Total Output	2.540			

## 12) 1-BROMO 3-5 DICHLOROBENZENE (DCBB)

Bromination of 3,5-dichloroaniline using hydrogen bromide in presence of cupric bromide to give 1-bromo-3,5-dichlorobenzene



12.Product: DCBB-(1 Bromo 3-5 Dichlorobenzene)							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
3,5 Dichloroaniline	0.720	Product	1.000				
Hydrobromicacid	0.720	Solid waste	0.550				
Sodium nitrite	0.310	Effluent Streams	0.160				
Water	0.080	Gaseous Emission (Nitrogen)	0.120				
Total Input	1.830	Total Output	1.830				

#### 13) 4-CHLORO 2-NITROBENZOIC ACID

Oxidation of 4-chloro-2-nitro toluene to give 4-chloro-2-nitro benzoic acid

 $\begin{array}{ccc} C_{7}H_{6}CINO_{2} & \xrightarrow{KMnO_{4}} & C_{7}H_{4}CINO_{4} \\ Mol. Wt.: 171.58 & Na_{2}CO_{3} & Mol. Wt.: 201.56 \end{array}$ 

13.Product: 4-Chloro-2-Nitro Benzoic Acid					
Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg		
4-Chloro-2-Nitro toluene	0.760	Product	1.000		
Potasium permanganate	1.420	Solid waste	1.180		
water	1.060	Effluent Streams	1.060		
Total Input	3.240	Total Output	3.240		

#### 14) 2-(4-BROMO PHENYL) PROPANOL (BPP)

Dehydrohalogenation reaction of 4-Bromo benzylbromide and diester followed by hydrolysis and reduction using sodium bromohydride gives BPP.

 $\begin{array}{ccc} C_{10}H_{11}BrO_2 & \xrightarrow{\text{NaBH4}} & C_9H_{11}BrO \\ \text{Mol. Wt.: 243.10} & \text{THF} & C_9H_{11}BrO \\ \text{Mol. Wt.: 215.09} \end{array}$ 

14.Product: 2-(4-Bromo Phenyl) Propanol						
Material balance Per kg output of product						
Input	Input qty	Output	Out put			
	in Kg		in Kg			
4-Bromo benzyl bromide	0.760	Product	1.000			
Diethyl malonate	0.490	Solvent recovery	1.680			
Sodium methoxide	0.160	Solid waste	1.660			
Water	2.520	Effluent Streams	3.700			
Benzene	0.100	Gaseous Emission (CO2)	0.190			
potassium Hyodroxide	0.210	Distillation residues	0.020			
Hydrochloric acid	1.130					
Bromo phenyl propionic acid	0.780					
Thionyl chloride	1.400					
Methanol	0.700					
Total Input	8.250	Total Output	8.250			

## 15) 2-CHLORO-5-CHLOROMETHYL -1,3, THIAZOLE (CCMT)

2,3-Dichloropropene react with sodium thiocyanate /TEBA to give 2-Chloroallyl isothiocyante, which was treated with sulfuryl chloride to yield 2-Chloro-5-chloromethyl 1,3-thiazole.

 $\begin{array}{c} C_{3}H_{4}Cl_{2} \\ Mol. Wt.: 110.97 \end{array} \xrightarrow{\text{NaSCN/ TEBA}} C_{4}H_{4}ClNS \\ 100^{0}C- 105^{0}C \end{array} \xrightarrow{\text{C}_{4}H_{4}ClNS} Mol. Wt.: 133.60 \end{array} \xrightarrow{\text{C}_{6}H_{5}CH_{3}/ CH_{3}OH} C_{4}H_{3}Cl_{2}NS \\ Mol. Wt.: 134.97 \end{array} \xrightarrow{\text{C}_{6}H_{5}CH_{3}/ CH_{3}OH} C_{4}H_{3}Cl_{2}NS \\ Mol. Wt.: 168.04 \end{array}$ 

15.Product: 2-Chloro-5-Chloro Methyl -1,3, Thiazole(CCMT)				
Material balance Per kg output of pro	oduct			
Input	Input qty in Kg	Output	Out put in Kg	
2,3-Dichloro propane	0.830	Product	1.000	
Sodium Thiocyanate	0.610	Solid waste	1.400	
Water	1.400	Effluent Streams	2.240	
Sulfuryl chloride	1.800			
Total Input	4.640	Total Output	4.640	

#### **16) TETRACHLORO BUTYRIC ACID (TCBA)**

Carbon tetrachloride reacts with acrylonitrile in the presence of acetonitrile/cupric chloride to give tetrachlorobutyro nitrile followed acid hydrolysis to form Tetrachlorobutyric acid.



16.Product: Tetra Chloro Butyric acid (TCBA)						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
Carbon tetra chloride	0.680	Product	1.000			
Acetonitrile	0.240	Solid waste	0.080			
water	1.160	Effluent Streams	1.000			
Total Input	2.080	Total Output	2.080			

## 17) IONOPHOR

Dicyclohexylamine react with chloroacetyl chloride to give 2-chlorodicyclohexylacetamide followed by reaction with triol in the presence sodium hydride and KI to give the ionophor.

			NaH/ KI	
$C_{12}H_{23}N$	+ C ₂ H ₂ Cl ₂ O		<b>&gt;</b>	$C_{48}\Pi_{83}\Pi_{3}U_{6}$
Mol. Wt.: 181.32	Mol. Wt.: 112.94	Mol. Wt.: 257.80 Mol. Wt.: 134.17	THF	WOI. WU 790.19

17.Product: Ionophor						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
Dicyclohexyl amine	0.700	Product	1.00			
Chloro acetyl chloride	0.440	Solid waste	0.11			
Water	1.070	Effluent Streams	1.10			
Total Input	2.210	Total Output	2.210			

#### 18) 4- BROMO-2-FLUORO HYDROXY BIPHENYL (BFB)

Acetylation of 4-bromo-2-fluoro-biphenyl followed by oxidation and hydrolysis gives 4-bromo-2-fluoro-biphenyl-4-ol.

CH3COCL

C₁₂H₈BrF -Mol. Wt.: 251.09 -  $C_{14}H_{10}BrFO$ Mol. Wt.: 293.13 ← C₁₄H₁₀BrFO₂ Mol. Wt.: 309.13

C₁₂H₈BrFO Mol. Wt.: 267.09

18.Product: 4- Bromo-2-Fluoro Hydroxy Biphenyl (BFB)						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
4-bromo-2- Fluoro Biphenyl	0.860	Product	1.000			
Acetylchlorite	0.270	Solid waste	1.360			
Water	2.550	Effluent Streams	2.900			
Bromine	0.100					
Nitro benzene	0.100					
Hydrogen peroxide	1.110					
Sodium Hydroxide	0.270					
Total Input	5.260	Total Output	5.260			

## **19) PARA-METHYL PHENCYL CHLORIDE (PMPC)**

Acetylation reaction between toluene and chlorocetyl chloride gives PMPC.

 $\begin{array}{c} C_{7}H_{8} \\ Mol. Wt.: 92.14 \end{array}^{+} \begin{array}{c} C_{2}H_{2}Cl_{2}O \\ Mol. Wt.: 112.94 \end{array} \xrightarrow{AlCl3} \begin{array}{c} C_{9}H_{9}ClO \\ Mol. Wt.: 168.62 \end{array}$ 

19.Product: TP-Methyl Phencyl Chloride (PMPC)						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
Toluene	0.550	Product	1.000			
Chloro acetyl chloride	0.670	Spent Solvent (Toluene)	0.217			
Water	1.100	Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse (Toluene)	0.002			
Effluent Streams 1.101						
Total Input	2.320	Total Output	2.320			

#### 20) SODIUM 4(2-DICHLOROM-TOLYL)-1,3-DIMETHYL-5-PYRAZOLATE (MY710Na)

Reaction with 2,3-diichloro toluene and 1,3-Dimethyl-5-Pyrozolone in the presence of AlCl3 and CCl4, followed by insitu reaction with sulphuric acid and sodium carbonate to give MY710Na.



20.Product: (Sodium-4-(2,4dichloro-toluoyl)-5-pyrazolate) MY710Na						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
2,6-Dichloro toluene	0.500	Product	1.000			
Carbon tetrachloride	0.480	Solid waste	0.660			
1,3-Dimethyl pyrazolone	0.350	Effluent Streams	1.060			
Sodium carbonate	0.330					
water	1.060					
Total Input	2.720	Total Output	2.720			

#### 21) 2-TRIFLUROMETHYL BENZENE SULFONAMIDE (TBSA)

2-Aminobenzotrifluoride reacts with sodium nitrite/HCl mixture to form Diazonium salt, which was treated with thionyl chloride to give sulphonyl chloride derivative. This was further reacted with ammonia solution to give TBSA.

 $\begin{array}{cccc} C_7H_6F_3N & \underline{NaNO_2} & C_7H_4CIF_3N_2 & \underline{SOCI_2, Water} & C_7H_4CIF_3O_2S \\ \hline Mol. Wt.: 161.12 & HCl, Water & Mol. Wt.: 208.57 & HCl & Mol. Wt.: 244.62 \end{array}$ 

21.Product: 2-Trifluromethyl benzene sulfonamide(TBSA)						
Material balance Per kg output of pr	oduct					
Input	Input qty in Kg	Output	Out put in Kg			
2-Aminobenzotrifluoride	0.660	Product	1.000			
Sodium nitrite	0.560	Solid waste	0.300			
Thionyl chloride	0.490	Effluent Streams	8.343			
Sodium Meta bi sulphite	0.100	Gaseous Emission (Nitrogen)	0.090			
HCI	2.910	BY-Product (Dil. Hcl)	0.657			
Water	4.600					
Ammonia solution	1.070					
Total Input	10.390	Total Output	10.390			

### 22) METHYL CARBAZATE

Dimethyl carbonate reacts with hydrazine hydrate - 80% solution to give Methyl carbazate.

C₃H₆O₃ Mol. Wt.: 90.08 NH2-NH2.H20 60-65°C

C₂H₆N₂O₂ Mol. Wt.: 90.08

22.Product: Methyl Carbazate					
Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg		
Dimethyl carbonate	1.000	Product	1.000		
Hydrazine hydrate	0.560	Solid waste	0.360		
Water	0.200	Effluent Streams	0.400		
Total Input	1.760	Total Output	1.760		

#### **23) TETRALONE IMINE**

1-Naphthol react with 1,2-dichloro benzene in the presence of aluminium chloride to gave tetralone compound. This was followed by reacted withmethoxy methyl amine to yield tetralone imine in good excellent yield.

$C_{10}H_8O$	C ₆ H ₄ Cl ₂	AICI3	Tetralone	MMA	$C_{17}H_{15}CI_{2}N$
Mol. Wt.: 144.17	Mol. Wt.: 147.00 1,2-Dichloro benzene	60 to 65°c	C ₁₆ H ₁₂ Cl ₂ O Mol. Wt.: 291.17	Methanol	Mol. Wt.: 304.21 Tetralonimine

23. Product: Tetralone Imine					
Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg		
1-Naphthol	0.50	Product	1.000		
1,2-dichloro benzene	0.50	Effluent Streams	1.000		
Water	1.00				
Total Input	2.000	Total Output	2.000		

#### 24) DIAMIDE

MTA hydrochloride reacts with Methyl acrylate and followed by chlorination & Bromination to give Diamide.



Material Balance			
24. Product: Diamide			
Material I	balance Per kg	output of product	
Input		Outpu	t
RM	Input qty in Kg	Output	output qty in Kg
MTA HCl	0.56	Product	1
Methyl acrylate	0.79	Solid waste	1.25
Water	3.47	Effluent Streams	5.00
CDPAA	0.54		
Phenyl isonitrile	0.38		
Methyl amine	0.21		
Dimethylaniline	0.20		
Chlorobenzene	0.30		
Sodium bromide	0.10		
Magnesium	0.30		
Ethylene oxide	0.15		
4-Acetamido TEMPO catalyst	0.01		
Psuedocumene	0.02		
MTAAC	0.22		
Total Input	7.25	Total Output	7.25

#### **25)SULFONAMIDE**

TFE reacts with Methane sulfonyl chloride and followed by Chlorination & then Hydrolysis to give Sulphonamide.

C₅H₇NO C₂/NaOH C₅H₆CINO C2H3F3O CH3SO2CI C₂H₃F₃O CH₃SO₂Cl C₃H₅F₃O₃S C₅H₇NO C Mol. Wt.: 100.04 Et₃N/Tol Mol. Wt.: 178.13 ⁺ Mol. Wt.: 97.12 C₅H₄CINO Mol. Wt.: 129.54 Mol. Wt.: 131.56 + SH C3H5F3O3S PEG1500 C-HCLE3NO - Mol. Wt.: 178.13 C₇H₆F₃N₂NaO₃S C₁₀H₁₂F₃NOS • Mol. Wt.: 211.57 K2CO3 Mol. Wt.: 251.27 Mol. Wt.: 278.19

25.Product: Sulfonamide						
Material balance Per kg output of	Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg			
TFE	0.560	Product	1.000			
Methane sulfonyl chloride	0.640	Solvent recovery	6.200			
TEA	0.570	Solid waste	1.800			
Water	3.010	Effluent Streams	2.540			
Furfurylomine	0.740					
n-Butanol	0.100					
Chlorine gas	0.790					
Sodium hydroxide	1.750					
Sodium Hypo chloride	0.580					
Hydrochloric acid	1.280					
Ethyl ester (TFEMS)	0.840					
IPM	0.300					
n-Heptane	0.100					
КОН	0.220					
Ammonia	0.060					
Total Input	11.540	Total Output	11.540			

## 26) CHLORO-8 -HYDROXY QUINOLINE (CHQ)

Reaction of substituted aniline with glycerol in presence of sulfuric acid produces chloro hydroxyquinoline.



26.Product: 5 Chloro-8 -Hydroxy Quinoline (CHQ)					
Material balance Per kg outpu	t of product				
Input	Input qty in Kg	Output	Out put in Kg		
4 CAP	0.800	Product	1.000		
Glycerol	0.510	Solvent recovery	0.800		
Sulphuric acid	2.051	Solid waste	0.781		
Sodium hydroxide	0.220	Effluent Streams	10.331		
Toluene	1.000	Distillation residue	0.200		
Water	9.000	By-Product (Dil. Sulphuric acid)	0.469		
Total Input	13.581	Total Output	13.581		

## 27) PHENYLGUANIDINE CARBONATE (PGC)

Aniline in presence of Concentrated Hydrochloric acid reacts with Hydrogen Cyanamide - 30% solution to give Phenyl guanidine carbonate.



27. Product: Phenyl Guanidine Carbonate (PGC)					
Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg		
Aniline	0.530	Product	1.000		
Hydrochloric Acid	0.210	Solid waste	0.330		
30% Cyanamide soln	0.240	Effluent Streams	2.000		
Sodium carbonate	0.300				
water	2.050				
Total Input	3.330	Total Output	3.330		

### 28) Fe(III) ACETYL ACETONATE

Reaction between acetylacetone and Iron(III)chloride in the presence of ammonia to give the complex Iron(III)acetylacetone.

C₅H₈O₂ + Cl₃Fe _ Mol. Wt.: 100.12 Mol. Wt.: 162.20

acetylacetone Iron (III) chloride

C₁₅H₂₁FeO₆ Mol. Wt.: 353.17 Iron(iii)-acetylacetonate

28.Product: Fe(III) Acetyl Acetanoate					
Material balance Per kg output of proc	luct				
Input	Input qty in Kg	Output	Out put in Kg		
Acetylacetone	0.850	Product	1.000		
Iron III chloride	0.460	Solid waste	0.420		
Ammonium hydroxe soln	0.100	Effluent Streams	1.040		
Water	1.050				
Total Input	2.460	Total Output	2.460		

## 29) ANODE

Manganese acetate Tetra hydrate reacted with sodium cyanide in the presence of oxalic acid to give anode.



29.Product: : Anode					
Material balance Per kg output of product					
Input	Input qty in Kg	Output	Out put in Kg		
Manganese acetate tetrahydrate	0.650	Product	1.000		
Sodium cyanide	0.470	Solid waste	0.120		
Water	0.240	Effluent Streams	0.240		
Total Input	1.360	Total Output	1.360		

## 30) CATHODE

Iron reacts with sodium hexacyanoferrate mixture to give Cathode.

			$Na_2SO_4 + H_2O$	
[Fe-MnSO ₄ ]	+	[Na/KFe(CN) ₆ ] SOLUTION- B	MAIN REACTOR	[Fe(II)Mn(II)Fe(CN) ₆ .4Na].10H ₂ O CATHODE CHEMICAL

30.Product: : Cathode							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
Iron sulfate hydrate	0.670	Product	1.000				
Sodium ferrocyanide decahydrate	0.210	Solid waste	0.540				
Manganese sulfate monohydrate	0.140	Effluent Streams	0.430				
Sodium sulfate	0.110						
Water	0.840						
Total Input	1.970	Total Output	1.970				

#### 31. 1-Chloro-3-Nitrobenzene

Nitro benzene reacts with Chlorine gas in presence of Catalyst to give crude 1-Chloro-3nitrobenzene. The crude product is purified by Fractional vacuum distillation.

C _c H _r NO ₂		Cl ₂		+	CIH
Mol. Wt.: 123.11	+	Mol. Wt.: 70.91	 Mol. Wt.: 157.55	5	Mol. Wt.: 36.46

31. 1-Chloro-3-Nitrobenzene							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
Nitro benzene	0.780	Product	1.000				
Chlorine	0.450	Solid waste	0.360				
Sodium hydroxide	0.250	Effluent Streams	9.920				
Process Water	9.800						
Total Input	11.280	Total Output	11.280				

#### 32. 2,4,6-trichloro aniline

Aniline is reacts with HCl to produce aniline hydrochloride. The aniline hydrochloride reacts with gaseous form of chlorine to form 2,4,6-trichloroaniline.

 $\begin{array}{cccc} C_{6}H_{7}N & & CI_{2} & & C_{6}H_{4}CI_{3}N & + & CIH \\ Mol. Wt.: 93.13 & + & ^{3} & & \\ Mol. Wt.: 70.91 & & Mol. Wt.: 196.46 & & Mol. Wt.: 36.46 \end{array}$ 

32. 2,4,6- Trichloro Aniline							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
Aniline	0.474	Product	1.000				
Chlorine	1.082	Effluent Stream	9.775				
Sodium hydroxide	0.611	Solid waste	0.892				
Process Water	9.500						
Total Input	11.667	Total Output	11.667				

## 33. Pivaloyl Chloride

Pivalic acid reacts with thionyl chloride to give Pivaloyl chloride. The crude product is purified by Fractional vacuum distillation.

$C_{5}H_{10}O_{2}$	SOCI ₂	C₅H₀ClO	Cl ₂	C ₄ H ₅ Cl ₂ O [•]
Mol. Wt.: 102.13	NaOH	Mol. Wt.: 120.58	NaOH	Mol. Wt.: 139.99
Pivalic acid	NaOTI	Pivalyl chloride		3-Chloropivalyl chloride

33. Pivaloyl Chloride							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
Thionyl chloride	0.986	Product	1.000				
Pivalic Acid	0.846	Effluent Stream	9.649				
Sodium hydroxide	0.330	Gaseous Emission	0.530				
Process water	9.500	Solid waste	0.483				
Total Input	11.662	Total Output	11.662				

#### 34. 5-Chloro Valeroyl Chloride

Valeroyl chloride reacts with aluminum chloride in presence of monocholoro benzene give 5-chloro valeroyl chloride. The crude product is purified by Fractional vacuum distillation.

C₅H ₉ ClO	+	AlCl ₃	 C ₅ H ₈ Cl ₂ O	+	AIHCI2
Mol. Wt.: 120.58	Mol.	Wt.: 133.34	Mol. Wt.: 155.02		Mol. Wt.: 98.89

34. 5-Chloro Valeroyl Chloride							
Material balance Per kg output of product							
Input Input qty in Kg Output Output in Kg							
Aluminium chloride powder	0.700	Product	1.000				
Valeroyl chloride	0.680	Effluent Stream	9.420				
Solvent (MCB)	0.680	Solvent Recovery	0.680				
DM Water 9.040							
Total Input	11.100	Total Output	11.100				

#### **35. 4-FLUORO PHENYL ACETIC ACID**

4-Fluorobenzaldehyde reacts with Ra-Ni in presence of hydrogen gas to give 4-Fluorobenzyl alcohol, which was reacted with PBr3 to give bromo derivative. The bromo derivative reacts with sodium cyanide gave cyano compound. Finally, cyano compound hydrolyzed with sodium hydroxide to give 4-Fluorophenyl aceticacid.

C ₇ H ₅ FO +	H2 +	PBr3 + NaCN	+ NaOH	$\longrightarrow$ C ₈ H ₇ FO ₂ +	POHBr2	+ NaBr +	NH3
Mol. Wt.: 124.11	2.02	270.69 49.01	40.00	Mol. Wt.: 154.14	207.79	102.89	17.03

35. 4-FLUORO PHENYL ACETIC ACID							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
Para fluorobenzaldehyde	0.800	Product	1.000				
H2 gas	0.010	Effluent Stream	10.650				
Phosphorus tribromide	0.590						
Soda ash	0.250						
Sodium cyanide	0.320						
Water	9.100						
Sodium hydroxide	0.260						
sulfuric acid	0.320						
Total Input	11.650	Total Output	11.650				
### **36. 4-BROMO FLUOROBENZENE**

Fluorobenzene reacts with bromine in presence of Fe catalyst to give 4-Bromo Fluorobenzene. The crude product is purified by Fractional vacuum distillation.

 $C_6H_5F$  + Br2 - C₆H₄BrF + HBr Mol. Wt.: 96.10 + 159.81 Mol. Wt.: 175.00 80.91

36. 4-BROMO FLUOROBENZENE								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
FluoroBenzene	0.549	Product	1.000					
Bromine	0.913	Effluent Stream	0.103					
Sodium Hydroxide	0.229	Solid waste	0.588					
Total Input	1.691	Total Output	1.691					

### 37. 3-Fluorotoluene

m-Toluidine reacts with sodium nitrite in presence of HF to give 3-Fluorobenzene. The crude product is purified by Fractional vacuum distillation.

C ₇ H ₉ N	+ NaNO2	+ HF	+ HCI —	→ C ₇ H ₇ F +	· NaCl	+	N2 +	2H2O
Mol. Wt.: 107.15	69.0	20.01	36.46	Mol. Wt.: 110.13	58.11		28.01	50.05

37. 3-Fluorotoluene								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
m-Toluidine	0.973	Product	1.000					
HF	0.181	Effluent Stream	10.027					
Solid NaNO2	0.626	Solid waste	0.530					
Hydrochloric acid	0.331	Gaseous Emission	0.254					
Process Water	9.700							
Total Input	11.811	Total Output	11.811					

#### 38. 4-Fluorotoluene

P-Toluidine reacts with sodium nitrite in presence of HF to give 4-Fluorobenzene. The crude product is purified by Fractional vacuum distillation.

C ₇ H ₉ N	+ NaNO2 +	HF	+ HCI —	→ C ₇ H ₇ F	+ NaCl	+	N2 +	2H2O
Mol. Wt.: 107.15	69.0	20.01	36.46	Mol. Wt.: 110.13	58.11		28.01	50.05

38. 4-Fluorotoluene								
Material balance Per kg output of product								
	Input qty		Out put					
Input	in Kg	Output	in Kg					
P-Toluidine	0.973	Product	1.000					
HF	0.181	Effluent Stream	10.027					
Solid NaNO2	0.626	Solid waste	0.530					
Hydrochloric acid	0.331	Gaseous Emission	0.254					
Process Water	9.700							
Total Input	11.811	Total Output	11.811					

## **39. O-NITRO ANISOLE**

O-Nitro chloro benzene reacts with sodium hydroxide in presence of methanol to give o-Nitro anisole. The crude product is purified by Fractional vacuum distillation.

					$\longrightarrow$ C ₇ H ₇ NO ₂ +	NaCl	+	H2O
Mol. Wt.: 157.55	+	NaOH 40.0	+	CH3OH 32.0	Mol. Wt.: 153.14	58.44		18.0

39. Ortho Nitro Anisole								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
ONCB	1.030	Product	1.000					
Methanol	0.209	Effluent Stream	10.268					
Caustic Flakes	0.824	Solid waste	1.385					
Process Water	9.900							
Sulphuric acid	0.690							
Total Input	12.653	Total Output	12.653					

### 40. p-NITRO ANISOLE

p-Nitro chlorobenzene reacts with sodium hydroxide in presence of methanol gave p-Nitroanisole. The crude product is purified by Fractional vacuum distillation.

					,					
C ₆ H ₄ ClNO ₂ Mol. Wt.: 157.55	+	NaOH 40.0	+	CH3OH 32.0	> N	C ₇ H ₇ NO ₃ ⁄Iol. Wt.: 153.1	+ 4	NaCl 58.44	+	H2O 18.0

40. Para Nitro Anisole								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
PNCB	1.030	Product	1.000					
Methanol	0.209	Effluent Stream	10.268					
Caustic Flakes	0.824	Solid waste	1.385					
Process Water	9.900							
Sulphuric acid	0.690							
Total Input	12.653	Total Output	12.653					

## 41. O-CHLORO P-NITRO TOLUENE

p-Nitro toluene reacts with chlorine gas to give o-chloro nitro toluene. The crude product is purified by Fractional vacuum distillation.

 $C_7H_7NO_2$  + Cl2 Mol. Wt.: 137.14 70.91  $C_7H_6CINO_2$  + HCl Mol. Wt.: 171.58 36.40

41. O-Chloro P-Nitro toluene								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
P-Nitro Toluene	0.799	Product	1.000					
Chlorine gas	0.413	Effluent Stream	9.705					
Sodium Hydroxide	0.232	Solid waste	0.339					
Process Water	9.600	Solvent recovery	0.820					
Methanol	1.000	Distillation residue	0.180					
Total Input	12.044	Total Output	12.044					

### 42. 3-AMINO 4- METHYL BENZOIC ACID METHYL ESTER

3-Nitro-4-methyl Benzoic Acid is reacted with Methanol in presence of Sulfuric Acid to form 3-Nitro -4-Methyl Benzoic Acid Methyl Ester. 3- Nitro -4- Methyl Benzoic Acid Methyl Ester undergoes reduction by Acetic Acid and Iron power to form 3- Amino -4- Methyl Benzoic Acid Methyl Ester.

42. 3-Amino 4-Methyl Benzoic Acid Methyl Ester								
Material balance Per kg output of product								
Input	Input qty in Kg	Output	Out put in Kg					
3- Nitro -4- Methyl Benzoic Acid	0.957	Product	1.000					
Methanol	0.318	Effluent Stream	9.887					
Iron Powder	0.001							
Hydrogen	0.011							
Water	9.600							
Total Input	10.887	Total Output	10.887					

### 43. 3-AMINO 4- METHYL BENZOIC ACID ISOPROPYL ESTER

3-Nitro-4-methyl Benzoic Acid is reacted with isopropanol in presence of Iron powder to form 3-amino -4-Methyl Benzoic Acid Isopropyl Ester.

	o u o 🕇	Fe (Cat)		3 H2O
C ₈ H ₇ NO ₄	$+ C_3H_8O$	H2 →	Mol Wt 193 24	
Mol. Wt.: 181.15	Mol. Wt.: 60.10	2.02	1000. 000. 1993.21	54.00

43. 3-Amino 4-Methyl Benzoic Acid Isopropyl Ester							
Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg				
3- Nitro -4- Methyl Benzoic Acid	0.957	Product	1.000				
Iso Propyl Alcohol	0.318	Effluent Stream	9.487				
Iron Powder	0.001						
Hydrogen	0.011						
Water	9.200						
Total Input	10.487	Total Output	10.487				

### 44. 5-Amino-2-Methyl Benzene Sulphonic Acid Phenyl Ester

2- Methyl 5- Nitro Benzene Sulphonyl Chloride is reacted with Phenol in presence of Sodium Hydroxide to form 2- Methyl -5 Nitro Benzene Sulphonic Acid Phenyl Ester. Methyl -5 Nitro Benzene Sulphonic Acid Phenyl Ester undergoes reduction by Iron power to form 5- Amino -2- Methyl Benzene Sulphonic Acid Phenyl Ester. The crude product is purified by Fractional vacuum distillation.

				Fe (Cat)				
C ₇ H ₆ CINO ₄ S	+ C ₆ H ₆ O +	NaOH +	H2	>	C ₁₃ H ₁₃ NO ₂ S +	2 H2O	+	NaCl
Mol. Wt.: 235.65	Mol. Wt.: 94.11				Mol. Wt.: 247.31	36.03		58.4
		40.0	2.02					

44. 5-Amino-2-Methyl Benzene Sulphonic Acid Phenyl Ester								
Material balance Per kg output of p	Material balance Per kg output of product							
Input	Input qty in Kg	Output	Out put in Kg					
2- Methyl -5- Nitro Benzene Sulphonyl Chloride	0.850	Product	1.000					
Phenol	0.339	Effluent Stream	10.483					
Sodium Hydroxide	0.707	Solid waste	1.211					
Iron Powder	0.001							
Hydrogen	0.007							
Water	10.100							
Sulphuric acid	0.690							
Total Input	12.694	Total Output	12.694					

### 45. (3-AMINOPHENYL) BENZENESULFONATE

3-Nitro Phenol is reacted with Benzene Sulphonyl Chloride in presence of Sodium Hydroxide as well as Solvent - ODCB to form Benzene Sulphonic Acid -3- Nitro Phenyl Ester. Benzene Sulphonic Acid -3- Nitro Phenyl Ester undergoes reduction by Iron Power to form Benzene Sulphonic Acid -3- Amino Phenyl Ester.

						C ₁₂ H ₁₁ NO ₂ S	+ 3H2O	+	NaCl
C ₆ H ₅ NO ₃ +	PhSO2Cl	+	NaOH	+	H2	Mol. Wt.: 233.29	54.05		58.44
Mol. Wt.: 139.11	176.62		40		2.02				

45. (3-Aminophenyl) benzenesulfonate						
Material balance Per kg output of p	roduct					
Input	Input qty in Kg	Output	Out put in Kg			
3- Nitro Phenol	0.567	Product	1.000			
Benzene Sulfonyl chloride	0.720	Effluent Stream	10.674			
Sodium Hydroxide	0.726	Solid waste	1.238			
Iron Powder	0.001					
Hydrogen	0.008					
Water	10.200					
Sulphuric acid	0.690					
Total Input	12.912	Total Output	12.912			

# 46) 4 - Amino Benzoic Acid Methyl Ester

4 - Nitro Benzoic Acid and methanol in presence of sulphuric acid and iron powder gives 4 - Amino Benzoic Acid Methyl Ester

				Fe (Cat)	$C_8H_9NO_2$	+ 3 H2O	+ H2SO4
Mol. Wt.: 167.12	+	32.04	+ H2SO4 98.08		Mol. Wt.: 151.16	54.05	98.08

46. 4 -Amino Benzoic Acid Methyl Ester						
Material balance Per kg output of pro	oduct					
Input	Input qty in Kg	Output	Out put in Kg			
4 - Nitro Benzoic Acid	1.151	Product	1.000			
Methanol	0.221	Effluent Stream	10.929			
Sulfuric Acid	1.487	Solid waste	2.156			
Iron Powder	0.001	Solvent Recovery	1.400			
Solvent - ODCB	1.400					
Sodium Hydroxide	1.212					
Water	10.012					
Total Input	15.485	Total Output	15.485			

### 47) 2-FLUOROANISOLE

4-Flurobromobeznene presence of Catalyst gives 2-Fluoroanisole. The final product purified from high vacuum distillation.

C₆H₄BrF <u>NaOMe</u> C₇H₇FO BrNa Mol. Wt.: 175.00 Mol. Wt.: 126.13 Mol. Wt.: 102.89

47. 2-FLUOROANISOLE						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
2-Bromo Fluoro Benzene	1.388	Product	1.000			
Sodium Methoxide	0.428	Solid waste	0.816			
Total Input	1.816	Total Output	1.816			

### 48) 4-FLUOROANISOLE

4-Flurobromobeznene presence of Catalyst to give 4-Fluoroanisole. The final product purified from high vacuum distillation.

 C₆H₄BrF
 +
 NaOMe
 C₇H₇FO
 BrNa

 Mol. Wt.: 175.00
 54.02
 Mol. Wt.: 126.13
 Mol. Wt.: 102.89

48. 4-FLUOROANISOLE						
Material balance Per kg output of product						
Input Input qty in Kg Output Output in Kg						
4-Bromo Fluoro Benzene	1.388	Product	1.000			
Sodium Methoxide	0.428	Solid waste	0.816			
Total Input	1.816	Total Output	1.816			

# 49) 2-Phenoxyethylamine

Ethnolamine with acetonitrile presence of Catalyst and than reaction with phenol and followed by hydrolysis to give 2-Phenoxyethylamine

$C_2H_7NO$ +	$CH3CN + C_{2}H_{2}O +$	NaOH	C ₈ H ₁₁ NO	+ CH3COONa	+	H2O
Mol. Wt.: 61.08	41.05 Mol. Wt.: 94.11	40.0	 Mol. Wt.: 137.18	82.03		18.01

49. 2-Phenoxyethylamine							
Material balance Per kg output of product							
Input	Input qty	Output	Out put				
	in Kg	output	in Kg				
Acetonitrile	0.299	Product	1.000				
Ethanolamine	0.446	Solid waste	0.596				
Phenol	0.687	Effluent Stream	10.230				
Sodium hydroxide	0.294	Solvent recovery	0.820				
Water	10.100	Distillation residue	0.180				
Methanol	1.000						
Total Input	12.826	Total Output	12.826				

### 50) Spiropidion:

Diamide reacts with KOH and NMP in presence of Catalyst and followed by addition of ECF and Me-THF to give Spiropidion.

50 . Spiropidion(SPID)								
Material balance Per kg output of product								
Input	Input qty	Output	Out put					
	in Kg		in Kg					
Diamide	1.370	Product	1.000					
NMP	1.580	Solid waste	0.600					
Potassium hydroxide 85 %	0.220	Solvent recovery	7.000					
DDOL (1-Dodecanol)	2.350	Effluent Stream	7.561					
МСН	0.240							
ECF	0.410							
Caustic lye 25%	0.200							
HCI	0.060							
Sodium chloride 25 %	0.620							
ВНТ	0.001							
Me-THF	1.860							
MCH-2	2.130							
Process water	5.120							
Total Input	16.161	Total Output	16.161					

### 51) 4-Amino Benzamide:

4-Nitro Benzamide presence of Catalyst gives 4-Amino Benzamide . The final product purified from high vacuum distillation.

 $\begin{array}{cccc} C_7H_6N_2O_3 & + & H2 & Fe (cat) & C_7H_8N_2O & + & 2H2O \\ Mol. Wt.: 166.13 & 2.02 & & & Mol. Wt.: 136.15 & & 36.03 \end{array}$ 

51. 4-Amino Benzamide							
Material balance Per kg output of pro	Material balance Per kg output of product						
Input Input qty Output Output Out p							
4-Nitro benzamide	1.257	Product	1.000				
Iron powder	0.001	Effluent stream	10.273				
Hydrogen	0.015						
Water	10.000						
Total Input	11.273	Total Output	11.273				

# 52) P-Toludine :

P-Nitrophenol presence of Catalyst is gives p-Toludine. The final product purified from high vacuum distillation.

C ₇ H ₇ NO ₂ + H2 Mol. Wt.: 137.14 2.02	Fe (cat)	C ₇ H ₉ N Mol. Wt.: 107.15	+	2H2O 36.03
-----------------------------------------------------------------------------	----------	-----------------------------------------------------	---	---------------

52. P-Toluidine					
Material balance Per kg output of pro	oduct				
Input	Input qty in Kg	Output	Out put in Kg		
P-Nitro Toluene	1.330	Product	1.000		
Iron powder	0.001	Effluent stream	1.350		
Hydrogen	0.020	Spent catalyst	0.001		
Water	1.000				
Total Input	2.351	Total Output	2.351		

### 53) M-Anisidine

M-Anisidine prepared from m-Aminophenol and Dimethyl sulphate as a reagent and Acetone as a solvent. The final product purified from high vacuum distillation.



53.M-ANISIDINE								
Material balance Per kg output of pro	oduct	I						
Input	Input qty in Kg	Output	Out put in Kg					
M-Aminophenol	0.886	M-Anisidine	1.000					
Acetic Anhydride	0.935	Solid waste	2.128					
Potassium Carbonate	1.264	Acetic acid	1.100					
Dimethyl Sulphate	1.156	CO2	0.404					
Hydrochloric acid	0.334	Effluent stream	10.930					
Sodium Hydroxide	0.367	Spent Solvent (EDC)	0.999					
Ethylene DiChloride	0.688							
Water	10.930							
Total Input	16.561	Total Output	16.561					

# 54) 4-CHLORO,2 AMINO PHENOL (4-CAP)

1,4-Dichlorobenzene reacts with Nitration and basic hydrolysis followed hydrogenation using Fe/HCl to gives 4-CAP

C.H.Cl.	Con HNO3	C ₆ H ₃ Cl ₂ NO ₂	NaOH	C ₆ H ₆ CINO	Fe/HCl	C ₆ H ₆ CINO
Mol. Wt.: 147.00	Con H2SO4	Mol. Wt.: 192.00	H2O	Mol. Wt.: 143.	57	Mol. Wt.: 143.57

#### Material balance

54.4-CHLORO,2 AMINO PHENOL (4-CAP)

Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
Aromatic substituted/ unsubstituted halides	1.030	Product	1.000			
Nitric acid	1.250	Effluent stream	6.253			
Sulfuric acid	1.200	Solid waste	1.230			
Sodium Hydroxide flakes	1.100	solvent recovery	2.435			
Fe powder	0.100					
Hydrochloric acid	1.000					
Methylene dichloride	2.435					
Process water	2.803					
Total Input	10.918	Total Output	10.918			

# 55) Hydroxy Ester (HES)

Diethyl maleate reacts with Acetone and followed by addition of Sodium ethoxide to give hydroxy ester.

		DEA	NaOET	СНО
C ₈ H ₁₂ O ₄ +	C ₃ H ₆ O _	$ C_{11}H_{18}O_5$		$C_{9} I_{12} O_4$
Mol. Wt.: 172.18	Mol. Wt.: 58.08	Mol. Wt.: 23	0.26 Etoh	IVIOI. VVI.: 184.19

55.Hydroxy Ester (HES)						
Material balance Per kg outpu	t of product					
Input	Input qty in Kg	Output	Out put in Kg			
Diethyl maleate	1.500	Product	1.000			
Sodium ethoxide	0.520	Effluent stream	7.160			
Ethanol	1.750	solid waste	1.450			
Ethyl acetate	0.720	solvent recovery	5.000			
Xylene	2.500	Contaminated aromatic, aliphatic or naphthenic solvents may or may not fit for reuse (Xylene)	0.500			
Sulfuric acid	1.000					
Process water	2.500					
Acetone	2.120					
Caustic lye	2.500					
Total Input	15.110	Total Output	15.110			

# 56) Dichloro Fluoro Bromo Benzene (DCFBB)

Chlorination of Dichloro nitro Aniline and followed by Fluorination, reduction and bromination gives DCFBB.

C ₆ H ₄ CINO ₂ → Mol. Wt.: 157.55	C ₆ H ₂ Cl ₃ NO ₂ Mol. Wt.: 226.44		$C_6H_2Cl_2FNO_2$ $\longrightarrow$ Mol. Wt.: 209.99	C ₆ H ₄ Cl ₂ FN Mol. Wt.: 180.01	$\longrightarrow$ C ₆ H ₂ BrCl ₂ F Mol. Wt.: 243.89
-----------------------------------------------------------------------	-----------------------------------------------------------------------------------	--	------------------------------------------------------	----------------------------------------------------------------------	-----------------------------------------------------------------------------------------

56.Dichloro Fluoro Bromo Benzen	e (DCFBB)		
Material balance Per kg output of	product		
Input	Input qty In Kg	Output	Out put in Kg
Dichloronitro benzene	1.700	Product	1.000
Nitric acid	1.850	Effluent stream	10.560
Sulfuric acid	1.900	solid waste	2.000
Ferric Chloride	2.160	solvent recovery	12.500
Chlorine gas	0.600		
Potassium Fluoride	0.800		
Tetra butyl Ammonium Bromide	0.200		
NMP	4.000		
Raney Nickel	0.100		
HBr in Water (48%)	1.000		
Hydrogen peroxide (50%)	0.600		
Copper(I)oxide	0.150		
Sodium nitrite	1.200		
Isopropyl alcohol	5.000		
Process water	2.900		
Caustic lye (48%)	1.900		
Total Input	26.060	Total Output	26.060

# 57) Para chloro phenyl glycine (PCPG)

Para chlorobenzaldehyde react with Sodium cyanide and presence of Ammonium bi carbonate and methanol to give PCPG

					Methanol	
C ₇ H ₅ ClO	+	NaCN	+	NH ₄ HCO ₃ —		 C ₈ H ₈ CINO ₂
Mol. Wt.: 140.57	Mo	ol. Wt.: 49.0	C	Mol. Wt.: 79.1	NaOH / H2SO4	Mol. Wt.: 185.61

57. Para chloro phenyl glycine (PCPG)					
Material balance Per kg output	of product				
Input	Input qty in Kg	Output	Out put in Kg		
4-Chlorobenzaldehyde	0.757	Product	1.000		
Sodium cyanide	0.264	Solid waste	0.765		
Ammonium bicarbonate	0.426	Effluent stream	1.426		
Methanol	1.000	Solvent Recovery	1.000		
water	1.000				
Sodium hydroxide	0.216				
Sulphuric acid	0.528				
Total Input	4.191	Total Output	4.191		

# 58. 4-Acetyl-2-Methyl Benzoic Acid (AMBA)

2-Flurotoluene reacts with acetyl chloride to give acetylated product and hydrolysis to give 4-Acetyl-2-Methyl Benzoic Acid (AMBA)



58. 4-Acetyl-2-Methyl Benzoic Acid (AMBA)						
Material balance Per kg output of product						
Input	Input qty in Kg	Output	Out put in Kg			
2-Fluorotoluene	0.610	Product	1.000			
Acetyl chloride	0.440	Solvent recovery	1.900			
Sodium Cyanide	0.270	Process wastes or residues	1.500			
МІВК	2.000	Effluent stream	3.340			
Sodium hydroxide	0.220					
Hydrochloric acid	0.200					
Water	4.000					
Total Input	7.740	Total Output	7.740			

# 2.10 WATER REQUIREMENT, WASTEWATER GENERATION AND MANAGEMENT 2.10.1 ASSESSMENT OF SOURCE OF THE WATER SUPPLY WITH ADEQUACY OF THE SAME TO MEET WITH THE REQUIREMENTS FOR THE PROJECT. PERMISSION OBTAINED FROM THE CONCERN AUTHORITY FOR SUPPLY OF RAW WATER.

The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source.

#### Central Ground Water Authority Ministry of Water Resources Government of India No. 21-4(134)/SECR/CGWA/2009-3708 Dated- 0 | JUN 2012 To. M/s Sanmer Speciality Chemicals Ltd., 44, Theertham road Berigai-635105 Hosur Taluk, Krishnagiri District Tamil Nadu Sub: Renewal of Ground Water clearance in respect of M/s Sanmer Speciality Chemicals Ltd., for their organic chemicals & phytochemicals manufacturing industry located at Village Suligunta, Block Suligiri, Taluk Hosur, District Krishnagiri, Tamil Nadu - reg. Sir. It has been decided by the Central Ground Watar Authority that NOC would be issued only once and renewal is stopped/ discontinued. There would be random site inspection of selected industries by CGWA, and in case the industry is found to be a defaulter in adhering to the laid down terms and conditions, the NOC is to be cancelled. However, to neutralize the adverse impact of ground water withdrawal that may arise on a long term basis, the industry is advised to undertake the following measures: Ground Water withdrawal shall not exceed the quantity of 207.5 m3/day. All abstraction structures to be kept fitted with water meter by the industry and monitoring of 2. ground water abstraction to be continued accordingly on regular basis, at least once in a month. The data may be submitted on a yearly basis to the Regional Director, Central Ground Water Board, South Eastern Coastal Region, Chennai for perusal and records. 3. The industry should continue to implement artificial recharge measures/rain water harvesting measures for augmenting the ground water resources of the aren. 4. The industry shall ensure proper conservation measures, recycling and reuse of waste water after adequate treatment. The industry shall continue to monitor the ambient ground water regime of the area through piezometers and submit the data on a yearly basis to the Regional Director, Central Ground Water Board, South Eastern Coastal Region, Chennai for perusal and records.

Yours faithfully,

Legional Direct

#### Copy for information to the:

- Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600032, Tamil Nadu with a request to ensure that Rain Water Harvesting and Artificial Recharge methods are being implemented by the firm and quantity of withdrawal is not exceeding 207.5 m³/day.
- Regional Director, Central Ground Water Board, South Eastern Constal Region, Chennai, This has reference to your letter No. T/8/46-847 dated 7.5.2012.
- 3. TS to Chairman, Central Ground Water Board, NH-IV, Faridabad.

**Regional Director** 

West Block-2, Wing-3, Ground Floor, R. K. Puram, Sector-1, New Delhi-110066 Tel: (011) 26175379, 26175379, 26175373. Fax (011) 26175369 a-mail: tsmsml-ogwb@nic.in, web site: http://cgwb.gov.in

### 2.10.2 WATER AND WASTEWATER

- The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source.
- The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream.
  - Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system.
  - High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the soild waste generated will be disposed to TSDF (Common disposal Facility).
  - Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.

# TABLE 2.4

# WATER CONSUMPTION & WASTE WATER GENERATION

# Water Consumption

Category	Existing KL/day	Proposed (Additional) KL/day	Total after Expansion KL/day	Remarks
(A) Domestic	12	88	100	
(B) Gardening	25.5	5	30.5	
(C) Industrial				
Process	48	552	600	
Washing	10	65	75	
Boiler	110	290	402	
Cooling	112			
Total (A+B+C)	207.5	1000	1207.5	

### Wastewater generation

Category	Existing KL/Day	Proposed (Additional) KL/day	Total after Expansion KL/day	Remarks
A)Domestic	12	88	100	Forwarded to STP. Treated water reused in gardening after treatment.
B) Industrial				
Process	48	552	600	Treated in MEE and send to ETP followed by RO
Washing	10	65	75	Treated in ETP
Boiler	10	20	30	followed by RO.
Cooling				
Total Industrial waste water	68	637	705	



# WATER BALANCE DIAGRAM (Total Proposed):



### Note: Fresh Water: 1207.5 KLD + Reuse water: 705 KLD

# 2.10.3 SEGREGATION OF WASTE STREAMS, CHARACTERIZATION AND QUALITY WITH SPECIFIC TREATMENT AND DISPOSAL OF EACH STREAM

#### Segregation of waste streams:

Industrial effluent will be segregated into High COD and Low COD effluent streams.

- Low COD stream: Low COD effluent will be treated through the conventional wastewater treatment system and the pass through RO system.
- **High TDS Stream:** Neutralized concentrate effluent and rejects from RO will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the soild waste generated will be disposed to TSDF (Common disposal Facility).
- Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.

S.No	PROPOSED PRODUCTS LIST FOR EC		TSS in	COD	BOD
		ppm	ppm	in	in
				ppm	ppm
Α					
1	COLCHICINE	1000	1000	5137	1543
2	THIOCOICHICOSIDE	872916	1000	5958	1789
В					
3	2-(1-CYLCOCHEXENY)LETHYLAMINE (CHEA)	966000	1000	38257	11489
4	3-[1,3,3-TRIS-(2-CARBOXY-ETHYL)-2-OXO-	969231	1000	5290	1589
	CYCLOHEXYL]-PROPIONIC ACID (T4C)				
5	SUBSTITUTED ARYL ALKYL AMINE	5000	1000	26622	7995
6	2-AMINO-2-PHENYLBUTYRIC ACID SODIUM SALT	193529	1000	8905	2674
	/METHYL 2-(N,N-DIMETHYLAMINO)-2-				
	PHENYLBUTYRATE (TR1600/TR1400)				
7	4-CHOLO-BUTYL VERATRATE	340000	1000	7596	2281
8	4-(2-AMINOETHYL)-2-METHOXYPHENOL (AE	200952	1000	38850	11667
	PHENOL)				
9	METHYL-2 PHENOXY ISOBUTYRATE	75000	1000	45833	13764
10	(4R)- 2- OXOOXAZOLIDINE -4- CARBOXYLIC ACID	5000	1000	5475	1644
	(COX)				
11	4-t BUTYLPHENYLACETONITRILE	604167	1000	32069	9630
12	1-BROMO-3,5-DICHLOROBENZENE (DCBB)	3437500	1000	4226	1269
13	4-CHLORO-2-NITRO BENZOIC ACID		1000	16617	4990
14	4-BROMO PHENYL PROPANOL (BPP)	448649	1000	20572	6178
15	2-CHLORO-5-CHLOROMETHYL-1,3-THIAZOLE (CCMT)	625000	1000	18119	5441
16	TETRACHLORO BUTYRIC ACID (TCBA)	80000	1000	2524	758
17	IONOPHOR	100000	1000	1595	479
18	4-BROMO-2-FLUORO HYDROXY BIPHENYL (BFB)	468966	1000	5031	1511

#### **Product wise Wastewater Characteristics**

19	PARA METHYL PHENCYL CHLORIDE (PMPC)	5000	1000	800	240
20	SODIUM 4-(2,4-DICHLOR M-TOLUOYL)-1,3-DI	622642	1000	19495	5854
	METHYL -5-PYRAZOLATE (MY710Na)				
21	2-TRIFLUOROMETHYL BENZENE SULFONAMIDE		1000	7867	2362
	(TBSA)				
22	METHYL CARBAZATE	900000	1000	3944	1184
23	TETRALONE IMINE	5000	1000	3461	1039
24	4-[2(4-CHLORO-2,6-	224000	1000	9009	2705
	DIMETHYLPHENYL)ACETTYL]METHYLAMINO]-1-				
	METHOXY-N-PHENYLPIPERIDIN-4-CARBOXAMIDE				
	(DIAMIDE)				
25	3(2,2,2-TRIFLUOROETOXY)2-PYRIDINE SULFONAMIDE	708661	1000	4554	1368
26		75500	1000	26020	44000
26	5-CHLORO-8-HYDROXY-QUINOLINE (CHQ)	/5598	1000	36939	11093
27		165000	1000	2407	/23
28		403846	1000	2194	659
29		500000	1000	223	67
20		125501/	1000	260	Q1
50		1255014	1000	205	01
31		5000	1000	11000	3303
32	2 4 6- TRICHLORO ANILINE	91253	1000	9000	2703
33		50057	1000	13000	3904
34	5-CHLORO VALEROYL CHLORIDE	5000	1000	52000	15616
35	4-FLUORO PHENYL ACETIC ACID	5000	1000	9500	2853
36	4-BROMO FLUOROBENZENE	5000	1000	8800	2643
37	3-FLUOROTOLUENE	52857	1000	11000	3303
38	4-FLUOROTOLUENE	52857	1000	11000	3303
39	ORTHO NITRO ANISOLE	134885	1000	56000	16817
40	PARA NITRO ANISOLE	134885	1000	51000	15315
41	O-CHLORO P-NITRO TOLUENE	34930	1000	58000	17417
42	3-AMINO- 4METHYL BENZOIC ACID METHYL ESTER	5000	1000	53000	15916
43	3-AMINO 4-METHYL BENZOIC ACID ISOPROPYL ESTER	5000	1000	61000	18318
44	5-AMINO-2-METHYL BENZENE SULPHONIC ACID	115520	1000	59000	17718
	PHENYL ESTER				
45	(3-AMINOPHENYL) BENZENESULFONATE	115983	1000	55000	16517
46	4 -AMINO BENZOIC ACID METHYL ESTER	197281	1000	57000	17117
47	2-FLUOROANISOLE	5000	1000	7000	2102
48	4-FLUOROANISOLE	5000	1000	7000	2102
49	2-PHENOXYETHYLAMINE	58260	1000	65000	19520
50	SPIROPIDION (SPID)	79355	1000	14000	4204
51	4-AMINO BENZAMIDE	5000	1000	61000	18318
52	P-TOLUIDINE	5000	1000	12000	3604

53	M-ANISIDINE	194694	1000	54000	16216
54	4-CHLORO,2 AMINO PHENOL (4-CAP)	196706	1000	57000	17117
55	Hydroxy Ester (HES)	202514	1000	53000	15916
56	Dichloro Fluoro Bromo Benzene (DCFBB)	189394	1000	51000	15315
57	Para chloro phenyl glycine (PCPG)	536616	1000	58000	17417
58	AMBA: 4-Acetyl-2-Methyl Benzoic Acid	449102	1000	58000	17417

2.10.4 DETAILS OF ETP INCLUDING DIMENSIONS OF EACH UNIT ALONG WITH SCHEMATIC FLOW DIAGRAM.

### Multiple Effect Evaporator Plant:

#### Suspended Solid Separation process:

Concentrated effluent transferred to the flash mixer neutralized with HCl. A polymer is dosed in the flash mixer and PAC is dosed in the Flocculator where suspended particles to help settle, the overflow from the flash mixer flows to the Clarifier. The overflow of the Clarifier feed to Stripper column.

### **STRIPPING COLUMN:**

The TSS Outlet is feed into the stripping column through a triple pre heaters and a Heat exchanger where the low boiling solvent are stripped out

#### **MEE PLANT:**

The Stripper bottom liquid is feed into the Multiple Effect Evaporator **MEE** (Triple Effect Evaporator) where the Condensate is feed to Biological system for further treatment and Concentrate is feed into **ATFD** (Agitated thin film dryer)

#### ATFD:

The product from the MEE Plant is feed to the AGITATED THIN FILM DRYER where the concentrate water is dried to a solid powder which is disposing as per TNPCB norms. **Biological Treatment Plant (ETP):** 

#### **Bar Screen**

The raw effluent from the incoming line is received at the bar screen to separate the large debris and fine particles.

#### **Equalization Tank**

The overflow from bar screen chamber flows into the equalization tank which serves to attenuate variation in the effluent flow rate and characteristics. The feed to the downstream processes shall be uniform. Flow equalization will dampen and absorb flow rate variations so a near constant flow rate is achieved.

The Equalization tank will be provided with air diffusion system to keep the collected effluent under constant mixing, prevent any suspended solids from settling to the bottom of the tank.

The dimension of the Equalization tank is 3.0m * 5.0m * 3.0m X 2 nos and the volume is 90 m3.

#### **Flash Mixer**

The effluent from the equalization tank is pumped to flash mixer where effluent water containing turbid and suspended particles can be coagulated by dosing coagulant. Dosage rate of coagulant varies depending upon inlet turbidity & total suspended solids in feed water. The dosing tank is designed to hold solution required for 20 hours of operation. The dosing tank is connected to the pumps (1W + 1S), positive displacement type diaphragm pumps in PP construction.

After coagulant dosing, the pH of feed water may reduce. For effective coagulation, pH of water is required to be raised for which auto dosing system is provided.

The dimension of the flash mixer is 1.0 m * 1.0 m * 1.5m (LD-1.2m + FB-0.3m) and the volume is 0.25 m3.

#### Flocculator

The overflow from the flash mixer flows to a flocculator, a polymer is dosed in the flocculator to bridge the coagulated floc and produce a dense sludge to settle easily in the tube deck clarifier.

#### **Tube Deck Clarifier**

The heavy floc particles settle down to the bottom conical portion of the tube deck clarifier due to gravity. The settled sludge at the bottom will be discharged at regular intervals to the sludge holding tank. The overflow from the tube deck clarifier flows by gravity to the buffer tank.

#### Up Flow Anaerobic Sludge Blanket (UASB) Reactor

The UASB feed pump is provided to transfer effluent from buffer tank to the UASB reactor. UASB uses an anaerobic process while forming a blanket of granular sludge which suspends in the tank. Influent wastewater is distributed at the bottom of the reactor and travels in an up-flow mode through the sludge blanket. During this, the combined organics are processed and degraded by the anaerobic microorganisms.

After the UASB process, the overflow is passed into the aeration tank to carry out the activated sludge process.

#### **Secondary Biological Treatment**

The overflow from the UASB flows by gravity to the downstream two stage aeration process, here the incoming effluent is continuously aerated, and it will be treated biologically with the help of the microorganisms for the removal of BOD, COD and other Organic pollutants. In this aerobic process, the effluent is subjected to extended aeration type activated sludge process for biodegradation of organic impurities in the presence of recirculated biomass. Air blowers & diffused aeration system will be used for aeration.

Post aeration, the effluent will be further clarified using a secondary clarifier. The clarifier will have a slow speed agitator for inducing the flocculation reaction and ensure large floc formation. The heavy floc particles settle down to the bottom conical portion due to gravity. The settled sludge at the bottom will be discharged at regular intervals to the sludge

handling system using sludge transfer pumps. The overflow from the clarifier flows by gravity to the clear water tank.

### **Mechanical Dewatering System (Filter Press)**

The sludge generated from Tube deck clarifier & secondary clarifier is drained into the Sludge holding tank. The collected sludge is pumped to the filter press for dewatering the sludge. The polyelectrolyte is added to the sludge handling system. Dewatering is a physical (mechanical) unit operation used to reduce the moisture content of sludge. The filtrate from filter press is taken to drain pit. Sludge generated from filter press is suitably disposed.

### Disinfection

Liquid chlorine solution is dosed in the clear water tank for disinfection. Chlorination is the most common type of disinfection used worldwide. This is due to its effectiveness in providing a good pathogen kill with the relative simplicity in operation and maintenance. Clarified effluent from the secondary clarifier will be disinfected by dosing Sodium hypochlorite solution. Sodium hypochlorite solution will be prepared in the solution preparation tank and dosed by diaphragm type electronic dosing pump

### Pressure Sand Filter & Activated Carbon Filter

Effluent from clear water tank is pumped to PSF followed by ACF to remove suspended solids, turbidity etc.

The arrested solids/turbidity in the PSF is removed by back washing. Solids are entrapped when raw water is passed in downward direction through the sand bed. This unit is charged with a uniform grade of filtering sand, which is supported on different grades of under-bed materials. The Pressure Sand Filter is made of MSFRP vertical vessel. It is fitted with top inlet distributor and header - lateral type of bottom collecting system.

Externally this unit is fitted with frontal pipe work and control valves. The unit is isolated for backwash, when the pressure drop across the bed exceeds the specified limit (0.8 Kg/cm²) or quality of filtered water deteriorates, whichever is earlier. PSF backwash is done by using PSF filtrate collected into the filter back wash sump. Backwash generated from PSF is routed to drain pit.

# Advanced Membrane Technology (Ultra Filtration)

The ultra-filtration membranes are used to remove the following impurities from the feed water

- Fine Colloidal particles
- Large Organic compounds
- Colloidal Silica
- Bacteria and Virus

The membranes act as an absolute barrier filtration to remove the impurities.

The Ultra-filtration membrane individual module consists of multiple fine fibers with 0.2 mm internal diameter. The membrane fibers are made of PES / PVDF to suit the filtration

applications. The filtration cycle is from out to in, the feed water passes from outside of the fibers to the inside during filtration.

Typical operation cycle for the UF will be,

- Filtration useful water is produced
- Air scouring
- Backwash
- Soaking
- Flush / Rinse.
- Chemical Enhanced backwash at prefixed intervals.

# Backwashing

Dedicated backwash pumps connected to a backwash water source will be provided as part of the equipment. The backwash water requirement will be taken from a dedicated tank or common UF filtrate storage tank. A suitable acidic/alkaline cleaner dosing and chlorine dosing system will be provided to dose chemicals as required during backwashing of the Ultra-filtration membranes. The dosing sequence will be controlled by the PLC and will be done by means of metering pumps to ensure accurate and optimum dosing.

The backwash water from the UF will be led back to the drain pit.

# Reverse Osmosis: Stage -1

Reverse Osmosis is the third & final stage of treatment for removal of dissolved salts; two pass Reverse Osmosis system is provided. UF permeate is pumped by the cartridge filter feed pumps, to the cartridge filters. The capacity of the pump is such that they will pump the required quantity of UF permeates to RO skid. The system consists of following equipment in series.

#### **pH** Correction

Feed pH correction is done to ensure all sparingly soluble salts are kept within their solubility levels at the reject end of the RO. Acid is dosed to adjust pH and ensure the reject water saturation index is maintained below 2.0.

Feed pH correction can by automate based on the feed water pH online monitoring to ensure the feed pH remains within the desired band levels.

When pH correction is done using acid, CO2 is generated from the reaction with the alkalinity present in the water, the dissolved CO2 passes through the membranes, a degasser is provided to in the RO permeate to remove the CO2 generated.

#### Anti scalant Dosing System

To achieve higher recovery from the RO membranes it is necessary to hold the sparingly soluble salts in the water at super saturation levels, this is achieved by addition of chelating agents that prevent precipitation of the sparingly solution ions like Ca, Mg and silica. Type and quantity of antiscalant used is based on the feed water chemistry. At the design stage

software simulation are generated, this however will have to be established during the plant commissioning.

### Micron Cartridge System

A cartridge type 5 / 10 micron-rating filter is provided after chemical dosing to act as a guard filter. The cartridges will be non-fiber shedding in nature. This filter serves to trap any particulate matter generated due to chemical dosing. It ensures clean water is always fed to the RO units.

### **High Pressure Pump**

An online high-pressure booster pumps is used to pressurize the RO feed to the desired pressure to achieve the desired recovery. Multistage centrifugal booster pumps are offered for this service. The base level of these pumps is offered with CI casing and SS wetted parts. Full stainless pumps are also offered based on the feed water salinity levels.

### **Reverse Osmosis Block**

The RO block contains the membranes housed in the FRP housings. The housing is fitted in a compact skid frame with the feed, permeate and Reject piping. The housings are arranged in such a manner that the hydraulic flows across all the housing are uniform and the off take of permeate from each membrane is uniform.

Each stage is designed for a uniform of take of permeate to maintain the required cross flow and the reject flows. This will ensure that fouling and scaling do not take place on the membrane surface. The membranes used are the latest generation spiral wound thin film composite membranes. For specific applications fouling resistant membranes will be used, however this will be decided based on the nature of the feed water.

# Hardness Removal System

The pre-treatment section is designed to precipitate / coagulate and flocculate the following from the feed water,

- Total Suspended solids
- Total Hardness (Partially)

#### **Chemical Coagulation**

The process involves dosing of coagulant to precipitate the dissolved salts in the first stage, the following chemicals are dosed in the flash mixer to induce the precipitation.

- Lime Solution for precipitation of carbonate-based hardness.
- Soda ash solution to provide bicarbonate alkalinity for non-carbonate hardness precipitation.
- Ferric Chloride solution to enhance the floc formation.

The overflow from the flocculator flows by gravity to the secondary tube deck Clarifier. In the tube deck clarifier, the incoming water flows upward through the tube Pac media and heavy floc particles settle down to the bottom conical portion of the tube settler due to

gravity. At regular intervals, the settled sludge at the bottom will be discharged to sludge holding tank. The clear water overflows by gravity to the RO-2 feed tank.

# **Treatment units Value**

SI.No.	Treatment units	Existing ( KLD)	Proposed ( KLD)	Total ( KLD)
1	Biological Treatment system	100	1100	1200
2	Ultra filtration system	100	1100	1200
3	Reverse Osmosis Plant	100	1100	1200
4	Multiple Effect Evaporator	70	930	1000
#### **Process Flow Diagram: -**





# 2.10.5 EFFLUENT TREATMENT SCHEME INCLUDING SEGREGATION OF EFFLUENT STREAMS FOR UNITS ADOPTING 'ZERO' LIQUID DISCHARGE.

Unit has full-fledged Effluent Treatment Plant to treat the wastewater with multiple effect evaporators (MEE), Biological conventional treatment and RO system. The water recovered is totally reused in the process plant itself. The domestic waste water is also treated in the STP. The cyanide bearing wastewater is chemically treated with Sodium hypochlorite solution and taken for evaporation in the MEE. No effluent is/will be discharged into any surface water body. Hence, this unit is/will be total Zero Liquid Discharge unit.

### 2.10.6 PLANS FOR MANAGEMENT, COLLECTION AND DISPOSAL OF WASTE STREAMS TO BE GENERATED FROM SPILLAGE, LEAKAGES, VESSEL WASHING, USED CONTAINER WASHING ETC. MEASURES PROPOSED FOR PREVENTING EFFLUENT DISCHARGE DURING UNFORESEEN CIRCUMSTANCES.

- All major chemical handling is done through closed system.

- All reaction vessels are connected to scrubber system.

- Smoke & fire detection system installed at ware house.

- Spillage of any chemical will be avoided to the maximum extent by closed circuit system i.e. day tanks are provided with an overflow line having bigger diameter than that of inlet of the pipe diameter. Standard operating procedures are available to handle spillage and leakage.

### 2.11 AIR POLLUTION AND CONTROL SYSTEM

#### 2.11.1 DETAILS OF PROCESS VENT

Sr. no.	Source of emission	Type of emission	Stack/Vent Height (meter)	АРСМ
EXIST	ING			
1	Scrubber at Plant - I	SOx,NOx,CO	6.1	Wet Alkali Scrubber,Stack
2	Scrubber at Plant -II	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
3	Scrubber at Plant - II	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
4	Scrubber at Plant - II	SO _x ,NO _x ,CO	15	Wet Alkali Scrubber,Stack
5	Absorber at Plant - I	SO _X ,NO _X ,CO	4	Wet Alkali Scrubber,Stack
6	Scrubber at R & D plant	SO _x ,NO _x ,CO	12	Wet Alkali Scrubber,Stack
7	Phyto Plant Scrubber(Process)	SO _x ,NO _x ,CO	19	Wet Alkali Scrubber,Stack
8	Scrubber at Plant - II	SO _x ,NO _x ,CO	15	Wet Alkali Scrubber,Stack
9	Scrubber at Pilot Plant	SO _x ,NO _x ,CO	6.1	Wet Alkali Scrubber,Stack
10	Scrubber at plant IV	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
11	Scrubber at plant IV	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
12	Scrubber at plant IV	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
13	Scrubber at Plant - V	SOx,NOx,CO	17	Wet scrubber with stack
14	Scrubber at Plant - V	SO _x ,NO _x ,CO	17	Wet scrubber with stack
15	Scrubber at Plant - V	SOx,NOx,CO	17	Wet scrubber with stack
16	Scrubber at Plant - V	SO _x ,NO _x ,CO	17	Wet scrubber with stack

PROF	POSED			
17	Scrubber -1	SO _x ,NO _x ,CO	17	Wet Alkali
				Scrubber,Stack
18	Scrubber -2	SOx,NOx,CO	17	Wet Alkali
				Scrubber,Stack
19	Scrubber -3	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
20	Scrubber -4	SOx,NOx,CO	17	Wet Alkali
				Scrubber,Stack
21	Scrubber -5	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
22	Scrubber -6	SO _x ,NO _x ,CO	17	Wet Alkali
				Scrubber,Stack
23	Scrubber -7	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
24	Scrubber -8	SO _x ,NO _x ,CO	17	Wet Alkali
				Scrubber,Stack
25	Scrubber -9	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
26	Scrubber -10	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
27	Scrubber -11	SO _X ,NO _X ,CO	17	Wet Alkali
				Scrubber,Stack
28	Scrubber -12	SO _x ,NO _x ,CO	17	Wet Alkali
				Scrubber,Stack
29	Scrubber -13	SO _X ,NO _X ,CO	17	Wet scrubber
				with stack
30	Scrubber -14	SO _x ,NO _x ,CO	17	Wet scrubber
24			47	with stack
31	Scrubber -15	SO _X ,NO _X ,CO	17	Wet scrubber
22	Comulation 1C	<u> </u>	47	With stack
32	Scrubber -16	SO _X ,NO _X ,CO	17	wet scrubber
22	Comulation 17	<u> </u>	47	
33	Scrubber -17	SU _X ,NU _X ,CU	17	wet scrubber
24	Concher 10	50 NO CO	17	With Stack
34	Scrubber -18	SUX,NUX,CU	17	wet scrubber
25	Scrubbor 10		17	With Stack
55		SUX, NUX, CU	1/	with stack
26	Scrubbor 20		17	With Stack
50			1/	with stack
27	Scrubbor 21		17	Willi Stack
57			1/	with stack
20	Scrubbor 22		17	With Stack
50			1/	wet scrubber

				with stack
39	Scrubber -23	SO _x ,NO _x ,CO	17	Wet scrubber with stack
40	Scrubber -24	SO _x ,NO _x ,CO	17	Wet scrubber with stack
41	Scrubber -25	SO _x ,NO _x ,CO	17	Wet scrubber with stack

#### 2.11.2 DETAILS OF THE UTILITIES REQUIRED.

Various utilities required for proper functioning of manufacturing plants. These utilities include steam boiler, cooling plant, Cooling tower, Chilling tower, Air compressor, High Vacuum System, etc.

Fuel Requirement:

### 2.11.3 TYPE AND QUANTITY OF FUEL TO BE USED FOR EACH UTILITY.

**Power Requirement:** 

Sr. No.	Description	Existing Requirement ( KVA)	Proposed Requirement ( KVA)	TOTAL Requirement ( KVA
1	State Electricity Department	2000	12000	14000
2	D.G. Set	3470	10000 (5 x 2000 kVA)	13470

#### Note: DG Set will be kept for emergency power back up.

SI.	Type of	Existing	Proposed	Total
No.	Fuel	( MT/day)	( MT/day)	( MT/day)
1	Furnace Oil	8	90	98
2	Briquettes	00	250	250
3	HSD	1.7	20.3	22
4	LPG	0.008	0.192	0.20

### 2.11.4 FLUE GAS EMISSION RATE EMISSION FROM EACH UTILITY

FLUE GAS EMISSIONS

SR.	Source of emission	Stack	Name of	Quantity	Type of	APCM
no.	With Capacity	Height	the fuel	of Fuel	emissions	
		(meter		MT/hr &	i.e. Air	
		)		MT/Day	Pollutants	
EXISTIN	IG					
1	Boiler-1 (9 TPH)	40	Furnace Oil	8 MT/Day	SOX,NOX,SP	Mechanical
					IVI,CO	collector
						,Stack
2	D.G set (600 KVA	12	HSD	80lit/Hr	SOX,NOX,SP	Stack
					M,CO	
3	D.G set (600 KVA)	12	HSD	80lit/Hr	SOX,NOX,SP	Stack
					M,CO	
4	D.G set (750 KVA)	12	HSD	90lit/Hr	SOX,NOX,SP	Stack
					M,CO	
5	DG (320 KVA)	9.8	HSD	40 lit/Hr	SOX,NOX,SP	Stack
6		10		00111/111	M,CO	Charal
6	D.G Set (600 KVA)	12	HSD	80lit/Hr	SUX,NUX,SP	Stack
7		12		001:+/11#		Stack
/	D.G Set (600 KVA)	12	HSD	80IIt/Hr		STACK
Q	Thermic Fluid Heater	٩	НСП	20 lit/hr		Stack
0	1 Lakh Kcal/Hr	5	1150	20 mg m	M CO	JIACK
-		-		0.0 Hr /I		
9	Thermic Fluid Heater	9	HSD	20 lit/hr	SOX,NOX,SP	Stack
	1 Lakh Kcal/Hr				M,CO	
PROPO	SED					
10	Boiler-1 (50 TPH)	40	Briquettes	250	SOX,NOX,SP	Mechanical
				MT/Day	M,CO	Dust
						collector
						,Stack or
		10				ESP
11	Boiler-1 (50 TPH)	40	Furnace Oil	90 NAT / Davi	SOX,NOX,SP	Mechanical
				INIT/Day	IVI,CO	Dust
						Stack
12	DG  set  -2000 KV/A	30	НСП	400		,slack Stack
14	DO SEL-ZUUUNVA	50	עכוי	lit/hr/DG	M CO	JIALK
				set		
13	DG set -2000KVA	30	HSD	400	SOX,NOX,SP	Stack

				lit/hr/ DG set	M,CO	
14	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
15	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
16	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
17	Thermic Fluid Heater 2 Lakh Kcal/Hr	9	HSD	40 lit/hr	SOX,NOX,SP M,CO	Stack
18	Thermic Fluid Heater 2 Lakh Kcal/Hr	9	HSD	40 lit/hr	SOX,NOX,SP M,CO	Stack

# 2.11.5 LIST THE PROJECT SPECIFIC SOURCES OF FUGITIVE EMISSION ALONG WITH ITS QUANTIFICATION AND PROPOSED MEASURES TO CONTROL IT.

The emissions are normally defined as emissions to the atmosphere resulting from leaking piping sources and equipment such as valves, flanges, pump seals, connections, and compressor seals open end lines and pressure relief valves. The emissions are not visually observed but can be measured in relatively low concentration at each area of source.

Fugitive emissions are expected to be generated during construction and operation stages of the proposed project. During construction stage, main source of fugitive emission is dust which is expected mainly due to movement of vehicles carrying construction material and vehicles used for construction. During operation stage, leakage through valves, pumps, emission from open drum containing chemicals, open feeding; storage tanks, etc. are the major sources of fugitive emissions of organic chemicals and VOCs. Adequate dust collector is installed for control of fugitive emission during loading of raw material and product. Condensers are provided to trap VOC. All the Flange joints of the pipe lines which carry solvents are covered with flange guards. All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions. VOC detectors are installed at various places to identify any fugitive emissions. A regular preventive maintenance schedule is in place to replace or rectify all gaskets and joints etc as a part of ISO systems to ensure no fugitive emissions takes place.

The fugitive emissions control measures:

- The Solvent used in the processes is handled in a closed loop and in process materials are stored in drums will be kept under structured roof.
- Equipment where volatile solvents distilled is provided with reflux condensers and after coolers and the receivers are connected to the scrubber.
- Pumps of compatible MOC with Single and Double Mechanical seals are used for handling corrosive and hazardous chemicals
- Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab
- All the rotating equipment like pumps are installed with Mechanical Seals to arrest any sort of emissions.
- Proper ventilation in storage area is ensured and all materials are stored in suitable packing to prevent contamination of air due to particulates & volatile emissions from storage area.

- All the Flange joints of the pipe lines which carry solvents are covered with flange guards.
- Adequate Dust Suppression System including Water Sprinkling System is installed for control of fugitive emission during loading of raw material and product.
- Work place monitoring within plant, storage & other area and AAQM will be done as per 'Post project monitoring plan' as well as regulatory requirement as per factory act.
- Properly designed method & practices of transportation, storage & handling of materials are established and maintained along with necessary facilities to reduce airborne particle of materials and VOCs.

### 2.11.6 PROVISION OF CEMS (CONTINUOUS EMISSION MONITORING SYSTEM).

- Continuous online Monitoring System for Gaseous Emission as well as Effluent are installed.
- Parameters required to be monitored in the stack emissions using Continuous Emission Monitoring system, are industry specific and are specified below: - PM, SO2, & HCN
- For online continuous monitoring of effluent, the unit installed web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.

#### 2.12 HAZARDOUS WASTE GENERATION AND MANAGEMENT

2.12.1 MANAGEMENT PLAN FOR HAZARDOUS/SOLID WASTE INCLUDING STORAGE, HANDLING, UTILIZATION AND SAFE DISPOSAL AS PER THE HAZARDOUS AND OTHER WASTES (MANAGEMENT AND TRANSBOUNDARY MOVEMENT) RULES 2016. CPCB GUIDELINES IN RESPECT OF SPECIFIC TREATMENT, SUCH AS SOLAR EVAPORATION, **INCINERATION, ETC., NEED TO BE FOLLOWED.** 

#### **TABLE 2.5**

DETA	ILS OF HAZARDOUS	WASTE AND ITS	DISPOS/	AL .		
Sr.	Name of Waste	Source of	Cat	Existing	Total	Disposal Method
No		Generation	No.	Quantit	Propos	
				У	ed	
				(MT/Ye	Quanti	
				ar)	ty	
					(MT/Y	
					ear)	

### 

1.	Empty barrels/	Storage &	Sch-I/	40	500	Collection, Storage,
	containers/liner	handling of	33.1			Transportation,
	s contaminated	Raw Materials				Decontamination &
	with hazardous					Disposal to TNPCB
	chemicals					Authorized
	/wastes					Recyclers (Recyclable)
2.	Used / Spent Oil	Equipment &	Sch-I/	10	200	Collection, Storage,
		Machineries	5.1			Transportation,
						Decontamination &
						Disposal to TNPCB
						Authorized
						Recyclers (Recyclable)
3.	Chemical sludge	In-house ETP	Sch-I/	2500	43000	Collection, Storage,
	from waste	& MEE	35.3			Transportation &
	water treatment					disposal to Common
						TSDF site by following
						protocol of Hazardous
						Waste Rule – 2016.
4.	Spent solvents	Process	Sch-I/	350	20000	Collection, Storage,
			28.6			Transportation,
						Decontamination &
						Disposal to TNPCB
						Authorized
						Recyclers (Recyclable)
5.	Distillation	Process	Sch-	20	4000	Collection, Storage,
	residues		I/20.3			Transportation &
						disposal to Common
						TSDF site by following
						protocol of Hazardous
						Waste Rule – 2016.
6.	Contaminated		Sch-	6	10000	Collection, Storage,
	aromatic,		I/20.1			Transportation &
	aliphatic or					disposal to Common
	naphthenic					TSDF site by following
	solvents may fit					protocol of Hazardous
	for reuse					Waste Rule – 2016
7.	Spent catalyst	Process	Sch-	1	40	Collection, Storage,
			I/28.2			Transportation for
						Regeneration,
						Recovery and Reuse.
						(Recyclable)

8.	Contaminated		Sch-I/	2	40	Collection, Storage,
	cotton rags or		33.2			Transportation &
	other cleaning					disposal to Common
	materials					TSDF site by following
						protocol of Hazardous
						Waste Rule – 2016.
9.	Spent Carbon or	Process	Sch-I/	NA	4000	Collection, Storage,
	Filter medium		36.2			Transportation &
						disposal to Common
						TSDF site / Co-
						processor by following
						protocol of Hazardous
						Waste Rule – 2016.
10.	Process wastes	Process	Sch-I/	NA	30000	Collection, Storage,
	or residues		29.1			Transportation &
						disposal to Co-
						processor by following
						protocol of Hazardous
						Waste Rule – 2016.
Non H	azardous waste					
11.	Fly Ash	Utility			18250	Collection, Storage,
						Transportation and
						sent for brick
						manufacturer and/or
						in cement industries.

# 2.12.2 METHODOLOGY OF DE-CONTAMINATION AND DISPOSAL OF DISCARDED CONTAINERS AND ITS RECORD KEEPING.

**Decontamination & Disposal of Discarded Containers:** The proper disposal of empty chemical containers is more important for hazardous chemicals as it can contain residual amounts of chemicals. There can be no more than 1 inch of material left in the container not more than 3% by weight of the containers capacity. In an effort to ensure that this residue is handled properly and to be able to recycle or properly dispose of these containers, the following procedure is to be followed. The below guidelines are useful for non-hazardous chemicals also.

**Rinse Procedure:** An empty chemical container that contains hazardous chemicals (liquid or solid), must be rinsed 3 times with water (or appropriate rinsing agent) before being discarded. The first rinse is collected as chemical waste, it can be put into any waste container of compatible chemicals, the second & third rinses then go down to drain. If the chemical is on the list of acutely hazardous waste, then all three rinses are collected. They are placed into an operating fume hood overnight without the cap to allow the vapors to disperse. After the containers are rinsed, they are discarded appropriately as described

below. All caps are let off of the discarded containers. Containers are labeled with "Empty" labels and the chemical name is crossed or blacked out prior to being discarded. Caps are discarded to regular trash.

### Reuse /Recycle/ Disposal of cleaned containers:

- All chemicals must follow the above rinse except the volatile Solvents & before being discarded in any form.
- Metal containers or any plastic containers, plastic tubing or plastic beakers that do not meet the recycling criteria can be discarded into regular trash.
- Glass containers, glass tubing that do not meet the recycling criteria are to be placed into trash can for disposal.
- Plastic & glass containers that meet the recycling criteria must be placed in appropriate recycling containers.
- Empty compressed gas cylinders are returned to vendor.

2.12.3 MANAGEMENT OF BY-PRODUCTS WHICH FALL UNDER THE PURVIEW OF THE HAZARDOUS AND OTHER WASTES (MANAGEMENT AND TRANSBOUNDARY MOVEMENT) RULES 2016 AS PER THE SAID RULES AND NECESSARY PERMISSIONS FROM THE CONCERN AUTHORITY.

- Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse, Distillation residues, Chemical sludge from waste water treatment, Contaminated cotton rags or other cleaning materials will be disposed at TNWML.
- Spent solvent will be disposed to TNPCB Authorized Recycler (M/s. Pentakcoat Resins).
- Empty barrels/ containers/liners contaminated with hazardous chemicals /wastes will be sent to TNPCB Authorized Recycler (M/s. Kreethiga Chemicals)
- Spent oil will be sent to TNPCB Authorized Recycler (M/s. Sri Balaji Enterprises)

2.11.4 MEMBERSHIP OF COMMON ENVIRONMENTAL INFRASTRUCTURE LIKE TSDF, COMMON INCINERATION FACILITY (CHWIF), MEE, SPRAY DRYER ETC. IWMA - Membership certificate

	UNITE Star Star Star	
	Industrial Waste Management Association	
	Regd: No. 256 / 2002 Crown Crurt' 2nd Ebor: 128 Cathedral Road, Chennal - 500 686	
	SANMAR SPECIALITY CHEMICALS LIMPTED	
	This is to cortify that	
	44. THEERTHAM BOAD SCLIGUNTA VILLAGE.	
	BERIGAL- 635 105. is a member of the Industrial Waste	
	Management Association. The membership no , is	
0	Date: 15.00.00 Chairman	

#### Agreement with Tamilnadu Waste Management Limited

		24.23	A DAMAGE AND A DAMAGE	e.
	There is a second second		ANNEXON	
1.00	A RAIS CHILS	11 2 221113		
		The state of the s	~ 100	
	ि एक सा रुपय			
1 m - 11	5 35 100	A MUM MUNICA	DEG DUDEES	4
and the second		THE REAL	neo nor ecor	
		STATINIDLANS	ANNUMATION AND A	
1.000	INDIA N	ION JUDICIA		
130 500			57 997290	
1953	chemple	at Sannar Ctol	Parimal	9
.74	St. No.	Berigan	N.B. PS-Bublala.	1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -
0	Dute 23/9/2020	THE ALL PRESSENT	Che, Sound Outlestand	
1 1 m 1 m			and the second se	
11	This Service Agreement is mode at 13	Whi day of January 2021 BY A	NO BETWEEN	
10	M/s Chemplast Sounds Limited -St legistered office of No.9 Colhocks P	load, Chennol - 500 086 ond	showing production	
10 10 10	Kristviogi Datriet -635106 Tamil Modu on behall of its Occupier hereinafter	represented by its br.#dshr referred as "Generator" w	ndeamar Rangachati hich expression shall	
- E - 2	unless repognant to the subject or or	astent include its successors	and assignation	
	I MARTIN MATTE MANAGEMENT	LUMIED, company res	patered under the	
	Somponies Act. 1956 and having its gloor, Ramiky Tower's complex. Goot	stowel, Hydensbad - 500 0	2. represented by its	
13 17 - 19	expression include their successor	and assigns, unless such int	dution is inconsistent	
	I SPLAST		ESE MAR	
		Tage 1 of 12	( and a second s	
25		4	2011 . 5	
				1

Hareinafter in this Agreement Gesarator and Operator shall callectively be referred to as "Parties" and individually as "Party".

#### WHEREAS;

A. Generator Sammar Specially Chemicals engageril in manufacturing of Speciality Chemicals and Generating Hazardous waste of plant located in Sergel.

E. Operator is engaged in the business of Waste Management and precently operating "Integrated Common Hazardoos Waste Treatment Storage Disposal Sociality" of Ref No.5-15, 29-33, Sincet Industrial complex, Committiagement, through the Defect had been established as per the TVPCB's Consent to Establish Order AND WHEREAS the GENERATORS desire to get their Hazardous WASTE (where a disposed on their Hazardous WASTE) being generated at their premises collected treated and disposed of by utiliting the services of the TWWAL.

C. WHEREAS Generator has opproached Operator for ovailing its services for collection, transport, treatment, storage and disposal of the Hazardous Waster generated during the process of manufacturing of its product and the same has been accepted by Operator on the terms and conditions set out in this Agreement read with the provisions of Hazardous Rules and supervision of SPCB.

NOWTHEREFORE in consideration of the above mentioned pumples and the mulual promises contained herein, the Generator and Operator have agreed to enter into the Agreement under the form and conditions set forth hereination.

#### 1. DEFINITIONS AND INTERPRETATION

 Definitions: In this Agreement, including in the recircle hereof, the following words, expressions and abbreviations shall have the following meanings, unless the context otherwise requires:

 "Agreement" means this agreement including all allochments, conserve or Schedules annexed thereio.

- b. "CPCB" means Central Patotian Central Soord,
- c. "Rotes" means Hazardous & Other Waster (Management & Handling) Rules, 2016 as amended from time to time.
- a. "MoEF" means Ministry of Environment & Foreth.
- e. "SPC8" means State Polution Control Board. Torminadu a in the state in
- which the ISDF operated by Operator & Iflusted. I. TSDF means the integrated Common Resardous Waste Teatment Storage Daposal lacitity by name "TAMUNADU WASTE MAINAGENERI" IMPED 2 (1997) approach by the Operator and located at Pict No.5 15, 28-33 (2017) approach complex, Gummidipoondi, Thinwallyr District PIN-601

Tugs 2 al 17





ANNEXURE - E

13.1

	1.1		
	121.5	ANNEXURE: C	
	1.000		
			10 32
		The second s	1
		March, 2018 under Section 25/26 of the Water (Revention and Control of	
		Poliution) Act, 1974, under Section 21 of Ar (Voltation No. 4498, doted 2 nd	£
		traulary 2015, under the Provisions of Hazardows Waste (Management,	r
	2	Handling & Transboundary Movement) Rules, 2016	
8. I		g. "Washe" means Hazardous waste generated of the previous of the	
V		Generator.	1
- A		there there are been and the second	8
8 *	1	2 Interpretation t in this Agreement, unless the subject or context of the mas	¥
	21	roquifeis	1
4.6		<ul> <li>Reference to the singular number that luctude references to the plural</li> </ul>	
		number and vice versat	2
		b. References to a "person" shall include intersection of individual whether	
		encomported or not or any other organization or entity including any	11
100		governmental or political sub-division, ministry, deportment or ogency	18 I.
		thereof;	
		<ul> <li>Reterences to records, conversion and an analysis of the second se</li></ul>	
		<ol> <li>Any telerence herein to a statutory provision shall include such provision.</li> </ol>	
		as is in force for the time being and as from time to time, amended of the	1
8		enacted is to for as such amongment or residuants a contract these is new terminations covered by this Agreement.	
÷		<ul> <li>Close headings used horein are only for use of reference and shall not</li> </ul>	
		aßed the interpretation of this Agreement.	
		the surface if American shall form on integral part of this Agreement.	
	13	The recircle a knowledge and the second seco	
	1.4	All copilated terms used in this agreement which have not bare specifically	
		defined in the Agreement short under the Authorization Agreement.	
		medanda danarroo o ana	
3	13	the GENERATOR shall be member of industrial wase management	
		Association (berein after intered to a online) out and the	
- 11		MILTIMANT CITTURE HERARISAN	
- R	2	SCOPE OF SERVICES	
	53	the scope of services to be provided by Operator under the Agreement shall	S
		be collection, transportation, incolment, starage and disposal of wase	
		DATE MAN	
		(a) (a)	5
		((f((Sk))))))) Pate Sul 11 (Stanning))	<u>6</u>
		A Company and the second secon	
		- The second sec	FC
			2
			1
20			

		· · ·	2
	Abbitry rese. 5		
بحبيب الجاري			
		- 	
1	12 If is agreed between the Parties that Operator shall provide the above requires to the Congrature through tamilifactive Wate Management it.	•	
· · · ·	(INWML), a 1907 operated by Operator		
	· · · · · · · · · · · · · · · · · · ·	-	-
2	3 Operator sholl dispose the Waste as per the mandate of the SPCB read with		-
	the provisione of Hazardous Rules.		
••	A Clearater also preses to accept away polybothories unside from the		
•	Generator provided that the concerned SPCS issues 'no objection'.		
		•	
3	GENERAL CONDITIONS		
· .			
. 3	) The Generator shall provide to Operator, a sample of the Waste and inform		
	the entire process details which leads to generation of such Waste, for the		
	purpose of determining the Waste characteristics and to decide parometers	•	
	for comprehensive analysis, as well as its final pathway of treatment, storage		
	and asposal of the Waste.	-	
. 3	2 Operator shall carry on the comprehensive analysis of the Waste in its	i I	
•	laboratory at the cost of the Generator, as per the parameters identified in		
	the Arnexure. The comprehensive analysis report shall be used by Operator	•	
	to determine the disposal pathway based on the worke characteristics & as	1	
	per Moet, CHCB and the SMCB tules and guidelines issued from time to time. The disposed pathway shall be reducily access between the Generator f	•	۰.
	Operator and shall form basis for disposal / user charges. The comprehensive	-	
	analysis report is valid for two (2) years. Any change in the process, product		
	mix or row material which generales the Waste needs to be informed to	:	:
	Operator in advance of such proposed change by the Generator.		
3.	3 Januar receipt of information from the Generator. Operator shall also and		
0,	schedule for collection of the Waste from the Generator and the safely		÷.
	during transportation is the collective responsibility of the Generator and the		
	iransparler.	:	
3.	The Generator shall provide the details of Waste to Operator as mentioned	1	
	bekw:		
			1
	<ol> <li>Complete details of the Waste and its characteristics regarding</li> </ol>		
	presence or explosive / ignitable / corresive / taxic / otherous	:	1
	ironsportation and disposal,		
	i) So <u>fetr information in 'Form 08'</u> , 'waste transportation monifest' in 'Form		
	an star TREM Cord' in Form 09' for every Waste type as per		
~	A PARTICIAN AND AND AND AND AND AND AND AND AND A	-	
-	S S (SERIGAL) S Parc 4 of 17	4. 4. 5.	
	(Star of Star		
		2	
		• •	-
			.1
			•
	· <b>~</b>		
			÷
			1
			5



ANNEXURE . E 1.5 reason, the Generator is unable to utilize the facility services for a particular month / period, the Generator shall larfell the amount that is unvillated in that colendar year. The charges see manifolied under the altoched Annexure. In case the generator is unable to send the assured quantity of waste, a per frier declaration the datuat waste quantity will be charged as per the rate opress, and the difference between the assured quantity and actual quantity received, the charges shall be at the rate of 15% of the rate per MJ. 3,13 An interest tree adjustable, security deposit shall be paid by the Generator to the Operator. The security deposit shall be adjustable against user charges in 3.14 the event either party decides to territrate this Agreement, the terracial charges are applicable on such security deposit. This security deposit shall be reviewed every year depending on the Waste committed by Generator and the actual manifold at the ISDF. The security depade detail is meetioned under the attached Annoxure USER CHARGES & TERMS OF PAYMENT 4 The Generator shall pay monthly user charges to Opprotor for the services as per the stab ogreed, which is based upon the declaration given by the Generator as per Annewre. It addition, the Generator shell also be table for 4.1 poyment of oppriosible lower, levies, ECROW Charges etc., if any, on the user charges. The user charges are subjected to be revised on the bank of Government of India wholesale price index and also in every event of escalation of fuel calls, 42 power latifi, change in disposal technologies and/or method, wage tike and others. Any revision shall be done on per guidelines among out of discussion belween INWML and WMA. the monthly bill will be sunt to the Works Generators on a before  $5^{\rm or}$  of every successing month and the bill smount shall be paid within 15 days of receipt 4.3 of bill Any objection and/or clarification on the waste disposed invoices and monthly bits submitted by Operator to Generator shall be communicated to Coerator 4.4 within seven (7) working days born the date of the invoices. In case of nonreceipt of any challication or objection it shot be deemed that the involution are acceptable and shall tall due for payment as per classe 43 of this Agreement. Poyments Generator shot be tipble to pay internet of the 4.5 In case the default or the outstanding amount during the default period Vate rhga é a/17 ×-

are acceptable and shall tait due for payment as per clause 4.3 of this Agreement.

4.5 In case of delayed payments Generator and be table to pay interest at the rate of 1,5 % per month on the outstanding amount during the detault period (As per cloure 4.3). In the event of any bill amount along with interest is due for more than three (3) months. Operator reserves the right to refuse to extend its services to Generator and even to terminate this Agreement with immediate effect upon giving a prior withen notice of lifeen (15) days.

#### 5 TERM OF AGREEMENT

10.00

10 ec

1.0

This Agreement shall be valid for a period of five years effective from 15.01,2021 and subject to early termination by either party in occordance with this Agreement.

#### FORCE MAJEURE

4

Notwithstanding anything else contained berein, neither Party hereto that be table for damages or to have this agreement terminated for any delay or default in the performance at such Party benearder if such delay or default in patiannuable derives from conditions beyond the reasonable control of such narty, including but not invited to, acts of God, strikes, trids, floods, estreme drought, shortage of supply, table, work tabpoages, embargoes, governmental actients or damage to the plant or factility or any cause unavoidable or beyond the control of alther party including any arbitrary ruling by the Government protections such as was an examplication including damage of law. The Parties shall have right to terminate this Agreement upon giving a play within natice to the other Party if the Force Majoure event continues for more than naticety (90) days.

#### 7 INDEMNITY

ē

Generator do hereby indemnity, beep indemnited and hold hamiless the Operator, it's representatives, nominees and officers (including without invitation, reimbursament) of any late suffered by Operator and / or its officers, directors, employees, agents or attiliates and their legal casts, awards, domages, tasks and / or expenses, either peruniary or non-peruniary in notwe, arising directly or indirectly, whather during callector or tramportation or treatment or starage or disposat, as a result of;

a) The Waste supplied by or collected from Generator in case of any relevance of waste from TREM Card or inger prints and any non-





ANNEXURE . E

ħ.

12

1.1	energiant o il mitto	ANNE	XURE. E	
		C. Strategick		
	c) Any violation or non-compliance by Get	neution of the provisions of		
	Matardow Waites (Managemerit, Hon Movament) Rules, 2016, Water (Preventio	dling and Trans-boundary in and Control of Pollution)		
	Act, 1974 and Air (Prevention and Can Including any modifications, amendments	Incl. of Pollution? Act, 1981 mode thereto and any new		
8	acts and roles legislated and promute under this Agreement during the term	led governing the solidity of this Agreement or ony		
5				
	8 EVENTS OF DEFAULT			
	The following shall constitute Generator's events o	I defoult:	2	
	o. If the Generator fails and/or refuses to pay th	ieir bills and/or dues for the		
	b. If the Waste supplied by the Generalized	contains any radioactive,		
	c. If the Generator commits grass violation of the	terms of this Agreement.		
15	9 TERMINATION			
	The Operator shall have the right to territriote this effect upon expiry of thirty (30) days from the data occumance of Generator's event of datault un realitied with thirty (30) days from the date of the r	Agreement with immediate s of the written natice upon lass the same have been values.	2	
	Either party shall have the right to terminate this violation of any of the terms and conditions at agr or otherwise, upon giving thirty (30) days written no	Agreement in the event of eed upon in this ogreement slice to the other party.	122	
	10 ENTIRE AGREEMEENT		4	
	Dis Agreement shall be desired to represent the the parties hereto regarding the widert mailer h cancel and replace any and all pror agreements this benalt, by and between the parties hereto.	entire Agreentent betwoon tered ond shall superside, i or and gettents, if ony, in	12	
	11 RELATIONSHIP OF THE PARTIES			
2	Nothing contained harein shall be dearned to co venture or grannov by and botween the parties be	visiliule a partnershia, jani reta.		
	Page 8 of 17		Я я	
		Ξ		
	5			

							1
ŧł.	5 E			0647			
Ŀ.			ANNEXU	RE-E			
11	(ma) - ma-1	0.175	S I I I I I I I I I I I I I I I I I I I	100			2
	17.8					- 4	
		2014	4			- 2	
8		12	VARIADONS	*		4	1
	2		the Agreement may be madled or amended only by writing, duty executive			Ē	1
	200		by or on bendit of the politics relative				
	8	13	INVALIDITY			1	
			in the event that any provisions of the Agreement is held to be likegot, involid		- 1	14	
	- 1 SV		or unerforceable under any present or future laws or the republic or motion			1	
	1		such provisions of this Agreement shall remain in full torce & effect.	10		- 4	
	1 s						
		14	NOTICE3				
		14.1	Any notice, regist, demond or other communication given or most show				
	)E		willing and shall be delivered personally or sent by registered soal			- Q.	-
			acknowledgement due or by lacsimile or by counter-				
	15		In case of Generator loc			- 3	
			Attra Mr.Yogsesword (latoppa Gowda (Vice President-Operations)	15		134	
	10		Chimptol Sanno Chimes Solita Vilage, Berge: Ped	() (F			
			Shoologn Talue, totunogin District -635105	18			10
			Tomingov				
			In case of Operator to:				
			Taminade Waste Management United				
			Plat No : 5-15 & 19-33 . ENP SIPCIOI Industrial Endle				
	1		Contraction of the second s				
			and shall be deemed to have been duly gives or make as reacting				
			(a) It personally delivered, upon delivery at the orderess of the relevant			10	
	10		Party: I want the providered post-acknowledgement due seven (7) days after				
			(c) the potients				
			(c) If sent by focumite upon successes inclusion report	-			
	(4)	143	A Party may notify the other Party of a change to its hama, relevant				
			oddrinses of oddress purpores or create the oddress of create the oddress of create the oddress of the oddress				
			Barrista (Standard				
			(2(((((()))))))) Report 17				
			The second second				1
8	<del>2</del> 0		$\mathbf{\mathbf{v}}$				
						19	
							12

ANNEXURE . E SURVIVAL 15 Not will alonging any contained in this Agreement, the provisions of cloure 4. 7 and 8 of this Agreement stall solver for Ske (5) years after termination or completion of term of this Agreement which ever is later. DISPUTE RESOLUTION 14 In the event of any dispute, controversy, difference, disagreement or doing ching out of cr in connection with or in relation to this Agreement, including any questions as to its axistence, validity, interpretation, implementation or termination, the Parties hardia shall endeavor to resolve the same in an amisable manner in conscience with the Intention of the Agreement. If however, after lapse of lifeen (13) days there from. The Parties are unable or otherwise tail to resolve such dispute, controvery, difference, disognament or claim, through discussion or associate settlement as above, then said dispute, controversy, difference, disogreement or claim shall be released to and finally settled through artitization by sole arbitrator as per the uses of Н Arbitration and Conciliation Act. 1996 on amended from time to time. The award of arbitration shall be final and binding. The seal of arbitration shall be of Hyderabad and the arbitration proceedings and all documentation shall ÷. be in English language. No party shall make public the contents of diabitation without the prior written consent of the other party. The arbitration proceedings shat be concluded within in siz (6) months from the date of reference of dispute to arbitration by a party to this Agreement. Page 10 of 17 

ANNEXURE - E W -----243 D. 11 1212 17 GOVERNING LAW & JURISDICTICN This Agreement shall be governed in accordance with the lows of india. Operator and the Generator mutually agree that the courts of competent withfultan of Chennol shall have the exclusive jurisdiction over all the disputes -2 2 R and crian of characteristic nove the exclusive juradicison over outine dispute onling cut of this Agreement. Notwithetending combined in this Agreement we party shall be rehained from opploaching the courts of competent jurisdiction of Hyderabold for satilling any equination or interim relation. nellafs. IN WITHESS WHEREOF, its portius iversito have signed into Agroement on the day, month and year that above written. For Taminadu Waite Management Lid For Chempiasi Sanmar Ud Sormar Speciality Chemicals Division ALSIE MA (PAR Retwick Kilding King Charles (DE) Nomer M.C. Bet Blody Hitany - 1 Designation: Project hickorge - PressureD Designation: Executive Director In the prospace of Seg S.Shamhmi Noma: Yogineswam Basappa Gewdo Norte Designation Strivice Resident Operations Champlast Sammar Ltd. Sama Spuisity Chenicals Division 44, Thenthem Road, Baldysters, 199 Enosinght Table, Krishnaght Diatrict Tamh Rada India. Tail +81 4244 253506  $\sim$ 許能日町け 

	1							1
	A 100		1.000	20 121		ANNEXORE	E	- 8
						1		
				ANNERUBE				
		Common I	teamdous Wo	ste Treatment Sorag	e II. Disposal Facility	1		223
14 H								
		1) MEMBERSHIP C	HPOST			V11.10-2011		
10x 10x		The GENERATOR sho (herein other reference)	al be membr I to as IWMA)	er of inductial Was and enler into an	e Management Asso agreement with TNWM	ciation IL and	×	
12.0		THE ORIGINATION DATE:	MARCHICE .					
124		SECONDA DELOZIL .			a = 2 - 2	Side=		- 2
		The Security Deposit matrix or minimum Re	cayable by lh .10,000/- :	e generator shall be	determined os par tha	below		
11		Annu	al Amend QL	y_n 1.5 x Disponal Ch	orgen Per MT.	9		
			2 35 3 0 M			2200 H		一选
	a	<ul> <li>Note: Ihis deposit members derire to w</li> </ul>	h odjustable : Indraw memi	only against waste a	stboos creaties in me	district.		
		2) USER CHARGES						
1 8	10	The Generative shall a	one the follow	ing applicable User	Charges based on the	Woste		0
	Se	Types.	Distance and the second					
	1.0	a) Direct Landlill Ch	arges Per Mi					
		Exect Disposal into (	und#1%3.1622					- 11
× .			100000000000000000000000000000000000000					- 3
		b) Stabilisation Char	ges: Per MT			200.		
		Cost of Direct L Rs.300.00 per MT	and Rling +0 for re-handling	Julking Factors Ces Sexpenses	l of Stabilization Real	gerih +		
		Note: Builling facto materials to be homit.	c this will be added to the	: the percentage ( woste to make il )	il the goowhum of sk I for land illing as pa	abiliting 17 CPC8		1
		c) Incineration Char on Material Dens	çes: A minime	um of #1.18750/per	WI per MI or KL (also d	lepende S		
		SPLAN	TA		(SC)			
		- 566	(1)E)	27.2007441	(S) (contenuerous	圆	1	
		1600	2351	Fage 12 of 17	101 0	2	1	
	-	A. Car	ar				i.	
							Tit	
						112 235		
								2
		343						
								i

The coal of incinerating workes per MI or per kL is subjective to the continuation of the wate characteristics to the design parameters of the incinerator of the SDI viz. Cototic Volve, Chlorides, Subhates, Mirutes, Bulk Density and the risks associated with the worke.

Weighment of thWML will be considered for billing.

#### d) TRANSPORTATION CHARGES

a) Waste Transport Charges:

Reight Oldanice	Up to 30 fam	>51 luna -	100 Kins -	200 Kmi -	>400 Kani
Vehicle copocity		500 1/18	Para Milli		
Up to 32 MF	85.5.50	Rs.5.40	Ri.5.34	81.5.3.1	NE 3143
> 10 MT	81.5.40	£1.5.35	Rt.5.30	#8. 5.25	No. 5.20

Maximum 90 % of Container capacity or linck that be charged for transportation in our of lower quantity

b) Truck Defention Chargest

Maximum time of Three bours is allowed for like little to be deliabed at the Generator premises from the time of reporting at their Security Gate, in the event this period is exceeded then its, 500² periods that be charged as detention charges. Return of track without wade loading is caus after planning and scheduling of a public for the generator. If the works generator decides not to send any walls and wohes to send the empty truck to TNVML, the generator shall pay the transportation charges of actual "TO & TRC" distance at 90% loading capacity of truck.

41 CONTAINER MADITENANCE CHARGES

[applicable when containanted truck Services are utilized]

The Generator has to pay the following charges as manipoled below towards the services of the Container, it optical for by the Generator.

- a) Container Hie Charge: The charges are: -
  - S.0 MT Hook loaders
     10.0 MT Hook loaders
     15.0 MT Hook load



ANNEXURE- E

Ľ

.

4

a.

### ANNEXURE . E

ų,

24

#### DECLARABON

We the Chemptosi Sommer United Sommer Specially Chemicals Division hereby declare that based on our industry production and our ansual projections we shat be disposing the following Hazardous Waste types to ThiWML (Add) sheets could be used for multiple would types)

5.140	Colega/y	Winde Typie	Disport	Goom/Py (WII)	Generation (Mil)
L.	20,1	Contaminated gramatic, alphafe or naptienic solvent may or may rai be & far reuse	meneraliza.		6
T	20.8	Datifation residues	Incheration	4.5	10
1	35.3	Chemical studge born weste water teatment	Common Londiti	12	2500
4	33.2	Contominated Cotton regi or Other cleaning moterials	Incineration	20	3

Avg. monihily generation of Hazardous Waste & expected as follows.

1	Awin.	NG per month of	hype of Hozaroous wostw
100	1	All correctly of	type of Hazardous washe
1		MI per month of	type of Hozardous waste
- <b>a</b> -	WAB!	- Print Print in starting in the	E MASA MASA

EOR Champiant Sonmar Limited Samo Specially Chamicals Division

R. Christine Homan. Authorized Signatory The Generator

in the presence of

the second

2 m Ø Name: Yogeeswars Basappa Gawda Signt Company/Occupations charged tomo white to Designations. Vice President Operations 6+ CH KY S.

P Tigni Norna: R Jayoksmar Association Commences Cambleton

Norme: R Sayokarnar Wart () Company/Occupation: Geoportementement Ceelignolitain Sr Manobaer - Environment Chemiplest Sentmar Ltd. Samar Spaciality Chemital: Division 44, Theetitain Rond, Berloal (2021)93 Disatgeist Julus (Nothergiel Divisio Taetti Nadu, Jerlin, Taetti Nadu, Jerlin, Tal + B1 4144 253005

112

#### 2.13 NOISE LEVEL AND CONTROL SYSTEM

All measures are taken to maintain noise level within premises.

- Noise level is monitored once in month for day and night in 7 locations within the factory premises. All the values are within the stipulated level.
- Acoustic enclosure on D.G. set, engineering control at high noise level areas like compressors.
- Wherever feasible; proper oiling, lubrication and maintenance of equipment.
- Safety equipment are provided at noisy area.
- Development of greenbelt within premises and around plot boundary.

#### 2.14 SUMMARY

**M/s. Chemplast Sanmar Limited**, Proposing expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.

The reason of applying in category A [5(b) & 5(f)] Environmental Clearance at MoEF & CC, New Delhi are as follows: (1) Chemplast Sanmar Limited has proposed for the Pesticide Industrial Product [Sector-17; 5(b)], (2) Unit is located outside Industrial estate, & (3) Interstate boundary was there within 10 Kms from the existing project site (i.e. Karnataka state boundary at 0.89 km from the project site).

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises. Total Requirement is 14000 KVA from State Electricity Department (13470 KVA-DG Set will be kept for emergency power back up). The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source. The total wastewater generation will be 705 KL/Day and will be segregated into two stream High COD Stream & Low COD stream. Solid/ hazardous wastes will be disposed as per Hazardous waste rules, 2016. Approximately 1350 people [Existing: 350 people + proposed: 1000 people] will be employed to local skilled and unskilled people based on qualification and requirement and preference will be given to local person for fulfilment of the manpower requirement.

# CHAPTER – 3 DESCRIPTION OF THE ENVIRONMENT

### 3.1 INTRODUCTION

The baseline status of environmental quality in the vicinity of project site serves as the basis for identification, prediction and evaluation of impacts. The baseline environmental quality is assessed through field studies within the impact zone for various components of the environment, viz. air, noise, water, and land and socio-economic. The baseline environmental quality has been assessed in the Pre Monsoon season of July, 2022 to September, 2022 in a study area of 10 km radial distance from the project site.

The environmental setting is considered to establish the baseline conditions which are described with respect to following:

- Land environment
- Land Use Pattern
- Water Environment
- Air Environment
- Meteorology
- Noise Environment
- Ecology
- Topography
- Demography and Socio-economic Environment

#### 3.2 METHODOLOGY

Following the guidelines of MoEFCC, the baseline environmental study was conducted. The details of the study period, frequency of sampling & method of environmental sampling & analysis are shown below in succeeding paragraphs under respective titles.

#### 3.2.1 STUDY PERIOD & FREQUENCY OF SAMPLING

The period of study determined was July, 2022 to September, 2022. The frequency of various environmental sampling & analysis was determined following the guidelines provided by MoEF in online EIA Manual. The details of frequency of environmental sampling considered for the study are illustrated in Table – 3.1.

### TABLE 3.1

### FREQUENCY OF ENVIRONMENTAL MONITORING

Attributes	Sampling				
	Locations	Frequency			
A. Air Environment					
Meteorological	Project Site	1 hourly continuous for Study Period			
Ambient Air Quality	11 locations in the study area (10 km radius from project site)	24 Hourly Basis Twice a week for three Month			
B. Noise	<ul><li>11 Locations within the study area</li><li>(10 Km radius from project site)</li></ul>	Once during Study Period			
C. Water					
Ground Water	Grab samples from 11 Locations from Study Area (10 km radius from project site)	Once during Study Period			
Surface Water	Grab samples from 2 Locations (10 km radius from project site)	Once during Study Period			
D. Soil Quality	Soil samples from 10 locations within study area	Once during Study Period			
E. Land Use & Land Cover	Study area (10 km from Project Site)	Once during Study Period			
F. Ecological Data	Study area (10 km from Project Site)	Once during Study Period			
G. Socioeconomic Data	Study area (10 km from Project Site)	Once during Study Period			

### 3.2.2 METHOD OF ENVIRONMENTAL SAMPLING & ANALYSIS

The method adopted for environmental sampling & analysis is illustrated in following Table - 3.2

#### TABLE 3.2

#### **METHOD OF ENVIRONMENTAL SAMPLING & ANALYSIS**

Attributes	METHOD	
	Sampling / Preservation	Analysis
A. Air Environment	Mechanical/automatic	
1) Micro meteorological	1) Spectrum weather station & IMD	
data	2) 2.5 Micron dust samplers & RSPM	
2) Ambient Air Quality	samplers having the facility to collect	IS 5182 & CPCB
	the gaseous samples	
B. Noise	Instrument : Noise level meter	Method: IS: 9989-
		1981 (Reaff: 2020)
		Assessment of Noise
		with Respect to
		Community Response
C. Water & Waste	Methods of sampling and test	IS:3025
Water	(physical and chemical) for water and	&
1) Ground Water	wastewater Part 1 – Sampling IS 3025	Standard Methods
2) Surface Water	: Part 1 : 1987 & Methods of	for Examination of
	sampling and microbiological	Water and
	examination of water IS 1622 : 1981	Wastewater Analysis,
		published by APHA
		23rd edition, 2016
D. Soil Quality	Laboratory Guide for Conducting Soil	FAO Chapter 3,
	Test & Plant Analysis, by J. Benton	EPA Method 3050 B
	Jones, Jr.	& Method 7000B
E. Land Use & Land	Akshar Enviromatics (Environment	Akshar Enviromatics
Cover	and Geomatics), Vadodara, Gujarat	(Environment and
		Geomatics),
E Coology & Coo	Akshar Environation (Environment	Vadodara, Gujarat
F. Geology & Geo-	and Geomatics) Vadodara Guiarat	(Environment and
Hydrology		Geomatics).
		Vadodara, Gujarat
G. Ecological Data	Akshar Enviromatics (Environment	Akshar Enviromatics

Attributes	METHOD	
	Sampling / Preservation	Analysis
	and Geomatics), Vadodara, Gujarat	(Environment and Geomatics), Vadodara, Gujarat
H. Socioeconomic Data	Census Dept., GOI	

#### 3.2.3 BASELINE ENVIRONMENTAL STATUS

The baseline environmental study was carried out for Ambient Air, Water, Land, Noise, Biological & Socioeconomic environment. The study period was July, 2022 to September, 2022. The environmental samples were collected from the selected location of the study area. The scenario of environmental condition of the area revealed from the sample & data analysis is described below in subsequent paragraphs.

#### **3.3 MICROMETEOROLOGY**

The nearby India Meteorological Department station that is generating meteorological data is 60 km from the site i.e. IMD, Bengaluru. Hence, secondary information on meteorological conditions has been collected from IMD station at Bengaluru International Airport.

Indian Meteorological Department at Bengaluru regularly monitors wind direction, wind speed, relative humidity, temperature, rainfall, evaporation and pressure at 08.30 hours and 17.30 hours every day. Wind rose diagrams are collected from IMD for the period 1971 – 2000 and are shown in Fig. 3.0

#### Temperature

The monthly mean maximum temperature recorded during the period 1981-2010 ranged between 26°C to 34°C. The monthly mean minimum temperature recorded during the same period ranged between 14°C to 22°C.

#### **Relative Humidity**

The monthly mean relative humidity recorded at 08.30 hours for the period 1981-2010 ranged between 70% to 86% and the monthly mean relative humidity recorded at 17.30 hours for the same period ranged from 28% to 67%.

#### Rainfall

The monthly total rainfall recorded for the period 1981-2010 ranged between 1.4 mm to 183.5 mm.

The annual meteorological data (Temperature, Relative Humidity, Rainfall and Wind speed) for the year 2021 was collected. An onsite meteorological station was setup to collect data about wind speed, wind direction, temperature, relative humidity, rainfall and general weather conditions were recorded throughout the study period.

#### **3.3.1 TEMPERATURE DETAILS**

Minimum, Maximum and Average Temperatures of the year 2021 are given in Table 3.3.

### TABLE 3.3

### **TEMPERATURE DATA**

Month	Minimum	Maximum	Average
(2021)	Temperature	Temperature	Temperature
	(°C)	(°C)	(°C)
January	19	27	24
February	18	30	26
March	21	35	30
April	25	36	32
Мау	24	34	30
June	24	32	29
July	23	30	27
August	23	30	27
September	22	31	27
October	22	29	26
November	20	26	23
December	18	27	23

### 3.3.2 RELATIVE HUMIDITY (RH)

Minimum, Maximum and Average Monthly Relative Humidity of the year 2021 is given in Table 3.4.

#### TABLE 3.4

#### **RELATIVE HUMIDITY DATA**

Month (2021)	Minimum R.H.%	Maximum R.H.%	Average R.H.%	
January	59	86	73	
February	51	61	56	
March	42	49	46	
April	40	54	47	
Мау	54	62	58	
June	50	59	55	
July	59	70	65	
August	58	72	65	
September	58	73	66	
October	78	85	82	
November	83	92	88	
December	75	80	78	

#### 3.3.3 RAINFALL

Rainfall data for the year 2021 is presented in Table 3.5.

#### TABLE 3.5

#### **RAINFALL DATA**

Month	Monthly Total	Numbers of Rainy Days	
(2021)	(mm)		
January	35.6	2	
February	16.3	3	
March	0	0	
April	28.7	2	
Мау	103.9	4	
June	93.2	5	
July	134.7	7	
August	140	10	
September	14.7	1	
October	104.3	5	
November	107.8	10	
December	22.9	3	
Total	802.1	52	

Total rainfall, during the monsoon period, has been recorded as 802.1 mm.

#### 3.3.4 WIND SPEED

Wind speed of the year 2021 is given in Table 3.6.

#### **TABLE 3.6**

#### WIND SPEED DATA

Sr. No.	Month (2021)	Average Wind speed (KMPH)	
1.	January	7.9	
2.	February	8	
3.	March	9.4	
4.	April	9.4	
5.	Мау	13.5	
6.	June	19.1	
7.	July	20.9	
8.	August	16.7	
9.	September	16.1	
10.	October	7.4	
11.	November	7.4	
12.	December	6.5	
Average		11.86	

#### **3.3.5 SUMMARY OF THE METEOROLOGICAL DATA**

**TABLE 3.7** 

### Meteorological Data from IMD data, Bengaluru (A) 1981-2010

Month	Temperature (°C)		Relative Humidity (%)		Dainfall (mm)
	Max	Min	08.30	17.30	Kainiali (mm)
January	27.6	14.8	86	41	1.4
February	30.3	16.2	76	31	5.7
March	32.7	18.7	70	28	15.5
April	33.8	21	74	35	42.7
May	33.1	21.2	76	46	94.5
June	29.8	20.1	83	62	91.1
July	28.6	19.6	85	65	97.7
August	28.1	19.5	86	67	122.2
September	28.6	19.5	85	63	183.5
October	28.1	19.2	84	65	155.9
November	26.9	17.5	83	61	50.6
----------	------	------	----	----	------
December	26.2	15.4	86	54	13.8

### FIGURE – 3.0: WINDROSE DIAGRAM OF IMD, BENGALURU (A) 1971-2000





Windrose Diagram – July Month

Windrose Diagram – August Month



Windrose Diagram – September Month



Windrose Diagram – Annual

#### 3.3.6 TEMPERATURE, RELATIVE HUMIDITY & WIND SPEED

The meteorological parameters were recorded at site on hourly basis during the study period and consists of parameters like wind speed, wind direction and temperature. The total rainfall was recorded daily once at 0830 hrs. The maximum and minimum values for all the parameters except wind speed and wind direction are presented in Table 3.8.

#### TABLE - 3.8

Summary of the Meteorological Data Generated at Site (Period: July, 2022 to September, 2022)

Month	Tempera	ature (⁰C)	Relative Hu	Painfall (mm)	
Month	Max	Max Min Max Mi		Min	
July 2022	31	20	100	52	109
August 2022	30	20	100	51	105
September 2022	31	19	100	28	215

Source: ABC Techno Labs India Private Limited

There was no rainfall during the study period.

#### Summary of Wind Pattern in Study Area

Month / Season	First Predominant Wind Direction	Second Predominant Wind Direction	Average Wind Speed (m/s)
July 2022	W	SW	8.13
August 2022	W	SW	2.23
September 2022	W	NW	3.02

Source: ABC Techno Labs India Private Limited

#### 3.3.7 WIND ROSE

Wind rose is a graphical representation of the magnitude and direction of wind speed considering all the directions. With the help of wind rose diagram one can easily predict the direction and extent of spreading of the gaseous and particulate matter from the source. Wind rose diagrams & stability class distribution are prepared for the study area and presented in Figures - 3.1 & 3.2 respectively.

#### FIGURES - 3.1



#### FIGURE-3.2 STABILITY CLASS DISTRIBUTION



#### FIGURE - 3.3

#### LOCATIONS OF THE AMBIENT AIR, NOISE, WATER AND SOIL



**TABLE - 3.9** 

#### LOCATIONS OF THE AMBIENT AIR, NOISE, WATER AND SOIL

SR. NO.	NAME OF VILLAGE	BEARIN G	APPROXIMAT E RADIAL	LATTITUDE	LONGITUDE	AMBIEN T AIR	NOISE	WATER	SOIL	TYPE OF AREA
		W.R.T.	DISTANCE							
		PROJEC	FROM							
		T SITE	PROJECT							
			SITE (KM)							
1.	Project Site		0.0	12°48'14.27"N	77°59'9.12"E	A1	N1	GW1	S1	Industrial
2.	Berigai	W	2.0	12°48'18.84"N	77°58'15.37"E	A2	N2	GW2	S2	Residential
3.	Suggondahalli	NE	2.5	12°48'51.43"N	77°59'56.38"E	A3	N3	GW3	S3	Residential
4.	Kurubarapalli	SSE	2.5	12°46'59.62"N	77°59'28.39"E	A4	N4	GW4	S4	Residential
5.	Kariyasandiram	ENE	5.0	12°48'46.88"N	78° 1'7.07"E	A5	N5	GW5	S5	Residential
6.	Suligunta	ESE	0.5	12°48'4.17"N	77°59'27.89"E	A6	N6	GW6	S6	Residential
7.	Pannapalli	SSE	4.0	12°47'1.22"N	78° 0'1.81"E	A7	N7	GW7	S7	Residential
	(Meenandoddi)									
8.	Midithepalli	SSW	5.0	12°46'44.87"N	77°57'41.20"E	A8	N8	GW8	S8	Residential
9.	Eluvapalli	NNW	4.0	12°49'8.53"N	77°58'47.52"E	A9	N9	GW9	S9	Residential
10.	Mahadevapuram	ESE	2.5	12°47'51.15"N	77°59'57.38"E	A10	N10	GW10	S10	Residential
11.	kullur	ENE	6.4	12°49'36.76"N	78° 1'41.78"E	A11	N11	GW11	S11	Residential
12	Berigai Lake	W	2.0	12°48'38.81"N	77°58'4.04"E			SW1		
13	Pond near Gandlapalli	N	1.16	12°48'52.34"N	77°59'14.52"E			SW2		
	Sri Thimmaraya Swamy									
	Temple									

#### **3.4 AIR ENVIRONMENT**

The ambient air quality monitoring was carried out in accordance with National Ambient Air Quality Standards (NAAQS) of CPCB. Ambient Air Quality Monitoring (AAQM) was carried out at elevan locations during the study period.

The air quality status in the impact zone is assessed through a network of ambient air quality monitoring locations. The tropical climatic conditions mainly control the transport and dispersion of air pollutant emissions during various seasons.

The conventional and project specific parameters such as Suspended Particulate Matter, Respirable Suspended Particulate Matter (RSPM-PM₁₀), Respirable Suspended Particulate Matter (RSPM-PM_{2.5}),Sulphur Dioxide (SO₂), Nitrogen dioxide (NO₂), Ammonia (NH₃), Ozone (O₃), Lead (Pb), Benzene (C₆H₆), Benzo ( $\alpha$ ) Pyrene (BaP), Hydro Carbon (HC), Arsenic (As), Nickel (Ni), & Carbon Monoxide (CO) were monitored at site.

The values for mentioned concentrations of various pollutants at all the monitoring locations were processed for different statistical parameters like arithmetic mean, minimum concentration, and maximum concentration and percentile values. The baselines levels of Suspended Particulate Matter, Respirable Suspended Particulate Matter (RSPM-PM₁₀), Respirable Suspended Particulate Matter (RSPM-PM_{2.5}),Sulphur Dioxide (SO₂), Nitrogen dioxide (NO₂), Ammonia (NH₃), Ozone (O₃), Lead (Pb), Benzene (C₆H₆), Benzo ( $\alpha$ ) Pyrene (BaP), Hydro Carbon (HC), Arsenic (As), Nickel (Ni), & Carbon Monoxide (CO) are expressed in terms of various statistical parameters.

To establish the baseline status around the project site of the study region monitoring was conducted at 11 Ambient Air Quality Monitoring (AAQM) Stations in and around the study region during July, 2022 to September, 2022.

SR.	SAMPLING	SPM	PM10	PM _{2.5}	SO ₂	NO ₂	NH₃
NO.	LOCATION			μg/N	m ³		
1.	Project Site (A1)	118.20	62.21	29.21	10.41	18.73	BDL
2.	Berigai (A2)	102.38	56.88	26.79	9.97	18.20	BDL
3.	Suggondahalli (A3)	81.38	45.21	21.38	6.71	13.62	BDL
4.	Kurubarapalli (A4)	88.88	49.38	23.25	8.25	16.55	BDL
5.	Anikarahalli (A5)	75.23	41.79	19.92	BDL	13.12	BDL
6.	Suligunta (A6)	106.43	59.13	28.13	10.41	19.10	BDL
7.	Pannapalli	82.88	46.04	21.96	7.55	14.05	BDL
	(Menandoddi) (A7)						
8.	Midithepalli (A8)	84.75	47.08	22.42	6.69	13.83	BDL
9.	Eluvapalli (A9)	97.65	54.25	25.63	10.28	16.62	BDL
10.	Mahadevapuram	76.68	43.71	20.92	BDL	13.60	BDL
	(A10)						
11.	Kullur (A11)	75.08	41.71	19.67	BDL	13.36	BDL
NAAQ	S		100	60	80	80	400

### TABLE – 3.10 AMBIENT AIR QUALITY STATUS (July, 2022 to September, 2022)

SR. NO.	SAMPLING LOCATION	As	Ni	HCl mist	HBr	<b>O</b> ₃	СО
		ng/m³	ng/m ³	µg/m³	μg/ m³	µg/m³	mg/m 3
1.	Project Site (A1)	BDL	BDL	BDL	BDL	14.41	0.26
2.	Berigai (A2)	BDL	BDL	BDL	BDL	14.37	0.21
3.	Suggondahalli (A3)	BDL	BDL	BDL	BDL	11.05	BDL
4.	Kurubarapalli (A4)	BDL	BDL	BDL	BDL	13.65	0.22
5.	Anikarahalli (A5)	BDL	BDL	BDL	BDL	10.51	BDL
6.	Suligunta (A6)	BDL	BDL	BDL	BDL	14.54	0.28
7.	Pannapalli (Menandoddi) (A7)	BDL	BDL	BDL	BDL	11.03	BDL
8.	Midithepalli (A8)	BDL	BDL	BDL	BDL	11.30	BDL
9.	Eluvapalli (A9)	BDL	BDL	BDL	BDL	13.61	0.26
10.	Mahadevapuram (A10)	BDL	BDL	BDL	BDL	10.83	BDL
11.	Kullur (A11)	BDL	BDL	BDL	BDL	10.82	BDL
NAAC	S	6	20			180	4

	SAMPLING LOCATION	Pb	BaP	C ₆ H ₆	voc
SR. NO.		µg/m³	ng/m ³	µg/m³	ppm
1.	Project Site (A1)	BDL	BDL	BDL	BDL
2.	Berigai (A2)	BDL	BDL	BDL	BDL
3.	Suggondahalli (A3)	BDL	BDL	BDL	BDL
4.	Kurubarapalli (A4)	BDL	BDL	BDL	BDL
5.	Anikarahalli (A5)	BDL	BDL	BDL	BDL
6.	Suligunta (A6)	BDL	BDL	BDL	BDL
7.	Pannapalli	BDL	BDL	BDL	BDL
	(Menandoddi) (A7)				
8.	Midithepalli (A8)	BDL	BDL	BDL	BDL
9.	Eluvapalli (A9)	BDL	BDL	BDL	BDL
10.	Mahadevapuram (A10)	BDL	BDL	BDL	BDL
11.	Kullur (A11)	BDL	BDL	BDL	BDL
NAAQ	S	1	1	5	

#### **Note:** BDL = Below Detectable Limit

NAAQS- National Ambient Air Quality Standards (2009)

The Minimum Detectable Limits for various parameters are as below:

Parameter		Min. Detectable Limit
SO ₂		5 μg/m³
Ammonia (NH ₃ )	:	5 μg/m³
Lead (as Pb)	:	0.1 μg/m ³
Arsenic (as As)	:	1 ng/m ³
Nickel (as Ni)	:	1 ng/m ³
Benzene (as C ₆ H ₆ )	:	0.1 μg/m ³
Benzo (α) Pyrene (BaP)	:	0.01 ng/m ³
Carbon Monoxide(as CO)	:	0.1 mg/m ³

**TABLE 3.11** 

AMBIENT AIR QUALITY STATUS- MINIMUM, MAXIMUM, 98TH PERCENTILE VALUE & AVERAGE (JULY 2022 TO SEPTEMBER 2022)

SR. NO.	SAMPLING LOCATION	PM ₁₀	PM _{2.5}	SO2	NOx	O ₃
				μg/m³		
1	Project-Site (A1)					
	Arithmetic Mean	62.21	29.21	10.41	18.73	14.41
	Min – Max	55-69	26-33	8.6-12.6	16.6-22	12.8-16.2
	98 th Percentile	69	33	12.324	21.58	16.062
2	Berigai (A2)					
	Arithmetic Mean	56.88	26.79	9.97	18.20	14.37
	Min – Max	50-64	24-31	8.3-11.7	15.8-20.4	12.7-16.6
	98 th Percentile	64	31	11.562	20.262	16.18
3	Suggondahalli (A3)					
	Arithmetic Mean	45.21	21.38	6.71	13.62	11.05
	Min – Max	38-53	19-26	5.5-8	12.5-15	9.5-12.7
	98 th Percentile	52.54	25.54	7.908	14.816	12.7
4	Kurubarapalli (A4)					
	Arithmetic Mean	49.38	23.25	8.25	16.55	13.65
	Min – Max	44-57	21-27	6.9-9.3	14.7-16.55	12.5-15.1
	98 th Percentile	56.08	26.54	9.3	18.108	14.96
5	Anikarahalli (A5)					
	Arithmetic Mean	41.79	19.92	BDL	13.12	10.51
	Min – Max	37-47	17-23	BDL	11.8-14.3	8.9-12.3
	98 th Percentile	46.54	22.54	BDL	14.3	12.254
6	Suligunta (A6)				I	
	Arithmetic Mean	59.13	28.13	10.41	19.10	14.54
	Min – Max	51-68	25-33	8.8-12.4	16.8-21.4	12.8-15.9
	98 th Percentile	67.54	28.13	12.032	21.262	15.9
7	Pannapalli (Menandoddi) (	A7)				
	Arithmetic Mean	46.04	21.96	7.55	14.05	11.03
	Min – Max	38-52	18-25	5.9-9.3	12.8-15.5	9.6-12.3
	98 th Percentile	52	25	9.116	15.27	12.25
8	Midithepalli (A8)	47.00	22.42	c. c.o.	42.02	44.24
	Arithmetic Mean	47.08	22.42	6.69	13.83	11.31
	Min – Max	40-52	19-25	5.6-7.8	12.8-15.1	9.5-12.9
-	98 th Percentile	52	25	14.91	14.91	12.85
9	Eluvapalli (A9)	F 4 2F	25.63	10.29	16.62	12.61
	Arithmetic Wean	54.25	25.03	10.28	10.02	13.01
	IVIIII – IVIdX	47-00	23-31	8.0-11.7	14.8-18.0	11.7-15.1
10	98 th Percentile	04.02	30.54	10.28	18.50	15.008
10.	Arithmotic Moon	12 71	20 02	וחפ	13.60	10.92
	Antimetic Wean	45.71	18.25	BDL	13.00	10.85
	QQth Porcontilo	50-55	20-20 75	BDL	1/ 77	12 654
10	Fercentile	52.00	20	BUL	14.//	12.034
10.	Arithmetic Moon	<i>A</i> 1 71	19.67	BDI	13.26	10.82
	Min – May	41./1 37_/7	17-00	BDL	12 5-14 7	<u>10.02</u> 0 Д_12 Б
	98 th Percentile	۵7 ۵7	27	BDL	14.7	12 /08
	Limit	100	60	80	80	180
		100				100

#### 3.4.1 SUMMARY

- During the study SPM concentration was observed in the range of 75.08 118.20 μg/m³. Maximum concentration of SPM was found at Project Site (118.20 μg/m³).
- During the study PM_{10.0} concentration was observed in the range of 41.71 62.21 μg/m³. Maximum concentration of PM_{10.0} was found at Project Site (62.21 μg/m³), which is well within the standard limit.
- During the study PM_{2.5} concentration was observed in the range of 19.67 29.21 μg/m³. Maximum concentration of PM_{2.5} was found at Project Site (29.21μg/m³), which is well within the standard limit.
- During the study  $SO_2$  concentration was observed in the range of BDL 10.41  $\mu$ g/m³. Maximum concentration of  $SO_2$  was found at **Project Site & Suligunta (10.41 \mug/m³)**, which is well within the standard limit.
- During the study NO₂ concentration was observed in the range of  $13.12 19.10 \ \mu g/m^3$ . Maximum concentration of NO₂ was found at Suligunta (19.10  $\mu g/m^3$ ), which is well within the standard limit.
- During the study  $O_3$  concentration was observed in the range of  $10.51 14.54 \ \mu g/m^3$ . Maximum concentration of  $O_3$  was found at **Suligunta (14.54 \ \mu g/m^3)**, which is well within the standard limit.

The statistical interpretation of observed ambient air quality concentrations is presented in Fig-3.4. They represent the cross sectional distribution of the baseline air quality status of the study region.





#### **INTERPRETATION:**

The PM10 and PM2.5 concentrations at all the AAQM locations were primarily caused by local phenomena including industrial & vehicular activities and natural dust getting air borne due to manmade activities and blowing wind. PM10 and PM2.5 concentrations were observed below stipulated standards of CPCB for Residential & Other Area at all air quality monitoring locations during the monitoring period. Results of all parameters are found within limit. In Mahadevpuram, Anikarahalli & Kullur villages, SO2 values are below detection limit of 5  $\mu$ g/m3. These villages are free remote area and there is no source for SO2 pollution.

#### **3.5 NOISE ENVIRONMENT**

The objective of the noise level survey around the project site was to identify existing noise sources and to measure background noise levels. Major noise sources in the study area are industries, commercial, and vehicular movements. Major human settlement in the study area is Berigai which is about 2.0 km away from project site. The noise monitoring locations are given in Table - 3.12 and while the results of noise monitoring are shown in Figure - 3.5

#### 3.5.1 METHODOLOGY FOR NOISE MONITORING

The noise monitoring was carried out at 11 locations in day time during (6 am to 9 pm) and at night time (9 pm to 6 am) in the study area covering all the areas i.e. industrial and residential as mentioned in Noise (Pollution and Control) Rules, 2000. CPCB Recommendations for community noise exposure are attached as Annexure – 3. Hourly Equivalent noise levels Leq (day) and Leq (night) were measured at each monitoring locations. Monitoring was done on 11-07-2022 TO 16-07-2022 during day and night time was carried out at all the locations. Besides, damage risk criteria for hearing loss given by Occupational Safety & Health Administration (OSHA) are enclosed as Annexure – 2.

The noise level measured in study area at different locations is given in Table 3.8. The noise sources identified around the site are vehicular traffic, industrial and commercial activities. CPCB recommendation for community noise exposure in different category of area (i.e. residential, commercial, industrial and silence zone) is enclosed as Annexure - 3 while Damage risk criteria for hearing loss given by occupational safety & health administration (OSHA) is enclosed as Annexure - 2. The noise levels were below the stipulated standards of CPCB.

The equivalent noise level Leq (60 min average) measured at a distance of 10 m and 20 m from the edge of the road at each of the locations are presented in Table 3.12. The communities close to the project site are not exposed to major noise sources. The commercial activities and transport apart from natural sources contribute to community noise levels.

Locatio n Code	Location	Lday [dB(A)]	Lnight [dB(A)]	Leq [dB(A)]
N1	M/s. Sanmar Speciality Chemicals Limited, Berigai	58.2	49.2	56 .7
N2	Berigai	56.2	45.6	54.6
N3	Suggondahalli	47.7	42.8	46.6
N4	Kurubarapalli	54.5	44.7	53.0
N5	Anikarahalli	48.6	43.1	47.4
N6	Suligunta	57.5	47.3	55.9
N7	Pannapalli (Meenandoddi)	49.8	44	48.6
N8	Midithepalli	48.4	43.3	47.3
N9	Eluvapalli	54	44.8	52.5
N10	Mahadevapuram	48.1	43	47.0
N11	Kullur	46.1	41.8	45.1

#### **TABLE - 3.12 BACKGROUND NOISE LEVELS**

#### 3.5.2 SUMMARY

During the study of noise monitoring level was observed during day time is the range of 46.1 - 58.2 dB (A) & during night time 41.8 - 49.2 dB (A). Maximum noise level in day time in night time was found at Project Site (58.2 dB (A)) & (49.2 dB (A)) respectively.
Figure-3.5



#### **3.5.2.1 INTERPRETATION**

Based on noise level data obtained during the survey, Noise level varied at some place at different times due to fluctuations in traffic movements as well as in residential due to nearest Industrial / commercial and domestic activities going on in the study area. It is interpreted that noise levels of Project site and all villages are within the standard norms prescribed by MoEF&CC.

#### **3.6 WATER ENVIRONMENT**

The annual rainfall in the region was 802.1 mm. The baseline water quality status in the region is established by analyzing surface water and ground water. Water requirement at site would be met through CGWA water supply and remaining get from government water source.

#### 3.6.1 METHODOLOGY FOR WATER QUALITY MONITORING

11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. These samples were analyzed for physic-chemical parameters to ascertain the baseline status in the existing surface water and ground water bodies. Samples were collected during the study period of July-2022 and analyzed as per the Standard Methods of Water

WATE	WATER QUALITY- PHYSICAL PARAMETERS								
SR.	SAMPLING	рН			T.D.S.	T.S.S.			
NO.	LOCATION		(°C)	(NTU)	(mg/L)	(mg/L)			
1.	Project Site (GW1)	7.56	26.3	BDL (<0.5)	693	BDL (<2)			
2.	Berigai (GW2)	7.38	25.8	0.9	758	BDL (<2)			
3.	Suggondahalli (GW3)	7.63	26.9	0.7	842	BDL (<2)			
4.	Kurubarapalli (GW4)	7.48	26.4	BDL (<0.5)	670	BDL (<2)			
5.	Anikarahalli (GW5)	7.39	26.9	0.6	774	BDL (<2)			
6.	Suligunta (GW6)	7.52	26.7	BDL (<0.5)	952	BDL (<2)			
7.	Pannapalli (Menandoddi) (GW7)	7.29	26.5	0.7	648	BDL (<2)			
8.	Midithepalli (GW8)	7.22	25.7	BDL (<0.5)	781	BDL (<2)			
9.	Eluvapalli (GW9)	7.53	27.3	0.7	707	BDL (<2)			
10.	Mahadevapuram (GW10)	7.36	25.7	BDL (<0.5)	1012	BDL (<2)			
11.	Kullur (GW11)	7.32	25.9	0.5	578	BDL (<2)			
12.	Berigai Lake (SW1)	8.07	27.3	4.1	424	6			
13.	Pond near Gandlaalli Sri Thimmaraya Swamy Temple (SW2)	7.81	26.9	4.3	356	4			
Indiar norms	n Standard IS:10500 s (Acceptable Limit)	6.5 -8.5		1	500				
Indian norms	Standard IS:10500 (permissible Limit)	No relaxation		5.0	2000				

TABLE - 3.13 GROUND WATER QUALITY + SURFACE WATER QUALITY

#### WATER QUALITY - NUTRIENTS, OXYGEN DEMAND AND ORGANIC PARAMETERS

SR.	SAMPLING LOCATION		DO	COD	BOD ₃ ²⁷	Oil & GREASE
NO.		(as NH ₃ -N)				
				(mg/L)	L	
1.	Project Site (GW1)	BDL(<0.05)	5.4	<4	BDL (<2)	BDL (<1)
2.	Berigai (GW2)	BDL(<0.05)	5.5	<4	BDL (<2)	BDL (<1)
3.	Suggondahalli (GW3)	BDL(<0.05)	5.5	4	BDL (<2)	BDL (<1)
4.	Kurubarapalli (GW4)	BDL(<0.05)	5.7	<4	BDL (<2)	BDL (<1)
5.	Anikarahalli (GW5)	BDL(<0.05)	5.5	<4	BDL (<2)	BDL (<1)
6.	Suligunta (GW6)	BDL(<0.05)	5.6	8	BDL (<2)	BDL (<1)
7.	Pannapalli (Menandoddi) (GW7)	BDL(<0.05)	5.4	<4	BDL (<2)	BDL (<1)
8.	Midithepalli (GW8)	BDL(<0.05)	5.5	8	BDL (<2)	BDL (<1)
9.	Eluvapalli (GW9)	BDL(<0.05)	5.6	<4	BDL (<2)	BDL (<1)
10.	Mahadevapuram (GW10)	BDL(<0.05)	5.5	4	BDL (<2)	BDL (<1)
11.	Kullur (GW11)	BDL(<0.05)	5.7	<4	BDL (<2)	BDL (<1)
12.	Berigai Lake (SW1)	0.27	5.6	21	3.3	BDL (<1)
13.	Pond near Gandlaalli Sri Thimmaraya Swamy Temple (SW2)	0.28	5.3	24	3.6	BDL (<1)
Indian (Accept	Standard IS:10500 norms table Limit)					
Indian (permi	Standard IS:10500 norms ssible Limit)					

### WATER QUALITY - INORGANIC PARAMETERS

SR. NO.	SAMPLING LOCATION	TOTAL ALKALINITY (as CaCO₃)	T.H. (as CaCO₃)	Calcium	CL ⁻	SO ₄ -2	Mg
1.	Project Site (GW1)	340	370	81	178	66	41
2.	Berigai (GW2)	290	430	96	202	78	46
3.	Suggondahalli (GW3)	350	410	102	219	90	37.6
4.	Kurubarapalli (GW4)	300	270	72	184	66	22
5.	Anikarahalli (GW5)	330	372	97	203	84	31.4
6.	Suligunta (GW6)	410	460	118	241	112	40
7.	Pannapalli (Menandoddi) (GW7)	290	342	85	166	70	31
8.	Midithepalli (GW8)	380	372	94	167	83	33

9.	Eluvapalli (GW9)	360	412	108	151	60	34
10.	Mahadevapuram (GW10)	440	470	121	254	86	41
11.	Kullur (GW11)	270	300	66	147	56	32
12.	Berigai Lake (SW1)	160	180	48	127	28	14.5
13.	Pond near Gandlaalli Sri Thimmaraya Swamy Temple (SW2)	152	130	35	96	20	10
Indian Standard IS:10500 norms (Acceptable Limit)		200	200	75	250	200	30
Indian Standard IS:10500 norms (permissible Limit)		600	600	200	1000	400	100

#### WATER QUALITY - HEAVY METALS

SR.	SAMPLING	Ni	T-Cr ⁺³	Cu	Pb	Fe	Zn	As	<b>F</b> ⁻	Cd
NO.	LOCATION				(	mg / L)				
1	Project Site	BDL	BDL	BDL	BDL	BDL	0.04	BDL	0 5 7	BDL
1.	(GW1)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	(<0.05)	0.04	(<0.01)	0.57	(<0.003)
2		BDL	BDL	BDL	BDL	0.12	0.00	BDL	0.50	BDL
Ζ.	Berigai (GWZ)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.12	0.08	(<0.01)	0.50	(<0.003)
2	Suggondahalli	BDL	BDL	BDL	BDL	0.45	0.42	BDL	0.47	BDL
3.	(GW3)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.15	0.12	(<0.01)	0.47	(<0.003)
4	Kurubarapalli	BDL	BDL	BDL	BDL	0.05	0.1.4	BDL	0.41	BDL
4.	(GW4)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.05	0.14	(<0.01)	0.41	(<0.003)
-	Anikarahalli	BDL	BDL	BDL	BDL	0.10	0 1 1	BDL	0.40	BDL
5.	(GW5)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.10	0.11	(<0.01)	0.49	(<0.003)
C	Suliquete (CMC)	BDL	BDL	BDL	BDL	BDL	0 1 2	BDL	0.02	BDL
0.	Suligunta (GW6)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	(<0.05)	0.13	(<0.01)	0.63	(<0.003)
	Pannapalli	BDL	BDL	BDL	BDL	0.10 0.03	BDL		BDL	
7.	(Menandoddi)	(<0.01)	(<0.03)	(<0.03)	(<0.01)		0.03	(<0.01)	0.37	(<0.003)
	(GW7)									
8.	Midithepalli	BDL	BDL	BDL	BDL	BDL	0.06	BDL	0.36	BDL
	(GW8)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	(<0.05)		(<0.01)		(<0.003)
9.	Eluvapalli (GW9)	BDL	BDL	BDL	BDL	0.08	0.04	BDL	0.39	BDL
		(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.00	0.01	(<0.01)	0.00	(<0.003)
10	Mahadevapuram	BDL	BDL	BDL	BDL	BDL	0.05	BDL	0.45	BDL
10.	(GW10)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	(<0.05)	0.05	(<0.01)	0.45	(<0.003)
11	$K_{\rm ullur}$ (C) $\lambda$ (11)	BDL	BDL	BDL	BDL	0.12	0 1 2	BDL	0 4 4	BDL
11.	Kullur (GW11)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.15	0.13 0.12		0.44	(<0.003)
10	Berigai Lake	BDL	BDL	BDL	BDL	0.2	0.3 0.14 BDL (<0.01) C	0 27	BDL	
12.	(SW1)	(<0.01)	(<0.03)	(<0.03)	(<0.01)	0.5		14 (<0.01)		(<0.003)

13.	Pond near Gandlaalli Sri Thimmaraya Swamy Temple (SW2)	BDL (<0.01)	BDL (<0.03)	BDL (<0.03)	BDL (<0.01)	0.29	0.16	BDL (<0.01)	0.23	BDL (<0.003)
Indi IS:1 (Acc	an Standard 0500 norms ceptable Limit)	0.02	0.05	0.05	0.01	0.3	5	0.01	1	0.003
India IS:10 (perr	in Standard 1500 norms missible Limit)	No relax ation	No relax ation	No relax ation	No relax ation	No relax ation	15	0.05	1.5	No relax ation

Note: GW: Ground Water BDL: Below Detectable Limit

SR.		TOTAL COLIFORMS	E.COLI
NO.	SAMPLING LOCATION	MPN/100	ML
1.	Project Site (GW1)	<2	<2
2.	Berigai (GW2)	<2	<2
3.	Suggondahalli (GW3)	<2	<2
4.	Kurubarapalli (GW4)	2	<2
5.	Anikarahalli (GW5)	<2	<2
6.	Suligunta (GW6)	2	<2
7	Pannapalli (Menandoddi)	<2	<2
7.	(GW7)		
8.	Midithepalli (GW8)	<2	<2
9.	Eluvapalli (GW9)	<2	<2
10.	Mahadevapuram (GW10)	<2	<2
11.	Kullur (GW11)	<2	<2
12.	Berigai Lake (SW1)	>1600	>1600
	Pond near Gandlaalli Sri	>1600	>1600
13.	Thimmaraya Swamy Temple		
	(SW2)		

The Minimum Detectable Limits for various parameters are as below:

Minimum Dete	Minimum Detection Limit:											
Total Iron (as : 0.05 Fluoride (as F ⁻ )		:	0.05	*Cadmium	:	0.003						
Fe)	) mg/L			mg/L	(as Cd)		mg/L					
Copper (as	:	0.03	**Total Chromium	:	0.03	*Arsenic (as	:	0.01 mg/L				
Cu)		mg/L	(as Cr ⁺³ )		mg/L	As)						
Nickel (as Ni)	•••	0.01	[*] Zinc (as Zn)	:	0.022	*Lead (as Pb)		0.01 mg/L				
		mg/L			mg/L							

### SUMMARY

The statistical interpretation of observed ground water & surface water quality is presented in Figure 3.5.

#### **3.6.2 BASELINE GROUND WATER QUALITY**

- **pH** of Ground water samples varied from 7.22 to 7.63 Maximum **pH** was found at **Suggondahalli (7.63)**, which is well within the standard limit.
- Total Dissolved Solids was varied in range of 578 to 1012 mg/L. Maximum Total Dissolved Solids was found at Mahadevapuram (1012 mg/L), which is well within the standard limit.
- Total Suspended Solids was <2 mg/L, which is well within the standard limit.
- DO was varied in range of 5.4 to 5.7 mg/L. Maximum DO was found at Kurubarapalli and Kullur (5.7 mg/L), which is well within the standard limit.
- COD was varied in range of <4 to 8 mg/L. Maximum COD was found at Suligunta and Midithepalli (8 mg/L), which is well within the standard limit.
- Total Hardness (as CaCO3) was varied in the range of from 240 to 470 mg/L. Maximum Total Hardness was found at Mahadevapuram (470 mg/L), which is well within the standard limit.
- **Total Alkalinity** was varied in the range of from 290 to 440 mg/L. **Total Alkalinity** was found at **Mahadevapuram (440 mg/L)**, which is well within the standard limit.
- **Chlorides** were varied in the range of 147 to 254 mg/L. Maximum **Chlorides** was found at **Mahadevapuram (254 mg/L)**, which is well within the standard limit.

Sr. No.	Criteria Pollutants	Unit	Maximum Value	Minimum Value	Desirable Limit	Maximum Permissible Limit
1.	рН	рН	7.63	7.22	6.5-8.5	No
		Scale				Relaxation
2.	Total Dissolved Solids	mg/l	1012	578	500	2000
3.	Total Suspended Solids	mg/l	<2	<2		
4.	Total Hardness	mg/l	470	240	200	600
5.	Fluoride	mg/l	0.63	0.37	1	1.5
6.	Chlorides	mg/l	254	147	250	1000
7.	Zinc	mg/l	0.14	0.03	5	15
8.	Total Alkalinity	mg/l	440	290	200	600

#### Figure-3.6



#### **3.6.3 BASELINE SURFACE WATER QUALITY**

- pH of Surface water samples varied from 7.81 to 8.07. Maximum pH was found at Berigai Lake (8.07), which is well within the standard limit.
- DO was varied in range of 5.3 to 5.6 mg/L. Maximum **DO** was found at **Berigai Lake (5.6** mg/L), which is well within the standard limit.
- COD was varied in range of 21 to 24 mg/L. Maximum COD was found at Pond near Gandlaalli Sri Thimmaraya Swamy Temple (24 mg/L), which is well within the standard limit.
- BOD₃²⁷ was varied in range of 3.3 to 3.6. Maximum BOD₃²⁷ was found at Pond near Gandlaalli Sri Thimmaraya Swamy Temple (3.6 mg/L), which is well within the standard limit.

Sr. Criteria Unit Maximum Minimum Classification of inland wate	r body
-----------------------------------------------------------------	--------

No.	Pollutants		Value	Value	
1.	На	рH	8.07	7.81	Α
		Scale			
2.	DO	mg/l	5.6	5.3	A
3.	COD	mg/l	24	21	
4.	BOD	mg/l	3.6	3.3	В
5.	Total	mg/l	424	356	
	Dissolved				
	Solids				
6.	Total	mg/l	6	4	
	Suspended				
	Solids				
7	Total	mg/l	180	130	
	Hardness				
8	Fluoride	mg/l	0.27	0.23	
9	Chlorides	mg/l	127	96	
10	Zinc	mg/l	0.16	0.14	
11	Total	mg/l	160	152	
	Alkalinity				
12	Total	MPN/	2	<2	
	Coliform	100ml			

#### Figure-3.7



#### **INTERPRETATION:**

**Ground Water Quality:** Based on comparison study with drinking water standards, it is interpreted that water samples collected from the villages should not be directly used in drinking but can be used in other domestic purposes like washing, bathing and irrigation. Ground water is fit for use as domestic purpose after basic filtration and disinfection treatment.

It can be observed that ground water qualities in terms of various desirable characteristics are found within the limits specified by IS 10500:2012.

**Surface Water Quality:** There is one lake and one pond considered in the study area. However, these water is not used for domestic/industrial activities; as the raw water is available through pipelines of local authorities. These water sources cannot be utilized for drinking but the water of these pond & lake can be used in irrigation.

#### **3.7 LAND ENVIRONMENT**

#### **3.7.1 SOIL QUALITY**

Soil samples were collected from eleven locations during 11-7-2022 to 16-7-2022 within the study area to assess its physico-chemical characteristics. The analysis results of soil samples are given in Table 3.14.

#### Table 3.14

#### PHYSICO-CHEMICALS CHARACTERISTICS OF SOIL

Sr.	Parameter	Unit	Project Site	Berigai	Suggondahalli	Kurubarapalli	Anikarahalli	Suligunta
No								
1.	Moisture Content	%	2.98	4.77	3.13	4.53	3.97	5.02
2.	рН		7.14	6.59	6.87	6.98	7.37	6.82
3.	Electrical Conductivity	mS/cm	0.156	0.198	0.094	0.218	0.175	0.141
4.	Bulk Density	gm/cm ³	1.39	1.37	1.46	1.38	1.47	1.45
5.	Porosity	%	33	31	26	29	26	24
6.	Water Holding Capacity (WHC)	%	34.4	30.7	27.3	31.1	27.6	25.8
7.	*Specific Gravity		2.38	2.41	2.29	2.42	2.33	2.36
8.	Calcium (as Ca ⁺² )	mg/Kg	18.2	17.1	15.2	16.6	15.3	14.8
9.	Magnesium (as Mg ⁺² )	m.eq/100g	3.77	4.61	3.29	4.23	3.77	3.52
10.	Total Phosphorus (as P)	mg/Kg	51.2	39.3	63.8	58.6	73.7	49.3
11.	Available Phosphorus	mg/Kg	298	354	320	356	334	290
12.	Organic Matter (OM)	%	0.96	1.13	0.86	1.22	0.69	0.78
13.	Total Nitrogen	mg/Kg	114	178	142	132	108	153
14.	Available Nitrogen	mg/Kg	68	91	79	45	29	53

15.	Nitrate Nitrogen (as NO ₃ N)	mg/Kg	32	52	41	35	29	53
16.	Sulphates (as SO ₄ -2)	mg/Kg	148	210	182	210	128	176
17.	Total Iron (as Fe)	mg/Kg	514	698	354	715	536	674
18.	Copper (as Cu)	mg/Kg	8.23	9.11	4.26	6.14	2.77	4.69
19.	Nickel (as Ni)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
20.	Lead (as Pb)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
21.	Arsenic (as As)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
22.	Organic Carbon	%	0.96	1.13	0.86	0.70	0.40	0.45
23.	Color		Reddish	Reddish	Reddish	Reddish	Reddish	Reddish
			Brown	Brown	Brown	Brown	Brown	Brown
24.	Sodium (as Na)	mg/Kg	1.37	1.53	1.03	1.37	0.96	0.83
25.	Potassium (as K)	mg/Kg	298	354	320	356	334	290
26.	Cadmium (as Cd)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
27.	Zinc (as Zn)	mg/Kg	36.3	17.2	14.6	22.3	19.6	26.6
28.	Chloride (as Cl)	mg/Kg	96	112	87	102	78	137
29.	Permeability	cm/hr	4.3	3.9	5.2	3.9	4.8	5.1
30.	Texture Classification		Loam	Loam	Sandy Loam	Loam	Sandy Loam	Sandy Loam
	Grain Size Analysis:							
31.	Sand	%	40.5	38.6	55.2	38.2	57.1	58.2
	Clay	%	25.7	26.3	14.7	27	13.9	14.4
	Silt	%	33.8	35.1	30.1	34.8	29	27.4

Sr.	Parameter	Unit	Pannapalli	Midithepalli	Eluvapalli	Mahadevapuram	Kullur
No			(Menandoddi)				
1.	Moisture Content	%	3.69	3.97	4.59	2.77	5.63
2.	рН		7.48	6.71	6.94	7.18	6.37
3.	Electrical Conductivity	mS/cm	0.107	0.142	0.196	0.077	0.118
4.	Bulk Density	gm/cm ³	1.36	1.44	1.35	1.39	1.38
5.	Porosity	%	30	27	32.2	31.9	29.6
6.	Water Holding Capacity (WHC)	%	32.8	26.5	30.8	31.4	30.5
7.	*Specific Gravity		2.47	2.33	2.46	2.37	2.42
8.	Calcium (as Ca ⁺² )	mg/Kg	17	16.1	17.3	16.9	15.5
9.	Magnesium (as Mg ⁺² )	m.eq/100g	4.56	3.66	4.79	4.11	5.06
10.	Total Phosphorus (as P)	mg/Kg	68.7	50.8	77	63	82.4
11.	Available Phosphorus	mg/Kg	258	342	394	316	252
12.	Organic Matter (OM)	%	1.12	0.85	0.77	1.03	0.91
13.	Total Nitrogen	mg/Kg	96	138	114	172	96
14.	Available Nitrogen	mg/Kg	48	49	38	67	26
15.	Nitrate Nitrogen (as NO ₃ -N)	mg/Kg	26	36	41	33	38
16.	Sulphates (as SO ₄ -2)	mg/Kg	142	174	208	112	156
17.	Total Iron (as Fe)	mg/Kg	431	697	763	512	394
18.	Copper (as Cu)	mg/Kg	8.06	6.99	9.13	10.3	4.33
19.	Nickel (as Ni)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
20.	Lead (as Pb)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)
21.	Arsenic (as As)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)

22.	Organic Carbon	%	0.65	0.49	0.44	0.59	0.53		
23.	Color		Reddish	Reddish	Reddish	Reddish Brown	Reddish		
			Brown	Brown	Brown		Brown		
24.	Sodium (as Na)	mg/Kg	1.03	0.96	1.11	1.06	0.88		
25.	Potassium (as K)	mg/Kg	258	342	394	316	252		
26.	Cadmium (as Cd)	mg/Kg	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)	BDL (<2)		
27.	Zinc (as Zn)	mg/Kg	25.6	23.6	31.1	19.6	28		
28.	Chloride (as Cl)	mg/Kg	91	118	141	105	84		
29.	Permeability	cm/hr	3.6	5.4	3.7	3.5	4		
30.	Texture Classification		Loam	Sandy Loam	Loam	Loam	Loam		
	Grain Size Analysis:								
31.	Sand	%	41.1	58.8	37.1	39.3	40.4		
	Clay	%	26.8	15	25.3	27.1	26.9		
	Silt	%	32.1	26.2	37.6	33.6	32.7		

#### NOTE: BDL: Below Detectable Limit

Minimum Detection Limit:								
Copper	:	0.05	Lead (as Pb)	:	0.001 mg/Kg	Cadmium (as	:	0.001
(as Cu)		mg/Kg				Cd)		mg/Kg
Nickel (as	:	0.03	Arsenic (as As)	:	0.0001 mg/kg			
Ni)		mg/kg						

#### **3.7.2 SUMMARY OF SOIL QUALITY**

Based on the soil analysis report, the following can be concluded:

Sr. No.	Criteria Pollutants	Unit	Maximum Value	Minimum Value
1.	рН	pH Scale	7.48	6.59
2.	Nitrogen (N)	mg/Kg	178	96
3.	Phosphorus (P)	mg/Kg	77	39.3
4.	Potassium (K)	mg/Kg	394	258
5.	Electric Conductivity	mS/cm	0.218	0.077
6.	Calcium	mg/kg	18.2	14.8
7.	Magnesium	m.eq/100g	5.06	3.29
8.	Organic Carbon as C	%	1.13	0.40

- pH of samples varied from 6.59 to 7.48. Maximum pH was found at Pannapalli (Menandoddi) (7.48).
- Nitrogen (N) was varied in range of 96 to 178 mg/kg. Maximum Nitrogen (N) was found at Berigai (178 mg/kg).
- Phosphorus (P) was varied in range of **39.3 to 77 mg/kg**. Maximum Phosphorus (P) was found at Eluvapalli (77 mg/kg).
- Potassium (K) was varied in range of 258 to 394 mg/kg. Maximum Potassium (K) was found at Eluvapalli (394 mg/kg).
- Electric Conductivity was varied in range of 0.077 to 0.218 mS/cm. Maximum Electric Conductivity was found at Kurubarapalli (0.218 mS/cm).
- Calcium of samples varied from 14.8-18.2 mg/kg. Maximum Calcium was found at Project Site (18.2 mg/kg)
- Magnesium of samples varied from **3.29-5.06 m.eq/100g.** Maximum Magnesium was found at Kullur (5.06 m.eq/100g)
- Organic Carbon as C of samples varied from **0.40-1.13%**. Maximum Organic Carbon as C was found at **Kullur (1.13%)**.

#### INTERPRETATION

The porosity of soils can be considered as moderate to good for air and water movement in the soil. The concentration of available Nitrogen, Phosphorous and Potassium in the soil samples signifies that the soil of the area is fertile.



### FIGURE 3.9 MONITORING PHOTOGRAPHS

1. Project Site



2. Berigai



### 3. Kurubarapalli



### 4. Kariyasandiram



### Pannapali



### 5. Midithepalli



6. Eluvapalli


## 7. Mahadevapuram









## 8. Kullur



## 9. Suggondhali



# 10. Suligunta



## 3.8 REPORT ON ENVIRONMENTAL PARAMETERS SUCH AS GEOLOGY, SOIL, HYDROLOGY, LAND USE PATTERN, DRAINAGE NETWORK AND KEY-INFRASTRUCTURE AND ECOLOGY AND BIODIVERSITY

### **3.8.1 INTRODUCTION**

The Land Use Land Cover study has been carried out for Chemplast Sanmar is located at Berigai, Krishnagiri District, Tamilnadu State, India.

The mapping of Land use Land Cover has been carried out with help of Bhuvan Data and Google Earth Imagery using QGIS Software and verified by reconnaissance survey.

The 10 Km Aerial buffer area was identified in with the help of Lat-Lon using Google Earth Pro. The same area is than identified from Bhuvan database and the both the layers were super imposed using Geo Reference technique in QGIS. Based on Visual interpretation the Land use classes were identified and the same was verified with the help of field survey. The area calculation was also done for each land use classes occurring in that region.

### **3.8.2 SOIL INFORMATION**

Different types of the soils such as black or mixed loamy red ferocious and gravel are found in the district. The black of rigor loam is very fertile due to its moisture absorbing character. Red soil is seen in Hosur, Shoolagiri, Thally and Kelamangalam. In general, the soil in the district is quite loose and fresh with its colour from red to dark brown. The soil has low nitrogen and phosphate content with marked variation between different taluks. The following table explains type of soils found in the district. However, based on the particulars contained in the Hydro-geological Atlas of Tamil Nadu, brought out by the Central Ground water Board, the soils in the Krishnagiri district are grouped as - mainly (i) Red sandy clay loam soils, Recent old alluvium soils and Rock outcrops with loamy sand soils in Krishnagiri district. The red sandy clay loam soils are partly matured soils and they are shallow to deep, possessing good drainage characteristics. These soils are suitable for cultivation of large variety of crops including ragi, bajra, jowar, paddy, etc., both under irrigated and rainfed conditions. The recent/old Alluvial soils are generally fertile and respond well to management practices and are suitable for cultivation of crops like paddy, sugarcane, jowar, groundnut, chillies, pulses etc., The rock outcrops with loamy sand soils respond well to irrigation, manuring and other management practices.

### **FIGURE – 3.10**

#### SOIL MAP



#### 3.8.3 HYDROLOGY

The study area has no any perennial reservoirs, river or any big-large water body. There is no any seasonal river present within the study area. But due to rough terrain and altitude variations there are numerous natural drainage and its network is present in the study area which is very well connected to each other and natural water bodies. There are scattered waterbodies are there and people have made agricultural farm ponds which also contributes to the surface waterbodies within the study area. There are mining practices being done within the study area and it has also deep water bodies in the excavated regions.

#### **FIGURE – 3.11**



#### **3.8.4 DRAINAGE PATTERN**

Generally, by drainage system, we mean the network of mains and branches of underground conduits for the conveyance of sewerage to the point of disposal. Sewers that carry only household and industrial wastage are called separate sewers; those that carry storm water from roofs, streets and other surfaces are known as storm water drains, while those carrying both sewage and storm water are called combined sewers. However, in towns, which are not provided with such underground sewerage system, it is mentioned whether it has open drainage system. There may be possibility of the town having both closed as well as open drainage systems.

The Drainage network of the study area is prepared with line strings using QGIS. ISRO's Open Data Archive, Bhuvan Data and Topo-sheet data was used as base layer to prepare the map. Drainage layer is generated after scanning the thematic manuscripts which is further edited for line errors. Two different layers were made separately for line drainage. Drainage order was given to all the drain lines in the layer. Strahler's method of ordering is used for giving order to drainage. Wherein the smallest permanent streams are designated as the first order and the confluences of two first order streams give rise to second order stream and so on. The order of trunk stream is not altered by the addition of lower order. The order of the stream will increase only by the addition of streams of same order.

The study area has no any perennial river or any big river. There is no any seasonal river present within the study area. But due to rough terrain and altitude variations there are numerous natural drainage and its network is present in the study area which is very well connected to each other and natural water bodies.



### **3.8.5 GEOLOGICAL INFORMATION**

The study area is mainly composed of Archaean crystalline metamorphic complex. The rock type noticed in the study area for lease is Granite Gneiss which contains mostly quartz and Feldspar with some ferromagnesian minerals. The Granite gneiss is part of peninsular gneisses, a high grade metamorphic rock. In Krishnagiri district, the predominant geological formations are Recent Alluvium, Upper Proterozoic, Lower Proterozoic and Archaeons, whereas Alluvium, Granite gneisses and Charnockite geological formations also present in the district.

The prominent geomorphic units identified in the district through interpretation of satellite imagery are structural hills in the southwestern part of the district, denudational land forms like buried pediments in the plains and inselbergs and plateaus represented by conical hills aligned with major lineaments. Krishnagiri district forms part of the upland plateau region with many hill ranges and undulating plains. The western part of the district has hill ranges of Mysore plateau with a chain of undulating hills and deep valleys extending in NNE-SSW direction. The plains of the district have an average elevation of 488 m amsl. The plateau region along the western boundary and the northwestern part of the district has an average elevation of 914 m amsl. The Guthrayan Durg with an elevation of 1395 m amsl is the highest peak in the district.



### **3.9 LAND USE PATTERN**

Based on features interpretation from satellite data, further analyses for Landuse Land cover feature extraction is carried out. This is derived from the spectral reflectance of land features. The Land use map is finalized for the 10 Km aerial buffer from the project site using Google Earth, Bhuvan NRSC (National Remote Sensing Centre), Hyderabad, Q-GIS and Landsat-8-9OLI satellite data.

Land use pattern of the study area as well as the catchment area was carried out by standard methods of analysis of remotely sensed data and followed by ground truth collection (Benchmark) and interpretation of satellite data. The outcome of land use study has been presented below.

### Land Use & Land Cover Classification Results

Land Cover is the physical material at the surface of the earth (it include grass, asphalt, trees, bare ground, water, etc.) whereas Land use is the human use of land.

Land Use involves the management and modification of natural environment or wilderness into built environment such as fields, pastures, and settlements. It has also been defined as "the arrangements, activities and inputs people undertake in a certain land cover type to produce, change or maintain it".

There is no one ideal classification of land use and land cover, and it is unlikely that one could ever be developed. There are different perspectives in the classification process, and the process itself tends to be subjective, even when an objective numerical approach is used.

Concepts concerning land cover and land use activity are closely related and in many cases have been used interchangeably. The purposes for which lands are being used commonly have associated types of cover, whether they are forest, agricultural, residential, or industrial.

The present Land use / Land cover map for the proposed project activity is prepared with help of satellite image. This report thus will enable assessing the impact on land use pattern in the study area due to the proposed project activity.

#### Data Used

Open Source Landsat 9 satellite image as well as Google Earth Pro along with Open data provided by Indian Government's Remote Sensing Agency is used for preparation of Landuse map of the study area. Also, Survey of India's Open Topographic sheets used as a reference map on 1:50,000 scale has been used for preparation of base layer data like road, rail network, village and mine site and for geo-rectification of satellite image.

### **Technical Details**

Satellite Image – Landsat 8-9OLI Satellite image, USGS. Other Data Sets- Bhuvan Data, Govt. of India

Software Used – Google Earth Pro and QGIS.

### Methodology

Land use / Land cover map preparation, Base map creation; Geometric and Radiometric correction of satellite image has been processed using Q-GIS Software.

Salient features of the adopted methodology are given below:

- Acquisition of satellite data.
- Spectral Bands Combination and processing for Land use estimation.
- Rectification of Satellite Data.
- > Preparation of base map from Survey of India Topo-sheets.

Land use class layer creation and data analysis using visual interpretation techniques for satellite data.

- Further editing using Google Earth Pro
- Ground truth studies or field checks.
- Finalization of the map.
- > Area calculation for statistics generation.

### Interpretation of Remote Sensing Data

Satellite images are composed of array of grid, each grid has a numeric value that is known as digital number. Smallest unit of this grid is known as a pixel that captures reflectance of ground features represented in terms of Digital number, each representing specific land features. Using image classification technique, the satellite data is converted into thematic information, map based on the user's knowledge about the ground area. Hybrid technique has been used i.e. visual interpretation and digital image processing for identification of different land use and vegetation cover classes based on spectral signature of geographic feature.

Spectral signature represents various land use classes. Image interpretation keys are developed based on image characteristics like colour, tone, size, shape, texture, pattern, shadow, association etc., which enables interpretation of satellite images for ground feature. Training sites are then assigned based on their spectral signature and interpretation elements. Using image classification algorithm land use map is generated.

## Table – 3.15

Area in Ha	Area in %
20419.27	64.89
783.21	2.49
493.05	1.57
735.72	2.34
142.74	0.45
1.53	0.00
6692.36	21.27
1134.50	3.61
8.95	0.03
1057.04	3.36
31468.37	100
	Area in Ha 20419.27 783.21 493.05 735.72 142.74 1.53 6692.36 1134.50 8.95 1057.04 <b>31468.37</b>

#### Areas Under Different Land use

Courtesy: Akshar Enviromatics (Environment and Geomatics), Vadodara, Gujarat Figure – 3.12

## Land use / Land cover





According to habitat condition and satellite image interpretation there are several classes derived which shows land use and its pattern in the study area.

The major of the area occupied by **Agriculture** practices in this region as it shows major area occupied by agriculture fields. There is 65% of the total area is occupied by Agriculture in which people practices mainly large scale Flower farming together with Fruits, Paddy and other Crops. Some area of **Berigai Extention forest** is also present in the study area which is 8.5 % of the total area. It is also observed that **Poultry Farming** practices are present on remarkable amount and the same has occupied 0.5% of the total study area.

The other classes observed are the **waterbodies** class includes Reservoir/ Lakes/ Ponds/ Tanks, and River bed covers around 4 % of the study area. **Scrubland** are also there in this region which is almost 21 % of the total area. There are mainly *Prosopis sp.* And other associated thorny species occupied in all these scrubland along with seasonal Herbs and some shrubs. There are stony barren land with sparse scrub also considered together in the land use class of scrub land.

There is less urbanization observed in satellite image. The area occupied under **Residential Settlement** class is 4 % of the total area which is very less as study area have scattered habitatations with less population. Industries are also present as the **Industrial Area** class is 1.5% of the total area. Apart from these major classes there are other land use classes also observed in the study area area is some portion of Solar Energy park which is situated in North direction of the study area is almost 0.03% of the total area. It is also very well reflected in satellite data that scattered **mining** practices are also there in the region and the same has contributed 2.3% of the total area.

## **3.10 TOPOSHEET & KEY-INFRASTRUCTURE MAP**

The Land Use Land Cover study has been carried out for Chemplast Sanmar is located at Berigai, Krishnagiri District, Tamilnadu State, India.

The mapping of Land use Land Cover has been carried out with help of Bhuvan Data and Google Earth Imagery using QGIS Software and verified by reconnaissance survey.

The 10 Km Aerial buffer area was identified in with the help of Lat-Lon using Google Earth Pro. The same area is than identified from Bhuvan database and the both the layers were super imposed using Geo Reference technique in QGIS. Based on Visual interpretation the Land use classes were identified and the same was verified with the help of field survey. The area calculation was also done for each land use classes occurring in that region. **Figure 3.13** 

### TOPOSHEET





Satellite images are the very best and perfect source of interpretation of land forms. There are different kind of scanners and sensors are there in satellite. Here we have used Multi Spectral satellite data. Each band of a multispectral image can be displayed one band at a time as a grayscale image, or as a combination of three bands at a time as a colour composite image. The three primary colours of light are red, green, and blue (RGB). Computer screens can display an image composed of three different bands, by using a different primary colour for each band. When we combine these three images, the result is a colour image with each pixel's colour determined by combination of RGB of different brightness.

### Key- Infrastructure:



The area of industrial settlements are there in this study area along with it human settlements forms the key infrastructure in this region. As the area is having mainly industrial development the transportation facilities by Road network is quite well developed and it is well connected with villages all over in the study area. Almost every villages in this region is well connected with metalled road network. Apart from road network development the railway also present in the study area. There are some developments of Green energy production unit such as Solar Energy parks is also present in the study area.

## 3.11 TRAFFIC STUDY

The traffic studies have been conducted to know the prevailing traffic volumes on the existing roads. It is essential to consider these details for assessing the anticipated future traffic volumes as a part of overall impacts assessment for the project. The variations of traffic densities depend upon the working days and time and also vary in day and night times. In order to assess the prevailing traffic volumes on the roads, the survey was conducted during normal working days of the week by avoiding local holidays or abnormal situations to reflect the true picture of the traffic densities.

### **Objectives of the Traffic Survey**

- To analyze the characteristics and issues of transportation in Berigai
- To formulate basic data for traffic demand in the future
- To grasp the variation of traffic movement from the previous

### Methodology

## A. Vehicle Count

The vehicles passing through the road (in both ways) were counted separately for 24 hours at one location from 06:00 hrs to 06:00 hrs next day continuously. Category-wise vehicle counting has been done continuously and recorded in the traffic volume count on hourly basis under respective categories.

## B. Categorization of Traffic

The engine driven vehicles were categorized into various heads viz. Trucks/Bus, Light Carriage Vehicles, Car/Jeep, Multi Axle Vehicles, Two/Three Wheelers and Cycles/others. Survey was conducted during the weekdays and weekend.

### **EXISTING TRAFFIC SURVEY REPORT DETAILS**

	Fast Vehicle				Slow Vehicle			
Day	Car/jeep/ van & four wheelers	Bus/ coach	Heavy motor vehicle	Trucks	Motor cycle & scooter	Three wheelers	Cycle	Farm vehicle (tractor/ combine harvester)
Monday	246	54	24	6	650	5	57	32
Tuesday	205	51	22	3	625	3	51	31
Wednesday	218	56	18	5	634	3	64	36
Thursday	225	51	17	5	680	11	56	28
Friday	238	57	26	6	653	3	42	30
Saturday	229	53	28	4	658	2	21	23
Sunday	170	39	26	2	425	6	8	7
Total	1531	361	161	31	4325	33	299	187
Average	219	52	23	4	618	5	43	27

### ADDITINAL PROPOSAL FOR VEHICLE DISTRIPUTION

Sr. No.	Vehicles Distribution	No. of Vehicles/ Day	Passenger Car Unit	Total No. of Vehicle (PCU)	Total No. of Vehicle (PCU) / Hour
1.	Car/jeep/ van & four wheelers	219	1.0	219	9
2.	Bus/ coach	52	3.7	192	8
3.	Heavy motor vehicle	23	0.5	12	1
4.	Trucks	4	3.7	15	1
5	Motor cycle & scooter	618	0.5	309	55
6	Three wheelers	5	2.0	10	1
7	Cycle	43	0.2	9	1
8	Farm vehicle (tractor/ combine harvester)	27	6.0	162	7
	Total	293		928	83

### TRAFFIC MANAGEMENT MEASURES

- Yellow paint junction boxes are painted at the locations to create psychological barrier for through drivers to control the speed.
- All gates are manned with efficient security who can guide the entry and exit of vehicles.
- Merging of vehicles will be performed only to left traffic from the exit gates and this ensures safety.
- An evaluation of alternative routes, that can be used in the event of difficulties
- Adequate internal road of will provided for uninterrupted movement of fire tender.
- All precautionary measures are ensured for the safety of construction laborers while working at the site.

#### **3.12 TERRESTRIAL ECOLOGY**

#### 3.12.1. Introduction

An ecosystem is composed of plant and animal populations, and it differs from natural community designation in that it involves the total nutrient and energy economics of the system as well as the organisms involved. Ecosystems are self-maintained and self-contained. Natural ecosystems are invariably richer in species and more stable than those of artificially developed, due to their many inter-dependencies and inter-relationships.

The plant and animal populations in an area from recognizable associations called Natural communities. These are characterized by a few species called dominants. Natural communities have structure based on the life forms (e.g. grass) of the species that make them up. A hardwood forest has a given structure by virtue of the trees and shrubs that compose it. The species composition refers to the kinds of species making up to the community. The variety of species and their relative numbers are referred to as species diversity. The greater the biotic diversity, the greater the number and kind of habitats for the inhabitants of the community. Based on the physical setting and the kind of distribution of flora and fauna, the study area can be classified into crop, terrestrial and aquatic ecosystems.

Generally, biological communities are good indicators of climatic and edaphic factors because of their strong relationships with them. The studies on the biological aspects of the ecosystem are important in Environment Impact Assessment studies for the suitability of natural flora and fauna. Information on the impact of environment stress on the community structure serves as an inexpensive and efficient early warning system to check the damage on a particular ecosystem.

A change in the composition of biotic communities under stress is reflected through a change in the distribution pattern, density, diversity, frequency dominance and abundance of natural species of fauna and flora existing in the ecosystem. These changes over a span of times can be quantified and related to the existing environment.

**Chemplast Sanmar Limited,** is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators has proposed to Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum TO 20031.4 MT/Annum)

Manufacturing in Existing Unit located at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A Suligunta Village, Berigai 635105, Shoolagiri Taluk, Krishnagiri District, Tamil Nadu with a project cost of Rs. 2292.398 Crores [Existing: 292.398 Crores + Proposed: 2000 Crores].

#### 3.12.2 Objectives

The objectives of ecological study during the study period of EIA may be outlined as follows:

- To characterize the environmental components like land, water, flora and fauna;
- To understand their present status;
- To understand carrying capacity of the ecosystem;
- To assess present bio-diversity; and
- To identify susceptible and sensitive areas.

#### 3.12.3 Regional Biodiversity

Tamil Nadu has a total land area of 1,30,060 km² which constitute of about 3.96% of the total geographical area of the country. Physiographically, the State can be divided into four major regions viz Coastal Plains, Eastern Ghats, Central Plateau and Western Ghats. The main rivers of the State are Cauvery, Bhavani, Palar, Vaigai etc. which drain into the Bay of Bengal. Tamil Nadu has a Humid Tropical Climate. Tamil Nadu shares the Western Ghats Biodiversity (one of the 12 Global mega biodiversity Hotspots) with Western Ghats States of Kerala, Karnataka, Maharashtra and Goa. It shares the Eastern Ghats with the States of Andhra Pradesh and Orissa. It also shares the East-coast with the States of Andhra Pradesh.

The State is endowed with rich biodiversity, from marine coastal systems in the Gulf of Munnar to the terrestrial evergreen forests in the Western Ghats and temperate forests in the hilly regions. As per the Champion & Seth Classification of Forest Types (1968), the forests in Tamil Nadu belong to nine Forest Type Groups, which are further divided into 39 Forest Types. The Nilgiri Biosphere Reserve represents a unique and threatened ecosystem in the tropics inside the Western Ghats Mountain system and is one of the biodiversity hotspots. Tamil Nadu has been a pioneer State in the biodiversity conservation, particularly in Protected Area management, including conservation of marine fauna. Tamil Nadu is famous for its Teak and Sandalwood forests.

Forest Biodiversity in the State is mainly confined to Western Ghats and Eastern Ghats. Forest Cover of the State is 26,364 km² which is 20.27% of the State's geographical area (GA). In terms of forest canopy density classes, the State has 3,605 km² (2.77% of GA) very dense forest, 11,030 km² (8.48% of GA) moderately dense forest and open forest and 11,729 km² (9.02 % of GA) respectively. There is an increase of 83.02 km² in the forest cover of the state as compared to 2017 assessment (Source: www.forests.tn.gov.in).

In Tamil Nadu, during the period 1st January 2015 to 5th February 2019, a total of 542.40 hectares of forest land was diverted for non-forestry purposes under the Forest Conservation Act, 1980 (MoEF&CC, 2019). As per the information received from the State during the last two years, 74,030 ha of plantations were raised in the State.

Five National Parks, 29 Wildlife Sanctuaries and two Conservation Reserves constitute the Protected Area network of the State covering 4.97% of its geographical area (India State Forest Report, 2019). There are about 3,072 hamlets bordering the forest areas of the state.

Tropical dry Deciduous Forest covers an area of 12.23 lakh ha constituting 54.30%, Tropical Thorn Forest covers an area of 5 lakh ha constituting 22.10%, Tropical Moist Deciduous Forest covers an area of 2.60 lakh ha constituting a percentage of 11.10%. The Biodiversity rich forest types are the Tropical Wet Evergreen Forest covering an area of 0.60 lakh ha constituting 2.67%, Tropical Semi Evergreen Forest covering a area of 0.23 lakh ha constituting 1.01%, Subtropical Broad leaved Hill Forest covers an area of 1.14 lakh ha constituting 5.04%, the Tropical Dry Evergreen Forest which is a unique type of Tamil Nadu covers an area of 0.26 lakh ha constituting 1.16%, the mangrove forest covers an area of approximately 0.23 lakh ha constituting 1.01%.



Figure : Forest Map of Tamil Nadu (Source: Forest Survey of India, 2009)

Habitat fragmentation is the process by which habitats which were once continuous become divided into separate fragments. This mainly happens due to human activities such as agriculture, rural development and urbanization. As cities and civilization grow in size, the fragmentation of habitats causes extinction of many plant and animal species and is the largest threat to biodiversity on earth. Designing with nature can improve the quality of cities for people, plants and animals. In doing so, ecosystem services can be enhanced.

The state's rich biodiversity and the natural resources are facing a serious threat from the growing human encroachments, cattle grazing, collection of fire wood, man-animal conflict, poaching, illicit felling, mass tourism and pilgrimage etc. and also from various developmental activities. Biodiversity Conservation has been structured covering the Ecosystem Diversity, Species Diversity and Genetic Diversity. Species Diversity has been structured on the structured separately for plants and animals. Wild plant diversity has been structured on the lines of Red-listed plants, Endemic plants, Medicinal plants, Wild relatives of cultivated plants, allied species of cultivated species and others.

Wild Animal diversity has been structured on the lines of Red listed animals, Endemic animals, Flagship species, Keystone species, Pollinators and others. Domesticated species diversity has been structured on the lines of Cultivated Plants and Domesticated animals.

#### Krishnagiri District

Krishnagiri District has a total geographical area of 5143 Sq. km. The district shares borders with Tirupattur to the southeast, Thiruvannamalai districts to the east, Dharmapuri district to the south and Kolar, Bangalore Rural, Bangalore Urban, Ramanagara and Chamarajanagar districts of the state of Karnataka to the northwest and west and Chittoor district of the state Andhra Pradesh to the north.

This district mainly has a mountainous terrain. The flatlands are irrigated by the South Pennar River. Krishnagiri district forms parts of Cauvery and Pennaiyar Rivers basins. Cauvery River forms the southwestern boundary of the district. Dodda Halla is the most important tributary of Cauvery draining the rugged terrain in the northwestern part of the district. Ponnaiyar River is another major river draining the district. It originates from Nandhi hills in Karnataka, and enters Tamil Nadu and flows almost in a southeasterly direction. Pambar and Burgur, are the important tributaries of Ponnaiyar draining in the district.

The area under forests is 2024.09 Sq. km which is only 39 % of the total geographical area of the district. The major crops cultivated in the district are paddy, maize, ragi, banana, sugarcane, cotton, tamarind, coconut, mango, groundnut, vegetables and flowers. This district is famous for mangoes, and for the granite industry with quarries and processing units spread around the district. With a 40% share, the district is the top producer of ragi in Tamil Nadu.

#### 3.12.4 Biogeographic zone, province and Forest type

This study has been carried out during the month of August 2022 for the purpose of providing an independent and comprehensive baseline assessment of the flora, terrestrial vertebrate, aquatic fauna and associated habitat values of the site and within 10 km radius area around the project site located at S.F No. 5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A Suligunta Village, Berigai 635105, Shoolagiri Taluk, Krishnagiri District, Tamil Nadu and a subsequent assessment of potential ecological impacts.

Shoolagiri Taluk is in Krishnagiri District with the total geographical area of total area of 10.8828 Sq. Km. It is overlooked by a hill with three peaks. Shoolagiri's name is derived from Hill, which is like Trident (Threesulam). Berigai is a village located in Shoolagiri Taluk of Krishnagiri District. The total geographical area of village is 997.95 hectares. The study area falls under semi-arid category as far as the Indian biogeographical zones (Rodger, Panwar, Mathur 2000) are concerned. Under the biogeographical provinces, the study area falls under the category of 6E-Deccan Peninsula-Deccan South.

The field investigation and satellite imagery data show that the study area is a remote dry agricultural and predominantly barren lands covered with some thorny bushes in patches, and includes water bodies such as Berigai Lake located about 2.10 km from the study area. There is no protected area, important or sensitive species within 15 kms from the proposed project boundary. Other major land use feature of the study area is comprised habitation and agricultural lands.



FIGURE 14: MAP SHOWING THE BIO-GEOGRAPHIC PROVINCES OF INDIA

The detailed ecological assessment of the study area has been carried out with the following objectives:

To establish the present status of ecological conditions surrounding the project location;

To study the existing anthropogenic stresses on the prevailing ecosystem.

To identify and predict the likely impacts on the local ecosystem from the proposed activities;

To list out floral species, terrestrial vertebrate and aquatic flora and fauna present within the study area, and significance status under The Wildlife (Protection) Act, 1972;

To define ecological/conservation status of each species as per IUCN categories (Red Data List).

To formulate migratory measures and a sustainable Environmental Management Plan (EMP) basing upon the likely impacts.

During survey, following aspects were considered for ecological studies:

Assessment of present status of flora and fauna;

Identification of rare and endangered species of plants and animals (if any);

Identification of ecologically sensitive areas within the study area;

Assessment of migratory route of wildlife (if any).

Methodology

A desktop review (published documents etc.) was conducted to determine the forest area through Satellite imagery, vegetation type (Champion and Seth, 1962), floral and faunal assemblage in the study area. Terrestrial investigations for flora and fauna records were collected by random field survey and a checklist was prepared. During field survey, discussions with the local people were carried-out to collect information related to local

biodiversity in and around the villages. The ecological status of the study area has been assessed based on the following methodology:

Primary field surveys to establish primary baseline of the study area;

Compilation of secondary information available in published literatures/ forest working plans etc.

Site Verification and finalization in consultation with Project proponent, local inhabitants.

□ List of the endangered and endemic species as per the schedule of The Wildlife Protection Act, 1972

Emphasis is given to identify avifauna and mammals to determine the presence and absence of Schedule-1 species, listed in The Wildlife Protection Act 1972, as well as in Red List of IUCN. Various methods used for study animals are as follows:

- A. Point Survey Method: Observations were made at each site for 15-20 min duration.
- **B. Road Side Counts:** The observer travelled by motor vehicles from site to site and all sightings were recorded.

## 3.12.5 Floristic composition within the study area

The ecology and diversity survey were conducted in the 10 km radius in the study area and the surrounding area. It is observed that human settlements present in and around the project site and within the study area of 10 km radius and many of villages/ colonies have moderate ranges of plantations. Most of the vegetations observed in the study area are natural vegetation and in agricultural fields. During site assessment several floral species encountered within the 10 km radius area.

The study area does not have any forest land or permanent natural vegetation and the main land use feature of the study area is comprised of habitation and cultivating lands. From the primary observation, the tree species recorded in the study area in the plantation area were Cocos nucifera, Acacia nilotica, Azadirachta indica, Mangifera indica etc. The terrestrial flora in the study area consisting of various under shrubs and herbs is conspicuous during and after the rainy season only. Some of the common shrub species are Lantana camara, Hibiscus rosa-sinensis, Calotropis giganteaa, Datura metel, Ricinus communis etc. and Cynodon dactylon, Achyranthes aspera, Boerhavia diffusa, Tridax procumbens, Eclipta prostrate etc. among herbaceous species.

The project area covering 10 km radial distance did not reveal any notified/ protected ecologically sensitive area including National Park or wildlife sanctuary, Elephant and Tiger reserves.

However, the vegetation within the study area is sparse, with the existence of some weeds as per the survey conducted within 10 km radius of the site. The results of survey exhibited sparsy vegetation with the existence of 131 terrestrial flora. However, Coconut, Neem, Acacia, Mango and Tamarind trees are abundant widely distributed in and away from the study area.

The following species were encountered from the study area during the field visits as given in Table 15.

#### 3.12.5.1 FLORA

S. No.	Botanical Name	Common Name	Family	IUCN Conservation Status			
	Trees						
1	Cocos nucifera	Tennai	Arecaceae	Not Assessed			
2	Acacia nilotica	Karuvelan	Fabaceae	Least Concern			
3	Azadirachta indica	Vembu	Meliaceae	Not Assessed			
4	Acacia auriculiformis	Acacia	Fabaceae	Least Concern			
5	Carica papaya	Pappali	Caricaceae	Data Deficient			
6	Aegle marmelos	Vilvam	Rutaceae	Not Assessed			
7	Ailanthus excels	Perumaram	Simaroubaceae	Not Assessed			
8	Annona squamosal	Sithapalzham	Annonaceae	Least Concern			
9	Murraya koenigii	kariveppilai	Rutaceae	Not Assessed			
10	Syzygium cumini	Naval	Myrtaceae	Not Assessed			
11	Ficus benghalensis	Alai	Moraceae	Not Assessed			
12	Emblica officinalis	Nelli	Phyllanthaceae	Not Assessed			
13	Plumeria rubra	Nela sampangi	Apocynaceae	Not assessed			
14	Delonix regia	Cemmayir-konrai	Caesalpiniaceae	Least Concern			
15	Diospyros melanoxylon	Karundumbi	Ebanaceae	Not Assessed			
16	Pongamia pinnata	Pungai	Fabaceae	Least Concern			
17	Musa paradisiaca	Vaazha	Musaceae	Not Assessed			
18	Psidium guajava	Коууа	Myrtaceae	Least Concern			
19	Tamarindus indica	Puli	Fabaceae	Not Assessed			
20	Cassia fistula	Konrai	Fabaceae	Least Concern			
21	Madhuca longifolia	iluppai	Sapotaceae	Not Assessed			

#### TABLE 15 FLORISTIC DIVERSITY IN THE STUDY AREA

<b>S.</b>	Botanical Name	Common Name	Family	IUCN
No.				Conservation
				Status
22	Mangifera indica	Mamaram	Anacardiaceae	Data Deficient
23	Albizia amara	Unjai	Fabaceae	Not Assessed
24	Terminalia arjuna	Marudha	Combretaceae	Not Assessed
25	Ceiba pentandra	Pancu	Malvaceae	Least Concern
26	Casuarina equisetifolia	Savukku	Casuarinaceae	Least Concern
27	Borassus flabellifer	Panai maram	Arecaceae	Endangared
28	Ficus hispida	peyatti	Moraceae	Least Concern
29	Morinda tinctoria	Nuna	Rubiaceae	Not Assessed
30	Albizia lebbeck	Siridam	Fabaceae	Not assessed
31	Phyllanthus emblica	Nellikkai	Phyllanthaceae	Not Assessed
32	Polyalthia longifolia	Nettilinkam	Annonaceae	Not Assessed
33	Terminalia catappa	Nattuvaduma	Combritaceae	Least Concern
34	Tectona grandis	Tekku	Lamiaceae	Not Assessed
35	Eucalyptus leptophylla	Neelagiri thailam	Myrtaceae	Not assessed
36	Manilkara zapota	Sapota	Sapotaceae	Not assessed
37	Wrightia tinctoria	Palai	Apocynaceae	Least Concern
38	Gmelina arborea	Kumalaamaram	Lamiaceae	Least Concern
39	Bombax ceiba	llavu	Bombacaceae	Not Assessed
40	Terminalia chebula	Kadukkai	Combritaceae	Not assessed
41	Ziziphus mauritiana	Elandhai	Rhamnaceae	Not assessed
42	Dalbergia sissoo	Shisham	Fabaceae	Not assessed
43	Butea monosperma	Palasam	Fabaceae	Not assessed
44	Albizia saman	Thoongumoonji maram	Fabaceae	Secure
45	Bambusa arundinacea	Kulay-munkil	Poaceae	Not assessed
46	Sesbania sesban	Sithagathi	Fabaceae	Not assessed
47	Citrus limon	Elumicchai	Rutaceae	Not assessed
48	Morus alba	Kambli chedi	Moraceae	Not assessed
49	Melia azedarach	Kattu vembhu	Meliaceae	Not assessed
50	Limonia acidissima	Vilamaram	Rutaceae	Not assessed
51	Leucaena leucocephala	Subabul	Fabaceaae	Not assessed
52	Ficus religiosa	Arasamaram	Moraceae	Not assessed
		Shrubs		
1	Hibiscus rosa-sinensis	Sembaruthi	Malvaceae	Not Assessed
2	Calotropis gigantea	Erukku	Apocynaceae	Not Assessed
3	Jasminum sessiliflorum	Sooman (Jasmin)	Oleaceae	Not Assessed
4	Ocimum gratissimum	Tulasi	Labsiatae	Not Assessed
5	Bougainvillea glabra	Kaahitha Poo	Nyctaginaceae	Not Assessed
6	Hibiscus radiatus	Pulicha Keerai	Malvaceae	Not Assessed
7	Calotropis procera	Vellai Erukku	Asclepiadaceae	Not assessed
8	Vitex negundo	Nochi	Verbenaceae	Not assessed

S.	<b>Botanical Name</b>	Common Name	Family	IUCN
No.				Conservation
				Status
9	Cassia auriculata	Avarai	Fabaceae	Not Assessed
10	Ipomoea carnea	Kattamanakku	Convolvulaceae	Not Assessed
11	Jatropha curcas	Kattukkottai	Euphorbiaceae	Not assessed
12	Lantana camara	Unni chedi	Verbenaceae	Not Assessed
13	Sida cordifolia	Nilatutthi	Malvaceae	Not Assessed
14	Parthenium	Mookkuththi	Asteraceae	Not Assessed
	hysterophorus			
15	Prosopis juliflora	Vaelikaruvai	Fabaceaae	Not assessed
16	Solanum incanum	Karimulli	Solanaceae	Not assessed
17	Datura metel	Umathai	Solanaceae	Not assessed
18	Euphorbia tirucalli	Amman-paccarici	Euphorbiaceae	Least Concern
19	Ziziphus nummularia	Narielandai	Rhamnaceae	Not assessed
20	Ricinus communis	Amanakku	Euphorbiaceae	Not Assessed
21	Tecoma stans	Yellow bells	Bignoniaceae	Not Assessed
		Herbs / Grasses		
1	Cynodon dactylon	Arugampillu	Poaceae	Not Assessed
2	Achyranthes aspera	Nayuruvi	Amaranthaceae	Not Assessed
3	Boerhavia diffusa	Mukaratte kirai	Nyctaginaceae	Not assessed
4	Amaranthus viridis	kuppai-k-kirai	Amaranthaceae	Not Assessed
5	Tridax procumbens	Kenathuppoondu	Asteraceae	Not Assessed
6	Croton sparsiflorus	Milakai	Euphorbiaceae	Not Assessed
7	Aerva lanata	Ciru-pulai	Amaranthaceae	Not assessed
8	Chloris barbata	Kuruthu Pillu	Cyperaceae	Not Assessed
9	Cassia tora	Taghrai	Ceasalpinaceae	Not Assessed
10	Ageratum conyzoides	Aappakkoti	Asteraceae	Not assessed
11	Amaranthus spinosus	Mullukkeerai	Amaranthaceae	Not assessed
12	Argemone Mexicana	Kudiyotti	Papaveraceae	Not Assessed
13	Butea superba	Pilacchi valli	Papilionaceae	Not Assessed
14	Mimosa pudica	Thottaccurungi	Mimosoideae	Least Concern
15	Digitaria tomentosa	Linn	Poaceae	Not Assessed
16	Xanthium strumarium	Marul-umatta	Asteraceae	Not Assessed
17	Commelina benghalensis	Kanang-karai	Comllinaceae	Not assessed
18	Cyperus rotundus	Panni-korai	Cyperaceae	Not assessed
19	Sida acuta	Palambasi	Malvaceae	Not Assessed
20	Asystasia gangetica	Miti-kirai	Acanthaceae	Not assessed
21	Sida rhombifolia	Chitramutti	Malvaceae	Not assessed
22	Phyllanthus amarus	Keelanelli	Phyllanthaceae	Not assessed
23	Eclipta prostrate	Karisalanganni	Asteraceae	Not assessed
24	Euphorbia hirta	Amanpatchaiarisi	Euphorbiaceae	Not assessed
25	Solanum nigrum	Manathakkaali	Solanaceae	Not Assessed

S.	Botanical Name	Common Name	Family	IUCN
No.				Conservation
				Status
26	Indigofera oblongifolia	Avuri	Fabaceae	Not assessed
27	Ocimum sanctum	Thulasi	Lamiaceae	Not assessed
28	Sorghum bicolor	Cholam	Poaceae	Not assessed
29	Physalis minima	Sodakkuthakkaali	Solanaceae	Not assessed
30	Vernonia cinerea	Puvamkuruntal	Asteraceae	Not assessed
31	Acalypha indica	Kuppai-meni	Euphorbiaceae	Not assessed
32	Cassia occidentalis	Pei- avarai	Caesalpiniaceae	Not assessed
		Climbers/Creepers		
1	Abrus precatorius	Kundumani	Fabaceae	Not assessed
2	Aristolochia bracteolata	Aduthendapalai	Aristolochiaceae	Not assessed
3	Basella rubra	Pasalakkirai	Basellaceae	Not assessed
4	Bougainvillea spectabilis	Kakitha poo	Nyctaginaceae	Not assessed
5	Cansjera rheedei	Vandikodi	Opiliaceae	Not assessed
6	Cissus quadrangularis	Perandai	Vitaceae	Not assessed
7	Citrullus colocynthis	Kumatti	Cucurbitaceae	Not assessed
8	Clitoria ternatea	Sangu Poo	Fabaceae	Not assessed
9	Coccinia grandis	Kovaikkaai	Cucurbitaceae	Not assessed
10	Croton bonplandianus	Railpodu	Euphorbiaceae	Not assessed
11	Cyclea peltata	Pon-mucuttai	Menispermaceae	Not assessed
12	Gloriosa superba	Sengandhal	Liliaceae	Not assessed
13	Hemidesmus indicus	Nannari	Apocynaceae	Not assessed
14	Ipomoea nil	Kotikkakkattan	Convolvulaceae	Not assessed
15	Ipomoea obscura	Siruthalai	Convolvulaceae	Not assessed
16	Ipomoea reptans	Vallaikkirai	Convolvulaceae	Not assessed
17	Ipomoea staphylina	Onaankodi	Convolvulaceae	Not assessed
18	Luffa cylindrical	Peerkankai	Cucurbitaceae	Not assessed
19	Pergularia daemia	Velipparuthi	Apocynaceae	Not assessed
20	Pueraria tuberosa	Nilapoosani	Fabaceae	Not assessed
21	Solena amplexicaulis	Pulivanci	Curcurbitaceae	Not assessed
22	Tragia involucrata	Kanchori	Euphorbiaceae	Not assessed
23	Trichosanthes	Pudalankaai	Curcurbitaceae	Not assessed
	cucumerina			
24	Tylophora asthmatica	Kalutai-p-palai	Asclepidaceae	Not assessed
25	Tylophora indica	Nachchuruppam	Asclipedaceae	Not assessed
26	Zehneria scabra	Naai Pagal	Cucurbitaceae	Not assessed

Source: ABC Techno Labs India Pvt. Ltd.

The detailed study revealed dominance of *Cocos nucifera, Acacia nilotica, Azadirachta indica, Mangifera indica* etc. Totally 52 species of trees found in the study area along with 21 shrub species, 32 herb species and 26 climber species. *Lantana camara, Hibiscus rosa*-

sinensis, Calotropis giganteaa, Datura metel, Ricinus communis are found to be the predominant species among shrub. Among the herbaceous species Cynodon dactylon, Achyranthes aspera, Boerhavia diffusa, Tridax procumbens, Eclipta prostrate etc. found to be abundant.



Source: ABC Techno Labs India Pvt. Ltd.

## 3.12.5.2 Economically important Flora of the study area

**Agricultural crops:** The major crops grown in study area are banana, papaya and mangoes. Different fruits like guava, custard apple and vegetables like brinjal, tomato, drumsticks, onion, and coriander also grown by the local people.

**Medicinal plant species:** The nearby area is also endowed with the several medicinal plants. The common medicinal plants of the region is *Azadirachta indica* (Neem).

**Rare and endangered floral species:** As per IUCN red list *Borassus flabellifer* (Nonkuppanai) categorized as endangered species. During the vegetation survey in the study area did not encounter any such species which are endangered or threatened under IUCN (International Union for Conservation of Nature and Natural resources) guidelines.

### 3.12.6 Fauna

## 3.12.6.1 Faunal Communities

Both direct (sighting) and indirect (evidences) observations methods were used to survey the faunal species around the study area. Additionally reference of relevant literatures (published/ unpublished) and conversations with local villagers were also carried out to consolidate the presence of faunal distribution in the area (*Smith 1933-43, Ali and Ripley 1983, Daniel 1983, Prater 1993, Murthy and Chandrasekhar 1988*).

**Mammals:** No wild mammalian species was directly sighted during the field survey. Conversation with local villagers around the study area also could not confirm presence of any wild animal in that area. Little Indian field mouse, House mouse, Bonnet Macaque, Common Palm Squirrel, Indian Grey Mongoose, Black rat, Rat, Short nosed fruit bat, Indian porcupine, Indian Hare, Indian mole-rat etc. were observed during primary survey.

**Avifauna:** Since birds are considered to be the indicators for monitoring and understanding human impacts on ecological systems (*Lawton*, 1996) attempt was made to gather quantitative data on the avifauna by walk through survey within the entire study area and surrounding areas. From the primary survey, a total of 40 species of avifauna were identified and recorded in the study area. The diversity of avifauna from this region was found to be quite high and encouraging. The list of avifauna species found in the study area is mentioned in Table 2.

The Indian Chameleon, tree lizard, common garden lizards and common toads are also seen. Variety of butterflies (like Common mime, Southern birdwing, Common Mormon, Indian Skipper, Common tiger, Common crow, Small Grass Yellow, Great Eggfly, Common Pierrot, Indian Sunbeam, Crimson rose, Lime Butterfly, Common Castor, Common rose, Common sailor) is spotted in abundance in the study zone.

S. No.	Scientific Name	English Name	Schedule of Wildlife	Status as per IUCN Red	Method
			Protection	Data List	
			Act		
		Mammals			
1	Mus booduga	Little Indian field	IV	Least Concern	DS
		mouse			
2	Mus musculus	House mouse	IV	Least Concern	DS
3	Macaca radiata	Bonnet Macaque	II	Vulnerable	DS
4	Funambulus palmarum	Common Palm Squirrel	IV	Least Concern	DS
5	Herpestes edwardsi	Indian Grey Mongoose	II	Least Concern	DS
6	Rattus rattus	Black rat	IV	Least Concern	DS
7	Bandicota indica	Rat	IV	Least Concern	DS
8	Cynopterus sphinx	Short nosed fruit bat	IV	Least Concern	DS
9	Hystrix indica	Indian porcupine	IV	Least Concern	DS
10	Lepus nigricollis	Indian Hare	IV	Least Concern	DS
11	Bandicota bengalensis	Indian mole-rat	IV	Least Concern	DS
		Birds			

TABLE 16: FAUNA RECORDED FROM THE PRIMARY SURVEY IN THE STUDY AREA ANDTHEIR CONSERVATION STATUS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection	Status as per IUCN Red Data List	Method
			Act		
1	Alcedo atthis	Common Kingfisher	IV	Least Concern	DS
2	Passer domesticus	House Sparrow	IV	Least Concern	DS
3	Acridotheres tristis	Common myna	IV	Least Concern	DS
4	Corvus splendens	House crow	V	Least Concern	DS
5	Dicrurus macrocercus	Black Drongo	IV	Least Concern	DS
6	Dicrurus adsimilis	Fork-tailed drongo	IV	Least Concern	DS
7	Bubulcus ibis	Cattle Egret	IV	Least Concern	DS
8	Pelargopsis capensis	Storkbilled kingfisher	IV	Least Concern	DS
9	Hypsipetes	Black bulbul	IV	Least Concern	DS
	madagascariensis				
10	Dicrurus paradiseus	Racket tailed drongo	IV	Least Concern	DS
11	Turdoides caudatus	Common Babbler	IV	Least Concern	DS
12	Psittacula krameri	Rose ringed parakeet	IV	Least Concern	DS
13	Coturnix coturnix	Grey quail	IV	Least Concern	DS
14	Halcyon smyrnensis	White-breasted	IV	Least Concern	DS
		kingfisher			
15	Pycnonotus cafer	Red vented Bulbul	IV	Least Concern	DS
16	Accipiter badius	Shikra	IV	Least Concern	DS
17	Megalaima viridis	Small green barbet	IV	Least Concern	DS
18	Cuculus canorus	Cuckoo	IV	Least Concern	DS
19	Spilopelia chinensis	Spotted dove	IV	Least Concern	DS
20	Merops orientalis	Small green bee eater	IV	Least Concern	DS
21	Calidris minuta	Llittle stint	IV	Least Concern	DS
22	Ardeola grayii	Pond Heron	IV	Least Concern	DS
23	Columba livia	Rock pigeon	IV	Least Concern	DS
24	Milvus migrans	Common Kite	IV	Least Concern	DS
25	Eudynamys scolopacea	Koel	IV	Least Concern	DS
26	Egretta garzetta	Little Egret	IV	Least Concern	DS
27	Anthus hodgsoni	Tree pipit	IV	Least Concern	DS
28	Apus apus	Common swift	IV	Least Concern	DS
29	Ardea cinerea	Grey heron	IV	Least Concern	DS
30	Egretta intermedia	Intermediate egret	IV	Least Concern	DS
31	Megalaima zeylanica	Brown-headed barbet	IV	Least Concern	DS
32	Nectarinia minima	Small sunbird	IV	Least Concern	DS
33	Nectarinia zeylonica	Indian Purple rumped	IV	Least Concern	DS
		sunbird			
34	Tringa hypoleucos	Common sandpiper	IV	Least Concern	DS
35	Turdoides striatus	Jungle Babbler	IV	Least Concern	DS
36	Phalacrocorax niger	Little cormorant	IV	Least Concern	DS
37	Hydrophasianus	Pheasant-tailed Jacana	IV	Least Concern	DS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
	chirurgus				
38	Haliastur indus	Brahminy kite	IV	Least Concern	DS
39	Copsychus fulicatus	Indian robin	IV	Not Assessed	DS
40	Coracias benghalensis	Indian roller	IV	Least Concern	DS
		Reptiles & Amphib	ians		
1	Chamaeleo zeylanicus	Indian chameleon	II	Least Concern	DS
2	Hemidactylus frenatus	House Lizard	-	Not assessed	DS
3	Calotes calotes	Garden Lizard	III	Not assessed	DS
4	Ptyas mucosus	Rat Snake	III	Not assessed	DS
5	Bungarus caeruleus	Common krait	IV	Least Concern	NS
6	Naja naja	Common cobra	II	Not assessed	NS
7	Hemidactylus giganteus	Giant Gecko	-	Least Concern	DS
8	Euphlyctis hexadactylus	Indian Pond Frog	IV	Least Concern	DS
9	Duttaphrynus melanostictus	Common toads	IV	Least Concern	DS
	meranostietas	Butterflies	<u> </u>	<u> </u>	
1	Papilio clytia	Common mime	-	Not assessed	DS
2	Troides minos	Southern birdwing	-	Least Concern	DS
3	Papilio polytes	Common Mormon	-	Not assessed	DS
4	Spialia galba	Indian Skipper	-	Not assessed	DS
5	Danaus genutia	Common tiger	-	Not assessed	DS
6	Euploea core	Common crow	-	Least Concern	DS
7	Eurema brigitta	Small Grass Yellow	-	Not assessed	DS
8	Hypolimnas bolina	Great Eggfly	-	Not assessed	DS
9	Castalius rosimon	Common Pierrot	-	Not assessed	DS
10	Curetis thetis	Indian Sunbeam	-	Not assessed	DS
11	Pachliopta hector	Crimson rose	-	Not assessed	DS
12	Papilio demoleus	Lime Butterfly	-	Not assessed	DS
13	Ariadne merione	Common Castor	-	Not assessed	DS
14	Pachliopta aristolochiae	Common rose	-	Not assessed	DS
15	Neptis hylas	Common sailor	-	Not assessed	DS

Source: ABC Techno Labs India Pvt. Ltd.


Livestock like cattle, buffalo, goat, poultry, duck and pig are reared for dairy products, meat, egg and for agriculture purpose. Majority of cattle and buffalo are of local variety. Backyard poultry farms are mostly common in this area; however, some commercial poultry farms are also recorded in the study area.

The study area is marked with moderate population of flora and fauna. With reference to the Wildlife Protection Act 1972 total number of wildlife tabulated in this study can be characterized as given in the Table 17.

		•	
S. No.	Schedule of Wildlife Protection Act 1972	No. of species	Remark
1	Schedule I	0	-
2	Schedule II	4	-
3	Schedule III	2	-
4	Schedule IV	51	-
5	Schedule V	1	-
6	Schedule VI	0	-

TABLE 17: CHARACTERIZATION OF FAUNA IN THE STUDY AREA (AS PER W.P ACT, 1972)

Source: ABC Techno Labs India Pvt. Ltd.



The detailed interpretation of flora and fauna identified within 10 km radius of the project site are tabulated In Table 18.

S.	Type of Species	Name	Local Name					
NO.								
	FI	ora						
1	Endangered species	Borassus flabellifer	Nonkuppanai					
2	Threatened species	None	None					
3	Near Threatened species	None	None					
4	Vulnerable species	None	None					
Fauna								
1	Endangered species	None	None					
2	Threatened species	None	None					
3	Near Threatened species	None	None					
4	Vulnorable species	Macaca radiata	Bonnet					
4	vullerable species		Macaque					
5	Migratory Corridors & Flight Paths	No corridors & flight paths						
6	Breeding & Spawning grounds	None						

#### **TABLE 18: DESCRIPTION OF FLORA & FAUNA**

Source: ABC Techno Labs India Pvt. Ltd.

A comprehensive Central Legislation namely Wild Life (Protection) Act was enforced in 1972 to provide protection to wild animals. Schedule-I of this act contains the list of rare and endangered species, which are completely protected throughout the country. The list of wild animals and their conservation status as per Wild Life Act (1972) presented in Table 3 are the species recorded/reported from the study area, out of which 4 species belongs to schedule-III, 2 species belongs to schedule-III, 1 species belongs to schedule-V and rest of the species belongs to schedule-IV of Wildlife protection Act, 1972.

#### 3.13 SOCIO - ECONOMIC ENVIRONMENT

An assessment of socio - economic environment forms an integral part of an EIA study. Therefore, baseline information for the same was collected during the study period. The baseline socio - economic data collected for the study region, before the proposed expansion project is operational, has been identified for the four major indicators viz. demography, civic amenities, economy and social culture. The baseline status of the above indicators is compiled in forthcoming sections.

### 3.13.1 DEMOGRAPHY

The population details (i.e. population distribution and population density) of the Taluka Vagra, District Bharuch and the study area within 10 km radius are presented in Table-3.16 & its graphical representation is given in Figure-3.9.

TABLE	- 3.16
-------	--------

DEM	DEMOGRAPHIC DATA								
Sr. No.	State Name	District Name	Village Name	CD Block Name	Total House holds	Total Popula tion of Village	Total Male Popula tion of Village	Total Femal e Popul ation of Village	
10 Km Area covered Village									
1	Tamil Nadu	Krishnagiri	Baliganapalli	Hosur	157	674	348	326	
2	Tamil Nadu	Krishnagiri	Puram	Hosur	140	589	318	271	
3	Tamil Nadu	Krishnagiri	D.S. Thimmasandr am	Shoolagi ri	357	1552	790	762	
4	Tamil Nadu	Krishnagiri	Selvankoddi	Shoolagi ri	246	1155	588	567	
5	Tamil Nadu	Krishnagiri	Saparapalli	Shoolagi ri	51	231	117	114	
6	Tamil Nadu	Krishnagiri	Gedalandhod di	Shoolagi ri	112	472	242	230	
7	Tamil Nadu	Krishnagiri	Chinnarendod di	Shoolagi ri	164	715	363	352	
8	Tamil Nadu	Krishnagiri	Doddagounip alli	Shoolagi ri	202	940	484	456	
9	Tamil Nadu	Krishnagiri	Gudisadanapa Ili	Shoolagi ri	321	1355	674	681	
10	Tamil Nadu	Krishnagiri	Kullur	Shoolagi ri	107	453	229	224	
11	Tamil Nadu	Krishnagiri	Vathiripalli	Hosur	53	229	118	111	

13Tamil NaduKrishnagiriMallasandira mHosur116528286214Tamil NaduKrishnagirimHosur116528286214Tamil NaduKrishnagirimHosur221857429415Tamil NaduKrishnagiriMidithepalliri2871287667616Tamil NaduKrishnagiriMidithepalliri2871287667616Tamil NaduKrishnagirialliri2610048617Tamil NaduKrishnagirialliri1603822021018Tamil NaduKrishnagirialliri1003822051018Tamil NaduKrishnagiriRamandoddiri11335822952219Tamil NaduKrishnagiriKumbalamri1164761394319Tamil NaduKrishnagiriAthimugamri164392820251920Tamil NaduKrishnagiriAthimugamri937454023392221Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAthimugamri937454023392223Tamil NaduKrishnagiriAdvanapalliHosur874472292224 <th>3 286 242 7 429 428</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	3 286 242 7 429 428							
13Tamil NaduKrishnagirimHosur1165282862214Tamil NaduKrishnagirimHosur221857429414Tamil NaduKrishnagirimHosur221857429415Tamil NaduKrishnagiriMidithepalliri2871287667616Tamil NaduKrishnagirialliri2610048616Tamil NaduKrishnagirialliri2610048617Tamil NaduKrishnagiriudurri100382202118Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagiriAthimugamri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriPalavanapalliHosur251096540524Tamil NaduKrishnagiriPalavanapalliHosur5912602131412	3 286 242 7 429 428				Mallasandira			
14Tamil NaduKrishnagiriKoladasapuraHosur2218574294214Tamil NaduKrishnagirimHosur2218574294215Tamil NaduKrishnagiriMidithepalliri28712876676616Tamil NaduKrishnagirialliri26100486676616Tamil NaduKrishnagirialliri26100486676617Tamil NaduKrishnagiriudurri1003822021018Tamil NaduKrishnagiriRamandoddiri1335822952219Tamil NaduKrishnagiriKumbalamri1647613943320Tamil NaduKrishnagiriAthimugamri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur582391231423Tamil NaduKrishnagiriPalavanapalliHosur2510965405924Tamil NaduKrishnagiriPalavanapalliHosur5912602131412	7 429 428	528	116	Hosur	m	Krishnagiri	Tamil Nadu	13
14Tamil NaduKrishnagirimHosur2218574294215Tamil NaduKrishnagiriMidithepalliri28712876676615Tamil NaduKrishnagiriMidithepalliri28712876676616Tamil NaduKrishnagirialliri26100486676616Tamil NaduKrishnagirialliri26100486676617Tamil NaduKrishnagiriudurri1003822021018Tamil NaduKrishnagiriRamandoddiri1335822952219Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagirialliri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriPalavanapalliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur591260213141225Tamil NaduKrishnagiriamHosur5912602131412	7 429 428				Koladasapura			
InstructionShoolagiShoolagiInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstructionInstruction		857	221	Hosur	m	Krishnagiri	Tamil Nadu	14
15Tamil NaduKrishnagiriMidithepalliri287128766766716Tamil NaduKrishnagirialliri261004816Tamil NaduKrishnagirialliri261004817Tamil NaduKrishnagiriudurri100382202117Tamil NaduKrishnagiriudurri100382202118Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriKumbalamri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur582391231423Tamil NaduKrishnagiriPalavanapalliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur591260213141225Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi				
16Tamil NaduKrishnagiriKottasadanap alliShoolagi ri261004816Tamil NaduKrishnagirialliri261004817Tamil NaduKrishnagiriudurri100382202118Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriRamandoddiri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251920Tamil NaduKrishnagirialliri937454023392221Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur582391231423Tamil NaduKrishnagiriPalavanapalliHosur25810965405524Tamil NaduKrishnagiriPalavanapalliHosur25810965405525Tamil NaduKrishnagiriamHosur5912602131412	7 667 620	1287	287	ri	Midithepalli	Krishnagiri	Tamil Nadu	15
16Tamil NaduKrishnagirialliri261004817Tamil NaduKrishnagiriudurri100382202117Tamil NaduKrishnagiriudurri100382202118Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriKumbalamri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriIiHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi	Kottasadanap			
IndicationMuthurayanp udurShoolagiIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicati	) 48 52	100	26	ri	alli	Krishnagiri	Tamil Nadu	16
17Tamil NaduKrishnagiriudurri100382202118Tamil NaduKrishnagiriRamandoddiri133582295218Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriKumbalamri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriIiHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi	Muthurayanp			
Image: Nadu index in	2 202 180	382	100	ri	udur	Krishnagiri	Tamil Nadu	17
18Tamil NaduKrishnagiriRamandoddiri133582295219Tamil NaduKrishnagiriKumbalamri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251920Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi				
19Tamil NaduKrishnagiriKumbalamShoolagi ri164761394319Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251920Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412	2 295 287	582	133	ri	Ramandoddi	Krishnagiri	Tamil Nadu	18
19Tamil NaduKrishnagiriKumbalamri164761394320Tamil NaduKrishnagirialliri841392820251920Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur25810965405925Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi				
20Tamil NaduKrishnagiriPeddasigarlap alliShoolagi ri841392820251920Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur874472292224Tamil NaduKrishnagiriPalavanapalliHosur25810965405925Tamil NaduKrishnagiriamHosur5912602131412	L 394 367	761	164	ri	Kumbalam	Krishnagiri	Tamil Nadu	19
20Tamil NaduKrishnagirialliri841392820251921Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriIiHosur874472292224Tamil NaduKrishnagiriPalavanapalliHosur25810965405925Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi	Peddasigarlap			
Image: Mark and Mark an	3 2025 1903	3928	841	ri	alli	Krishnagiri	Tamil Nadu	20
21Tamil NaduKrishnagiriAthimugamri937454023392222Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412				Shoolagi				
22Tamil NaduKrishnagiriAdvanapalliHosur58239123123Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur25810965405525Tamil NaduKrishnagiriamHosur5912602131412	2339 2201	4540	937	ri	Athimugam	Krishnagiri	Tamil Nadu	21
23Tamil NaduKrishnagiriSudugondapal liHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412	) 123 116	239	58	Hosur	Advanapalli	Krishnagiri	Tamil Nadu	22
23Tamil NaduKrishnagiriliHosur87447229224Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412					Sudugondapal			
24Tamil NaduKrishnagiriPalavanapalliHosur2581096540525Tamil NaduKrishnagiriamHosur5912602131412	7 229 218	447	87	Hosur	li	Krishnagiri	Tamil Nadu	23
25Tamil NaduKrishnagiriNandimangal amHosur5912602131412	5 540 556	1096	258	Hosur	Palavanapalli	Krishnagiri	Tamil Nadu	24
25 Tamil Nadu Krishnagiri am Hosur 591 2602 1314 12					Nandimangal			
	2 1314 1288	2602	591	Hosur	am	Krishnagiri	Tamil Nadu	25
26   Tamil Nadu   Krishnagiri   Badathepalli   Hosur   150   735   373   3	5 373 362	735	150	Hosur	Badathepalli	Krishnagiri	Tamil Nadu	26
27 Tamil Nadu Krishnagiri Karupalli Hosur 73 332 181 1	2 181 151	332	73	Hosur	Karupalli	Krishnagiri	Tamil Nadu	27
28 Tamil Nadu Krishnagiri Muthalli Hosur 108 444 223 2	1 223 221	444	108	Hosur	Muthalli	Krishnagiri	Tamil Nadu	28
29 Tamil Nadu Krishnagiri Attur Hosur 77 354 187 1	1 187 167	354	77	Hosur	Attur	Krishnagiri	Tamil Nadu	29
30 Tamil Nadu Krishnagiri Dhasapalli Hosur 152 894 443 4	443 451	894	152	Hosur	Dhasapalli	Krishnagiri	Tamil Nadu	30
Shoolagi				Shoolagi				
31 Tamil Nadu Krishnagiri Doripalli ri 852 3681 1898 17	L 1898 1783	3681	852	ri	Doripalli	Krishnagiri	Tamil Nadu	31
Pattakurubara Shoolagi				Shoolagi	Pattakurubara	<u>U</u>		
32 Tamil Nadu Krishnagiri palli ri 533 2340 1211 11	) 1211 1129	2340	533	ri	palli	Krishnagiri	Tamil Nadu	32
Shoolagi				Shoolagi				
33 Tamil Nadu Krishnagiri Amgondapalli ri 543 2634 1371 12	1 1371 1263	2634	543	ri	Amgondapalli	Krishnagiri	Tamil Nadu	33
34 Tamil Nadu Krishnagiri Alnatham Hosur 71 327 170 1	7 170 157	327	71	Hosur	Alnatham	Krishnagiri	Tamil Nadu	34
Chembarasan Shoolagi				Shoolagi	Chembarasan	<u>U</u>		
35 Tamil Nadu Krishnagiri apalli ri 1179 5312 2725 25	2 2725 2587	5312	1179	ri	apalli	Krishnagiri	Tamil Nadu	35
Shoolagi			_	Shoolagi				
36 Tamil Nadu Krishnagiri A.Settipalli ri 605 2764 1428 13	1428 1336	2764	605	ri	A.Settipalli	Krishnagiri	Tamil Nadu	36
Mallasandira Shoolagi				Shoolagi	Mallasandira			L
37 Tamil Nadu Krishnagiri m ri 119 481 242 2	1 242 239	481	119	ri	m	Krishnagiri	Tamil Nadu	37
Nallaganakot Shoolagi	+ +		_	Shoolagi	Nallaganakot			L
38 Tamil Nadu Krishnagiri hapalli ri 968 3933 2028 19								20

			Krishnappana	Veppana				
39	Tamil Nadu	Krishnagiri	yakkanpudur	palli	129	578	282	296
				Veppana				
40	Tamil Nadu	Krishnagiri	Helekundani	palli	149	650	344	306
				Veppana				
41	Tamil Nadu	Krishnagiri	Gollapalli	palli	130	525	270	255
42	Karnataka	Kolar	Tharabahalli	Malur	75	292	142	150
			Chalaganahall					
43	Karnataka	Kolar	i	Malur	263	1227	634	593
44	Karnataka	Kolar	Voppachahalli	Malur	158	738	381	357
			Dadinayakana					
45	Karnataka	Kolar	doddi	Malur	130	564	276	288
46	Karnataka	Kolar	Bennagatta	Malur	218	929	470	459
47	Karnataka	Kolar	Bantahalli	Malur	335	1492	730	762
48	Karnataka	Kolar	Ahanya	Malur	177	726	367	359
49	Karnataka	Kolar	Padavanahalli	Malur	193	919	464	455
50	Karnataka	Kolar	Kadadanahalli	Malur	110	502	256	246
51	Karnataka	Kolar	Mirupanahalli	Malur	95	507	260	247
52	Karnataka	Kolar	Nagapura	Malur	93	472	247	225
53	Karnataka	Kolar	Baliganahalli	Malur	116	527	265	262
54	Karnataka	Kolar	Kadavanapura	Malur	36	199	99	100
55	Karnataka	Kolar	Indumangala	Malur	154	794	431	363
56	Karnataka	Kolar	M.Hosahalli	Malur	137	712	365	347
57	Karnataka	Kolar	M.Upparahalli	Malur	86	369	189	180
58	Karnataka	Kolar	Byranadoddi	Malur	55	332	180	152
59	Karnataka	Kolar	Bandahatti	Malur	65	290	141	149
60	Karnataka	Kolar	Natuvarahalli	Malur	91	452	227	225
			Guddadahosa					
61	Karnataka	Kolar	halli	Malur	35	191	87	104
			Tholasanadod					
62	Karnataka	Kolar	di	Malur	20	117	61	56
			Doddadanava					
63	Karnataka	Kolar	halli	Malur	112	622	313	309
			Chickadanava					
64	Karnataka	Kolar	halli	Malur	120	566	288	278
			Thirtha		-			
65	Karnataka	Kolar	Bandahatti	Malur	6	30	17	13
			Tholakanahall		100			
66	Karnataka	Kolar		Malur	123	529	274	255
<b>C</b> 7	Kanadalaa	Kalan	Pichaguntran	Malun	02	420	210	200
0/	Karnataka	Kolar	dill Maath:	Malur	93	426	218	208
68	Karnataka	Kolar	IVIASTNI	Malur	1019	/345	3823	3522
69	Karnataka	Kolar		Natur	116	534	267	267
70	Karnataka	Kolar	Duduvananalli	Natur	140	642	332	310
/1	karnataka	Kolar	вуаррапаhalli	Malur	40	203	114	89

				Navalgu				
72	Karnataka	Dharwad	Kadadahalli	nd	153	825	415	410
73	Karnataka	Kolar	Kesaragere	Malur	154	751	362	389
	5 Km Area co	vered Village						
			Vanamangala	Shoolagi				
74	Tamil Nadu	Krishnagiri	m	ri	120	569	285	284
				Shoolagi				
75	Tamil Nadu	Krishnagiri	Collapalli	ri	97	440	234	206
				Shoolagi				
76	Tamil Nadu	Krishnagiri	Nerigam	ri	242	1034	537	497
			Kariyasandira	Shoolagi				
77	Tamil Nadu	Krishnagiri	m	ri	95	346	184	162
			Mahadevapur	Shoolagi				
78	Tamil Nadu	Krishnagiri	am	ri	89	371	189	182
				Shoolagi				
79	Tamil Nadu	Krishnagiri	Suligunta	ri	217	962	495	467
				Shoolagi				
80	Tamil Nadu	Krishnagiri	Berigai	ri	1807	7884	3970	3914
			Amuthugonda	Shoolagi				
81	Tamil Nadu	Krishnagiri	palli	ri	120	543	274	269
82	Tamil Nadu	Krishnagiri	Mugalpalli	Hosur	239	970	500	470
				Veppana				
83	Tamil Nadu	Krishnagiri	Pannapalli	palli	547	2304	1154	1150
84	Tamil Nadu	Krishnagiri	Eluvapalli	Hosur	283	1323	688	635
				Shoolagi				
85	Tamil Nadu	Krishnagiri	Sikkanapalli	ri	135	555	279	276
				Shoolagi				
86	Tamil Nadu	Krishnagiri	Pannapalli	ri	997	4431	2275	2156
				Shoolagi				
87	Tamil Nadu	Krishnagiri	Meenandoddi	ri	83	358	180	178
				Shoolagi				
88	Tamil Nadu	Krishnagiri	Sokkapuram	ri	280	1285	633	652
			Venkatesapur	Shoolagi				
89	Tamil Nadu	Krishnagiri	am	ri	650	2873	1484	1389
				Shoolagi				
90	Tamil Nadu	Krishnagiri	Kurubarapalli	ri	339	1571	820	751
			Koladasapura					
91	Tamil Nadu	Krishnagiri	m	Hosur	221	857	429	428
93	Tamil Nadu	Krishnagiri	Alnatham	Hosur	71	327	170	157
		Tiruchirapp	Shanamangal	Manach	649			1 195
94	Tamil Nadu	alli	am	anallur	049	2,381	1,186	1,199
95	Karnataka	Kolar	Bitnahalli	Malur	95	439	230	209
96	Karnataka	Kolar	Halehalli	Malur	116	434	224	210
			Appaiana					
97	Karnataka	Kolar	Agrahara	Malur	112	546	282	264

			Chavaramang					
98	Karnataka	Kolar	ala	Malur	110	486	249	237
99	Karnataka	Kolar	Suggondahalli	Malur	152	690	333	357
100	Karnataka	Kolar	Anikarahalli	Malur	181	879	455	424
101	Karnataka	Kolar	Malkanahalli	Malur	161	710	351	359
			Thyaganadod					
102	Karnataka	Kolar	di	Malur	41	191	99	92
103	Karnataka	Kolar	Karisandra	Malur	53	233	120	113
			Shamasettyha					
104	Karnataka	Kolar	lli	Malur	176	722	376	346

#### TABLE - 3.27

### POPULATION DENSITY

Name	Population (Persons)	Population Density (Person / sq. km.)	Sex ratio (No. of females per 1000 males)
Within 5 km Radius (2011)	39587	104	962
Within 10 km Radius (2011)	77041	202	950
Taluka Hosur (2011)	17,216	45	900
Taluka Shoolagiri (2011)	62820	164	951
Taluka Malur (2011)	29329	77	955
District Krishnagiri, Tamilnadu(2011)	86474	226	954
District Kolar, Karnataka (2011)	30154	79	956

(Courtesy: Census Dept., GOI)

#### **FIGURE - 3.14**

### **POPULATION DENSITY**



#### 3.13.2 LITERACY RATE

The literacy rate is a major factor, which influences the socio-cultural condition of a particular place. Details of literacy rate in District krishnagiri & Kolar, Taluka Hosur, shoolagiri & Malur and within 10 km radius and 5 km radius of project site are given in Table 3.20 while their graphical representation is shown in Figure 3.10. It is observed that the literacy rate in krishnagiri District as per 2011 Census data is 54.06% as percentage of literate population to the total population, with 61.10 % among male and 46.67% among female. Literacy rate in Kolar District, as per 2011 Census data is 56.59%, with 69.57% among male and 46.67% among female. Literacy rate in Taluka Hosur as per 2011 Census data is 57.32% with 64.57% among males and 52.51% among females. Literacy rate in Taluka Shoolagiri as per 2011 Census data is 53.17% with 60.03% among males and 46.12% among females. Literacy rate in Taluka Malur as per 2011 Census data is 58.89% with 66.16% among males and 51.28% among females.

#### TABLE – 3.18

LITERACY RATE	LITERACY RATE									
Name	Total	Male Literacy (%)	Female Literacy							
	Literacy(%)		(%)							
Within 5 km Radius (2011)	59.98	67.29	52.39							
Within 10 km Radius	54.76	61.95	47.20							
(2011)										
Taluka Hosur (2011)	72.66	79.03	65.98							
Taluka Shoolagiri (2011)	62.93	70.95	54.45							
Taluka Malur (2011)	67.93	76.02	59.44							
District Krishnagiri,	67.32	75.43	58.88							
Tamilnadu(2011)										
District Kolar, Karnataka	69.08	78.11	59.82							
(2011)										

(Courtesy: Census Dept., GOI)

### TABLE - 3.18 (CONTD.)

LITERAC	LITERACY RATE									
Sr. No.	State	District Name	Village Name	CD Block Name	Total	No. of	No. of	Population	Male	Female
	Name				literate	Male	Female	Illiterate	Illiterate	Illiterate
						Literate	Literate			
10 Km Area covered Villages										
1	Tamil Nadu	Krishnagiri	Baliganapalli	Hosur	396	227	169	278	121	157
2	Tamil Nadu	Krishnagiri	Puram	Hosur	399	245	154	190	73	117
3	Tamil Nadu	Krishnagiri	D.S. Thimmasandram	Shoolagiri	887	496	391	665	294	371
4	Tamil Nadu	Krishnagiri	Selvankoddi	Shoolagiri	498	284	214	657	304	353
5	Tamil Nadu	Krishnagiri	Saparapalli	Shoolagiri	107	58	49	124	59	65
6	Tamil Nadu	Krishnagiri	Gedalandhoddi	Shoolagiri	320	189	131	152	53	99
7	Tamil Nadu	Krishnagiri	Chinnarendoddi	Shoolagiri	383	215	168	332	148	184
8	Tamil Nadu	Krishnagiri	Doddagounipalli	Shoolagiri	347	206	141	593	278	315
9	Tamil Nadu	Krishnagiri	Gudisadanapalli	Shoolagiri	811	462	349	544	212	332
10	Tamil Nadu	Krishnagiri	Kullur	Shoolagiri	250	155	95	203	74	129
11	Tamil Nadu	Krishnagiri	Vathiripalli	Hosur	139	81	58	90	37	53
12	Tamil Nadu	Krishnagiri	Oddapalli	Hosur	253	153	100	71	38	33
13	Tamil Nadu	Krishnagiri	Mallasandiram	Hosur	356	217	139	172	69	103
14	Tamil Nadu	Krishnagiri	Koladasapuram	Hosur	492	276	216	365	153	212
15	Tamil Nadu	Krishnagiri	Midithepalli	Shoolagiri	630	369	261	657	298	359
16	Tamil Nadu	Krishnagiri	Kottasadanapalli	Shoolagiri	58	33	25	42	15	27
17	Tamil Nadu	Krishnagiri	Muthurayanpudur	Shoolagiri	173	105	68	209	97	112
18	Tamil Nadu	Krishnagiri	Ramandoddi	Shoolagiri	254	153	101	328	142	186
19	Tamil Nadu	Krishnagiri	Kumbalam	Shoolagiri	413	254	159	348	140	208

20	Tamil Nadu	Krishnagiri	Peddasigarlapalli	Shoolagiri	1641	971	670	2287	1054	1233
21	Tamil Nadu	Krishnagiri	Athimugam	Shoolagiri	2297	1317	980	2243	1022	1221
22	Tamil Nadu	Krishnagiri	Advanapalli	Hosur	125	75	50	114	48	66
23	Tamil Nadu	Krishnagiri	Sudugondapalli	Hosur	217	128	89	230	101	129
24	Tamil Nadu	Krishnagiri	Palavanapalli	Hosur	637	349	288	459	191	268
25	Tamil Nadu	Krishnagiri	Nandimangalam	Hosur	1406	797	609	1196	517	679
26	Tamil Nadu	Krishnagiri	Badathepalli	Hosur	365	201	164	370	172	198
27	Tamil Nadu	Krishnagiri	Karupalli	Hosur	181	113	68	151	68	83
28	Tamil Nadu	Krishnagiri	Muthalli	Hosur	222	132	90	222	91	131
29	Tamil Nadu	Krishnagiri	Attur	Hosur	190	105	85	164	82	82
30	Tamil Nadu	Krishnagiri	Dhasapalli	Hosur	363	202	161	531	241	290
31	Tamil Nadu	Krishnagiri	Doripalli	Shoolagiri	2013	1165	848	1668	733	935
32	Tamil Nadu	Krishnagiri	Pattakurubarapalli	Shoolagiri	1251	735	516	1089	476	613
33	Tamil Nadu	Krishnagiri	Amgondapalli	Shoolagiri	1296	771	525	1338	600	738
34	Tamil Nadu	Krishnagiri	Alnatham	Hosur	464	266	198	151	52	99
35	Tamil Nadu	Krishnagiri	Chembarasanapalli	Shoolagiri	2668	1582	1086	2644	1143	1501
36	Tamil Nadu	Krishnagiri	A.Settipalli	Shoolagiri	1595	960	635	1169	468	701
37	Tamil Nadu	Krishnagiri	Mallasandiram	Shoolagiri	278	151	127	203	91	112
38	Tamil Nadu	Krishnagiri	Nallaganakothapalli	Shoolagiri	2309	1378	931	1624	650	974
39	Tamil Nadu	Krishnagiri	Krishnappanayakkanpudur	Veppanapalli	186	94	92	392	188	204
40	Tamil Nadu	Krishnagiri	Helekundani	Veppanapalli	445	270	175	205	74	131
41	Tamil Nadu	Krishnagiri	Gollapalli	Veppanapalli	241	158	83	293	133	160
42	Karnataka	Kolar	Tharabahalli	Malur	143	78	65	149	65	85
43	Karnataka	Kolar	Chalaganahalli	Malur	683	404	279	544	230	314
44	Karnataka	Kolar	Voppachahalli	Malur	414	241	173	324	140	184

45	Karnataka	Kolar	Dadinayakanadoddi	Malur	337	177	160	227	99	128
46	Karnataka	Kolar	Bennagatta	Malur	498	301	197	431	169	262
47	Karnataka	Kolar	Bantahalli	Malur	872	482	390	620	248	372
48	Karnataka	Kolar	Ahanya	Malur	493	280	213	233	87	146
49	Karnataka	Kolar	Padavanahalli	Malur	544	314	230	375	150	225
50	Karnataka	Kolar	Kadadanahalli	Malur	297	172	125	205	84	121
51	Karnataka	Kolar	Mirupanahalli	Malur	265	152	113	242	108	134
52	Karnataka	Kolar	Nagapura	Malur	281	176	105	191	71	120
53	Karnataka	Kolar	Baliganahalli	Malur	342	192	150	185	73	112
54	Karnataka	Kolar	Kadavanapura	Malur	114	61	53	85	38	47
55	Karnataka	Kolar	Indumangala	Malur	445	281	164	349	150	199
56	Karnataka	Kolar	M.Hosahalli	Malur	427	244	183	285	121	164
57	Karnataka	Kolar	M.Upparahalli	Malur	202	116	86	167	73	94
58	Karnataka	Kolar	Byranadoddi	Malur	221	129	92	111	51	60
59	Karnataka	Kolar	Bandahatti	Malur	137	72	65	153	69	84
60	Karnataka	Kolar	Natuvarahalli	Malur	239	136	103	213	91	122
61	Karnataka	Kolar	Guddadahosahalli	Malur	102	46	56	89	41	48
62	Karnataka	Kolar	Tholasanadoddi	Malur	68	37	31	49	24	25
63	Karnataka	Kolar	Doddadanavahalli	Malur	321	181	140	309	132	169
64	Karnataka	Kolar	Chickadanavahalli	Malur	268	162	106	289	126	172
65	Karnataka	Kolar	Thirtha Bandahatti	Malur	16	12	4	14	5	9
66	Karnataka	Kolar	Tholakanahalli	Malur	313	186	127	216	88	128
67	Karnataka	Kolar	Pichaguntrahalli	Malur	212	116	96	214	102	112
68	Karnataka	Kolar	Masthi	Malur	4799	2719	2080	1388	696	692
69	Karnataka	Kolar	Kanchala	Malur	339	196	143	197	71	124

70	Karnataka	Kolar	Duduvanahalli	Malur	311	178	133	331	154	177
71	Karnataka	Kolar	Byappanahalli	Malur	127	85	42	76	29	47
72	Karnataka	Dharwad	Kadadahalli	Navalgund	297	172	125	205	84	121
73	Karnataka	Kolar	Kesaragere	Malur	505	276	229	246	86	160
	5 Km Area c	overed Village								
74	Tamil Nadu	Krishnagiri	Vanamangalam	Shoolagiri	336	203	133	233	82	151
75	Tamil Nadu	Krishnagiri	Collapalli	Shoolagiri	192	120	72	248	114	134
76	Tamil Nadu	Krishnagiri	Nerigam	Shoolagiri	512	317	195	522	220	302
77	Tamil Nadu	Krishnagiri	Kariyasandiram	Shoolagiri	47	23	24	299	161	138
78	Tamil Nadu	Krishnagiri	Mahadevapuram	Shoolagiri	177	106	71	194	83	111
79	Tamil Nadu	Krishnagiri	Suligunta	Shoolagiri	496	284	212	466	211	255
80	Tamil Nadu	Krishnagiri	Berigai	Shoolagiri	5529	3007	2522	2355	963	1392
81	Tamil Nadu	Krishnagiri	Amuthugondapalli	Shoolagiri	228	131	97	315	143	172
82	Tamil Nadu	Krishnagiri	Mugalpalli	Hosur	597	344	253	373	156	217
83	Tamil Nadu	Krishnagiri	Pannapalli	Veppanapalli	2207	1292	915	2224	983	1241
84	Tamil Nadu	Krishnagiri	Eluvapalli	Hosur	743	434	309	580	254	326
85	Tamil Nadu	Krishnagiri	Sikkanapalli	Shoolagiri	346	200	146	209	79	130
86	Tamil Nadu	Krishnagiri	Pannapalli	Shoolagiri	2207	1292	915	900	351	549
87	Tamil Nadu	Krishnagiri	Meenandoddi	Shoolagiri	176	94	82	182	86	96
88	Tamil Nadu	Krishnagiri	Sokkapuram	Shoolagiri	660	347	313	625	286	339
89	Tamil Nadu	Krishnagiri	Venkatesapuram	Shoolagiri	1655	960	695	1218	524	694
90	Tamil Nadu	Krishnagiri	Kurubarapalli	Shoolagiri	757	437	320	814	383	431
91	Tamil Nadu	Krishnagiri	Koladasapuram	Hosur	492	276	216	365	153	212
93	Tamil Nadu	Krishnagiri	Alnatham	Hosur	176	118	58	151	52	99
94	Tamil Nadu	Tiruchirappalli	Shanamangalam	Manachanallur	1,619	905	714	762	281	481

95	Karnataka	Kolar	Bitnahalli	Malur	258	152	106	181	78	103
96	Karnataka	Kolar	Halehalli	Malur	271	169	102	163	55	108
97	Karnataka	Kolar	Appaiana Agrahara	Malur	277	164	113	269	118	151
98	Karnataka	Kolar	Chavaramangala	Malur	298	181	117	188	68	120
99	Karnataka	Kolar	Suggondahalli	Malur	401	221	180	289	112	117
100	Karnataka	Kolar	Anikarahalli	Malur	449	254	195	430	209	229
101	Karnataka	Kolar	Malkanahalli	Malur	319	191	128	391	160	231
102	Karnataka	Kolar	Thyaganadoddi	Malur	138	78	60	53	21	32
103	Karnataka	Kolar	Karisandra	Malur	144	86	58	89	34	55
104	Karnataka	Kolar	Shamasettyhalli	Malur	382	225	157	340	151	189

#### **FIGURE - 3.15**

### LITERACY DATA



#### 3.13.3 OCCUPATIONAL STRUCTURE

In economic development of the region its geographical location, natural resources, business and employment, industries and manpower play vital role. Table 3.18 provides the occupational patterns in all villages falling within the area of interest.

#### TABLE - 3.19

OCCUP	ATIONAL STR	UCTURE					-			-
Sr.	State	District	Village Name	CD Block	Total	Main	Cultiva	Agricultur	Household	Other
No.	Name	Name		Name	worke	worker	tors	al	industry	works
					rs	S		labourers	workers	
	10 Km Area	covered Villa	ge							
1	Tamil Nadu	Krishnagiri	Baliganapalli	Hosur	300	284	157	70	4	53
2	Tamil Nadu	Krishnagiri	Puram	Hosur	213	118	16	24	23	55
3	Tamil Nadu	Krishnagiri	D.S. Thimmasandram	Shoolagiri	1029	1015	491	440	6	78
4	Tamil Nadu	Krishnagiri	Selvankoddi	Shoolagiri	593	485	152	330	1	2
5	Tamil Nadu	Krishnagiri	Saparapalli	Shoolagiri	171	169	2	166	0	1
6	Tamil Nadu	Krishnagiri	Gedalandhoddi	Shoolagiri	322	322	0	318	0	4
7	Tamil Nadu	Krishnagiri	Chinnarendoddi	Shoolagiri	240	456	221	229	0	6
8	Tamil Nadu	Krishnagiri	Doddagounipalli	Shoolagiri	532	527	183	295	12	37
9	Tamil	Krishnagiri	Gudisadanapalli	Shoolagiri	889	885	455	409	0	21

265

	Nadu									
10	Tamil Nadu	Krishnagiri	Kullur	Shoolagiri	184	181	58	120	0	3
11	Tamil Nadu	Krishnagiri	Vathiripalli	Hosur	121	88	86	1	0	1
12	Tamil Nadu	Krishnagiri	Oddapalli	Hosur	48	36	31	0	1	4
13	Tamil Nadu	Krishnagiri	Mallasandiram	Hosur	330	313	200	71	0	42
14	Tamil Nadu	Krishnagiri	Koladasapuram	Hosur	431	401	79	161	3	158
15	Tamil Nadu	Krishnagiri	Midithepalli	Shoolagiri	729	727	259	406	2	60
16	Tamil Nadu	Krishnagiri	Kottasadanapalli	Shoolagiri	60	51	35	9	4	3
17	Tamil Nadu	Krishnagiri	Muthurayanpudur	Shoolagiri	227	52	34	17	0	1
18	Tamil Nadu	Krishnagiri	Ramandoddi	Shoolagiri	308	307	165	94	3	45
19	Tamil Nadu	Krishnagiri	Kumbalam	Shoolagiri	329	227	46	174	0	7
20	Tamil Nadu	Krishnagiri	Peddasigarlapalli	Shoolagiri	1176	1137	757	755	4	445
21	Tamil Nadu	Krishnagiri	Athimugam	Shoolagiri	1936	1525	485	547	35	458
22	Tamil Nadu	Krishnagiri	Advanapalli	Hosur	68	48	37	1	0	10
23	Tamil	Krishnagiri	Sudugondapalli	Hosur	329	211	202	3	3	2

	Nadu									
24	Tamil Nadu	Krishnagiri	Palavanapalli	Hosur	480	478	220	239	0	19
25	Tamil Nadu	Krishnagiri	Nandimangalam	Hosur	1260	1134	497	475	47	115
26	Tamil Nadu	Krishnagiri	Badathepalli	Hosur	302	285	106	100	4	75
27	Tamil Nadu	Krishnagiri	Karupalli	Hosur	135	132	98	15	3	16
28	Tamil Nadu	Krishnagiri	Muthalli	Hosur	252	241	100	5	2	48
29	Tamil Nadu	Krishnagiri	Attur	Hosur	136	136	101	17	0	18
30	Tamil Nadu	Krishnagiri	Dhasapalli	Hosur	521	519	0	516	0	3
31	Tamil Nadu	Krishnagiri	Doripalli	Shoolagiri	1140	1056	353	243	16	444
32	Tamil Nadu	Krishnagiri	Pattakurubarapalli	Shoolagiri	1112	1066	561	296	2	207
33	Tamil Nadu	Krishnagiri	Amgondapalli	Shoolagiri	1249	1225	735	384	2	104
34	Tamil Nadu	Krishnagiri	Alnatham	Hosur	91	69	62	0	0	7
35	Tamil Nadu	Krishnagiri	Chembarasanapalli	Shoolagiri	3112	3024	1246	1199	27	552
36	Tamil Nadu	Krishnagiri	A.Settipalli	Shoolagiri	1577	1415	463	716	37	199
37	Tamil	Krishnagiri	Mallasandiram	Shoolagiri	215	192	68	70	2	52

	Nadu									
38	Tamil Nadu	Krishnagiri	Nallaganakothapalli	Shoolagiri	1659	1383	489	118	25	751
39	Tamil Nadu	Krishnagiri	Krishnappanayakkanpu dur	Veppanapalli	308	300	200	93	0	7
40	Tamil Nadu	Krishnagiri	Helekundani	Veppanapalli	495	402	104	260	22	16
41	Tamil Nadu	Krishnagiri	Gollapalli	Veppanapalli	308	308	78	227	0	3
42	Karnataka	Kolar	Tharabahalli	Malur	135	121	78	12	5	26
43	Karnataka	Kolar	Chalaganahalli	Malur	564	525	137	313	0	75
44	Karnataka	Kolar	Voppachahalli	Malur	458	328	132	131	0	65
45	Karnataka	Kolar	Dadinayakanadoddi	Malur	259	227	67	89	7	69
46	Karnataka	Kolar	Bennagatta	Malur	352	221	135	34	3	49
47	Karnataka	Kolar	Bantahalli	Malur	804	348	215	35	6	116
48	Karnataka	Kolar	Ahanya	Malur	294	248	78	79	11	80
49	Karnataka	Kolar	Padavanahalli	Malur	481	250	111	80	5	54
50	Karnataka	Kolar	Kadadanahalli	Malur	297	250	116	57	1	4
51	Karnataka	Kolar	Mirupanahalli	Malur	223	142	86	39	0	17
52	Karnataka	Kolar	Nagapura	Malur	248	168	67	54	0	47
53	Karnataka	Kolar	Baliganahalli	Malur	350	179	123	14	0	42
54	Karnataka	Kolar	Kadavanapura	Malur	132	75	41	21	0	13
55	Karnataka	Kolar	Indumangala	Malur	442	86	47	17	1	21
56	Karnataka	Kolar	M.Hosahalli	Malur	274	137	73	23	2	39
57	Karnataka	Kolar	M.Upparahalli	Malur	188	33	4	17	0	12
58	Karnataka	Kolar	Byranadoddi	Malur	132	72	11	25	0	36

59	Karnataka	Kolar	Bandahatti	Malur	175	79	0	2	0	5
60	Karnataka	Kolar	Natuvarahalli	Malur	283	257	132	17	0	8
61	Karnataka	Kolar	Guddadahosahalli	Malur	120	111	99	4	0	8
62	Karnataka	Kolar	Tholasanadoddi	Malur	53	53	20	26	0	7
63	Karnataka	Kolar	Doddadanavahalli	Malur	400	400	289	104	0	7
64	Karnataka	Kolar	Chickadanavahalli	Malur	319	308	69	230	0	9
65	Karnataka	Kolar	Thirtha Bandahatti	Malur	6	4	3	1	0	0
66	Karnataka	Kolar	Tholakanahalli	Malur	334	163	135	11	8	9
67	Karnataka	Kolar	Pichaguntrahalli	Malur	281	14	1	1	1	11
68	Karnataka	Kolar	Masthi	Malur	295	4799	367	584	31	1246
69	Karnataka	Kolar	Kanchala	Malur	315	315	194	80	1	40
70	Karnataka	Kolar	Duduvanahalli	Malur	304	56	41	2	3	10
71	Karnataka	Kolar	Byappanahalli	Malur	123	123	18	72	0	33
72	Karnataka	Dharwad	Kadadahalli	Navalgund	297	198	116	77	1	4
73	Karnataka	Kolar	Kesaragere	Malur	396	166	62	42	1	61
	5 Km Area c	overed Village	9							
74	Tamil Nadu	Krishnagiri	Vanamangalam	Shoolagiri	207	197	42	99	4	52
75	Tamil Nadu	Krishnagiri	Collapalli	Shoolagiri	267	259	18	241	0	0
76	Tamil Nadu	Krishnagiri	Nerigam	Shoolagiri	568	550	300	159	1	90
77	Tamil Nadu	Krishnagiri	Kariyasandiram	Shoolagiri	241	240	0	240	0	0
78	Tamil Nadu	Krishnagiri	Mahadevapuram	Shoolagiri	189	187	64	106	0	17

79	Tamil Nadu	Krishnagiri	Suligunta	Shoolagiri	488	466	116	102	108	140
80	Tamil Nadu	Krishnagiri	Berigai	Shoolagiri	3335	3089	514	775	107	1693
81	Tamil Nadu	Krishnagiri	Amuthugondapalli	Shoolagiri	199	191	187	2	1	1
82	Tamil Nadu	Krishnagiri	Mugalpalli	Hosur	512	462	220	140	2	100
83	Tamil Nadu	Krishnagiri	Pannapalli	Veppanapalli	2068	1810	986	536	35	253
84	Tamil Nadu	Krishnagiri	Eluvapalli	Hosur	870	633	533	72	3	25
85	Tamil Nadu	Krishnagiri	Sikkanapalli	Shoolagiri	206	198	75	77	22	46
86	Tamil Nadu	Krishnagiri	Pannapalli	Shoolagiri	1124	914	508	220	11	175
87	Tamil Nadu	Krishnagiri	Meenandoddi	Shoolagiri	200	200	25	134	77	41
88	Tamil Nadu	Krishnagiri	Sokkapuram	Shoolagiri	607	604	234	300	1	69
89	Tamil Nadu	Krishnagiri	Venkatesapuram	Shoolagiri	1211	965	815	91	4	55
90	Tamil Nadu	Krishnagiri	Kurubarapalli	Shoolagiri	716	614	173	322	18	101
91	Tamil Nadu	Krishnagiri	Koladasapuram	Hosur	431	401	79	161	3	158
93	Tamil Nadu	Krishnagiri	Alnatham	Hosur	91	69	62	0	0	7

94	Tamil Nadu	Tiruchirapp alli	Shanamangalam	Manachanallu r	92	80	12	0	0	0
95	Karnataka	Kolar	Bitnahalli	Malur	272	68	64	2	0	2
96	Karnataka	Kolar	Halehalli	Malur	172	151	109	22	0	20
97	Karnataka	Kolar	Appaiana Agrahara	Malur	503	4	1	2	0	1
98	Karnataka	Kolar	Chavaramangala	Malur	315	37	6	6	0	25
99	Karnataka	Kolar	Suggondahalli	Malur	496	482	231	195	0	56
100	Karnataka	Kolar	Anikarahalli	Malur	556	539	154	380	0	5
101	Karnataka	Kolar	Malkanahalli	Malur	443	357	6	347	1	3
102	Karnataka	Kolar	Thyaganadoddi	Malur	126	119	111	1	0	7
103	Karnataka	Kolar	Karisandra	Malur	148	142	50	81	0	11
104	Karnataka	Kolar	Shamasettyhalli	Malur	499	314	97	100	0	117

(Courtesy: Census Dept., GOI)

### 3.12.4 AMENITIES TABLE – 3.20 DETAILS OF AMMENITIES AVAILABLE IN STUDY AREA

Talu	Village	Educati	Medical	Drinking	Post	Com	Approa	Power
ka		onal		Water	&	muni	chto	Supply
					Teleg	catio	Village	
					raph	n		
Kris	Baliganapalli	P(2),ASC	PHC(a),PHS(3),	T,HP,TW	P&TO	BS	PR,KR	EA
hnag		(1),EC(c)	MCW(a),TBC(a),		, LL			
iri		,MC(c)	HA(a),D(a)FWC(					
			a)					
	Puram	P(a),ASC	PHC(c),PHS(b),	Т	Ρ&ΤΟ	BS	PR,KR	
		(c),EC(c),	MCW(c),TBC(c),		,LL			
		MC(c)	HA(c),D(c)FWC(					
			c)					
	D.S.	P(1),ASC	PHC(b),PHS(a),	T,TW	P&TO	BS	PR,KR	EA
	Thimmasand	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	ram	MC(c)	HA(c),D(b)FWC(		LL(b)			
			b)					
	Selvankoddi	P(1),ASC	PHC(c),PHS(b),	T,TW	P&TO	BS	PR,KR	
		(c),EC(c),	MCW(c),TBC(c),		(c), LL			
		MC(c)	HA(c),D(c)FWC(					
			c)					
	Saparapalli	P(c),ASC	PHC(c),PHS(a),	Т	P&TO	BS	PR,KR	
		(c),EC(c),	MCW(c),TBC(c),		(c),			
		MC(c)	HA(c),D(c)FWC(		LL(a)			
			c)					
	Gedalandho	P(1),ASC	PHC(c),PHS(a),	Т	P&TO	BS	PR,KR	
	uui	(c),EC(c),	MCW(c), IBC(c),		(c), LL			
		MC(c)	HA(C),D(C)FWC(					
		D(4) ACC	C)	TUD	<b>D</b> 0 <b>T</b> 0	DC		
	Chinnarendo	P(1),ASC		Т,НР	P&10	B2	PR,KR	
		(C), EC(C),	V(C), TBC(C), TBC(C),		,(C)			
		IVIC(C)	HA(C),D(a)FVVC( C)		LL(a)			
	Doddagouni	P(1),ASC	PHC(b),PHS(a),	T,HP	P&TO	BS(a)	PR,KR	EA
	palli	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
		MC(c)	HA(c),D(b)FWC(		LL(b)			
			b)					

Gudisadana	P(1),ASC	PHC(b),PHS(1),	Т	P&TO	BS	PR,KR	
palli	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL(b)			
		b)					
Kullur	P(1),ASC	PHC(c),PHS(a),	Т	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL(a)			
		b)					
Vathiripalli	P(b),ASC	PHC(b),PHS(b),	Т	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Oddapalli	P(a),ASC	PHC(b),PHS(b),	Т	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Mallasandira	P(1),ASC	PHC(b),PHS(b),	T,TW	P&TO	BS	PR,KR	
m	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Koladasapur	P(1),ASC	PHC(b),PHS(b),	Т	P&TO	BS(a)	PR,KR	
am	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL(b)			
		b)					
Midithepalli	P(1),ASC	PHC(a),PHS(a),	Т,НР	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(c),		(a) <i>,</i> LL			
	MC(c)	HA(c),D(a)FWC(					
		a)					
Kottasadana	P(a),ASC	PHC(b),PHS(a),	Т,НР	P&TO	BS	PR,KR	EA
palli	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL(a)			
		b)					
Muthurayan	P(a),ASC	PHC(b),PHS(a),	T,TP,R	P&TO	BS	PR,KR	EA
pudur	(c),EC(c),	MCW(b),TBC(b),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL			
		b)					
Ramandoddi	P(1),ASC	PHC(c),PHS(b),	T,TW	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(c),TBC(c),		(c) <i>,</i>			

	MC(c)	HA(c),D(c)FWC(		LL(c)			
	<b>D(0)</b>	c)	-				<b></b>
Kumbalam	P(2),ASC	PHC(c), PHS(1),	1	P&10	BS	PR,KR	ΕA
	(c),EC(c),	MCW(c), IBC(c),		(C), LL			
	MC(c)	HA(c),D(c)FWC(					
	<b>D(0)</b>	C)					
Peddasigaria	P(3),ASC	PHC(C), PHS(1),	I,HP,IW	P&10	B2	PR,KR	EA
pam	(C),EC(C),	MCW(C), IBC(C),		(C),			
	MC(c)	HA(C),D(C)FWC(		LL(C)			
A + 1 +	D(2) ACC		-	<b>D</b> 0.70			<b></b>
Athimugam	P(2),ASC	PHC(b),PHS(1),	1	P&10	B2	PR,KR	EA
	(c),EC(c),	MCW(b), IBC(b),		(C), LL			
	MC(c)	HA(C),D(D)FWC(					
				DOTO			
Advanapalli	P(a),ASC	PHC(D), PHS(D),	1	P&10	B2	PR, KR	
	(C), EU(C),	V(CV(D), TBC(C),		(C), LL			
	IVIC(C)						
		0)					
Sudugondap	P(a).ASC	PHC(b).PHS(b).	Т	Ρ&το	BS	PR.KR	
alli	(c).EC(c).	MCW(b).TBC(c).		(c). LL		,	
	MC(c)	HA(c).D(b)FWC(		(- <i>11</i>			
		b)					
Palavanapall	P(1),ASC	PHC(b),PHS(a),	Т	P&TO	BS	PR,KR	
i	(c),EC(c),	MCW(b),TBC(b),		(b),			
	MC(c)	HA(b),D(b)FWC(		LL			
		b)					
Nandimanga	P(1),ASC	PHC(b),PHS(a),	Т	Ρ&ΤΟ	BS	PR,KR	
lam	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Badathepalli	P(1),ASC	PHC(b),PHS(b),	Т	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Karupalli	P(1),ASC	PHC(c),PHS(a),	Т	Ρ&το	BS(a)	PR(a),K	EA
	(c),EC(c),	MCW(c),TBC(c),		(c) <i>,</i> LL		R	
	MC(c)	HA(c),D(c)FWC(					
		c)					

Muthalli	P(1),ASC	PHC(c),PHS(1),	Т	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(b),			
	MC(c)	HA(b),D(c)FWC(		LL(b)			
		c)					
Attur	P(a),ASC	PHC(c),PHS(a),	Т	P&TO	BS(a)	PR(a),K	EA
	(c),EC(c),	MCW( c		(c), LL		R	
	MC(c)	),TBC(c),HA(c),D					
		(c)FWC(c)					
Dhasapalli	P(1),ASC	PHC(c),PHS(a),	Т	P&TO	BS(a)	PR(a),K	EA
	(c),EC(c),	MCW( c		(c) <i>,</i>		R	
	MC(c)	),TBC(c),HA(c),D		LL(a)			
		(c)FWC(c)					
Doripalli	P(3),ASC	PHC(b),PHS(1),	T,TW	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Pattakuruba	P(2),ASC	PHC(b),PHS(b),	T,HP	P&TO	BS	PR,KR	EA
rapalli	(c),EC(c),	MCW(b),TBC(b),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL(b)			
		b)					
Amgondapal	P(4),ASC	PHC(c),PHS(b),	T,TW	P&TO	BS(a)	PR,KR	EA
li	(c),EC(b)	MCW(c),TBC(c),		(c),			
	,MC(c)	HA(c),D(c)FWC(		LL(c)			
		c)					
Alnatham	P(1),ASC	PHC(b),PHS(a),	Т	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(c),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Chembarasa	P(1),ASC	PHC(b),PHS(1),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
napalli	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL			
		b)					
A.Settipalli	P(2),ASC	PHC(b),PHS(1),	T,TW	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL			
		b)					
Mallasandira	P(a),ASC	PHC(c),PHS(b),	Т	P&TO	BS	PR,KR	EA
m	(c),EC(c),	MCW(c),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					

		c)					
Nallaganako	P(5),ASC	PHC(b),PHS(1),	T,HP,TW	P&TO	BS	PR,KR	EA
thapalli	(1),EC(1)	MCW(b),TBC(c),		(b),			
	,MC(c)	HA(c),D(b)FWC(		LL			
		b)					
Krishnappan	P(1),ASC	PHC(b),PHS(a),	Т,НР	P&TO	BS	PR,KR	
ayakkanpud	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
ur	MC(c)	HA(c),D(b)FWC(					
		b)					
Helekundani	P(1),ASC	PHC(c),PHS(b),	Т	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					
		c)					
Gollapalli	P(1),ASC	PHC(b),PHS(a),	Т	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL(a)			
		b)					
Vanamangal	P(1),ASC	PHC(a),PHS(a),	Т	P&TO	BS(a)	PR,KR	EA
am	(c),EC(c),	MCW(a),TBC(c),		(a),LL			
	MC(c)	HA(c),D(a)FWC(		(a)			
		a)					
Collapalli	P(1),ASC	PHC(b),PHS(b),		P&TO	BS(a)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(c),		(b),LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Nerigam	P(1),ASC	PHC(b),PHS(1),	T,TW	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(b) <i>,</i>			
	MC(c)	HA(c),D(b)FWC(		LL			
		b)					
Kariyasandir	P(1),ASC	PHC(b),PHS(1),	Т	P&TO	BS	PR,KR	EA
am	(c),EC(c),	MCW(1),TBC(c),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL(a)			
		b)					
Mahadevap	P(1),ASC	PHC(a),PHS(a),	Т	P&TO	BS(a)	PR(a),K	EA
uram	(c),EC(c),	MCW(a),TBC(c),		(b),		R	
	MC(c)	HA(c),D(a)FWC(		LL(a)			
		a)					
Suligunta	P(1),ASC	PHC(a),PHS(a),	T,TW	P&TO	BS(a)	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(c),		(a) <i>,</i>			

	MC(c)	HA(c),D(a)FWC(		LL(a)			
		a)					
Berigai	P(1),ASC	PHC(1),PHS(1),	T,TW	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(1),TBC(1),		,LL			
	MC(c)	HA(c),D(1)FWC(					
		1)					
Amuthugon	P(1),ASC	PHC(a),PHS(1),	Т	P&TO	BS(a)	PR,KR	EA
dapalli	(c),EC(c),	MCW(a),TBC(c),		(a) <i>,</i>			
	MC(c)	HA(c),D(a)FWC(		LL(a)			
		a)					
Mugalpalli	P(1),ASC	PHC(b),PHS(a),	T,TW	P&TO	BS(b)	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
		b)					
Pannapalli	P(1),ASC	PHC(b),PHS(1),	T,HP,TW	P&TO	BS	PR,KR	
	(c),EC(c),	MCW(b),TBC(c),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL			
		b)					
Eluvapalli	P(1),ASC	PHC(b),PHS(a),	T,TW	P&TO	BS(a)	PR,KR	
	(b),EC(b)	MCW(b),TBC(b),		(b),			
	,MC(c)	HA(b),D(b)FWC(		LL			
		b)					
Sikkanapalli	P(1),ASC	PHC(b),PHS(b),	Т	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(c),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL(b)			
		b)					
Meenandod	P(2),ASC	PHC(b),PHS(a),	Т,НР	P&TO	BS(a)	PR,KR	EA
di	(c),EC(c),	MCW(b),TBC(c),		(b),			
	MC(c)	HA(c),D(b)FWC(		LL(b)			
		b)					
Sokkapuram	P(1),ASC	PHC(c),PHS(a),	Т	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(c),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					
		c)					
Venkatesap	P(1),ASC	PHC(b),PHS(b),	Т,НР	P&TO			
uram	(c),EC(c),	MCW(b),TBC(c),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(b)FWC(					
	-	b)					
Kurubarapall	P(6),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS	PR(a),K	EA
i							

		(c),EC(c),	MCW(a),TBC(c),		(c), LL		R	
		MC(c)	HA(c),D(a)FWC(					
			a)					
Kola	Tharabahalli	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
r		(c),EC(c),	MCW(b),TBC(b),		(c), LL		,	
		MC(c)	HA(c).D(a)FWC(					
			b)					
	Chalaganaha	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
	lli	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i> LL			
		MC(c)	HA(c),D(a)FWC(					
			b)					
	Voppachaha	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
	lli	(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
		MC(b)	HA(c),D(a)FWC(					
			a)					
	Dadinayakan	P(1),ASC	PHC(1),PHS(2),	T,HP,TW	P&TO	BS	PR,KR	EA
	adoddi	(c),EC(c),	MCW(1),TBC(1),		(c) <i>,</i> LL			
		MC(c)	HA(c),D(a)FWC(					
			2)					
	Bennagatta	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
		(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
		MC(c)	HA(c),D(a)FWC(					
			a)					
	Bantahalli	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS	PR,KR	EA
		(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
		MC(c)	HA(c),D(c)FWC(					
			a)					
	Ahanya	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
		(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
		MC(c)	HA(c),D(c)FWC(					
			a)					
	Padavanahal	P(2),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
	li	(c),EC(c),	MCW(b),TBC(b),		(b),			
		MC(c)	HA(c),D(c)FWC(		LL(b)			
			b)					
	Kadadanahal	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
	li	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
		MC(c)	HA(c),D(c)FWC(		LL(b)			
			b)					

Mirupanahal	P(b),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
li	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
	MC(c)	HA(c),D(c)FWC(		LL(b)			
		b)					
Nagapura	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
	MC(c)	HA(c),D(c)FWC(		LL(b)			
		b)					
Baliganahalli	P(1),ASC	PHC(b),PHS(1),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
	MC(c)	HA(c),D(c)FWC(		LL(b)			
		1)					
Kadavanapu	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
ra	(c),EC(c),	MCW(b),TBC(b),		(c) <i>,</i>			
	MC(c)	HA(c),D(c)FWC(		LL(b)			
		b)					
Indumangal	P(1),ASC	PHC(c),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
а	(c),EC(c),	MCW(c),TBC(c),		(a) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					
		b)					
M.Hosahalli	P(1),ASC	PHC(b),PHS(b),	T,HP	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(a) <i>,</i>			
	MC(b)	HA(c),D(c)FWC(		LL(b)			
		b)					
M.Upparaha	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
lli	(c),EC(c),	MCW(a),TBC(a),		(a) <i>,</i> LL			
	MC(a)	HA(c),D(c)FWC(					
		a)					
Byranadoddi	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(a) <i>,</i> LL			
	MC(b)	HA(c),D(c)FWC(					
		b)					
Bandahatti	P(a),ASC	PHC(a),PHS(a),	Т,НР	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(a),		(b),			
	MC(c)	HA(c),D(c)FWC(		LL(b)			
		a)					
Natuvarahall	P(1),ASC	PHC(a),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
i	(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
	MC(b)	HA(b),D(c)FWC(					

		b)					
Guddadahos ahalli	P(b),ASC (c),EC(c),	PHC(b),PHS(b), MCW(b),TBC(b),	Т,НР	P&TO (b),	BS(b)	PR,KR	EA
	MC(c)	HA(c),D(c)FWC( b)		LL(b)			
Tholasanado ddi	P(a),ASC (c),EC(c), MC(c)	PHC(a),PHS(a), MCW(a),TBC(a), HA(c),D(c)FWC( a)	HP	P&TO (a) <i>,</i> LL(a)	BS(a)	PR,KR	EA
Doddadanav ahalli	P(1),ASC (c),EC(c), MC(c)	PHC(a),PHS(1), MCW(a),TBC(a), HA(c),D(b)FWC( 1)	T,TW	P&TO (a), LL	BS	PR,KR	EA
Chickadanav ahalli	P(1),ASC (c),EC(c), MC(c)	PHC(a),PHS(1), MCW(a),TBC(a), HA(c),D(a)FWC( a)	T,HP,TW	P&TO (b), LL	BS	PR,KR	EA
Thirtha Bandahatti	P(a),ASC (c),EC(c), MC(b)	PHC(a),PHS(1), MCW(a),TBC(a), HA(c),D(c)FWC( a)	T,HP,TW	P&TO (b), LL	BS	PR,KR	EA
Tholakanaha lli	P(1),ASC (c),EC(c), MC(c)	PHC(b),PHS(b), MCW(b),TBC(b), HA(c),D(c)FWC( b)	T,HP,TW	P&TO (c), LL(b)	BS(a)	PR,KR	EA
Pichaguntra halli	P(1),ASC (c),EC(c), MC(b)	PHC(a),PHS(a), MCW(a),TBC(a), HA(c),D(c)FWC( a)	T,TW	P&TO (c), LL	BS(a)	PR,KR	EA
Masthi	P(9),ASC (c),EC(c), MC(b)	PHC(1),PHS(1), MCW(1),TBC(1), HA(c),D(c)FWC( 1)	T,HP,TW	P&TO ,LL	BS	PR,KR	EA
Kanchala	P(1),ASC (c),EC(c), MC(a)	PHC(b),PHS(b), MCW(b),TBC(b), HA(c),D(c)FWC( b)	T,TW	P&TO (b),LL	BS	PR,KR	EA
Duduvanaha Ili	P(1),ASC (c),EC(c),	PHC(a),PHS(a), MCW(a),TBC(a),	T,HP,TW	P&TO (a),LL	BS(a)	PR,KR	EA

	MC(c)	HA(c),D(c)FWC(					
		a)					
Byappanahal	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
li	(c),EC(c),	MCW(a),TBC(a),		(a) <i>,</i> LL			
	MC(a)	HA(c),D(c)FWC(					
		b)					
Kesaragere	P(2),ASC	PHC(a),PHS(1),	Т,НР	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					
		1)					
Bitnahalli	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS(b)	PR,KR	EA
	(c),EC(c),	MCW(b),TBC(b),		(c),LL			
	MC(c)	HA(c),D(c)FWC( b)					
Halehalli	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(a),		(a),LL			
	MC(c)	HA(c),D(c)FWC(					
		a)					
Appaiana	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS	PR,KR	EA
Agrahara	(c),EC(c),	MCW(a),TBC(a),		(c),LL			
	MC(c)	HA(c),D(c)FWC(					
		a)					
Chavaraman	P(1),ASC	PHC(b),PHS(b),	T,HP,TW	Ρ&ΤΟ	BS	PR,KR	EA
gala	(a) <i>,</i> EC(a)	MCW(b),TBC(b),		(c) <i>,</i> LL			
	,MC(c)	HA(c),D(c)FWC(					
		b)					
Suggondahal	P(2),ASC	PHC(b),PHS(b),	T,HP,TW	P&TO	BS	PR,KR	EA
11	(c),EC(c),	MCW(b),TBC(b),		(c),LL			
	MC(c)	HA(c),D(c)FWC(					
		b)					
Anikarahalli	P(2),ASC	PHC(b), PHS(b),	I,HP,IW	P&10	BS(D)	PR,KR	EA
	(b),EC(c)	MCW(D), IBC(D),		(C),LL			
	,IVIC(C)			(a)			
Malkanahalli				D&TO		חע מח	<b>E A</b>
IVIdIKafidfidill	F(1),ASC		1,07,100		D2(N)	۳۳,۸۴	
		HA(c) D(c) EV(c),					
Thyaganado	D(1) ASC		Τ Τ\Λ/	DS.TO	BS(a)		E۸.
ddi	r (1),ASC		1,1 VV	FOLIO	D3(d)		

	(c),EC(c),	MCW(a),TBC(a),		(c) <i>,</i> LL			
	MC(c)	HA(c),D(c)FWC(					
		a)					
Karisandra	P(1),ASC	PHC(a),PHS(a),	T,HP,TW	P&TO	BS(a)	PR,KR	EA
	(c),EC(c),	MCW(a),TBC(a),		(c),LL			
	MC(c)	HA(c),D(c)FWC(					
		a)					
Shamasetty	P(1),ASC	PHC(b),PHS(b),	Т,НР	P&TO	BS(b)	PR,KR	EA
halli	(c),EC(c),	MCW(b),TBC(b),		(c),LL			
	MC(c)	HA(c),D(c)FWC(					
		b)					

(Courtesy: Census Dept., GOI)

#### **ABBREVIATIONS**

1. Education	2. Medical Facilities				
P-Primary Elementary School	PHS-Primary Health Sub-Centre				
EC-Engineering college	PHC-Primary Health Centre				
MC-Medical college	MCW-Maternity and Child Welfare				
ASC-Degree college of arts, science & commerce	Center				
	TBC-T.B. Clinic				
	HA-Hospital-Allopathic				
	D-Dispensary				
	FWC – Family Welfare Centre				
3. Drinking Water	4. Post & Telegraph				
T-Tap Water	P&TO-Post & Telegraph Office				
HP-Hand Pump	LL-Telephone (Land Lines)				
R-River Water	5. Communication				
TW- Tube well Water	BS-Bus Service				
	6. Approaches to Village				
	PR-Pucca Road				
	KR-Kuchcha Road				
7. Power Supply					
EA-Electricity for all purposes					

#### **INTERPRETATION:**

Within 10 km radius of the study area, Population density is 202 persons per sq. km. and the literacy rate is observed to be 54.76% having 61.95% among males and 47.20% among females and it can be interpreted that there is need to promote education to more and more people specifically promotion of education to girl child. Almost all the villages have more than 50% people as non-workers. It indicates that the problem of unemployment can be solved by providing proper training and education and also the need to establish more industries so that maximum number of employment can be generated. Basic amenities like Education facilities, Health care facilities, water supply, electric power supply, mode of transportation etc. are available in all villages.

## CHAPTER – 4

## **ANTICIPATED ENVIRONMENTAL IMPACT & MITIGATION MEASURES**

### **4.1 IDENTIFICATION OF IMPACTS**

Various sources of pollution with respect to wastewater, the flue gas / process emission, hazardous waste and noise generation along with their qualitative and quantitative analysis as well as measures taken to control them are discussed herein with details. The network method was adopted to identify potential impact, which involves understanding of cause-condition-effect relationship between an activity and environmental parameters.

### **4.2 PREDICTIONS AND EVALUATION OF IMPACTS**

An impact can be defined as any change in physical, chemical, biological, cultural and/or socioeconomic environment that can be attributed to activities related to alternatives under study for meeting the project needs. Impact methodology provides an organized approach for prediction and assessing these impacts. Scientific techniques and methodologies based on mathematical modeling are available for studying impacts of various project activities on environmental parameters.

The nature of the impacts due to said project activities are discussed here in detail. Each parameters identified in the proceeding chapter, is singularly considered for the anticipated impact due to various activities listed. The impact is quantified using numerical scores 0, 1, 2, 3, 4 and 5 in increasing order of activity. In order to assess the impact accurately, each parameter is discussed in detail covering the following:

1) Project activities likely to generate impact

2) Quantification and prediction of impact

#### **4.2.1 WATER ENVIRONMENT**

- The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source.
- The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream.
  - Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system.
  - High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated will be disposed to TSDF (Common disposal Facility).
  - Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.

### **4.2.2 AIR ENVIRONMENT**

The dispersion of pollutants in the atmosphere is a function of several meteorological parameters viz. temperature, wind speed and direction, mixing depths, inversion level, etc. A number of models have been developed for the prediction of pollutant concentration at any point from an emitting source. The Industrial Source Complex – Short Term (ISCST3) dispersion model is a steady-state Gaussian plume model. It is most widely accepted for its interpretability. It gives reasonably correct values because this obeys the equation of continuity and it also takes care of diffusion, which is a random process. For the present study, this model is used for the prediction of maximum ground level concentration (GLC).

The proposed air emissions at M/s. Chemplast Sanmar Limited. are SPM, SO₂, NO₂, & CO. The site specific and monitored details considered for input data for the software "ISC-AERMOD View" by Lakes Environmental, Canada for prediction of impact on air environment are given in Table 4.2. The site-specific hourly meteorological data measured at site is given in Table 3.8. In order to conduct a refined air dispersion modeling using ISCST3 and ISC-PRIME short-term air quality dispersion models, the site specific hourly meteorological data measured at site is pre-processed using the U.S. EPA PCRAMMET and U.S. EPA AERMET programs. Before starting air dispersion modeling with ISC-AERMOD View,
a building downwash analysis using BPIP View was done. BPIP View is a graphical user interface designed to speed up the work involved in setting up input data for the U.S. EPA Building Profile Input Program (BPIP) and Building Profile Input Program – Plume Rise Model Enhancements (BPIP-PRIME).

The air pollution caused by the gaseous emissions from a single or small group of stacks is a local phenomenon. Its impacts will occur at a distance ranging from within the immediate vicinity of the stack to several kilometers away from the stack. Maximum ground level concentration will occur within this range. All plumes at more downwind distances from the source by stack emission become so diluted by diffusion in the ambient atmosphere, that concentrations of pollutants become negligible. The maximum ground level concentration for different parameters is given in Table 4.4. Equal concentration contour plots for PM₁₀, PM_{2.5}, SO₂, NO₂, & CO are given in Figure 4.2. Adequate measures shall be taken to minimize air pollution by providing air pollution control equipment. Flue gases are discharged from stacks at adequate height.

The methodology for Air Quality Modeling using AERMOD View model is given in Figure 4.1.

#### FIGURE-4.1





TABLE-4.1

r. 0 o	perating Parameter	Unit	Source of	Emission							
			Boiler-1 (9 TPH)	D.G set (600 KVA)	D.G set (750 KVA)	DG (320 KVA)	D.G Set (600 KVA)	D.G Set (600 KVA)	D.G Set (600 KVA)	Thermic Fluid Heater 1 Lakh Kcal/Hr	Thermic Fluid Heater 1 Lal Kcal/Hr
. S	tack Height	Meter	40	12	12	9.8	12	12	12	9	9
. S	tack Diameter	Meter	0.7	0.2	0.2	0.2	0.2	0.2	0.2	0.25	0.25
. F	lue Gas Velocity	m/s	5.50	18.14	18.72	13.50	18.15	18.11	18.19	14.43	14.43
. F	lue Gas Temperature	⁰ K	435	425	430	423	425	425	425	600	600
. A E	ir Pollution Control quipment	-	Mechani cal Dust collector ,Stack	Stack	Stack	Stack	Stack	Stack	Stack	Stack	Stack
E C	mission oncentration										
Р	Μ	mg/Nm ³ g/S	72 (0.1050)	44 (0.0176)	46 (0.0188)	38 (0.0114)	49 (0.0197)	38 (0.0152)	45 (0.0181)	30 (0.0106)	35 (0.0124)
S	02	mg/Nm ³ g/S	626 (0.9133)	27.2 (0.0109)	27.0 (0.0110)	24.0 (0.0072)	30.5 (0.0122)	24.6 (0.0098)	26.2 (0.0105)	21.6 (0.0076)	22.0 (0.0778)
N	102	mg/Nm ³ g/S	314 (0.4581)	10.6 (0.0042)	11 (0.0045)	9.6 (0.0028)	12.7 (0.0051)	9.0 (0.0036)	12.1 (0.0048)	9.0 (0.0032)	9.8 (0.0034)

	СО	mg/Nm ³	105	136	124	118	143	127	136	125	131
		g/S	(0.1531)	(0.0546)	(0.0508)	(0.0354)	(0.0572)	(0.5005)	(0.0548)	(0.0442)	(0.0464)
7.	Fuel		Furnace	HSD							
			Oil								

#### PROPOSED EMISSION FROM STACK

Sr.	Operating	Unit				So	urce of Emis	ssion			
No	Parameter										
			Boiler-1	Boiler-1	DG set -	DG set -	DG set -	DG set -	DG set -	Thermic	Thermic
			(50 TPH)	(50 TPH)	2000KV	2000KV	2000KVA	2000KVA	2000KVA	Fluid	Fluid
					А	A				Heater	Heater
										2 Lakh	2 Lakh
										Kcal/Hr	Kcal/Hr
1.	Stack Height	Meter	40	40	30	30	30	30	30	9	9
2.	Stack Diameter	Meter	2	2	0.4	0.4	0.4	0.4	0.4	0.25	0.25
3.	Flue Gas Velocity	m/s	9	9	24	24	24	24	24	25	25
4.	Flue Gas Temperature	٥K	423	423	600	600	600	600	600	600	600
5.	Air Pollution Control Equipment	-	Mechani cal Dust collector ,Stack or ESP	Mechanic al Dust collector ,Stack	Stack	Stack	Stack	Stack	Stack	Stack	Stack
6.	Emission										
	PM	mg/Nm ³	99	90	50	50	50	50	50	60	60

		g/S	(1.9708)	(1.8038)	(0.0753)	(0.0753)	(0.0753)	(0.0753)	(0.0753)	(0.0367)	(0.0367)
	SO2	mg/Nm ³	400	600	40	40	40	40	40	50	50
		g/S	(7.9635)	(12.0255)	(0.0603)	(0.0603)	(0.0603)	(0.0603)	(0.0603)	(0.0306)	(0.0306)
	NO2	mg/Nm ³	500	300	15	15	15	15	15	20	20
		g/S	(9.9544)	120	(0.0226)	(0.0226)	(0.0226)	(0.0226)	(0.0226)	(0.0122)	(0.0122)
	СО	mg/Nm ³	500	(2.4051)	140	140	140	140	140	140	140
		g/S	(9.9544)	. ,	(0.2110)	(0.2110)	(0.2110)	(0.2110)	(0.2110)	(0.0858)	(0.0858)
7.	Fuel		Briquett	Furnace	HSD						
			es	Oil							

### **EXISITING EMISSION FROM PROCESS VENT**

Sr. No	Operating Parameter	Unit				Sou	irce of Emissi	on			
			Scrubbe	Scrubbe	Scrubber	Scrubber	Absorber	Scrubber	Phyto	Scrubbe	Scrubber
			r at	r at	at Plant -	at Plant -	at Plant - I	at R & D	Plant	r at	at Pilot
			Plant - I	Plant -II	П	П		plant	Scrubbe	Plant - II	Plant
									r(Proces		
									s)		
1.	Stack Height	Meter	6.1	17	17	15	4	12	19	15	6.1
2.	Stack Diameter	Meter	0.25	0.2	0.25	0.25	0.02	0.350	0.2	0.25	0.25
3.	Flue Gas Velocity	m/s	19.747	19.644	19.644	5.21	5.20	6.48	15.72	18.95	17.48
4.	Flue Gas	٥K	303	303	303	300	303	303	303	303	303
	Temperature										
5.	Air Pollution Control	-	Wet	Wet	Wet Alkali	Wet	Wet Alkali	Wet	Wet	Wet	Wet
	Equipment		Alkali	Alkali	Scrubber,S	Alkali	Scrubber,S	Alkali	Alkali	Alkali	Alkali

			Scrubber	Scrubber	tack	Scrubber,	tack	Scrubber,	Scrubber	Scrubber	Scrubber,
			,Stack	,Stack		Stack		Stack	,Stack	,Stack	Stack
6.	Emission										
	concentration										
	PM	mg/Nm ³									
		g/S									
	SO2	mg/Nm ³									
		g/S									
	NO2	mg/Nm ³									
		g/S									
	CO	mg/Nm ³	32	27	0	0	0	0	0	0	0
		g/S	(0.0306)	(0.0195)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
7.	Fuel										

Sr. No	Operating Parameter	Unit			Sou	irce of Emiss	sion				
			Scrubber	Scrubber	Scrubber	Scrubber	Scrubbe	Scrubber	Scrubber		
			at plant	at plant	at plant	at Plant -	r at	at Plant -	at Plant -		
			IV IV IV V Plant - V V								
1.	Stack Height	Meter	17	17	17	17	17	17	17		
2.	Stack Diameter	Meter	0.2	0.25	0.25	0.25	0.25	0.25	0.25		
3.	Flue Gas Velocity	m/s	7.24	5.6	8.38	8.0	8.0	8.0	8.0		

4.	Flue Gas	٥K	309	306	304	303	303	303	303
	Temperature								
5.	Air Pollution Control	-	Wet	Wet	Wet	Wet	Wet	Wet	Wet
	Equipment		Alkali	Alkali	Alkali	scrubber	scrubber	scrubber	scrubber
			Scrub	Scrub	Scrub	with	with	with	with stack
			ber,stack	ber,stack	ber,stack	stack	stack	stack	
6.	Emission								
	concentration								
	PM	mg/Nm ³							
		g/S							
	SO2	mg/Nm ³							
		g/S							
	NO2	mg/Nm ³							
		g/S							
	СО	mg/Nm ³	24	28	32	30	30	30	30
		g/S	(0.0052)	(0.0075)	(0.0114)	(0.0116)	(0.0116)	(0.0116)	(0.0116)
7.	Fuel								

### PROPOSED EMISSION FROM PROCESS VENT

Sr. No	Operating Parameter	Unit				So	urce of Emiss	sion					
		<u> </u>	Scrubber -ScrubbeScrubberScrubber -ScrubberScrubberScrubberScrubber1r-2r-3-45-6-7-8-9										
1.	Stack Height	Meter	17	17	17	17	17	17	17	17	17		
2.	Stack Diameter	Meter	0.25	25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0.25      0									

3.	Flue Gas Velocity	m/s	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
4.	Flue Gas	٥K	303	303	303	303	303	303	303	303	303
	Temperature										
5.	Air Pollution Control	-	Wet Alkali	Wet	Wet	Wet	Wet Alkali	Wet	Wet	Wet	Wet
	Equipment		Scrub	Alkali	Alkali	Alkali	Scrub	Alkali	Alkali	Alkali	Alkali
			ber,stack	Scrub	Scrub	Scrub	ber,stack	Scrub	Scrub	Scrub	Scrub
				ber,stac	ber,stac	ber,stack		ber,stack	ber,stack	ber,stack	ber,stack
				k	k						
6.	Emission										
	concentration										
	PM10	mg/Nm ³									
		g/S									
	SO2	mg/Nm ³	3	3	3	3	3				
		g/S	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0006)				
	NO2	mg/Nm ³						5	5	5	5
		g/S						(0.0010)	(0.0010)	(0.0010)	(0.0010)
	СО	mg/Nm ³									
		g/S									
7.	Fuel										

Sr. No	Operating Parameter	Unit				Sou	urce of Emis	sion			
			Scrubbe r -10	Scrubbe r -11	Scrubber -12	Scrubber -13	Scrubber -14	Scrubber -15	Scrubber -16	Scrubber -17	Scrubbe r -18

1.	Stack Height	Meter	17	17	17	17	17	17	17	17	17
2.	Stack Diameter	Meter	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
3.	Flue Gas Velocity	m/s	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
4.	Flue Gas	٥K	303	303	303	303	303	303	303	303	303
	Temperature										
5.	Air Pollution Control	-	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet
	Equipment		Alkali	Alkali	Alkali	Alkali	Alkali	Alkali	Alkali	Alkali	Alkali
			Scrub	Scrub	Scrub	Scrub	Scrub	Scrub	Scrub	Scrub	Scrub
			ber,stac	ber,stac	ber,stack	ber,stack	ber,stack	ber,stack	ber,stack	ber,stack	ber,stac
			k	k							k
6.	Emission										
	concentration										
	PM10	mg/Nm ³									
		g/S									
	SO2	mg/Nm ³									
		g/S									
	NO2	mg/Nm ³	5								
		g/S	(0.0010)								
	CO	mg/Nm ³		30	30	30	30	30	30	30	30
		g/S		(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)
7.	Fuel										

Sr. No	<b>Operating Parameter</b>	Unit			S	Source of Emi	ssion		
			Scrubber	Scrubber	Scrubber	Scrubber -	Scrubber -	Scrubber -	Scrubber -
			-19	-20	-21	22	23	24	25
1.	Stack Height	Meter	17	17	17	17	17	17	17
2.	Stack Diameter	Meter	0.25	0.25	0.25	0.25	0.25	0.25	0.25
3.	Flue Gas Velocity	m/s	4.4	4.4	4.4	4.4	4.4	4.4	4.4
4.	Flue Gas	٥K	303	303	303	303	303	303	303
	Temperature								
5.	Air Pollution Control	-	Wet	Wet	Wet	Wet Alkali	Wet Alkali	Wet Alkali	Wet Alkali
	Equipment		Alkali	Alkali	Alkali	Scrub	Scrub	Scrub	Scrub
			Scrub	Scrub	Scrub	ber,stack	ber,stack	ber,stack	ber,stack
			ber,stack	ber,stack	ber,stack				
6.	Emission								
	concentration								
	PM10	mg/Nm ³							
		g/S							
	SO2	mg/Nm ³							
		g/S							
	NO2	mg/Nm ³							
		g/S							
	СО	mg/Nm ³	30	30	30	30	30	30	30
		g/S	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)	(0.0064)
7.	Fuel								

#### FIGURE-4.2

### **ISOPLETHS OF EXISTING PM**



### FIGURE-4.2 CONTD.

### **ISOPLETHS OF EXISTING SO2**



#### FIGURE-4.2 CONTD.

#### **ISOPLETHS OF EXISTING NO2**



#### FIGURE-4.2 CONTD.

#### **ISOPLETHS OF EXISTING CO**



#### FIGURE-4.2 CONTD.

#### **ISOPLETHS OF PROPOSED PM**



#### FIGURE-4.2 CONTD.

#### **ISOPLETHS OF PROPOSED SO2**



#### FIGURE-4.2 CONTD.

#### **ISOPLETHS OF PROPOSED NO2**



FIGURE-4.2 CONTD.

#### **ISOPLETHS OF PROPOSED CO**



#### TABLE-4.2

### SUMMARY OF ISCST3 MODEL OUTPUT FOR EXISTING PM , SO₂, NO₂, CO

SR.	LOCATIONS	Х, Ү		CONCENTRATION						
NO.		CO-ORD	INATES	PM	SO ₂	NO ₂	СО			
				(µg/m³)	(µg/m³)	(µg/m³)	( mg/m ³ )			
1.	Project Site	0	0	0.00000	0.00000	0.00000	0.00000			
2.	Berigai	0	-1733	0.00644	0.04735	0.02102	0.02209			
3.	Suggondahalli	-1600	533	0.02677	0.12780	0.03091	0.17150			
4.	Kurubarapalli	2267	-400	0.02402	0.16811	0.07143	0.09317			
5.	Kariyasandiram	1067	3467	0.00384	0.02294	0.00821	0.01953			
6.	Suligunta	533	-667	0.04569	0.23539	0.06685	0.26464			
7.	Pannapalli	2400	-1467	0.00700	0.05029	0.02188	0.02543			
	(Meenandoddi)									
8.	Midithepalli	-3067	-2800	0.00750	0.04394	0.01531	0.03921			
9.	Eluvapalli	1200	1467	0.01860	0.11437	0.04239	0.09057			
10.	Mahadevapuram	667	-1600	0.02544	0.13307	0.03885	0.15023			
11.	Kullur	2533	4667	0.00023	0.00179	0.00082	0.00072			

### SUMMARY OF ISCST3 MODEL OUTPUT FOR PROPOSED PM, SO₂, NO₂, CO

SR.	LOCATION	Х, Ү		CONCENTRATION						
NO.	S	CO-ORD	INATES	PM (μg/m³)	SO₂ (µg/m³)	NO₂ (μg/m³)	CO ( mg/m ³ )			
1.	Project Site	0	0	0.00000	0.00000	0.00000	0.00000			
2.	Berigai	0	-1733	0.10045	0.50840	0.03414	0.32741			
3.	Suggonda halli	-1600	533	0.08643	0.34728	0.27120	0.29045			
4.	Kurubarap alli	2267	-400	0.41343	2.10356	1.67493	1.35096			
5.	Kariyasan diram	1067	3467	0.02938	0.13636	0.10771	0.09557			
6.	Suligunta	533	-667	0.19020	0.86743	0.68533	0.63662			
7.	Pannapalli (Meenand oddi)	2400	-1467	0.13137	0.67010	0.53363	0.42882			
8.	Midithepa Ili	-3067	-2800	0.05222	0.23836	0.18801	0.16982			
9.	Eluvapalli	1200	1467	0.16673	0.80609	0.63920	0.54544			
10.	Mahadeva puram	667	-1600	0.13553	0.61782	0.48783	0.44953			

11.	Kullur	2533	4667	0.00658	0.03414	0.02723	0.02149
-----	--------	------	------	---------	---------	---------	---------

As proposed manufacturing activities have not yet started, Ground level concentrations calculated for proposed activities are superimposed on existing ambient air quality monitoring results and combined values (Table-4.4) are found within permissible National Ambient Air Quality Standards.

S.r	v v	Maximum Concen	mg/m³		
51. No.	Co-ordinates	Existing PM	Existing SO ₂	Existing NO ₂	Existing CO
1.	(1000,0)	0.36374			
2.	(1000,0)		2.01727		
3.	(1000,0)			0.64949	
4.	(1000,0)				1.988081

S.r.	v v	Maximum Concen ^a	3)	mg/m³	
No.	Co-ordinates	Proposed PM	Proposed SO ₂	Proposed NO ₂	Proposed CO
1.	(1000,0)	2.01486			
2.	(1000,0)		9.3611		
3.	(1000,0)			7.40194	
4.	(1000,0)				6.65489

#### TABLE-4.3

### PREDICTED AMBIENT AIR QUALITY FOR PM, SO₂, NO₂, CO

SR.	Sampling	PM			SO ₂			
NO.	Location	AAQ	Model	Predicted	AAQ	Model	Predicted	
		Value	Value	Value	Value	Value	Value	
		µg/m³						
1.	Project Site	118.20	0.00000	118.2	10.41	0.00000	10.41	
2.	Berigai	102.38	0.10045	102.4805	9.97	0.50840	10.4784	
3.	Suggondahall	81.38	0.08643	81.46643	6.71	0.34728	7.05728	
	i							
4.	Kurubarapalli	88.88	0.41343	89.29343	8.25	2.10356	10.35356	
5.	Kariyasandira	75.23	0.02938	75.25938	BDL	0.13636	0.13636	
	m							
6.	Suligunta	106.43	0.19020	106.6202	10.41	0.86743	11.27743	
7.	Pannapalli	82.88	0.13137	83.01137	7.55	0.67010	8.2201	
	(Meenandod							
	di)							
8.	Midithepalli	84.75	0.05222	84.80222	6.69	0.23836	6.92836	
9.	Eluvapalli	97.65	0.16673	97.81673	10.28	0.80609	11.08609	
10.	Mahadevapu	76.68	0.13553	76.81553	BDL	0.61782	0.61782	
	ram							
11.	Kullur	75.08	0.00658	75.08658	BDL	0.03414	0.03414	
NAA	NQS				80			

SR.	Sampling	NO ₂			со			
NO.	Location	AAQ	Model	Predicted	AAQ	Model	Predicted	
		Value	Value	Value	Value	Value	Value	
		µg/m³			mg/m ³			
1.	Project Site	18.73	0.00000	18.73	0.26	0.00000	0.26	
2.	Berigai	18.2	0.03414	18.23414	0.21	0.32741	0.53741	
3.	Suggondahalli	13.62	0.27120	13.8912	BDL	0.29045	0.29045	
4.	Kurubarapalli	16.55	1.67493	18.22493	0.22	1.35096	1.57096	
5.	Kariyasandiram	13.12	0.10771	13.22771	BDL	0.09557	0.09557	
6.	Suligunta	19.1	0.68533	19.78533	0.28	0.63662	0.91662	
7.	Pannapalli	14.05	0.53363	14.58363	BDL	0.42882	0.42882	
	(Meenandoddi)							
8.	Midithepalli	13.83	0.18801	14.01801	BDL	0.16982	0.16982	
9.	Eluvapalli	16.62	0.63920	17.2592	0.26	0.54544	0.80544	
10.	Mahadevapuram	13.6	0.48783	14.08783	BDL	0.44953	0.44953	
11.	Kullur	13.36	0.02723	13.38723	BDL	0.02149	0.02149	
NAA	QS	80			4			

BDL = Below Detectable Limit

Conclusion: Max. GLC value is at village Kurubarapalli

**Level of SPM at village:** Kurubarapalli **is** 88.88  $\mu$ g/m³ and due to proposed project, **Max. incremental GLC of SPM** – 0.41343  $\mu$ g/m³ will increase at village: Kurubarapalli and **predicted level SPM at Village:** Kurubarapalli - 89.29343  $\mu$ g/m³. Distance GLC is 2.5 Km from Project Site.

Level of SO₂ and NOx, after prediction also were found within NAAQS.

#### **4.2.3 NOISE ENVIRONMENT**

#### **During Construction Phase**

Following measures are taken for abatement of noise during construction phase:

- Noise emissions from construction equipment are kept to a minimum by regular maintenance.
- Heavy and noisy construction jobs were avoided during night hours.
- Noise generation due to movement/operation of vehicles and equipment/ machineries are well managed by restricting the movement/operation during night hours.
- Management ensures effective set up of traffic management system in order to minimize the usage of horns and other such equipment which may add to noise generation.
- Further the management decide to restricted the movement of heavy vehicles during night.
- All machineries to be used for construction purpose are of high standard of reputed make and compliance of noise pollution control norms by this equipment are emphasized by the company.
- Further, it also ensures to carried out periodic and regular maintenance of the equipment, machines and spare parts which are including lubrication, replacement of defective parts etc. in order to bring down the decibel of noise to maximum possible extent.
- Feasibility of putting up acoustic enclosure / temporary barrier around areas with high noise levels are also explored.
- Management ensures that no hazard is caused due to noise generation during the course of work. For this purpose, they ensure that the workers are provided with individual protective equipment like ear muffs or ear plugs in areas with high exposure to noise.

### During Operation Phase

Following measures are adopted for abatement of noise during operation phase:

- Acoustic laggings, enclosures and silencers are provided wherever necessary for high noise generating equipment.
- Sound proof glass paneling are provided for all operating stations / control rooms as well as for shift rooms at critical places.
- Strict implementation/ compliance of all statutory norms w.r.t. noise generation, occupational exposure are done.
- Noise generating sources in the plant areas shall be monitored regularly. Monitoring of ambient noise levels are be carried out regularly both inside the premises as well as outside the greenbelt.

However, due to the attenuation of noise level within the factory and due to the fact that the project site is situated in a well developed industrial estate and not in the immediate vicinity of human settlement, significant impact is not expected in the nearest present human settlement. The volume of transport vehicles to be handled is very low. The company shall develop a green belt around the periphery of the premises, which shall act as a barrier to the propagation of noise from the factory premises. This shall further reduce the noise levels appreciably.

#### 4.2.4 HAZARDOUS WASTE DETAILS

Hazardous wastes generation is Topic 2.12.1

### 4.2.5 INFRASTRUCTURE AND SERVICES

The plant is located in a well-developed industrial area, which has all essential facilities such as water, power, fuel, post, telecommunication, bank, etc. M/s. Chemplast Sanmar Limited shall get water from CGWA or government water source and re-use. The Power requirement will be 14000 KVA from State Electricity Department . The transportation of raw materials and finished products shall be by road. As stated earlier, the site is adjacent to State Highway. As a result of proposed project there will be a marginal increase in transportation activity as compared to present total traffic up to plant premises. As a result of development of industrial estate, the neighboring areas have developed for commercial use. The infrastructure services e.g. roads, state transport, post and telegraph, communication, education and medical facilities, housing, etc. have improved in the surrounding areas in recent years.

### 4.2.6 ENVIRONMENTAL HAZARD

Raw material such as different chemicals etc. shall be transported by road and are stored in the plant premises. On site emergency plan are prepared for storage and handling of hazardous chemicals and also be submitted to relevant authorities. This report are prepared with the consideration of hazards associated with the chemicals and taken care for all aspects of environmental hazards. The project proponent has consider all the safety aspects in planning, designing and operation of the plant as per standard practices. Hence, no adverse impact on this account is anticipated.

### 4.2.7 HOUSING

Enough number of dwellings are available in the town for accommodating extra workforce. On neighboring towns or villages, the impact on this account is minimal.

### 4.2.8 ECOLOGY

The impact due to operation of the project and its activities on the ecological parameters like natural vegetation, cropping pattern, fisheries and aquatic life, forests and species diversity could be summarized as below.

### 4.2.8.1 NATURAL VEGETATION

The industry has develop a green belt on the surrounding periphery. Since the effluents and emissions generated from the project activities will be treated and disposed as per the EMP provisions. Therefore any adverse impact over any of the ecological components of the environment is reduced to minimum.

### 4.2.8.2 CROPS

Since, the project is on a non-agricultural land, it shall not alter the crop production of the area. Further, the necessary environmental protection measures have been planned under EMP e.g. air pollution control systems shall be designed to take care of even emergency releases of the gaseous pollutants and regular environmental surveillance shall be done, so as not to have any short-term or cumulative effect on the crops and the natural vegetation of the area.

### 4.2.8.3 FISHERIES AND AQUATIC LIFE

Since the effluents and emissions generated from the project activities shall be treated and disposed as per the EMP provisions, proposed project shall not envisage any adverse effect on fisheries and aquatic life.

### 4.2.8.4 AESTHETIC ENVIRONMENT

The project will be developed on industrial land with good landscape and plantation. Increase in fugitive emission due to very limited construction activities and increase in the vehicular movement due to the proposed project may have minimal adverse impact on the visual quality. However, this impact can be minimized with implementation of an environment management plan. The proposed activities and further plantation will enhance the aesthetic environment.

### 4.2.8.5 DEMOGRAPHY, ECONOMICS, SOCIOLOGY AND HUMAN SETTLEMENT

M/s. Chemplast Sanmar Limited will generate direct and indirect employment as per prevailing norms of state government for skilled and unskilled people for the proposed expansion project for manufacturing pesticide & pesticide intermediate. There is a positive effect due to improved communication and health services, which have lead to economic prosperity, better educational opportunities and access to better health and family welfare facilities. There has been a beneficial effect on human settlement due to employment opportunities from various industries in region in addition to employment generated by

M/s. Chemplast Sanmar Limited proposed expansion project more direct and indirect employment will be generate.

Local quality of life has improved. This factor combined with all other mitigation measures, like proper treatment and disposal of hazardous waste; liquid effluent and gaseous emission, has minimized the adverse impact on ecology and has a beneficial impact on human settlement and employment opportunities. There has been a beneficial impact on the local socio-economic environment. There shall be no displacement of any population in plant area. Any major activity that may lead to resettlement of the people is considered as permanent impact. Hence, there is no permanent impact on this account. The increasing industrial activity will boost the commercial and economical status of the locality up to some extent.

#### Socio-Economic Environment

Environmental Impact Assessment is a study or an estimate of the probable positive or negative impact a proposed project or activity on the environment, consisting of natural, social and economic aspects. An assessment of socio-economic environment forms an integral part of an EIA study. Therefore, base-line information for the same was collected during the study period. The base-line Socio-Economic data collected for the study region has been identified in four major indicators namely - Demography, civic amenities, Economy and social culture.

#### **Employment:**

During construction phase of the company, skilled and un-skilled manpower were required and their requirement met with from the local community. The manpower requirement for the proposed project will generate permanent and secondary jobs for the operation and maintenance of plant. M/s. Chemplast Sanmar Limited will give direct employment to 1350 Nos. (Existing – 350 Nos. + Proposed – 1000 Nos.) local people based on qualification and requirement. In addition to direct employment, indirect employment shall generate ancillary business to some extent for the local population. With the employment opportunities, local people's income will increase and thereby, their economic status will boost up. Further, secondary jobs shall also increase in the local area to provide day-to-day needs/services to the working men. Demand for essential daily utilities in the market will also temporarily increase to some extent.

### **Public Health:**

During construction period the workers will be provided wills safe water supply, low-cost sanitation facilities, first Aid Treatment, necessary personal protective equipment etc, to prevent an increase in diseases related to personal hygiene. With some other industrial units coming up in the surrounding area, Govt. dispensary, medical check-up, medicines,

services of nurses & doctors etc. are likely to be increased with a view to taking care of general health of the local community.

#### Transport:

With increased employment opportunities and higher economic status of the local community and with an increase in market conditions, transport facilities by way of buses, two-wheeler & four-wheeler vehicles will develop in future. Thus, overall development of the local community and their health is likely to become a matter of fact with the cooperation and support of industrial organizations of the local area. There is likely to be a beneficial impact on the local Socio-Economic environment. There shall be no displacement of any population in the plant area. The increasing industrial activity will boost up the commercial and economical status of the locality to some extent. To control the emission from process and utility stacks, the company would regularly examine, inspect and test its emission to make sure that the emission is below the permissible limit. With this, the status of sanitation and community health of the area would not change.

### 4.2.8.6 FOREST, NATIONAL PARKS / SANCTUARIES

There is no reserved forest & no national park or sanctuary within 10 km radius of the plant. There shall be no impact on the same.

### 4.2.8.7 PLACES OF ARCHAEOLOGICAL/HISTORICAL/RELIGIOUS/TOURIST INTEREST

There is no place of archaeological, historical, religious or tourist interest within the study area i.e.10 km radius of plant site. Hence, there shall be no impact on places of interest.

### 4.2.8.8. BENEFICIAL IMPACT OF GREEN-BELT

Plants grown in such a way as to function as pollutant sinks are referred to as green belts. Green belts are an effective tool in mitigating air pollutant as they form a surface capable of absorbing air pollutants and forming sinks for pollutants. Leaves with their vast area in a tree crown, absorb pollutants on their surface, thus effectively reduce their concentrations in the ambient air. Apart from functioning as pollutant sinks, green belts provide other benefits like aesthetic improvement and providing possible habitats for birds and animals, thus re creating hospitable nature in an otherwise drab urban- Industrial scene. An important aspect of a green belt that is to be considered is that the plants constituting green belts are living organisms with limits to their tolerance towards air pollutants. As a result crossing the threshold limits in terms of pollution load, would lead to injury to plants causing death of tissues and reducing their absorption potential. Thus green belt is effective as pollution sink only within the tolerance limits of constituent plants. Advantages of Green-Belt:-

- Air Pollution control- Trees help in removing carbon dioxide and other pollutants from air and by release of oxygen into the air thereby improving air quality. A green belt development can also help in removing particulate matter from the air by trapping such particulate matter.
- Noise control- A green belt reduces the intensity of sound. It functions as a barrier. Trees can either deflect, refract or may absorb sound to reduce its intensity. The intensity reduction depends on the distance sound has to travel from source. Trees can also modify suitably the humidity and climate which affects sound intensity.
- Help in soil erosion control. Plant species help in improving soil quality and bind soil particles thereby preventing erosion. Green belts also help in containing water run offs.

### **4.3 IMPACTS ON HUMANS**

#### **Positive Impact:**

The unit will generate the local employment for the proposed project. The project is likely to give a boost to the economy of the area and provide primary and secondary sectors employment to local people.

Project will lead to development of ancillary industries and an overall economic growth of nearby towns to supplement the population of the area.

Project proponent will ensure to connect even last people with the infrastructural facility like educational, health, road etc in the locality.

Other needs and social-economic aspects of local inhabitants will be dealt with CSR activities & CER activities in the region.

### **Negative Impact:**

There will be transformation of many aspects of human life like social structures, livelihood pattern, health institution, education etc which is subject to realization and behavioural change of the Project Affected Family (PAFs).

### 4.4 IMPACT AND MITIGATION MEASURES OF GEOLOGY

### Impact:

During Operation, Accidents and risk assessments - Changes in soil chemistry due to addition of foreign material due to system failures and/or accidents.

In case of accidents mentioned in the risk scenarios proper actions will be taken according to the mitigation measures.

Storage, Transportation and Handling of Construction and other Raw Material and Hazardous Waste - Changes in soil texture will lead to change in porosity, permeability & other such physical characteristics of soil of the area.

#### **Mitigation Measures:**

Properly lined/paved area for the works having potential of leakage/spillage of fuel or material like area for Storage of construction and other raw material etc. Proper mitigative measures like use of efficient pollution control systems, proper stack height, use of top soil in plantation results in no significant impact on soil of the core zone. There will be no impact on soil of the study area located beyond the working area of the proposed project. Soil samples will be collected and tested at regular intervals from the nearby areas. This will help in mitigation of any harmful impact on soil due to the project activity, if any. Transportation of hazardous waste will be done as per CPCB Guidelines. The dumpers will be covered to prevent spillage or dusting. The drivers will be imparted training. The containers/ dumpers will be marked with the name of TSDF where it is to be sent, contact details and the other details required.

### 4.5 IMPACT AND MITIGATION MEASURES OF GEOHYDROLOGY

#### Impact:

Temporary contamination of groundwater may occur due to leakage and spillages. The existing water level is less than 10 m hence care is required during the transportation and storage. Contamination of groundwater may occur due to existing water level during any kind of accidents or leakage. This will affect villages located around the site and crops may also get affected.

#### **Mitigation Measures:**

Properly lined/paved area for the works having potential of leakage/spillage of fuel or material like area for Storage of raw material etc. Transportation of hazardous waste will be done as per CPCB Guidelines. The dumpers will be covered to prevent spillage or dusting. The drivers will be imparted training. The containers / dumpers will be marked with the name of TSDF where it is to be sent, contact details and the other details required.

Plant water/ wastewater treatment and its conveyance system shall be designed and proper monitoring and care shall be taken for effective management of treated effluents.

### 4.6 IMPACT ON ECOLOGICAL ENVIRONMENT

There will be negligible impact on Ecology and Biodiversity of the study area as the project site is located outside Notified Industrial Estate of and the unit will not be disposing any effluent on land or water body.

The land at present is barren and does not support any flora & fauna. After the commissioning greenbelt of approx. 33% developed around the periphery of the projects site which will have positive impact since it will support various Faunal & Floral diversity.

Also greenbelt will help in purifying the air and reduce noise pollution Greenbelt will increase the aesthetic value of the site and increase employment.

Hence the proposed project will create positive impact on EB environment by increasing the green area of the region.

### 4.7 TRAFFIC MANAGEMENT

#### Impact of Transportation

The vehicular traffic of trucks will increase during the construction phase. There will be increase of 4 trucks, 219 cars, 23 bikes per day and may cause additional air pollution to the surrounding areas. The effects may be more prominent.

**During Operation,** Trucks, tankers and other vehicles may cause traffic jam outside and within the premises and cause additional air pollution.

### **Mitigation Measures:**

This will be temporary and restricted to construction phase only. However proper traffic management will be followed as per the specified norms.

A well-developed main road and internal road are made and having carrying capacity to take care of additional traffic due to proposed project.

Therefore no additional roads will required to be constructed therefore there will not be any change in land use of the study area.

However, Separate entry and exit gate shall be provided and trained security guards shall be deployed to ensure proper management and movement of vehicles within premises. Internal RCC road along with signboard of traffic sign will be provided. Traffic rules and discipline shall be strictly implemented.

Adequate internal road of will provided for uninterrupted movement of fire tender.

Speed break bumper shall be provided on internal road at regular interval to avoid over speed.

No vehicles will stop near weight bridge, wheel washing area after completion of activities. To prevent Road accident following precautions to be taken :

- Transportation of waste/raw materials/ products by only authorized vehicles
- Regular training to drivers
- Organize awareness program
- Implementation of MSDS and TREM card

#### 4.8 MATRIX REPRESENTATION

The parameters discussed are presented in the form of a matrix. The quantification of impact is done using numerical scores 0 to 5 as per the following criteria.

Score	Severity criteria
0	No impact
1	No damage
2	Slight/ Short-term effect
3	Occasional reversible effect
4	Irreversible/ Long-term effect
5	Permanent damage

### 4.8.1 CUMULATIVE IMPACT CHART

The total negative impact of various activities on any one parameter is represented as a cumulative score and the cumulative scores of various parameters are given in the form of a cumulative impact chart presented in Table-4.5. Any particular parameter having an individual score greater than 5 or cumulative score of 20 implies serious effects due to the project and calls for suitable mitigation measures. It is evident from the matrices that the resultant impact is beneficial to the local population.

The scores for various parameters and activities are presented in Table 4.5.

#### TABLE – 4.4

Activities					Enviro	nmental	Parameter				
	Air Quality	Noise & Odour	Water Quality	Land Environ ment	Infrastr ucture	Servi ces	Environ mental Hazard	Housing	Terrestrial Ecology/ Land use	Socioec onomic Status	Aquatic Ecology
Water Requirement	0	0	1	0	1	1	1	0	0	1	1
Effluent Discharge	0	0	0	0	1	1	0	0	0	0	0
Gaseous Emissions	1	0	0	0	0	0	1	0	1	0	0
Fugitive Emissions	1	0	0	0	0	0	1	0	1	0	0
Solid Waste Disposal	1	0	1	1	1	1	1	0	0	0	0
Raw Material Storage/ Transport	1	1	1	2	2	1	1	0	1	1	1
Raw Material Handling	1	1	0	1	0	0	1	0	1	0	0

#### **ENVIRONMENTAL IMPACT MATRIX**

Product	1	0	0	1	0	0	1	0	0	0	0
Storage											
Spills & Leaks	1	1	1	1	1	1	1	0	1	0	0
Shut down/	1	1	1	0	1	1	0	0	1	1	0
Start up											
Equipment	0	1	1	0	0	1	1	0	1	0	0
Failure											
Plant	1	1	1	0	1	1	1	1	1	1	0
Operations											
Transport of	1	1	0	0	1	1	1	0	1	1	0
workers											
Movement of	1	1	0	1	1	1	1	0	1	1	0
Vehicles											
Housing	0	1	0	1	1	1	0	1	0	1	0
Needs											
Utilities	1	1	1	0	0	1	1	0	0	0	0
Cumulative	12	10	0		44	12	12	2	10	-	2
score	12	10	8	8	11	12	13	2	10	/	2

#### **TABLE – 4.5**

### CUMULATIVE IMPACT CHART

ENVIRONMENTAL	TOTAL CUMULATIVE
PARAMETER	SCORE
Air Quality	12
Noise and Odour	10
Water Quality	8
Land Requirement	8
Infrastructure	11
Service	12
Environmental Hazards	13
Housing	2
Terrestrial Ecology/ Land use	10
Socio Economic Status	7
Aquatic Ecology	2

#### 4.9 SUMMARY

Regular water sprinkling on roads and regular vehicular maintenance is done to reduce fugitive emissions during vehicle movements. Vehicles having PUC certificates will only be allowed to transport materials, equipment's and will be closed/ covered with tarpaulin sheet to avoid dust dispersion at site. Company is using Furnace Oil & Diesel for existing Boiler, Thermic Fluid Heater & D.G.Sets. After expansion, Company will use Imported Briquettes/ Furnace Oil & Diesel as fuel for proposed Boiler, TFH, & D.G.Sets. Mechanical Dust collector & Stack is provided to control flue gas emission.

After expansion, Company will provide Mechanical Dust collector or ESP + water scrubber & Stack to control flue gas emission. Adequate Scrubber system will be provided to control process gas emission and to mitigate the impact of air pollution. Unit has provided separate entry and exit for the smooth traffic movement. Power requirement supplied by State Electricity Department and D. G. set will be used only in case of power failure. The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source. The total wastewater generation will be 705 KL/Day and will be segregated into two stream High COD Stream & Low COD stream. Solid/ hazardous wastes will be disposed as per Hazardous waste rules, 2016. Approximately 1350 people [Existing: 350 people + proposed: 1000 people] will be employed to local skilled and unskilled people based on qualification and requirement and preference will be given to local person for fulfilment of the manpower requirement.

# Chapter – 5 Analysis of Alternatives (Technology & Site)

### **5.1 ANALYSIS OF ALTERNATIVES (TECHNOLOGY)**

- Existing Manufacturing facility is well equipped with advanced technologies and this project is just the expansion similar to existing facility.
- We have well equipped and established R&D to develop and scale up the new products from the group of Synthetic Organic chemicals and Pesticide intermediates.
- We have both Technical and non-technical man power in existing facility and hence readily available to oversee the expansion and commissioning.

### **5.2 ANALYSIS OF ALTERNATIVES (SITE)**

No other sites were considered for the proposed expansion project for the following reasons,

- Land of the existing site is classified for the industry usage.
- Adequate land is available adjacent to the existing site for the expansion.
- No rehabilitation or resettlement of local people required.
- All the existing amenities like transportation of materials, fuels, waste disposal, etc...
  Can continue as such for expansion project.

# CHAPTER - 6

### **ENVIRONMENTAL MONITORING PROGRAM**

#### **6.1 PROJECT ENVIRONMENT MONITORING PLAN**

**M/s. Chemplast Sanmar Limited** will adopt comprehensive environmental monitoring plan which is essential to take into account the changes in the environment.

The objective of monitoring is:

- To verify the result of the impact assessment study in particular with regards to new developments.
- To follow the trend of parameters which have been identified as critical
- To check or assess the efficiency of controlling measures
- To ensure that new parameters, other than those identified in the impact assessment study, do not become critical through the commissioning of new project.

To monitor effectiveness of Control Measures:

- Monitor daily, Assess effectiveness of the Control Measures being implemented, Explore the need to modify or add new Control Measures particularly if a violation is observed & Report weekly.
- Regular monitoring of environmental parameters will be made to find out any deterioration in environmental quality.
- Monitoring of the proposed project area will be regularly conducted. The attributes, which merit regular monitoring, are specified underneath.

### **6.2 LABORATORY FACILITIES**

**M/s. Chemplast Sanmar Limited** has developed its own laboratory equipped with different equipment i.e. analytical balance, pH meter, COD digester (heating) apparatus, oven, incubator, Gas Chromatography (GC),High Performance Liquid Chromatography (HPLC),Liquid chromatography with Mass Spectrophotometer (LCMS),TDS meter, Filter Kit, KF titrator, moisture detector and necessary glass-wares. Equipment of quality control laboratory is also available for analysis of environment parameters. **M/s. Chemplast Sanmar Limited** has made plan of the regular monitoring to ensure that pollution will be limited to below prescribed limits and to take corrective action. In case the monitored results of environment pollution shall be found to exceed the prescribed limits, remedial actions shall be taken through the concerned plant authorities.

### 6.2.1 DOCUMETATION & RECORDS

The environmental department with respect to operation of pollution control facility is being/will maintain following records:

- Instruction manual for operation and maintenance of pollution control equipments.
- Log sheet for self-monitoring of pollution control equipments.
- Manual for monitoring of Air, water for ambient conditions.
- Instruction manual for monitoring of water, solid and gaseous parameter discharged from the factory and also for various parameters of pollution control facilities.
- Statutory records as per the Environmental Acts.
- Monthly and annual progress reports.
- Medical checkup of employees.
- Regularly these documents & records shall be reviewed for necessary improvement of the monitoring plan/mitigation measures/environmental technologies as well as for necessary actions of Environmental Management Cell.

### 6.3 POST PROJECT MONITORING PLAN

Environment monitoring plan for proposed plant has described in Table-6.1 along with Environment Components, parameter, standards to be followed, location and frequency. **TABLE - 6.1** 

PROJECT ENVIRONMENT MONITORING PLAN				
Environmental	Parameters	Standards	Frequency	
Component				
Air Environment				
AAQM at plant site	As prescribed by TNPCB	Prescribed by	Once in a month	
	including PM _{2.5} , PM ₁₀ , SO2,	СРСВ	through NABL	
	NO ₂ , CO		Lab.	
Stack emission	Parameters prescribed by	Prescribed by	Once in a month	
monitoring	TNPCB of Flue Gas emission	TNPCB	by NABL Lab.	
	and Process Gas Emission			
Fugitive emissions/	VOC	Prescribed by	Once in a year by	
work place		TNPCB	external Lab using	
monitoring within			LDAR study	
the plant side				
Water Environment				
Treated effluent	Parameters prescribed by	Water quality	Once in a month	
water and STP outlet	ТМРСВ	Standards	by external lab	
Ground water quality	Parameters prescribed by	Water quality	Once in a month	
	ТМРСВ	Standards	by external lab	
Noise Environment				
Ambient Noise at	Noise level in dB(A)	As per National	Once in a Month	
plant site		Noise		
		Standards		
Soil Environment				
At plant site	Analysis of pH, conductivity,		Once in a year by	
	Sulphates, calcium,		external lab	
	magnesium, Cl ⁻			
Meteorological data				
At plant site	Monitoring of Wind	-	Daily basis at in-	
	direction & velocity, relative		house	
	Humidity, temperature and			
	Rain fall			

### **6.3.1 MONITORING METHODOLOGIES**

Monitoring of environmental samples shall be collected as per the guidelines provide by MoEF&CC/ CPCB/ TNPCB. The method followed shall be recommended/standard method approved/recommended by MoEF&CC/ CPCB.

Attributes	Method		
	Sampling / Preservation	Analysis	
A. Air	Mechanical/automatic		
Environment	1. Mechanical or automatic weather		
1. Micro	station/Meteorological Department		
meteorological			
data	2. Samplers (Designed as per USEPA) to		
	collect PM _{2.5} , PM ₁₀ and the gaseous	Standard methods such	
	samples	as IS - 5182 & CPCB	
2. Ambient Air		guideline, ASTM, etc.	
Quality			
B. Noise	Instrument: Noise level meter		

### Method of Environmental Sampling & Analysis

#### **6.4 ENVIRONMENT POLICY**



#### 6.5 ENVIRONMENTAL MANAGEMENT CELL

Apart from having an environmental management plan, it is also necessary to have a permanent organizational set up charged with the task of ensuring effective implementation. In this effect, **M/s. Chemplast Sanmar Limited** will assign responsibilities to officers from various disciplines to co-ordinate the activities concerned with management and implementation of environment control measures.

An organogram of environment management cell is shown in Figure 6.1. This department shall undertake the monitoring of environment pollution level by measuring stack emissions, Ambient air quality, water and effluent quality, Noise level, etc. either departmentally or by appointing external agency whenever necessary.

**M/s. Chemplast Sanmar Limited** will carry out the regular monitoring in future as well as ensure that pollution is limited below prescribed limits and shall take corrective action by providing new pollution control equipment if required. In case the monitored results of environment pollution are found to exceed the prescribed limits, remedial actions are taken through the concerned plant authorities. The actual operation and maintenance of pollution control equipment is under respective department heads.

The environmental department shall also look after preparation and submission of Water Cess Return, Environmental statement and Consolidated Consent & Authorization application/ renewal under water (Prevention and Control of Pollution) Act, 1974, Air (Prevention and Control of Pollution) Act, 1981, Ambient Air Quality as per NAAQS Standards, 2009 and Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016 under Environment Protection Act, 1986.
#### FIGURE - 6.1



6.6 SYSTEM OF REPORTING OF NON COMPLIANCES / VIOLATIONS OF ENVIRONMENTAL NORMS TO THE BOARD OF DIRECTORS OF THE COMPANY AND / OR SHAREHOLDERS OR STAKEHOLDERS AT LARGE.

Company have a system of reporting of non compliances / violations of environmental norms to the Partner

- Operators will be responsible for Operation of EHS system. If any problem will be observed in operation, then the operator will report the same to the shift in-charge.
- Shift in-charge will be responsible for implementing HSE Management Programs. If any non-compliances/ violations of environmental norms will be observed, then the shift in-charge will report the same to the Site Environmental Head
- Site Environmental Head will be responsible to define and monitor the key characteristics for measure of performance in production, maintenance and EHS. Site Environmental Head is responsible to report the non-compliances received to Head factory operation.
- Head factory operation (Plant Manager) will have overall responsibility for effective implementation of Occupational Health, Safety & Environment Management System (OHS & EMS) and the Head factory operation will conduct management review every twice a month to assess the effectiveness of HSE Management System. If necessary, resources will be allocated for taking Corrective and Preventive action on Non-Conformance within time period. Head factory operation is responsible to report the non-compliances received to Top management (Business manager, Corporate Environmental Head, Deputy MD).
- Top management (Business manager, Corporate Environmental Head, Deputy MD) will advise and monitor the establishment and implementation of HS & EMS.
- Verification activities, including internal HSE Audits shall be carried out at the direction of Head factory operation & \ Top management.

# Chapter - 7 Additional Studies

In order to support the environment impact assessment and environment management plan, following additional studies have been included in the report.

- Risk assessment
- Disaster Management Plan
- On-site and off-site emergency action plan
- Occupational Health and Safety Management System

### 7.1 PUBLIC HEARING

The TNPCB will conduct the Public Hearing/public consultation, as per the provisions of EIA notification, 2006. The Public Hearing will be chaired by an Officer not below the rank of Additional District Magistrate. The issues raised in the Public Hearing and during the consultation process and the commitments made by the project proponent on the same will be included separately in EIA-EMP Report in a separate chapter and summarized in a tabular chart with financial budget (capital and revenue) along with time-schedule of implementation for complying with the commitments made. The minutes of the public hearing will be included in this report after completion of the public hearing.

Considering scale of unit and its categorization, according to EIA notification dated 14th September 2006, by Ministry of Environment & Forest (MoEF), Government of India, unit is located outside notified industrial area & their proposed expansion project falls in category A - 5(b) & 5(f) as per EIA Notification, 2006. So, we have applied for Environmental Clearance at MoEF & CC, New Delhi. For that unit needs Environmental clearance from Ministry of Environment, Forest & Climate Change.

### 7.2 REHABILITATION AND RESETTLEMENT (R & R)

The unit is located outside Notified Industrial Area. There is no habitation on the proposed expansion project activity area and it is inside the existing industry land. There shall not be displacement of any population in project area. The increasing industrial activity will boost the commercial and economical status of the locality up to some extent. Hence, R & R policy is not applicable to this project.

### 7.3 RISK ASSESSMENT

### 7.3.1 INTRODUCTION

Hazard analysis involves the identification and quantification of the various hazards (unsafe conditions). On the other hand, risk assessment deals with recognition and computation of

risks, the equipment in the plant and personnel, due to accidents resulting from the hazards present in the plant.

Risk assessment follows an extensive hazard analysis. It involves the identification and assessment of risks the neighboring populations are exposed to as a result of hazards present. This requires a thorough knowledge of failure probability, credible accident scenario, vulnerability of population etc. Much of this information is difficult to get or generate. Consequently, the risk assessment is often confined to maximum credible accident studies. It provides basis for what should be type and capacity of its on-site and off-site emergency plan also what types of safety measures shall be required.

### 7.3.2 APPROACH TO THE STUDY

Risk involves the occurrence or potential occurrence of some accidents consisting of an event or sequence of events. The risk assessment study covers the following:

- Identification of potential hazard area;
- Identification of representative failure cases;
- Visualization of the resulting scenarios in terms of fire and explosion;
- Assess the overall damage potential of the identified hazardous events and the impact zones form the accidental scenarios;
- Furnish the recommendations on the minimization of the worst accident possibilities
- Preparation of Disaster Management Plan;
- Emergency Plan, which includes Occupational and Health Safety Plan;

### 7.3.3 METHODOLOGY

Quantitative risk assessment (QRA) is a means of making a systematic assessment of the risks from hazardous activities, and forming a rational evaluation of their significance, in order to provide input to a decision-making process. The term 'quantitative risk assessment' is widely used, but strictly this refers to the purely numerical assessment of risks without any evaluation of their significance. The study has been conducted based on the premises of a traditional Quantitative Risk Assessment. The key components of a QRA are explained below, and illustrated in Figure-7.1 and Figure-7.2.

### FIGURE - 7.1

#### QRA METHODOLOGY



#### FIGURE-7.2

#### FLOW CHART FOR QUANTITATIVE RISK ASSESSMENT



### 7.3.4 HAZARD IDENTIFICATION

Identification of hazards in the project activity is of primary significance of the analysis, and quantification. Hazard states the characteristics of system/plant/process that presents potential for an accident. All the components of a system/plant/process need to be thoroughly examined to assess their potential for initiating or propagating an unplanned event/sequence of events, which can be termed as an accident.

#### 7.3.4.1 IDENTIFICATION OF HAZARDOUS AREAS

The procedure for QRA starts with identification of major risk areas in the installation. Operation carried out in specialty and agrochemical Industries usually come under certain board, general categories. At M/s. Chemplast Sanmar Limited, major risk areas are as follows:

- Bulk storage area for Raw Materials at ambient temperature and atmospheric pressure.
- Process Plant involving pumping, transportation, reactors, distillation, heating, cooling, etc.
- Bulk loading and unloading from storage tanks to road takers and vice versa.

#### 7.3.4.2 IDENTIFICATION OF FAILURE CASES FOR HAZARDOUS AREAS

- Release due to catastrophic failure of storage tanks or process vessels.
- Rupture of connected pipe with storage tank or process vessels.
- Continuous release at significant rates for long durations transfer pipelines caused by sudden, major break of the pipeline.
- Continuous release at low rate through small holes or cracks in piping and vessels, flange leaks, and leakage from pump glands and similar seals.

It is to be noted that for Quantitative Risk Assessment, worst case scenarios has been considered, though their frequency of occurrence is much lower than the cases of small leaks.

#### 7.3.4.3 MAJOR HAZARDOUS AREAS AND SAFETY PRECAUTIONS

The hazardous chemical storage area is shown in Figure-7.3. The major Hazardous chemicals to be stored, transported, handled and utilized within the plot area are summarized in the Table-7.1. Other hazards and control measures are summarized in Table-7.2. Facilities / System for process safety, transportation, firefighting system and emergency capabilities to be adopted are stated below.

### FIGURE-7.3



#### TABLE-7.1

#### STORAGE AND HANDLING DETAILS OF HAZARDOUS CHEMICALS

Sr. No.	Name of the Material	Type of Hazard	Kind of Storage	Max. quantity to be stored (MT)	Storage condition i.e. temp., pressure	Tank Dimen sions in (m)	Dyke Dimensions
1	Acrylonitrile	Fire	MS DRUMS	5 MT	25 TO 35 C	NA	Hx34cm Wx13cm
2	Acetic Acid	corrosive	CARBOYS	1MT	25 TO 35 C	NA	Hx34cm Wx13cm
3	Ammonia Gas	toxic	Cylinder	0.1 MT	-20 to -60 C	NA	NA
4	Acetonitrile	Toxic &Fire	MS DRUMS	5 MT	25 TO 35 C	NA	Hx34cm Wx13cm
5	Acetone	Fire	MS DRUMS	5 MT	25 TO 35 C	NA	Hx38c Wx24cm
6	Acetyl Chloride	corrosive	MS DRUMS	0.50 MT	25 TO 35 C	NA	Hx34cm Wx13cm
7	Aluminum chloride	corrosive	PLASTIC DRUMS	0.50 MT	25 TO 35 C	NA	Hx34cm Wx13cm
8	Ammonium carbonate	irritation	BAGS	10 MT	25 TO 35 C	NA	NA
9	Ammonium Chloride	irritation	BAGS	0.25MT	25 TO 35 C	NA	Hx34cm Wx13cm
10	Caustic Soda	severe burns	BAGS	10 MT	25 TO 35 C	NA	NA
11	Caustic soda lye	severe burns	ΤΑΝΚ	23 MT	25 TO 35 C	Wx254 CM HX200 CM	WX500CM LX515CM HX80 CM

12	Cyano acetic	severe burns	Carboy	0.25MT	25 TO 35 C	NA	Hx34cm
	acid						Wx13cm
13	Chloroform	Toxic &Fire	PLASTIC	3 MT	25 TO 35 C	NA	Hx38cm
			DRUMS				Wx24cm
14	Cyclohexanon	Fire	MS	4 MT	25 TO 35 c	NA	Hx38cm
	e		DRUMS				Wx24cm
15	Diesel	Fire	TANK	32 MT	25 TO 35 C	WX25	WX500CM
				(35 KL and 15		8CM	LX515 CM
				KL		ΗХ	HX 80CM
				capacity *Total 2		460	
				Nos		СМ	
				tank)		2.HX4	
						20CM	
16	Formic Acid	irritation	Carboy	0.1 MT	25 TO 35 C	NA	Hx34cm
							Wx13cm
17	Hexane	Toxic &Fire	MS	0.50 MT	25 TO 35 C	NA	Hx38cm
			DRUMS				Wx24cm
18	Hydro chloric	corrosive	TANK	53 MT	25 TO 35 C	WX25	WX500CM
	acid			(30 KL capacity		8CM	LX515 CM
				*2 Nos)		HX	HX 80CM
						460	
						СМ	
						2.HX4	
						20CM	
19	Isopropyl	Toxic &Fire	MS	1.8 MT	25 TO 35 C	NA	Hx34cm
	Alcohol		DRUMS				Wx13cm
20	Hydrogen gas	EXTREMELY	TRUCK	120	25 TO 35 C	NA	NA
		FLAMMABLE	(Cylinder	Cubic			
			& manifold)	meter			
			mannoiu)	of truck			

21	Methanol	Toxic &Fire	TANK	50 MT	25 TO 35 C	WX26	WX445CM
						4CM	LX590CM
						HX400	HX80CM
						СМ	
22	Potassium	irritation	BAGS	0.50 MT	25 TO 35 C	NA	NA
	Flakes						
23	Phenol	Toxic &Fire	MS	5 MT	25 TO 35 C	NA	Hx34cm
			DRUMS				Wx13cm
24	Sodium Cyanide	Highly toxic	MS DRUMS	25.MT	25 TO 35 c	NA	NA
25	Sulphuric acid	corrosive	TANK	50MT	25 TO 35 C	LX380	LX1240CM
						СМ	WX560 CM
						HX	HX60CM
						250C	
						М	
26	Ethylene	Flammable	Cylinder	0.03 MT	25 °C	NA	NA
	oxide	&Toxic			ML- 0 °C		
27	Thionyl	corrosive	MS	10 MT	25 TO 35 C	NA	Hx34cm
	Chloride		DRUMS				Wx13cm
28	Toluene	Toxic &Fire	TANK	20 MT	25 TO 35 C	WX25	WX445CM
						4CM	LX590CM
						HX300	HX80CM
						СМ	
29	Chlorine Gas	Toxic	Cylinder	0.05 MT	-15 to -34 C	NA	NA
					at 11		
					kg/cm ²		
30	Bromine	Toxic	Cylinder	0.05 MT	-30 to -60 C	NA	NA
					at 6 kg/cm ²		
31	Nitric acid	corrosive	Carboy	0.5 MT	25 TO 35 C	NA	Hx34cm
							Wx13cm

#### TABLE 7.2

ΟΤ	HER HAZARDS A	ND CONTROL			
SR	NAME OF THE	ITS SOURCES	ITS EFFECTS ON	PLACE	CONTROL MEASURES PROVIDED
•	POSSIBLE HAZARD	&	PERSONS,	OF ITS	
Ν	OR EMERGENCY	REASONS	PROPERTY &	EFFECT	
0.			ENVIRONMENT		
1	BOILER	Over pressure in the	Minor/Major	Boiler	Lower & Upper Level Indication System
	(1) Burning	boiler if safety valve	Injury Loss of	House	provision. Safety valves for pressure
	(2) Physical injury	not working. Water	human life Loss	and	control fixed temp. & pressure indicator
	(3) Explosion	level indicator not	of property (Loss	surroun	provided. Blow down & blowing system
		working. Low water	of Main/	ding	provided for cleaning tube and shell.
		level indicator fails.	Machine	places	Soft water used. Inter locking provided
		High temp. System	Material)		on pumps, FD fan, ID fan. Periodical
		fails.			checking & inspection maintenance
					done. Yearly inspection done by Boiler
					Inspector.
2	ELECTRICITY	Loose Contacts,	Burning, Shock,	Surroun	Proper Earthing, Periodical Checking of
	(1) Burning	Weak earthling	Death	ding the	joints, proper insulations of
	(2) Fire	Short Circuit		accident	Equipments, etc. Flame proof fitting in
	(3) Shock	Improper Insulation		area	solvent storage area, bounding and
					jumpers to all solvent barrier lines
					provided.
3	HOUSE KEEPING	Bad House keeping	Physical /	In all	Proper Handling, regular cleaning,
	(1) Physical		Chemical	surroun	Proper placement of material (RIGHT
	(2) Burning		Inermal Burn	aing	THING AT THE RIGHT PLACE)
	(3) FILE		Minor)	areas	
	(4) Chernical		wintor)	I.E.	
	LXposure			Plants	
1		Leaking of nine line	Physical /	Plant	Proper maintenance Proper Selection
4		due to corrosion	Chemical	2102	of Material for nine lines. Immediate
	Spillages etc	Loose contact etc	Thermal Burn	area	attention Earthing provided flame
	(1) Corrosion		Injury (Major /		proof fitting NO SMOKING Boards
	(2) Toxic gas		Minor)		displayed
	release		ivinior y		
5	Structural Failure	Inside the factory	Injury/Death to	Within	Automatic operation Periodic Testing of
-		(Corrosion)	persons, damage	the	safety valves Regular Inspection and
		( ,	to property	factory	Maintenance
6	Toxic Release	Outside the factory	Injury/Death	, Within	Alarm, Evacuation rescue & shelter/
	from outside	,		&	Welfare
				outside	
				the unit	
7	Natural Calamity	Nature	Injury / Death to	Within	Alarm, Evacuation rescue & shelter/
			persons, damage	&	Welfare
			to property	outside	
				the unit	

#### TABLE 7.3

# HAZARDOUS PROPERTIES OF THE CHEMICALS, COMPATIBILITIES, SPECIAL HAZARD AND ANTIDOTES

Name of Chemical	Hazard	F.P (⁰C)	BP (⁰C)	LEL %	UEL %	SP.GR. 20 ⁰C	VD	NFPA H F R	TLV/ TWA	IDLH	LC50	LD50	Antidote
Toluene	T & F	4.444	110.6	1.1	7.1	0.8636	3.1	230	300 ppm	500 ppm	49000 mg/m [Rat]	636 mg/kg [Rat]	Oxygen
Methanol	T & F	12	64.5	6	36.5	0.7915	1.11	130	250 ppm	6000 ppm	64000 ppm [Rat]	5628 mg/kg [Rat]	Ethanol (30% solution through oral, 5% solution through injection)
Acetone	F	-17	56	2	12.8	0.786	2	130	1000 ppm	2500 ppm	50100 mg/m3	5340 mg/kg	NA
Hexane	T & F	-18	66	NA	NA	0.678	2.97	230	50 ppm	1100 ppm	48000 ppm	25 gm/kg	NA
Hydrochloric Acid	T & C	NA	50.5	NA	NA	1.16	1.267	301	5 ppm	50 ppm	4701 ppm [Rat]	900 mg/kg [Rabbit]	Drink Large Quantity of Water
Sulphuric acid	T & C	NA	270	NA	NA	1.84	3.4	302	3 mg/m ³	15 mg/m ^³	510 mg/m [Rat]	2140 mg/kg [Rat.]	Milk of magnesia
Caustic lye	Т&С	NA	1390	NA	NA	2.13	NA	301	2 mg/m3	10 mg/m3	NA	2000 mg/kg (rat)	NA
Acetonitrile	F	20° C	81°C	4.4	16	0.783	1.4	230	40 ppm	500 ppm	50 mg/kg [Rabbit]	50 mg/kg [Rabbit]	NA
Thionyl chloride	T & C	NA	76	NA	NA	1.64	4.1	310	0.2 ppm	5 mg/m ³	500ppm/ [Rat]	270 mg/kg [Rat]	maintain an open airway and prevent aspiration
Nitric Acid	С	NA	86	NA	NA	1.4	2	400	2 ppm	25 ppm	130 mg/m3 [Rat]	90 mL/kg [Rat]	Milk of magnesia
Chlorine	T & C	NA	-34.05	NA	NA	2.524	1.267	300	3 ppm	10 ppm	146.5 ppm [Rat]	293 ppm [ Rat]	NA
Bromine	T & C	NA	58.7	NA	NA	3.11	7.5	401	0.66 ppm	3 ppm	750ppm [Rat]	2600 mg/kg [Rat]	NA
Hydrogen	F & E	NA	-253	NA	NA	NA	NA	040	10 ppm	100 ppm	713 ppm [Rat]	5000 mg/kg [Rat]	NA
Acetic Acid	T & F	39	118	4	19.9	1.00	2.1	320	10 ppm	50 ppm	40 mg/L [ Rat ] 4 h	3310 mg/kg ( Rat )	Milk of magnesia
Acrylonitrile	T, C &F	-0.2	77.3	3.1	17.0	0.8	1.83	432	1 ppm	60 ppm	0.47 mg/L ( Rat ) 4 h	63 mg/kg ( Rabbit )	Use of amyl nitrite pearls as an antidote
Ammonia	T & C	NA	-33	16	25	0.59	0.59	130	25 ppm	300 ppm	NA	7338 ppm (rat)	NA
Aluminium chloride	С	NA	194	NA	NA	2.44	NA	302	2 mg/m3	NA	NA	NA	NA
Chlorohexane	F	26	135	1	9.6	0.87	4.16	220	0.5 mg/m3	100 mg/m3	7.0 mg/kg [Rat]	27,4 mg/l - 48 h [ Leuciscus idus (Golden orfe)]	NA
Cyano acetic acid	Т, С &F	107	108	NA	NA	NA	NA	311	NA	NA	1.4 mg/L ( Rat ) 4 h	1500 mg/kg ( Rat )	NA

EIA REPORT PREPARED BY M/S. AQUA-AIR ENVIRONMENTAL ENGINEERS PVT. LTD.

F	= FIRE	Т	= TOXIC
E	= Explosive	R	= REACTIVE
BP	= BOILING POINT	LEL	= LOWER EXPLOSIVE LIMIT
UEL	= UPPER EXPLOSIVE LIMIT	SP.GR	= SPECIFIC GRAVITY
VD	= VAPOUR DENSITY	ER	= EVAPORATION RATE
Н	= HEALTH HAZARD CLASS	F	= FIRE HAZARD CLASS
R	= REACTIVE HAZARD	BR	= BURNING RATE

EIA REPORT PREPARED BY M/s. AQUA-AIR ENVIRONMENTAL ENGINEERS PVT. LTD.

# 7.4 SAFETY PRECAUTIONS DURING STORAGE AND TRANSPORTATION OF HAZARDOUS CHEMICALS

### 7.4.1 Control measures provided for Solvent Tank Farm:

- 1. Construction & Installation of solvent storage facility is provided as per explosive act, (License & local rules / regulation followed).
- 2. Flame proof electrical fitting & intrinsically safe instruments are installed.
- 3. Flame arrestor installed on vent pipe with breather valve & emergency vent valve provided.
- 4. Flame arresters are provided on tank farm.
- 5. Earth fault relay trip installed for solvent tanker unloading system (Solvent pump having interlock with grounding of the tanker to make 100% grounding.).
- 6. Grounding (double earthing) & Jumper for flange joint provided for all installation & it is monitored periodically.
- 7. Road Tanker grounded before unloading.
- 8. Deep in let pipe provided inner side of the solvent tanks.
- 9. Check list is followed for loading & unloading.
- 10. Level indicator provided on the tank.
- 11. Adequate dyke wall (non-combustible) is provided.
- 12. Leakage collection bund with foam system is provided.
- 13. Combustible Gas Detection system, Fire (Foam / Powder) extinguisher, Foam monitors is provided.
- 14. F-30 coating provided for solvent storage tanks.
- 15. Nitrogen blanketing system is provided.
- 16. Closed handling system is provided.
- 17. Online LEL detector is provided
- 18. Area is covered with hard barricading for restricted person access.

### 7.4.2 Control measures provided for Acid / Alkali Tank Farm:

- 1. Adequate dyke wall (with acid proof coating) provided.
- 2. Level indicator with high level alarm provided on the tank.
- 3. Scrubber system installed storage tank & used during road tanker unloading.
- 4. Adequate flexible SS hose provided for tanker connection for unloading.
- 5. Dedicated pumps are provided and located with its close proximity to the respective tank to avoid unintentional mistake of mixing of chemicals.
- 6. Leakage / Spillage handling kit provided.
- 7. To avoid chemical exposure, closed handling system is provided.
- 8. Fire hydrant system provided including water curtain system.

### Transportation, Unloading and handling procedure for Solvents

SR.	ACTIVITY	TYPE OF	MITIGATION MEASURES
NO.		POSSIBLE	
1	Transportation of		
1 I	Transportation of	Leakage&	Check the source of leakage point.
	solvents by road	Spillage	• Do not touch damaged containers or spilled
	tanker		material unless wearing appropriate protective
			clothing.
			• Stop leak if you can do it without risk.
		Fire	• Use water spray to reduce vapors; do not put
		File,	water directly on leak, spill area or inside container.
			• Keep combustibles (wood, paper, oil, etc.) away
			from spilled material.
			Isolate the area
		Toxic release	Isolate the tank
			• Training will be provided to driver and cleaner
			regarding the safe driving, hazard of Flammable
			chemicals, emergency handling, use of SCBA
			sets.
			• Instructions will be given not to stop road
			tanker in populated area.
			Clear Hazard Identification symbol and
			emergency telephone number will be displayed
			as per HAZCHEM CODE.
2	Road tanker	Leakage&	Check the source of leakage point.
	unloading	Spillage	• Do not touch damaged containers or spilled
	Solvents at site		material unless wearing appropriate
			protective clothing.
			• Stop leak if you can do it without risk.
		Fire	Use water spray to reduce vapors; do not put
		The,	water directly on leak, spill area or inside
			Container.
			• Keep combustibles (wood, paper, on, etc.)
		Toxic release	away from spined material.
			Check the source of leakage point
			<ul> <li>Snrav the water on leakage</li> </ul>
			<ul> <li>Priority will be given to Tanker to immediately</li> </ul>
			enter the storage premises at site and will not
			be kept waiting near the gate or the main road
			Security person will check License, TRFM CARD
			Fire extinguisher condition: SCBA set condition
			required PPEs as per SOP laid down.

		Environme	NTAL IMPACT &
		<b>RISK ASSES</b>	SMENT REPORT
			<ul> <li>Operator will take sample as per sampling SOP from sampling point.</li> <li>After approval of QC department unloading procedure will be allowed be started.</li> <li>Following precautions will be adopted during unloading</li> <li>Static earthing and earthing relay will be provided to road tanker.</li> <li>Tanker unloading procedure will be followed according to check list and implemented.</li> <li>The quantity remaining in the hose pipeline will be drained to a small underground storage tank, which will be subsequently transferred by nitrogen pressure to the main storage tank thus ensuring complete closed conditions for transfer from road tanker.</li> <li>Finally earthing connection and wheel stopper will be removed.</li> </ul>
3	Solvents Storage tank safety	Leakage& Spillage, Fire	<ul> <li>Only day time unloading will be permitted.</li> <li>Check the source of leakage point.</li> <li>Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.</li> <li>Stop leak if you can do it without risk.</li> <li>Use water spray to reduce vapors; do not put water directly on leak, spill area or inside container.</li> <li>Keep combustibles (wood, paper, oil, etc.)</li> </ul>
		Toxic release.	<ul> <li>away from spilled material.</li> <li>Check the source of leakage point.</li> <li>Spray the water on leakage</li> <li>SS storage tank will be provided as per IS code.</li> <li>Dyke wall will be provided to storage tank.</li> <li>Level transmitter will be provided with low level high level auto cut-off provision.</li> <li>Vent will be connected to water trap and vent of water trap will be provided with flame arrestor.</li> <li>Water sprinkler system will be provided to storage tank.</li> <li>Fire hydrant monitor with foam attachment facility will be provided.</li> <li>Dumping / Drain vessel/alternate vessel will be provided to collect dyke wall spillage material.</li> <li>FLP type pump will be provided.</li> </ul>

4	Solvents transfer from storage tank to Day tank	Leakage& Spillage due to Line rupture, Flange Gasket failure, Fire, Toxic release.	<ul> <li>Nitrogen blanketing will be provided to storage tank.</li> <li>Double static earthing will be provided to storage tank.</li> <li>Double Jumper clip will be provided to all Solvent handling pipeline flanges.</li> <li>Online LEL detector is provided</li> <li>Double on / off switch will provided at tank farm and process area near day tank. Pump auto cut off with day tank high level will be provided.</li> <li>Flame arrestor will be provided on day tank vent.</li> <li>Over flow will be provided for additional safety and it will be provided on pump discharge line.</li> <li>Double Jumper clip will be provided to all solvent handling pipelines.</li> <li>Double Jumper clip will be provided to day tank.</li> </ul>
5	Solvents transfer from Day tank to reactor	Leakage, Spillage due to Line rupture, Flange Gasket failure, Fire, Toxic release.	<ul> <li>Gravity transfer.</li> <li>Total quantity of day tank material will be charged in to reactor at a time.</li> <li>NRV will be provided on day tank outlet line.</li> <li>Static earthing will be provided to storage tank.</li> <li>Double Jumpers will be provided to pipeline flanges.</li> </ul>

### 7.5 HAZARD CONTROL MEASURES

A) Hazard Control Measures:	A) Hazard Control Measures:					
1) Fire Hazard	2) Others Hazard	3) Chemical / Solvent leakage				
<ul> <li>Flameproof electrical apparatus installed at probable fire hazard area.</li> <li>Well maintained Fire Fighting Apparatus (fire extinguisher, fire hydrant system) in sufficient quantity.</li> <li>Well defined storage facility for fire hazard substances.</li> <li>Copper Jumpers are provided on solvent transferring lines.</li> <li>Earthing/Bonding system is provided at designated areas.</li> </ul>	<ul> <li>WH &amp; Solvent Building located away from other plants.</li> <li>Online flammable gas detection meters with audible alarm / hooter.</li> <li>Explosion proof wall &amp; doors of process area where such hazards are apparent.</li> <li>Copper Jumpers are provided on solvent transferring lines.</li> </ul>	<ul> <li>✓ Handling of chemicals with confined containers / drums only.</li> <li>✓ Availability of spillage control kit &amp; sand buckets on specific locations.</li> <li>✓ Regular monitoring of VOC level of plant by internally and externally agency and precaution are taken to avoid exposure.</li> </ul>				

Smoke detectors and fire Earthing/Bonding system is  $\checkmark$ PPEs like organic cartridge alarm system installed at site. provided at designated mask, air bubbler and full Process / operation handling areas. body pressure suit with breathing air provision by competent person only. Process operated by Permit to work system. competent person only. are provided as and when Round the clock availability of Regular testing / inspection required. qualified Safety Officer & of pressure vessels by ✓ People in vicinity of area are trained to use spillage Paramedic. competent person Mutual aid with nearby Installation of safety valve control kit. industries and Disaster on probable explosion SCBA set is readily Preventive Management hazards vessels. available at designated Centre. Permit to work system. locations for emergency

### **7.6 CONSEQUENCE ANALYSIS**

In a plant handling hazardous chemicals, the main hazard arises due to storage, handling & use of these chemicals. If these chemicals are released into the atmosphere, they may cause damage due to resulting fires or vapour clouds. Blast Overpressures depend upon the reactivity class of material between two explosive limits.

#### **Operating Parameters**

Potential vapour release for the same material depends significantly on the operating conditions. Especially for any liquefied gas, the operating conditions are very critical to assess the damage potential. If we take up an example of ammonia, if it is stored at ambient temperature, say 30°C, and then the vapour release potential of the inventory is much higher as compared to the case if it is stored at 0°C.

#### Inventory

Inventory Analysis is commonly used in understanding the relative hazards and short listing of release scenarios. Inventory plays an important role in regard to the potential hazard. Larger the inventory of a vessel or a system, larger the quantity of potential release. The potential vapour release (source strength) depends upon the quantity of liquid release, the properties of the materials and the operating conditions (pressure, temperature). If all these influencing parameters are combined into a matrix and vapour source strength estimated for each release case, a ranking should become a credible exercise.

### Loss of Containment

Plant inventory can get discharged to Environment due to Loss of Containment. Certain features of materials to be handled at the plant need to the clearly understood to firstly list out all significant release cases and then to short list release scenarios for a detailed examination. Liquid release can be either instantaneous or continuous. Failure of a vessel leading to an instantaneous outflow assumes the sudden appearance of such a major crack

scenario.

that practically all of the contents above the crack shall be released in a very short time. The more likely event is the case of liquid release from a hole in a pipe connected to the vessel. The flow rate is depending on the size of the hole as well as on the pressure, which was present, in front of the hole, prior to the accident. Such pressure is basically dependent on the pressure in the vessel. The vaporisation of released liquid depends on the vapour pressure and weather conditions. Such consideration and others have been kept in mind both during the initial listing as well as during the short listing procedure. In the study, Maximum Credible Loss accident methodology is to be used, therefore, the largest potential hazard inventories have been considered for consequence estimation.

### 7.6.1 DAMAGE CRITERIA

In consequence analysis, use is made of a number of calculation models to estimate the physical effects of an accident (spill of hazardous material) and to predict the damage (lethality, injury, material destruction) of the effects. The calculations can roughly be divided in three major groups:

- a) Determination of the source strength parameters;
- b) Determination of the consequential effects;
- c) Determination of the damage or damage distances.

The basic physical effect models consist of the following.

### Source strength parameters

- * Calculation of the outflow of liquid, vapour or gas out of a vessel or a pipe, in case of rupture. Also two-phase outflow can be calculated.
- * Calculation, in case of liquid outflow, of the instantaneous flash evaporation and of the dimensions of the remaining liquid pool.
- * Calculation of the evaporation rate, as a function of volatility of the material, pool dimensions and wind velocity.
- * Source strength equals pump capacities, etc. in some cases.

### **Consequential effects**

- * Dispersion of gaseous material in the atmosphere as a function of source strength, relative density of the gas, weather conditions and topographical situation of the surrounding area.
- * Intensity of heat radiation [in kW/ m²] due to a fire or a BLEVE, as a function of the distance to the source.
- * Energy of vapour cloud explosions [in N/m²], as a function of the distance to the distance of the exploding cloud.
- * Concentration of gaseous material in the atmosphere, due to the dispersion of evaporated chemical. The latter can be either explosive or toxic.

It may be obvious, that the types of models that must be used in a specific risk study strongly depend upon the type of material involved:

- Gas, vapour, liquid, solid

- Inflammable, explosive, toxic, toxic combustion products
- Stored at high/low temperatures or pressure
- Controlled outflow (pump capacity) or catastrophic failure?

### Selection of Damage Criteria

The damage criteria give the relation between extent of the physical effects (exposure) and the percentage of the people that will be killed or injured due to those effects. The knowledge about these relations depends strongly on the nature of the exposure. For instance, much more is known about the damage caused by heat radiation, than about the damage due to toxic exposure, and for these toxic effects, the knowledge differs strongly between different materials.

In Consequence Analysis studies, in principle three types of exposure to hazardous effects are distinguished:

- 1. Heat radiation, from a jet, pool fire, a flash fire or a BLEVE.
- 2. Explosion
- 3. Toxic effects, from toxic materials or toxic combustion products.

In the next three paragraphs, the chosen damage criteria are given and explained.

### Heat Radiation

The consequence caused by exposure to heat radiation is a function of:

- The radiation energy onto the human body [kW/m²];
- The exposure duration [sec];
- The protection of the skin tissue (clothed or naked body).
- The limits for 1% of the exposed people to be killed due to heat radiation, and for second-degree burns are given in the table herein:

### Damages to Human Life Due to Heat Radiation

Exposure Duration	Radiation for 1% lethality (kW/m ² )	Radiation for 2 nd degree burns (kW/m ² )	Radiation for first degree burns (kW/m ² )
10 Sec	21.2	16	12.5
30 Sec	9.3	7.0	4.0

Since in practical situations, only the own employees will be exposed to heat radiation in case of a fire, it is reasonable to assume the protection by clothing. It can be assumed that people would be able to find a cover or a shield against thermal radiation in 10 sec. time. Furthermore, 100% lethality may be assumed for all people suffering from direct contact with flames, such as the pool fire, a flash fire or a jet flame. The effects due to relatively lesser incident radiation intensity are given below.

### **Effects Due to Incident Radiation Intensity**

INCIDENT RADIATION kW/m ²	TYPE OF DAMAGE
0.7	Equivalent to Solar Radiation
1.6	No discomfort for long exposure

4.0	Sufficient to cause pain within 20 sec. Blistering of skin (first degree burns are likely)
9.5	Pain threshold reached after 8 sec. second degree burns after 20
	sec.
12.5	Minimum energy required for piloted ignition of wood, melting
	plastic tubing etc.

### Explosion

In case of vapour cloud explosion, two physical effects may occur:

- * a flash fire over the whole length of the explosive gas cloud;
- * a blast wave, with typical peak overpressures circular around ignition source.

As explained above, 100% lethality is assumed for all people who are present within the cloud proper.

For the blast wave, the lethality criterion is based on:

- * A peak overpressure of 0.1 bar will cause serious damage to 10% of the housing/structures.
- * Falling fragments will kill one of each eight persons in the destroyed buildings.

The following damage criteria may be distinguished with respect to the peak overpressures resulting from a blast wave:

### Damage Due To Overpressures

Peak Overpressure	Damage Type
0.83 bar	Total Destruction
0.30 bar	Heavy Damage
0.10 bar	Moderate Damage
0.03 bar	Significant Damage
0.01 bar	Minor Damage

From this it may be concluded that p = 0.17 E+5 pa corresponds approximately with 1% lethality. Furthermore it is assumed that everyone inside an area in which the peak overpressure is greater than 0.17 E+ 5 pa will be wounded by mechanical damage. For the gas cloud explosion this will be inside a circle with the ignition source as its centre.

### Intoxication

The consequences from inhalation of a toxic vapour/gas are determined by the toxic dose. This dose D is basically determined by:

- Concentration of the vapour in air;
- Exposure duration.

Furthermore, of course, the breathing rates of the victim, as well as the specific toxic mechanism unto the metabolism play an important role.

The dose is defined as  $D = C^{n}.t$ , with:

- C = concentration of the toxic vapour, in [ppm] or  $[mg/m^3]$ ;
- t = exposure duration, in [sec] or [min];
- n = exponent, mostly > 1.0; this exponent takes into account the fact that a high concentration over a short period results in more serious injury than a low concentration over a relatively longer period of exposure. The value of n should be greater than zero but less than 5.

The given definition for D only holds if the concentration is more or less constant over the exposure time; this may be the case for a (semi) continuous source. In case of an instantaneous source, the concentration varies with time; the dose D must be calculated with an integral equation:

D = ∫Cⁿ.dt

For a number of toxic materials, so-called Vulnerability Models (V.M.) has been developed. The general equation for a V.M. (probit function) is:

 $Pr = a + b.ln (C^{n}.t)$ , with

Pr = probit number, being a representation of the percentage of people suffering a certain kind of damage, for instance lethality

- Pr = 2.67 means 1% of the population;
- Pr = 5.00 means 50% of the population;

a and b material dependent numbers;

 $C^{n}$ .t = dose D, as explained above.

The values for a and b are mostly derived from experiments with animals; occasionally, however, also human toxicity factors have been derived from accidents in past. In case only animal experiments are available, the inhalation experiments with rats seem to be best applicable for predicting the damage to people from acute intoxication. Although much research in this field have been done over the past decades, only for a limited number of toxic materials consequence models have been developed. Often only quite scarce information is available to predict the damage from an acute toxic exposition. Data transformation from oral intoxication data to inhalation toxicity criteria is sometimes necessary. Generally, in safety evaluations pessimistic assumptions are applied in these transformation calculations. The calculated damage (distance) may be regarded as a maximum. For the purposes of a response to a major incident, the IDLH value level has been chosen for the 'wounded' criteria. This type of injury will require medical attention.

### 7.6.2 MAXIMUM CREDIBLE LOSS ACCIDENT SCENARIOS

A Maximum Credible Accident (MCA) can be characterised as the worst credible accident. In other words: an accident in an activity, resulting in the maximum consequence distance that is still believed to be possible. A MCA-analysis does not include a quantification of the probability of occurrence of the accident. Another aspect, in which the pessimistic approach of MCA studies appears, is the atmospheric condition that is used for dispersion calculations.

As per the reference of the study, weather conditions having an average wind speed have been chosen.

The Maximum Credible Loss (MCL) scenarios have been developed for the Facility. The MCL cases considered, attempt to include the worst "Credible" incidents- what constitutes a credible incident is always subjective. Nevertheless, guidelines have evolved over the years and based on basic engineering judgement, the cases have been found to be credible and modelling for assessing vulnerability zones is prepared accordingly. Only catastrophic cases have been considered and not partial or small failures (as is the case in Quantitative Risk Assessment where contributions from low frequency - high outcome effect as well as high frequency - low outcome events are distinguished). The objective of the study is emergency planning, hence only holistic & conservative assumptions are used for obvious reasons. Hence though the outcomes may look pessimistic, the planning for emergency concept should be borne in mind whilst interpreting the results.

### 7.6.2.1 CONSEQUENCE ANALYSIS CALCULATIONS

The Consequence Analysis has been done for selected scenarios. This has been done for weather conditions having wind speed. In Consequence Analysis, geographical location of the source of potential release plays an important role. Consideration of a large number of scenarios in the same geographical location serves little purpose if the dominant scenario has been identified and duly considered.

### 7.6.2.2 SOFTWARE USED FOR CALCULATIONS

**PHAST MICRO:** Phast is the most comprehensive software available for performing Process Hazard Analysis (PHA), Quantitative Risk Assessment (QRA) and Financial Risk Analysis (FRA). Our extensively validated software for consequence and risk assessment is used by governments and industry helping them to comply with local safety regulation and their own corporate best practice. Phast contains all the discharge, dispersion, effects and risk models you will need to accurately assess all your major hazards and associated risks. Phast Consequence provides you with comprehensive hazard analysis facilities to examine the progress of a potential incident from the initial release to its far-field effects.

### TOXIC AND FLAMMABLE IMPACT

It calculates the initial discharge, as the material expands from its storage conditions to atmospheric, through dispersion, as the material mixes with air and dilutes, and the subsequent toxic or flammable effects. Phast includes a wide range of models for discharge and dispersion as well as flammable, explosive and toxic effects.

### DISCHARGE

- Phast requires basic information about storage or process conditions and material properties in order to perform discharge calculations
- The software comes with an integrated material property database containing more than 1,600 pre-defined pure component chemicals

- Various discharge scenario options have been implemented to represent common process failures, and model their behaviour. These include:
  - Leaks and line ruptures from long & short pipelines
  - Catastrophic ruptures
  - Relief valve and disc ruptures
  - Tank roof collapse
  - Vent from vapour spaces
  - In building release effects

### DISPERSION

The dispersion models within Phast are able to model the following phenomena

- Dispersion of gas, liquid and two-phase releases
- Liquid droplet thermo dynamics calculations and liquid droplet rainout
- Pool spreading and vaporization
- Building wake dispersion effects for vapour releases

### FLAMMABLE EFFECTS

For releases of flammable material Phast calculates

- Radiation profiles and contours from a range of fire scenarios including pool fires, flash fires, jet fires and fire balls, including cross-wind effects on a jet fire
- Vapour Cloud Explosion modeling using industry standards models including the TNO Multi-energy, and TNT Equivalence models

### TOXIC EFFECTS

- Graphs of toxic concentration profile
- Indoor and outdoor toxic dose prediction
- Reporting of distance to specific dose and concentration
- Calculated exposure time and use as "averaging time" for passive dispersion effects

### PHAST RISK

Phast Risk allows you to combine the flammable and toxic consequences from each scenario in your QRA model with their likelihood to quantify the risk of fatalities. Phast Risk allows you to take account of local population distribution, sources of ignition, land usage and local prevailing weather conditions. It is designed to perform all the analysis, data handling and results presentation elements of a QRA within a structured framework.

Phast Risk allows you to quickly identify major risk contributors so that time and efforts can be directed to mitigating these highest risk activities. Based on effects calculations and population vulnerabilities, Phast Risk can integrate over all scenarios and weather conditions to estimate the total risk. The established individual and societal risk indicators

are predicted by Phast Risk across your facility and surrounding area using the classical QRA methodology. Risk ranking reports can be produced at points of strategic importance to show the relative influence of the various failure scenarios and their contribution to both the individual and societal risk metrics.

A key benefit of Phast Risk is the ability to identify major risk contributors and differentiate these from incidents with worst case consequences which might otherwise dominate the safety reviews. Whilst medium scale incidents have lesser consequences, they may have a higher frequency, which, when combined with their hazardous effects, generate a higher level of risk. Time and effort directed to mitigating high consequence but often low frequency events may not be well spent. Phast Risk helps you direct this effort more effectively.

Phast Risk also provides facilities to help you manage large quantities of input data, including scenarios, parameters, wind roses, ignition and population, and combine these in many ways. This is critical when looking at sensitivity analyses and assessing the merits of a range of risk reduction measures.

#### Benefits

- Facilitates cost reduction in terms of losses and insurance
- Allows optimization of plant and process design
- Assist in compliance with safety regulators
- Enables quicker response to hazardous incidents
- Improve engineer's understanding of potential hazards
- Regular software upgrades incorporate industry experience and expertise, and advances in consequence modeling technology

#### 7.7 SCENARIOS

#### **TABLE 7.4**

#### **POSSIBLE ACCIDENT SCENARIOS**

Scenario	MCL Scenario	Mode of	Quantity	
		storage		
1	Release of Toluene	Tank	20 MT	
2	Release of Methanol	Tank	50 MT	
3	Release of Diesel	Tank	35 KL & 15 KL	
4	Release of Hydrochloric Acid	Tank	30 KL	
5	Release of Sulphuric Acid	Tank	50 MT	
6	Release of Caustic lye	Tank	23 MT	
7	Release of Chlorine	Cylinder	0.05 MT	
8	Release of Bromine	Cylinder	0.05 MT	

9	Release of Hydrogen	Cylinder	120 m3
10	Release of Ammonia	Cylinder	0.1 MT
11	Release of Ethylene oxide	Cylinder	0.03 MT
12	Unconfined Pool Fire Simulations	Drums	65 MT
	for Drum Storage Area		

### Scenario 1: Release of Toluene

This scenario considers release of Toluene from Storage Tank:

Catastrophic Rupture				
Input Data				
Stored quantity -	20 N	ЛТ		
Molecular weight	-92.	14		
Wind speed – 3.1	4 m/	′s		
Density ( Air) – 86	0 kg	/m ³		
Results indicate				
Pool Fire Scenario	)			
Radiation Level (KW/m ² )	Dis	tance in meter	Effect	
4	90.	85	This level is sufficient to cause personnel if unable to reach cover within 20s; however blistering of the skin (second degree burn) is likely; 0: lethality	
12.5	39.	15	This level will cause extreme pain within 20 seconds and movement to a safer place is instinctive. This level indicates around 6% fatality for 20 seconds exposure.	
37.5			This level of radiation is assumed to give 100% fatality	
			as outlined above.	
Fireball Scenario				
Fireball Radius: 10.547 m				
Fireball intensity of Heat Radiation (KW/m ² ) – 149.074				9.074
Fireball rate of Energy release (KJ/Sec)- 107389				
Fireball total energy released (KJ)- 185056				
Fireball duration (Sec) – 1.72334				
Radiation Le	vel	Distance in mete	r	Injury Type
(KW/m²)		266.07		Dain after 20caec
4		200.07		Pain arter ZUSECS.
12.5		119.35		1 st degree Burn
37.5				100% Fatal



### **Pool Fire Scenario**



Blue – 4 KW/m² Pink – 12.5 KW/m² Fireball Scenario



Blue– 4 KW/m² Pink – 12.5 KW/m²

#### Storage & Handling

- Use PPE, including gloves, safety goggles, face shield, coveralls and boots depending on the type of handling task.
- Practice good housekeeping when storing, loading and transferring inventory.
- Wash hands after handling toluene and similar substances.
- Ground and bond containers while dispensing and filling materials.
- Keep containers closed when not in use.
- Ensure labels are readable.
- Monitor data of employee exposure.

### Safety Precaution:

- Flame proof pumping and other equipments are provided.
- Transfer done in close process,
- Double static earthling and jumper clips are provided on flanges,
- Hydrant system and fire extinguishers are provided.
- Automatic sprinklers are provided.
- Tanker unloading procedure are made and followed.
- Adequate dyke wall (non-combustible) is provided.
- Combustible Gas Detection system, Fire (Foam / Powder) extinguisher, Foam monitors is provided.
- Nitrogen blanketing system is provided.
- Area is covered with hard barricading for restricted person access.

### Scenario 2: Release of Methanol

This scenario considers release of Methanol from Storage Tank:

Catastrophic Rupture				
Input Data				
Stored quantity -	50 MT			
Molecular weight	-33.05			
Wind speed – 3.14	4 m/s			
Density (Air) –0. 7	91 g/cm ³			
Results indicate				
Pool Fire Scenario	)			
Radiation Level (KW/m ² )	Distance in meter	Effect		
4	154	This level is sufficient to cause personnel if unable to reach cover within 20s; however blistering of the skin (second deg burn) is likely; 0: lethality		
12.5	100	This level will cause extreme pain within 20 seconds and movement to a safer place is instinctive. This level indicates around 6% fatality for 20 seconds exposure.		
37.5	63	This level of radiation is assumed to give 100% fatality as outlined above.		
Fireball Scenario				
Radiation Level (KW/m ² )	Distance in meter	Injury Type		
4	172	Pain after 20secs.		
12.5				
37.5				



**Pool Fire Scenario:** 



Blue – 4 KW/m² Pink– 12.5 KW/m² Red – 37.5 KW/m²





Blue – 4 KW/m²

#### Storage & Handling

- Permanently installed fire-extinguishing equipment provided in large storage facilities.
- Water cannons are generally installed in storage tank farms to cool steel constructions and neighbouring tanks in the event of fire.
- Large tanks have permanently installed piping systems for alcohol-resistant fireextinguishing foams.

#### Safety Precaution:

- Flame proof pumping and other equipments are provided.
- Transfer done in close process,
- Double static earthling and jumper clips are provided on flanges,
- Hydrant system and fire extinguishers are provided.
- Automatic sprinklers are provided.
- Tanker unloading procedure are made and followed.
- Adequate dyke wall (non-combustible) is provided.
- Combustible Gas Detection system, Fire (Foam / Powder) extinguisher, Foam monitors is provided.
- Nitrogen blanketing system is provided.
- Area is covered with hard barricading for restricted person asses.

### Scenario 3: Release of Diesel

This scenario considers release of Diesel from Storage Tank:

Catastrophic Rupture					
Input Data					
Stored quantity -	Stored quantity - 35 KL				
Molecular weight	Molecular weight -106.16				
Wind speed – 3.1	4 m/s				
Density ( Air) – 861 kg/m ³					
Results indicate	Results indicate				
Pool Fire Scenario					
<b>Radiation Level</b>	Distance in meter	Effect			
(KW/m²)					
4	92	This level is sufficient to cause personnel if unable to			
		reach cover within 20s; however blistering of the skin			
		(second degree burn) is likely; 0: lethality			
12.5	45	This level will cause extreme pain within 20 seconds			
		and movement to a safer place is instinctive. This level			
		indicates around 6% fatality for 20 seconds exposure.			
37.5	Not Reached	This level of radiation is assumed to give 100% fatality			
		as outlined above.			
Results indicate:					
Maximum Pool Radius-43.61m					

### Graphs:




### Storage & Handling

- Tanks designed and intended for aboveground use shall not be used as underground tanks.
- Tanks shall rest on firm, level ground or on foundations made of concrete, masonry, piling, or steel. Tanks shall be designed and built in accordance with recognized engineering standards for the material of construction being used.
- Storage tanks and their accessories shall be inspected and maintained according to manufacturer's guidelines or applicable standards.
- Every tank shall have an emergency relief venting device to relieve excessive internal pressure caused by an exposure fire.
- To prevent against accidental spills, single-wall tanks shall be protected by a diking system designed to hold the total tank capacity. An alternative to a diking system would be the use of a double-wall tank.
- Tank venting systems shall be provided with sufficient capacity to prevent blowback of vapor or liquid at the fill opening while the tank is being filled.

### **Safety Precaution**

- Using a tank that is designated for outdoor use and has an Underwriters Listed (UL) stamp.
- Tanks that are designated to handle flammable liquids.
- Utilizing a tank that can handle several weeks to a month's worth of fuel.
- By limiting the fill ups, you reduce the risk of a spill. Keep in mind that you should not fill a tank over 95 percent capacity to allow for expansion.

- Open flames and smoking shall not be permitted in the area.
- The tanks should be installed in an east-west orientation to reduce the amount of solar radiation the tank receives.
- The tank should be marked with the name of the fuel contents and a sign with "FLAMMABLE-KEEP FIRE AND FLAME AWAY." The words should be at least six inches in height and be in a bright red color.
- "NO SMOKING" signs should also be conspicuously exhibited from various angles of approach.
- Class B type fire extinguishers should be mounted in easy to access locations.
- Do not place tanks where ignition sources such as welding and cutting torches are likely to be used.
- Tank saddles (either concrete or steel) are required by law unless tanks in contact with the ground are protected against corrosion.
- Everyone who works on or around the equipment or the fuel storage locations should be trained to identify and eliminate risks.
- Adequate dyke wall is provided.

### **Pool Fire Scenario:**



Blue – 4 KW/m² Pink– 12.5 KW/m²

### Scenario 4: Release of Hydrochloric Acid

8 2

3

Spill Pool evaporation modules for HCl Storage Tank catastrophic failure





Distance Downwind (m)

### Isopleth:

Deferment - With STR	LATION File Name : Flumel
SWIELERCE : LOOK REF.	169 m 0,0 m 169 m
0 m, 0 secRAPHS OF ALL 5-ISOPLETHS	11245.30 ppm, Area - 23.33 sqm
250 m. 94 sec	
500 m. 188 sec	149,00 ppm, Ares = 277,97 sqm
750 m, 282 sec	50.00 ppm, Area = 34204.67 sqn 32.00 ppm, Area = 60506.45 sqn
1000 m, 376 sec	
1250 m, 470 mec	
1500 m, 564 sec	5.00 ppm, Area = 112480.83 sgm
1750 m, 659 sec	
2000 m. 753 dec	
2250 m, 847 sec	
2500 m, 941 sec	
2750 m, 1035 sec	

#### Measures to be taken to prevent such accident

- Priority will be given to Tanker to immediately enter the storage premises at site and will not be kept waiting near the gate or the main road.
- Security person checks License, TREM CARD, Fire extinguisher condition, required PPEs as per SOP laid down.
- Store officer will take sample as per sampling SOP from sampling point.
- After approval of QC department unloading procedure is allowed be started.

### Following precautions will be adopted during unloading

- Wheel stopper is provided to Tanker loading at unloading platform.
- Tanker unloading procedure is followed according to check list and implemented.
- Flexible hose connection is done at TL outlet line and checked for no leakage.
- The quantity remaining in the hose pipeline is drained to a small container, which will be subsequently transferred to the main storage tank thus ensuring complete closed conditions for transfer from road tanker.
- All Tanker loading valves will be closed.

### Following precautions will be adopted Storage of such chemicals

- Storage tank is stored away from the process plant.
- Tanker unloading procedure is prepared and implemented.
- Caution note and emergency handling procedure is displayed at unloading area and trained all operators.
- NFPA label is provided.
- Required PPEs like full body protection PVC apron, Hand gloves, gumboot, Respiratory mask etc. is provided to operator.
- Neutralizing agent is kept ready for tackle any emergency spillage.
- Safety shower, eye wash with quenching unit is provided in acid storage area.
- Material is handled in close condition in pipe line.
- Dyke wall is provided to all storage tanks, collection pit with valve provision.
- Drain valve is provided.
- Level gauge is provided on all storage tanks.
- Safety permit for loading unloading of hazardous material is prepared and implemented.
- TREM CARD is provided to all transporters and trained for transportation Emergency of Hazardous chemicals.
- Fire hydrant system with jockey pump as per TAC norms is installed.

### Mitigation measures to control Emergency:

- Safety Shower and eye wash is provided away from the tank and unloading station.
- Sand bags/ buckets is provided near tank area.
- Neutralizing medium (Lime and dry sand) is kept ready near tank farm.
- Emergency siren and wind sock is provided.
- Tele Communication system and mobile phone is used in case of emergency situations for communication.
- First Aid Boxes and Occupational health center is made at site.

- Emergency organization and team is prepared.
- Full body protection suite and other PPEs will be kept ready in ECC at site.
- Emergency team is prepared and trained for scenario base emergency. Like Toxic control team, Fire control team, First aid team, communication and general administration team, Medical team etc.

#### EMERGENCY RESPONSE

### SPILL OR LEAK

 $\cdot$  Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.

 $\cdot$  Stop leak if you can do it without risk.

 $\cdot$  Use water spray to reduce vapors; do not put water directly on leak, spill area or inside container.

· Keep combustibles (wood, paper, oil, etc.) away from spilled material.

#### **Small Spill**

 $\cdot$  Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.

 $\cdot$  Use clean non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.

· Prevent entry into waterways, sewers, basements or confined areas.

### Scenario 5: Release of Sulfuric Acid

Spill Pool evaporation module for Sulphuric Acid Storage Tank catastrophic failure

Spill pool evaporation module for	Sulphuric Acid due to Catast	trophic Rupture of 50 MT Storage			
Tank					
Input Data					
Stored quantity -50 MT					
Molecular weight - 98.08					
Wind Speed – 3.14 m/s					
Failure Mode: Catastrophic failure	of 4" bottom nozzle and los	s of containment			
Density (Air) – 1840 kg/m ³					
Release rate: 1000 g/s					
Results indicate					
Input Data Results of Computations					
End point					
(meter)					
LC50 Human	460 ppm (1460 mg/m ³ )	59.85			
IDLH value	3.0ppm (15mg/m ³ )	587.63			
TLV value	0.2 ppm (1mg/m ³ )	1349.6			

#### **Result:**

 LC₅₀ HUMAN (460 ppm) area up to 59 meter, IDLH (Immediate danger to life and health) concentration area up to 587.63 meter and TWA (0.2 ppm) area up to 1349.6 meter. Therefore 587.63 meter area in wind direction is considered as evacuation area.

### Isopleth:

200m	400m	300m	200m	100as		100m	200m	.300m	400m
0 m	GRAPHS	OF ALL 5-18	OPLETHS	A	A		2173.85 ppm 1082.64 ppm 460.00 ppm,	Area = 56. Area = 80. Area = 573.9	21 sqm 88 sqm 6 sqm
100 m									
200 m					/ //		30.00 ppm, /	Area = 1593.	86 sqm
300 m									
400 m.									
500 m			_				200	- 14600	<b>E9</b> (12)(12)
600 m							- 3 du ppm, A	14090	oz sem
700 m									
800 m								5	
900 m									
1000 m									
1100 m									
1200 m									
1300 m							0 30 mm A	res = 75894	70 enm

Graph:





### MITIGATION MEASURES FOR SULPHURIC ACID LEAKAGE:

- Isolate the source if possible without risk.
- If leakage is small, dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. If necessary: Neutralize the residue with a dilute solution of sodium carbonate.
- Absorb with DRY earth, sand or other non-combustible material.
- Do not get water inside container. Do not touch spilled material. Use water spray curtain to divert vapor drift.
- Prevent entry into sewers, basements or confined areas.
- Neutralize the residue with a dilute solution of sodium carbonate.

#### PREVENTIVE MEASURES TO AVOID SULPHURIC ACID LEAKAGE:

- A dyke will be provided to accommodate the full quantity in tank.
- Periodic testing of storage tank will be done by competent person.
- Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective TLVs. Storage tank vent is connected to scrubber system.
- Flange guard provided to prevent splash of material.
- Level interlock
- Keep container dry. Never add water to this product.
- In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label.
- Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, organic materials, metals, alkalis, moisture.
- Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.
- While handling always use face shield. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent.
- Ensure that eyewash stations and safety showers are proximal to the work-station location.

### Scenario 6: Release of Caustic lye

Scenario of Caustic lye is not applicable. As the no results found during the Assessment of Caustic lye.

### Scenario 7: Release of Chlorine

Input Data				
Stored quantity		0.05 MT		
Rate of release		718 gram/sec		
Molecular weight		70.9		
Density ( Air)		2.49 kg/m ³		
Hazard Level	Concentration (PPM)			Ground level distance (Meter)
Distance to Concentration Results				
IDLH	10 (ACGIH) 882.19		882.19	
STEL 900 Sec	1.00 (OSHA) 1629.23			1629.23

Isopleth:





#### Handling and Precaution of Chlorine:

- Designate area for handling Chlorine and clearly label all containers.
- Prohibit eating, drinking, smoking and in room where Chlorine is handled.
- Provide proper instruction and supervision to workers responsible for chlorine equipment.
- Handle Chlorine compounds that are potentially volatile or in powder form in ventilated enclosures.
- If enhanced containment is necessary, handle volatile compounds in closed systems vented through suitable traps.
- Never store combustible or flammable materials near chlorine containers.
- Never allow any liquid or moisture to enter the chlorine container. Never apply heat directly to a chlorine container.
- Never attempt to weld an "empty" chlorine pipe line without purging it with air first.
- Install safety showers and eye wash stations near chlorine equipment.
- Never spray water on leaking containers; it can make the leak worse.
- When entering an equipment area, take shallow breaths until you are sure that there is not a chlorine gas leak.
- Rely upon chlorination equipment for direct disposal of chlorine gas.
- On completing an operation, secure all Chlorine, remove and dispose of protective clothing and coverings, monitor and decontaminate self and surfaces, wash hands and monitor them again.
- Emergency chlorine kit with SCBA is available.
- Cylinders are connected with Chlorine Hood with blower (scrubbing system).
- Emergency valve shutdown is provided

#### Mitigation Measures in Case of Chlorine Leakage:

EVACUATE THE AREA IN DOWN WIND DIRECTION: Evacuate area in down wind direction up

to 300 meters.

- Do not direct water at spill or source of leak.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Use Chlorine Emergency Kit to attend the leak.
- Absorb the fumes through Chlorine Hood with blower.

#### **Preventive Measures to Avoid Such Emergency:**

- Chlorine Emergency Kit will be procured and kept ready at chlorine shed.
- Chlorine Hood with blower will be provided with scrubbing arrangement.
- SCBA sets will be kept ready at chlorine handling area.
- Safety Shower and eye wash will be provided in Chlorine shed area.

- Chlorine absorption system will be provided. In case of chlorine leakage in chlorine shed it will be suck through blower and it will be scrubbed in Caustic scrubber.
- Emergency siren and wind sock will be provided.
- Tele Communication system will be with walky talky, no mobile phone will be used in case of emergency situations for communication.
- First Aid Boxes and Occupational health center will be made at site.
- Emergency organization and team will be prepared as per on site-Off site emergency planning.
- Full body protection suite and other PPEs will be kept ready in ECC at site.
- Emergency team will be prepared and trained for scenario base emergency. Like Toxic control team, Fire control team, First aid team, Communication and general administration team, medical team etc.

### Scenario 8: Release of Bromine

A release from the Bromine Bottle;

Catastrophic Rupture					
Input Data	Input Data				
Stored quantity - 0.05MT					
Molecular weight -159.82					
Wind speed – 3.14 m/s					
Density ( Air) – 2980 kg/m ³	Density ( Air) – 2980 kg/m ³				
Results indicate					
Maximum Pool Radius	1.010 m				
	Distance to Concentration Results				
Input Data	End point				
(meter)					
IDLH – 3 ppm	495.58				
STEL 900 Sec	541.67				

#### Graphs:







(ere)	3000m	2000m	1000111		1000m	2000mi	0000m
1 m	GRAPHS (	OF ALL 5-ISOPI	LETHS	A	1050.0	Centra Acco S.	77.89 agm
1940 m				1	3.004	ipm; Ares = 32	55.25 yqm
2009 ///			-				
1800 m							
1000 m		_	-			_	
1000 m							
3600 m				V	0.90	win Aidd - 27	3800.75 oder/
f000 m						600, 2008 - 444	20110 2 2 3 3 9 11
9000 m							
9000 m							
				$\mathbb{V}$			AN 78 10 com

#### **Preventative / Mitigation Measures:**

**Storage & Handling:** Protect against physical damage. Store in cool dry area, out of direct sunlight. Separate from combustible, organic or other readily oxidizable materials. Keep above 20F to prevent freezing but avoid heating above atmospheric temperatures as vapor pressure increase could rupture container. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

**Firefighting:** Use any means suitable for extinguishing surrounding fire. Water spray may be used to keep fire exposed containers cool.

# Following Personal Protective Equipments are to be made compulsory when handling Bromine

- American National Standards Institute (ANSI) approved chemical safety goggles at all times when handling Br₂.
- Use a full face shield over eyewear.
- Full body protection PVC suite
- Eyewash fountains should be located in areas where bromine is handled, used or stored.
- When in danger of contact with liquid bromine, wear an approved chemical resistant suit.
- Leather or other non-woven ANSI approved steel-toed shoes or Gum boot
- Protective rubber boots should be worn over shoes for extra protection.
- Have NIOSH approved respirators and self-contained breathing apparatus available.
- Gloves: 100% Nitrile rubber gloves or Neoprene gloves

#### Safety Practices in the Work Area

We will inform our all employees of the potential hazards of contact with bromine and train them in appropriate first-aid procedures.

Bromine handling areas will be clearly marked and restricted to qualified, trained personnel only.

#### Ventilation

We will maintain bromine vapor concentration in the work area to less than 0.1 ppm with adequate exhaust hoods, ventilation systems and scrubbers. Analyze air for proper control. Transfer or repackage bromine only in a controlled, closed environment.

Exhaust ventilating systems will be used in enclosed areas where bromine is handled.

#### **Containers and Storage**

• Bromine will be stored in dry and cool place and well ventilated area.

#### Neutralization in Case of Spillage Leakage

• Neutralization with sodium Bisulfite requires 3 moles of sodium hydroxide: 1 mole sodium Bisulfite: 1 mole bromine.

- Neutralization with sodium sulfite requires 2 moles sodium hydroxide: 1 mole sodium sulfite: 1 mole bromine.
- The weights and volumes specified include a 10% excess of sodium hydroxide and sodium bisulfate or sodium sulfite.

### **Emergency Procedures**

• In case of bromine emergencies, follow recommended first aid and emergency response procedures adopted

#### **Transportation Emergencies**

- In emergency situations resulting from vehicle accidents:
- Notify the local police, fire departments, emergency responders and the carrier.
- Isolate the area.
- Any person not dressed in proper protective clothing and not using a NIOSH approved self-contained breathing apparatus should be kept a safe distance away.
- Call to the supplier
- Seek immediate medical assistance for those injured and follow recommended first aid procedures.

#### **Leaking Containers**

- When handling a leaking bottle personal protective clothing, goggles and NIOSH approved self-contained breathing equipment must be worn.
- Clear contaminated area of non-essential personnel and send them to assembly point.
- Maintain a slight ammonia atmosphere throughout the clean-up. Carefully release anhydrous ammonia gas to neutralize bromine vapor. The ammonia gas will convert bromine to white ammonium bromide "Smoke."
- Do not allow liquid bromine and liquid ammonia to combine; a violent reaction will occur. Ammonia (16 to 25% by volume) can form an explosive mixture with air. Pour hypo solution*, lime and water slurry or soda ash solution over the spill. Hypobromine reactions produce hydrobromic acid.
- Dry sodium thiosulphate and liquid bromine produce a violent reaction; do not mix them.
- Using cold water, wash neutralized bromine into a sump for transfer to an approved waste disposal facility where the waste can be processed.
- Ventilate the area to remove the ammonium bromide and any bromine fumes. Scrub the floors and equipment with soap and water.

#### **First Aid Procedure**

Immediate medical assistance is required if bromine is swallowed, inhaled or has contacted the eyes or skin.

If bromine has been ingested, do not give anything by mouth. Seek medical attention immediately. Do not induce vomiting.

If bromine has been inhaled, move the exposed person to a well ventilated area. Seek medical attention immediately. The victim should be placed in a comfortable sitting or partly reclining position. The exposed individual should avoid exertion.

If vomiting occurs, turn the patient on his side to avoid choking. Keep the patient warm. If the patient is coughing and showing signs of respiratory distress, properly trained personnel should administer oxygen.

For skin contact, the affected area must be flooded immediately with large amounts of clean water from a safety shower or other appropriate source of flowing water. Seek medical attention immediately. All contaminated clothing, including shoes, should be removed as quickly as possible while the victim is under the shower. Washing should be continued for a minimum of 30 minutes. If possible, continue to wash the affected area during transport to medical facilities. (Extended wash times of two hours or more have proven beneficial.)

If bromine liquid or vapor contacts the eyes, they must be irrigated immediately with large amounts of running water. Eye wash stations are preferable for irrigation. If one is not available, a hose, water source with a liberal, gentle flow may be utilized. The eyelids must be held apart during irrigation to ensure contact of water with all accessible tissues of the eyes and lids. Eyes should be washed continuously for a minimum of 30 minutes. If possible, continue flushing the eyes while transporting the employee to a physician. In all cases of bromine injury, obtain immediate medical attention. Provide emergency personnel with information about all materials used by the person and provide appropriate information about bromine and first aid procedures.

Scenario 9: Release of Hydrogen

CATASTRO	CATASTROPHIC RUPTURE FOR HYDROGEN				
SCENARIO : UNCONFINED FIREBALL					
Input Dat	a				
Stored qu	antity	120 m3			
Wind spe	ed	3.14 m/s			
Gas Dens	ity	67 kg/m ³			
Incident Intensit y of Heat Radiatio n (IHR) at ground level KW /m ²	IHR- Isopleths Distance ( Meters )	Effect			
37.5	9.0	Damage to process equipment. 100 % Fatal in 1 Min. 1 % fatal in 10 sec.			
12.5	28.0	Min. to ignite wood (with flame contact). 1 % fatal in 1 min. 1 st deg. burn in 10 sec.			
4.0	53.9	Pain after 20 secs. Blistering unlikely.			

Fireball Scenario



Blue – 4 KW/m² Pink – 12.5 KW/m² Red – 37.5 KW/m²

#### **HYDROGEN Process Safety:**

- 3 time Nitrogen purge into reactor to clean the reactor. Then charge material and hydrogen in reactor.
- Pressure of Hydrogen 2 kg/cm².
- Auto damping system will be installed, in case power failure.
- Oxygen Detector will be installed.

### SPECIAL PRECAUTIONS FOR HANDLING HYDROGEN:

- CCE approved premises with door having locking arrangement provided.
- Protect cylinders against physical damage.
- Store in cool, dry, well-ventilated area, away from sources of heat, ignition and direct sunlight.
- Do not allow area where cylinders are stored to exceed 52°C (125°F).
- Isolate from oxidizers such as oxygen, chlorine, or fluorine.
- Use a check valve or trap in the discharge line to prevent hazardous backflow.
- Post "No Smoking or Open Flame" signs in storage and use areas.
- Cylinders should be stored upright and be firmly secured to prevent falling or being knocked over.
- Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting.

- Never tamper with pressure relief devices in valves and cylinders. Electrical equipment should be non-sparking or explosion proof.
- Flammable high-pressure gas.
- Use only in a closed system.
- Use piping and equipment adequately designed to withstand pressures and temperatures to be encountered.
- Gas can cause rapid suffocation due to oxygen deficiency.
- Never work on a pressurized system.
- If there is a leak, close the cylinder valve. Blow the system down in a safe and environmentally sound manner in compliance with all federal, state, and local laws; then repair the leak.
- Never place a compressed gas cylinder where it may become part of an electrical circuit.
- Apron, Hand gloves, gumboot, goggles & helmet provided.
- ISI Portable fire extinguisher & Hydrant line is provided as per TAC norms.
- Flame proof fitting provided & Sufficient Nos. of SBA sets & 2 No. of Air line mask.

### Following safety Measures will be taken while storage & handling of Hydrogen gas: Measures to be taken to prevent such accident: for H2 Rack Handling

- Hydrogen Cylinder rack will be parked in barricaded Separate area
- FLP Electrical Installation provide near storage area
- Vehicle allowed with Spark Arrestor
- No Smoking / Hot work allowed
- Trained staff
- Special Vehicle with Trained Operating staff for H2 Rack
- PPE Warned
- Spark proof tools used
- Safety shower, eye wash with quenching unit will be provided in handling / storage area.

### For H₂ Cylinders

- Cylinder
- Separate Isolated Cylinder manifold
- H2 cylinder stand with Chain link supporting
- Trained Operator
- Flameproof Electrical Installation
- Spark proof Spanner set
- Earthing, Grounding and Bonding on the Pipeline

- Well Supported fixed Line
- Flameproof Electrical Installation
- Trained Operator
- N2 Blanketing before batch charging
- Double Safety Relief Valve with Rupture Disc
- H2 Vent with Steam sparger and N2 Blanketing
- Well tested, inspected and well-maintained Reactor
- Proper Ventilation in the area.

#### SOP for Handling Hydrogen Gas

#### 1. Design Requirements

 Hydrogenation Reactor, Manifold, piping systems are to be designed, fabricated and tested in accordance with IS 2825. Pressure relief devices are to be provided to prevent over pressure where this can occur as per the same standard. Relief devices and vents are to be routed away to a safe location.

#### 2. Location & Buildings

 Hydrogenation system is to be physically and structurally isolated from operations. Buildings in which hydrogen systems are installed shall be of single storey construction, be designed for the purpose and be well ventilated especially at high points.

#### Storage area and safety system for handling of Hydrogen Gas:

- 1. Hydrogen gas will be received at plant through
- 2. Cylinder manifold truck. Hydrogen gas is directly consumed from for process Cylinder manifold truck
- 3. DCS base operational plant
- 4. FLP type area will be provided.
- 5. Total enclosed process system.
- 6. Instrument & Plant Air System.
- 7. Nitrogen blanketing in Autoclave reactor.
- 8. Safety valve and Rupture disc provided on reactor.
- 9. Cooling Chilling and power alternative arrangement have been made on reactor.
- 10. Hydrogen and Nitrogen header will be installed away from the autoclave reactor.
- 11. PRV station with shut off valve, safety valve provision will be made for hydrogenation reaction safety.
- 12. Before Hydrogen Gas charging in to reactor and after completion of reaction Nitrogen flushing will be done.
- 13. Flame arrestor will be provided on vent line of reactor.

- 14. Safe Catalyst charging method will be adopted.
- 15. SOP will be prepared and operators will be trained for the same.
- 16. Rector vent extended outside the process area and flame arrestor provided on vent line.
- 17. Dumping vessel arrangement will be made.
- 18. Online Hydrogen detecting system is installed
- 19. Water sprinkler system is provided
- 20. Process is control by DCS with all interlock system.

Scenario 10: Relea	se of Ammonia					
Catastrophic Rup	Catastrophic Rupture					
Input Data						
Stored quantity -	0.1 MT					
Molecular weight	- 17.031 g/mol					
Wind speed – 3.1	4 m/s					
Density ( Air) – 0.7	73 kg/m³					
Results indicate						
Pool Fire Scenario	)					
Radiation Level (KW/m²)	Distance in meter	Effect				
4	8.3	This level is sufficient to cause personnel if unable to reach cover within 20s; however blistering of the skin (second degree burn) is likely; 0: lethality				
12.5	4.1	This level will cause extreme pain within 20 seconds and movement to a safer place is instinctive. This level indicates around 6% fatality for 20 seconds exposure.				
37.5	Not Reached					
Fireball Scenario	Fireball Scenario					
Radiation Level (KW/m ² )	Distance in meter	Effect				
4	7.8	Pain after 20secs.				
12.5	Not Reached					
37.5	Not Reached					

### **Pool Fire Scenario**



Blue – 4 KW/m² Pink – 12.5 KW/m²



### Fireball scenario



Blue – 4 KW/m²





### Storage & Handling:

- Designing of layout of area with due consideration of adequate natural or mechanical ventilation.
- Use of properly selected material for construction of plant and equipment for handling of ammonia.
- Preventive maintenance of all equipment in proper working condition.
- Avoid contact of ammonia with certain other chemicals, including mercury, chlorine iodine, bromine, calcium, silver oxide and hypo chloride.
- The building protected with automatic sprinklers, vapour tight electric equipment, good natural ventilation, good floor drainage and adequate exposition venting.
- Water sprinkler system will be provided.

### **Safety Precaution**

- Evacuate personnel to a safe area.
- Appropriate self-contained breathing apparatus may be required.
- Approach suspected leak area with caution. Remove all sources of ignition. if safe to do so. Reverse flow into cylinder may cause rupture. Reduce gas with fog or fine water spray. Stop flow of product if safe to do so.
- Ventilate area or move container to a well-ventilated area.
- Flammable gas may spread from leak. Before entering the area, especially a confined area, check the atmosphere with an appropriate device.
- Water sprinkler system to be activated for dilute the ammonia.

### Scenario 10: Release of Ethylene Oxide

Catastrophic Rup	ture				
Input Data	Input Data				
Stored quantity -	0.03 MT				
Molecular weight	– 44.05 g/mol				
Wind speed – 3.1	4 m/s				
Density ( Air) – 88	2 kg/m³				
<b>Results</b> indicate					
Pool Fire Scenario	)				
Radiation Level	Distance in meter	Effect			
(KW/m²)					
4	9.09	This level is sufficient to cause personnel if unable to			
		reach cover within 20s; however blistering of the skin			
		(second degree burn) is likely; 0: lethality			
12.5	5.37	This level will cause extreme pain within 20 seconds			
		and movement to a safer place is instinctive. This level			
		indicates around 6% fatality for 20 seconds exposure.			
37.5	2.9	This level of radiation is assumed to give 100% fatality			
		as outlined above.			
Fireball Scenario					
<b>Radiation Level</b>	Distance in meter	Effect			
(KW/m²)					
4	13.23	Pain after 20secs.			
12.5	Not Reached				
37.5	Not Reached				

#### **Pool Fire Scenario**



### **Fireball Scenario**



### Scenario 12: Unconfined Pool Fire Simulations for Drum Storage Area

Catastrophic Rupture					
Input Data					
Stored quar	ntity - 65	MT			
Wind speed	– 3.14 n	n/s			
Density ( Air	r) – 0.867	7 g/cm ³			
Results indic	cate				
Pool Fire Sce	enario				
Radiation	Dista	ance in	Effect		
Level	m	eter			
(KW/m²)					
4	57.72		This level is sufficient to cause personnel if unable to reach		
		cover within 20s; however blistering of the skin (second			
	degree burn) is likely; 0: lethality		ely; 0: lethality		
12.5	2	9.3	This level will cause extreme pain within 20 seconds and		
			movement to a safer place is instinctive. This level		
			indicates around 6	% fatality for 20 seconds exposure.	
37.5	14	4.12	This level of radiat	ion is assumed to give 100% fatality as	
			outlined above.		
Fire Ball Sce	Fire Ball Scenario				
Radiation Level Distance in meter		ance in meter	Injury Type		
(KW/m	1 ² )				
4			62.76	Pain after 20secs.	
12.5	12.5		37.16	1 st degree Burn	
37.50	.50		14.33	100% Fatal	
#### **Pool Fire Scenario:**



 $\begin{array}{l} Blue-4 \ KW/m^2 \\ Pink-12.5 \ KW/m^2 \\ Red-37.5 \ KW/m^2 \end{array}$ 

#### Fire Ball Scenario:



 $\begin{array}{l} Blue-4 \ KW/m^2 \\ Pink-12.5 \ KW/m^2 \\ Red-37.5 \ KW/m^2 \end{array}$ 

### **Storing and Handling of Drums**

- The Occupational Safety and Health Administration has comprehensive rules and guidelines for the handling of hazardous materials such as chemical drums. Chemical drums are containing materials that are toxic, radioactive, corrosive, and explosive. In handling them, personnel should use the proper equipment, techniques, and protection
- Keep separate hazardous chemicals like Toxic, Flammable, corrosive etc.
- For filling from drums, special filling stations are also being used
- In order to absorb spills as quickly as possible, suitable absorbents also are provided.
- Flexible shut-off barriers or duct covers also serve to prevent environmental damage caused by the release of hazardous liquids.
- Sufficient amount of sand/soil are kept to control any spillage.
- Flame proof fitting provided.
- Eye washer cum shower are provided near storage area.
- Spark arrester are installed on all vehicles inside the premises.
- SCBA set, Canister mask and airline mask is provided.
- Earthing are provided.
- Vent line dipped in water are provided.

#### Safety Precautions of Solvent (Drum):

- Ventilate thoroughly prior to entry.
- Disconnect connecting pipelines.
- Prior to entry, take air samples to prove the absence of flammable or other hazardous vapors and to demonstrate that adequate levels of oxygen exist.
- Equip the entry team with appropriate respiratory protection, protective clothing, safety harnesses, and ropes.
- Equip a safety observer with appropriate respiratory protection, protective clothing, a safety harness, and ropes. Establish lifeline signals prior to entry so that the worker and safety observer can communicate by tugs on the rope.
- Have an additional person available in the immediate vicinity to assist the safety observer if needed.
- Instruct the safety observer not to enter the space until additional personnel are on scene.

#### 7.7.1 RISK ASSESSMENT SUMMARY

• From the Risk Assessment studies conducted, it would be observed that by and large, the risks are confined almost within the factory boundary walls.

- Based on these studies company has been proposed to plan its facility sitting as well as location of operator cabin, open area, etc.
- Company has to increase awareness programme in the surrounding vicinity and educate people for safe evacuation at the time of toxic release.
- Induction safety course to be prepared and trained all new employees before starting duties in plant.
- A HAZOP study to be carried out for all product plant and storage facilities.

### 7.8 DISASTER MANAGEMENT PLAN

Company has developed the emergency management system to tackle the emergency situation, apart from its emergency management system. The detail of disaster management system is discussed in the following section.

### 7.8.1 DEFIING THE NATURE OF EMERGENCY

Various definitions on different analogy used on On-site & Off-site Emergency Plan are as follows:

- Accident: An accident may be defined as "an undesirable and unplanned event with or without or major damage consequence of life and /or property.
- **Major Accident:** It is a sudden, unexpected, unplanned event resulting from uncontrolled developments during an industrial activity, which causes or has the potential to cause, death or hospitalization to a number of people, damage to environment, evacuation of local population or any combination of above effects.
- **Emergency:** This can be defined as any situation, which presents a threat to safety of person's or/and property. It may require outside help also.
- **Major Emergency:** Occurring at a work is one that may affect several departments within and/or may cause serious injuries, loss of life, extensive damage to properly or serious disruption outside the works. It will require the use of outside resources to handle it effectively.
- **Disaster:** Disaster is a sudden calamitous event, bringing great damage, loss or destruction.
- Hazards: Hazard may be defined as "the potential of an accident". Hazard exists in man and the system of materials and machines.
- **Chemical Hazards:** It is a hazard due to chemical(s) (including its storage, process, handling, etc.) and it is realized by fire, explosion, toxicity, corrosively, radiation, etc.

- **Risk:** Risk may be defined as the combination of consequence and probability or likelihood of an accident being caused in a given man, material machine system.
- **On-Site Emergency plan:** It deals with measures to prevent and control emergencies within the factory and not affecting outside public or environment.
- **Off-Site Emergency plan:** It deals with measures to prevent and control emergencies affecting public and the environment outside the premises.

### 7.8.2 OBJECTIVES OF EMERGENCY MANAGEMENT SYSTEM

The objectives of the emergency management system are summarized as under.

- Identifying the hazard and its cause.
- Reducing vulnerability and potential losses of hazard.
- Assessing, reviewing and controlling the risk.
- To plan mode of proper communication and actions to be followed in the event of emergency.
- To keep all necessary information with respect to hazard/accident control and emergency contacts in one document for easy and speedy reference.
- To inform employees, general public and the authorities about the hazards/risk if any and the role to be played by them in the event of emergency.
- To control and contain the accident.
- To effect rescue and treatment of casualties.
- To inform and help relatives of casualties.
- To secure rehabilitation of affected area and restore normalcy.
- To provide information to media and government agencies.
- To preserve record, equipment etc. for investigating cause of emergency.
- To be ready for "mutual aid" if need arises to help neighboring units.

#### 7.8.3 CLASSIFICATION OF EMERGENCY

The Level of Emergency can be classified in three Categories, which is given in 7.4.

#### TABLE 7.5

#### **EMERGENCY TYPES**

CLASSIFICATION	DESCRIPTION	CAUSES	APPLICABILITY
Level – 1	The leakage or emergency, which	Small pipe/valve rupture or similar leakages that do not	Applicable
	the plant/area.	affect outside premises. Release of toxic chemicals	

		for shortduration. Small fire	
		in the plant.	
Level – 2	The emergency, which is confinable within the factory premises.	Leakage of toxic chemicals for long duration. Medium scale explosion confined to the factory premises. Medium scale fire insidethe factory premises.	Applicable
Level – 3	The emergency, which is not confinable within the factory premises and general public in the vicinity are likely to be affected.	Heavy / Profuse leakage of toxic / flammable gases for a long duration. Explosion of high magnitude affecting theadjacent area.	Applicable

7.9 DETAILS OF THE SEPARATE ISOLATED STORAGE AREA FOR FLAMMABLE CHEMICALS. DETAILS OF FLAME PROOF ELECTRICAL FITTINGS, DCP EXTINGUISHERS AND OTHER SAFETY MEASURES PROPOSED. DETAILED FIRE CONTROL PLAN FOR FLAMMABLE SUBSTANCES AND PROCESSES SHOWING HYDRANT PIPELINE NETWORK, PROVISION OF DG SETS, FIRE PUMPS, JOCKEY PUMP, TOXIC GAS DETECTORS ETC.

Fire Prevention Measures

- Smoking, ignition, ignition sources etc are strictly prohibited within the premises. A very strict control is exercised in this regard at all times.
- All the tanks, equipment etc are properly earthed and maintained at all times. The earth resistance values are regularly checked and kept within the permissible range.
- At the time of filling of storage tanks and road tankers, special care is exercised to avoid spillage.
- When a storage tank is filled, the tank's level is closely monitored.
- All filling operations are surveyed frequently for possible leaks that may pose a fire hazard.
- Reliable flow meters are provided, wherever required, to prevent overflow.
- The pipelines are inspected periodically.
- Free falling of the product into exercised to avoid overflow, spillage, leakage etc of the products.
- All operations in the installation are done only during general shift hours.
- The well-established color codes are followed for pipelines in the Installation.
- A strict gate entry procedure is formulated and followed. Entry of unauthorized persons is strictly prohibited.
- The road tanker is minimized to the extent possible to avoid static charge build up. The tankers are also earthed to bleed away static charges formed.
- Security watch is provided around tank farm area.
- The persons looking after the various operations are trained and experienced.
- All the staff in the installation are trained in fire fighting and monthly fire drills are carried out.
- Degreasing / Deseeding is done regularly within the licensed areas.
- All sorts of combustible materials are removed from the premises promptly.
- Work permit system is strictly followed. Critical jobs like hot jobs are carried out only
  after taking abundant safety precautions under the supervision of competent personnel
  authorized.
- All the incidents like fire are reported through prescribed formats and investigated. The causes are identified and remedial steps are promptly formulated and implemented.

- Dyke drain valves are kept normally closed. They are opened only to remove water from the dyked areas.
- Drain valves, sampling valves etc are plugged, capped or blinded. Utmost care is
- Proper concrete/tar roads are laid all around the facilities/areas for easy accessibilities. Roads, accessibilities etc are free and unobstructed everywhere.
- All the facilities in the Installation are well laid and also maintained.
- The fire fighting arrangements are well designed, laid and maintained.
- Good housekeeping is maintained throughout the Installation.

#### FIRE FIGHTING FACILITIES( EXISTING)

Following are the fire fighting facility provided.

Storage yard, warehouse, peripheral areas and equipment and production areas are provided with fire hydrants and fire fighting extinguishers.

The entire fire protection system has been installed as per Tariff Advisory Committee (TAC) norms.

Two Fire Water storage tanks have a total holding capacity of 1200 M³. This is an exclusive fire protection water storage facility. Fire hydrant pumps with external and captive power supply are provided.

Fire water supply lines are laid above ground with Fire Hydrants outlet points:

Single Hydrants	40 Nos
Fire escape hydrants	04 No
Fire brigade inlet	02 No
Double Hydrants	6 Nos.
Water Monitor	12 Nos.
Sprinkler system for tank farm	2 System
Dry Raiser for ware house in AEP	1 System

Apart from firewater pumps, jockey pump has been provided to pressurize the header and keep the system at 7 kg.  $/cm^2$  pressure.

Apart from fire hydrant system a separate sprinkler system is provided for bulk storage tanks for Solvents.

#### Fire Hydrant Pump Details:-

1.

- Electric driven Pump: 1 nos.a) Make: Kirloskar Brothers Ltd.,b) Model: DB100/26c) Rated Capacity: 171 m³d) Total dynamic head at rated capacity: 70 mtrs.
- 2. Diesel Driven Pump
  - a. Make
  - b. Rated capacity
  - c. Discharge Head
  - d. RPM
- 3. Pressurization Pump:
  - a) Make
  - b) Model
  - c) Rated Capacity
  - d) Total dynamic head at rated capacity
  - **Details of Extinguishers**:

S.NO	ТҮРЕ	CAPACITY	TOTAL
1.	DCP TROLLEY	100kg	2
2.	DCP TROLLEY	50kg	2
3.	DCP	5kg	72
4.	DCP	20 kg	20
5	CO2	6.5 kg.	11
6.	CO2	4.5 kg	77
7.	CO2	2.0 kg	25
8.	A.F.F.F	9 litres	25
9.	A.F.F.F	50litres	7
10.	A.F.F.F. trolley	200 litres	3

#### 1. Sensors:

- a. 10 smoke detectors with audible alarm are installed at various strategic locations in the production unit to alert the workstation peoples.
- b. Online pH meters are installed to monitors the scrubbing fluid pH.
- c. Online cyanide detectors with audible alarm are installed in scrubbing system to detect the cyanide content in the vent gas to atmosphere.
- d. Portable HCN detectors
- e. HCN detecting strip

401

- : Kirloskar Brothers Ltd.,
- : DB 32/26
- : 10 M³/hr.
- : 70 mtrs.

- : Kirloskar bros ltd
- : 171 m³/hr
- : 70 mts
- : 1800

- 2. Medium velocity spray system is installed in the bulk solvent storage area to protect the bulk solvent storage tanks safeguard from fire hazard.
- 3. Following areas are covered under flameproof electrical accessories:
  - a. Phyto and Organic production unit
  - b. Solvent Tank farm area
  - c. FO and HSD tank farm area

Each hydrant point is provided with one hose box or hose cabinet with two fire hoses and a nozzle. Self-contained breathing apparatus / air breathing apparatus are used during fire fighting and for controlling toxic release in the Production area.

Free face gas masks exclusively for each type of gas, acidic, organic, chloride and ammonia, are provided for normal use and for emergency handling.

### **Breathing Apparatus Details**

Self contained breathing apparatus are positioned in the following areas in addition to the online air breathing apparatus.

S.No	Location
1	Emergency Control Room (East)
2	Emergency Control Room (West)
3	Mechanical Room (North)
4	Mechanical Room(South)
5	AEP-PLC Room (Entrance)
6	AEP - PLC Room (Inside)
7	AEP Ground Floor (West)
8	AEP Ground Floor (East)
9	AEP Ist Floor (West)
10	AEP Ist Floor (East)
11	AEP 2nd Floor (West)
12	Plant 2C (Entrance)
13	R&D ground floor
14	Trolley type Air cylinder (SCBA)-AEP
15	4 nos spare in Safety Stores

### FIRE FIGHTING FACILITIES (PROPOSED)

ABC Fire Extinguishers - 30 Nos,					
CO ₂ Fire Extinguisher - 35 Nos					
Foam Extinguishers	- 20 Nos.				
Hose reel - 15 Nos.					
Foam tank	-5 Nos.				

**FIRE ALARM SYSTEM:** Automatic fire detection & alarm system consists of Fire Detectors, Addressable MCP & Hooters Beam Detectors (Ware House) are placed at strategic locations and connected by cable to central control panel at ECC with repeater panel at DCS Control Room.

### Fig. 7.4 - LOCATION OF FIRE NEAREST STATION



### FIRE LOAD CALCULATION

1	Name & Address of factory : M/s. Chemplast Sanmar Limited						
			S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,				
			10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta				
			Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri				
			District, Tamil Nadu, India.				
2	Phone Number	:					
3	Name of Occupier	:	Mr. Ramkumar Shankar				
4	Total Floor of the factory	:	2 Floors (Plant-4) Ground+ 4 Floo	rs (MPB)			
5	Detail of Combustible Area (I	n so	ą. Meter)				
a)	Total Floor Area	:	6765	M ²			
b)	Open Space Area in which	:	1209	M ²			
	Combustible Material						
	stored						
c)	Area having more than 15	:	1444	M ²			
	meter Height						
d)	Area having Wooden	:	0	M ²			
	material						
	Total (a + b + c + d)	:	9418	M ²			
6	a+b+c+d	:	470.9	L/Min			
	20			,			
7	Total Requirement of	:	28254	Ltrs/hr			
	Water (based on area in sr.			,			
	no-6)						
8	, Current Water storage	:	1200000	Ltrs			
	Capacity for fire hydrant						
	(Proposed)						
	Underground Tank +	:	Overhead Tank (1200000)	Ltrs			
	overhead tank + On ground						
	Tank						
9	In case of Fire, Arrangement	for	water to be used in fire fighting	1			
a)	Is Hydrant Line available? If	:	4inch, 8 inch				
	Yes give dimension of Pipe.						

b)	Which type of arrangement	:	Riser points available	Riser points available			
	are available for Supply		4 Inch pipeline	4 Inch pipeline			
	water on ground or upper						
	floor i.e. Pipe line and it's						
	Diameter (c.m.); Give detail						
c)	Are Fire Water Pump	:	Fire water pump house consist of				
	Available or Not? Give		Existing: 1 Electrical Main Pump, 1 Die	esel operated pump			
	detail		, 1 Jockey( Booster) Pump				
			Proposed: 1 Electrical Main Pump (	410 cu.m / hr) , 1			
			Diesel operated pump (410 cu.m	/ hr)   , 1 Jockey(			
			Booster) Pump (10.8 cu.m / hr)				
10	If the Value of Sr. 6 is more	:	NA				
	than 550, then requirement						
	of trailer Pump is						
	applicable. If it applicable						
	then what is the						
	arrangement for the Same.						
	Give detail						
11	How many water buckets	:	NA				
	required?						
12	How Many 9 Litres water		NA				
	type Extinguisher						
	required?(Water Bucket/6)						
13	Requirement of 5 Kg CO2	:	NA				
	Type Fire Extinguisher for						
	Class - E fire. Floor wise (1						
	for every 15 m length)						
	Total requirement of Fire	:	NA				
	extinguishers (5 Kg ABC).						
14	Extinguisher details						
	Туре		Existing				
	ABC (5.0 kg)	:	ABC Fire Extinguishers	25 Nos			
	CO2 (4.5 kg)	:	CO ₂ Fire Extinguishers	88 Nos			
	SAND BUCKET	:	Sand bucket 60 Nos				
	FOAM (9 ltr)	:	Foam Extinguishers	30 Nos.			
	DCP (5 kg)	:	DCP Fire Extinguishers	92 Nos			
	Fire Proximity Suit	:	2 Nos				
	TOTAL	:	235 Nos				

15	Additional Fire	:	ABC Fire Extinguishers -30 Nos, CO ₂ Fire Extinguisher-35
	Extinguisher Required		Nos , Foam Extinguishers - 20 Nos. Hose reel 15
			Nos, Foam tank -5 Nos
16	Emergency Fire Exit	:	Emergency Exit available with stair access in all floor
	provided to Each Floor?		
	Ladder Provided to Each		
	floor?		
17	Arrangement for Fire	:	Fire Alarm facility available in all floor
	warning. i.e. Hooter / Ele.		
	Bell / Other		
18	Water Sprinkler Provided?	:	Water Sprinkler system available at tank farm and
			Warehouse building

### 7.10 ON-SITE EMERGENCY PLAN 7.10.1 GENERAL

The emergency is an undesirable occurrence of events of such magnitude and nature that adversely affect business, cause loss of human lives and property as well as damage to the environment. Industrial units are vulnerable to various kinds of natural and man-made emergencies. Examples of Natural disasters are flood, cyclone, earthquake, lightening etc. and manmade disasters are major fire, explosion, sudden heavy leakage of toxic/flammable gases, building collapse, human errors, vehicle crash, sabotage, etc. It is impossible to forecast the time and nature of emergency, which might strike the unit. In spite of the fact that every industry is expected to take steps to assess, minimize and, wherever feasible, eliminate risks, accidents may still occur. Risks can only be minimized; it can never be totally eliminated. However, an effective emergency plan helps to minimize the losses in terms of human lives, plant assets and environmental damage and to resume the working condition as soon as possible. In all these steps speed is the essence. Controlling the emergency will require prompt action by the operating staff, the staff of various agencies, emergency teams and the outsiders when called for. Minimizing the effect on people may be achieved by prompt communication, rescue, evacuation etc., if the situation so warrant.

### 7.10.2 STATUTORY REQUIREMENT

The provisions for preparing the on-site emergency plan are explained below:

#### THE FACTORIES ACT, 1950:

The Tamil Nadu Factories Rules 1950 providing that every occupier, who has control of an industrial activity pertaining to hazardous chemicals shall furnish the On-Site Emergency Plan detailing how major accidents shall be dealt with along with explaining specific responsibilities and actions by various persons.

### THE ENVIRONMENT (PROTECTION) ACT-1986:

Rule 13(1) under the Manufacture, Storage and Import of Hazardous Chemicals Rule 1989 (amended 1994), rules framed under The Environment (protection) Act-1986, indicates that the occupier shall prepare and keep up-to-date an on-site emergency plan containing details specified in schedule II and detailing responsibilities and actions by different person and agencies.

# CHEMICAL ACCIDENTS (EMERGENCY PLANNING, PREPAREDNESS AND RESPONSE) RULE 1996.

Under these rules, framed under The Environment (Protection) Act-1986, the state government has constituted a Local Crisis Group & District Crisis Group to deal with major chemical accidents and to provide expert guidance for handling chemical accidents. Further provision is made that the Major Accident Hazard units have to prepare the on-site

emergency plan and submit the plan to the crisis groups. The local emergency plan will dovetail with the District off-site emergency plan.

### 7.10.3 PREPAREDNESS OF ON-SITE EMERGENCY PLAN

The On-site Emergency Plan describes planning, preparation and training for on-site action in the event of emergency. For On-Site Emergency Plan Advance planning and proper training of each employee into the emergency function is very essential to make emergency control measure more effective. It is not possible to eliminate emergency but is definitely possible to control them. The scope of onsite emergency plan is to prepare for activate the emergency time activities, to controlled and contained within the shortest time if emergency arise after failure of our pre-emergency control measures. Following stage activities are considering for the purpose, as they are co-related and provide better points for emergency preparedness.

### 7.10.4 EMERGENCY TIME ACTIVITIES

It is not possible to include and discuss every action, which should be taken first during emergency. It is also not possible to describe entire actions on emergency situation. The basic principle of handling emergency, that may be relied upon, who have the knowledge and experience to assess the situation and give direction as per the objectives as quickly as possible. However, the aim is to control the situation by safest way in a limited time within existing available resources. Further, it should be handle with such a care that minimum loss of life, property and environment. In short, the objective of the plan should be successfully complied with.

#### 7.10.5 EMERGENCY FACILITIES

#### 1.Medical Facility and setup:

Well-equipped occupational health center is located near the Emergency Control Room and a full time medical officer from Tie Up Hospital in Hosur is in charge of the Occupational Health Center. Dedicated Ambulance is kept ready near the Occupational Health Centre and the driver cum mechanic is available round the clock.

#### AMBULANCE FACILITIES:

Single patient transporting facility

#### 2. Emergency Control Room (ECR) with alternative:

Security office room has been identified as ECR.

Phytochemical plant Security gate as alternate ECR.

#### 3. Telephone Communication:

We have an EPABX setup, and there are 40 lines for common and 5 direct line. The incoming is operated through the board.

### 4.First Person to be contacted in case of Emergency:

Emergency Control room From External - 04344 243005 – From Intercom 2205

#### 5.Site Meteorological data:

(i)	Minimum Temperature	: 14 ⁰ C
(ii)	Maximum Temperature	: 36°C
(iii)	Average rainfall	: 822.3 mm.
(iv)	Weather Conditions	:
		: Wind Speed: 12 to 19 km/hr
		: Stability Class: C
	Humidity	: Dec to May-65 to 75%
		June to Nov80 to 85%

Major Industries: There is no factory around 10 km of the plant surrounding.

#### 7.10.6 IDENTIFICATION AND ASSESSMENT OF HAZARDS

#### 1.Identification of the type of emergency: -

#### **1.1 Types of Emergencies Possible:**

- a. Fire.
- b. Explosive
- c. Chemical Spill & Toxic gas release.
- d. Confined space incidents
- e. Transport related incidents (involving H₂ truck, acid / alkali trucks, FG goods truck etc.,)
- f. Natural calamity
- g. Bomb threat

#### **1.2** Categories of Emergencies:

a) The type of emergencies, which are restricted to one sector of the plant and which can be controlled by the manpower and facilities available in the section.

- b) The type of emergencies though originating from a section, which cannot be controlled by the section. These may require shutting down of the entire plant and may require activation of On-Site Emergency Plan. However, the magnitude of emergency is restricted to plant premises.
- c) The type of emergencies, originating from the plant and whose impact spills outside the plant, fall under a Category wherein there will be a requirement of both On-site and Off-site Emergency plans. Incidents due to natural phenomena may have its impact over the surrounding requiring activation of Off-site plan.

#### **1.3 Identification of the Category:**

The type of emergency identified in SSC fall under category 2.2 and can be handled with the available manpower and facilities within the plant.

The quantity of chemicals handled is below threshold level.

Risk Analysis study brings out the fact that while there can be emergencies with impact limited to plant area there will be no impact over the surroundings.

In view of the location, which is dry, with average rainfall, normal wind velocity and lying in non-seismic zone there is no possibility for an extraordinary situation with offsite potential.

#### 2. Design for safety: -

The plant is built as per the guidelines of Factories Act 1948. Essentially the process involving chemical reactions like alkylation, hydrogenation, oxidation etc. followed by layer separation, filtration, distillation and packing. Critical reactions like hydrogenation under high pressure is carried out in small reactors.

Design consideration is given to important facilities like control room, amenity handling and access routes so as to reduce concentration of people in hazardous areas.

All the blocks are laid with adequate means of escape from all sides and for firefighting. Location of each operating block is laid in such a way that any untoward incident will be localized and shall not impact the surrounding area.

All the chemicals handled in bulk and drums are high boiling and stable liquids stored under normal temperature and pressure.

Chemical storage yard is at the rear side of the plant and stored under recommended conditions and storage is licensed under Explosives Rules and regulations. Open air storage in closed vessels with impermeable flooring and thus ensure prevention of pollution.

To control reaction rate and maintain reaction temperature chilled water and brine solution circulation facility is provided. This automatically checks uncontrolled runaway reactions.

Reactors are provided with rupture disk for release of pressure and the released gas is collected in blurb tank otherwise called as abnormal release tanks, for proper disposal.

Pressure relief valves are also provided with connections leading to blurb tank for collection. There is also facility for release through scrubbers with detector and alarm facility at the outlet set at TLV level for critical gases.

Control panel is provided with audio visual indications and high and very high alarms. All pressure vessels are fabricated as per relevant Indian Standards. Bulk storage tanks have been designed with earthing, bonding and dyke facility towards localizing the spill and prevent movement to surroundings.

All the manufacturing and storage areas are covered under Electrical classification and the equipment provided are of Explosion proof type suitable for zone-2.

Electricity Act & Rules guidelines are followed for design of electrical equipment and earthing.

Static protection is done through proper line sizing, earthing, and provision of jumper and prevention of freefall.

All the chemicals are stored under shed and drums are stored at elevated location with facility for spill collection and transfer of spill to safe place.

Safe operating procedures are provided for all operations and maintenance and the concerned are trained for efficient performance.

Considering the reaction potential of hydrogenation reaction the hydrogenators are designed with all the safety measures.

Temperature, pressure and flow is checked through continuous online indication and recording facility.

#### Drainage:

The site is provided with drainage facilities adequate for all emergency water usage and provided with interceptor chambers designed to exclude storm water drains and main sewer system.

#### Water Supply:

Firewater source is from groundwater for make up. Firewater tank holding is used exclusively for emergency purpose only. Capacity 1200M³

#### 3. Storage Hazards & Controls: -

The storage is mostly class A, B & C chemicals requiring atmospheric storage facility. Class-A chemicals with high inventory requiring regular usage is held as bulk storage, though it is held in small volume.

Chemicals used in small quantity are held in sealed drums. Bulk storage tanks are held above ground and built as per Petroleum Act & rules and storage is approved by Chief Controller of Explosives, Nagpur. Electrical equipment used in solvent storage area is of Explosion proof type.

Bulk storages are dyked and the capacity of dyke has more than the required volume to hold the entire quantity stored in the event of a spill. Bonding, earthing and proper pipeline design ensures static precaution.

The dyke flooring within which storage tanks are held is provided with concrete to ensure proper spill control and prevent earth permeation. Level gauges are provided to have proper control on level and counter checked by dip rod check.

A security guard takes rounds around the tank farm area at regular intervals to ensure detection of unsafe conditions or spill.

Drum storage yard is held in an elevated place and has a roof to prevent direct sunlight and heat. Elevated facility facilitates draining of leaks, if any, for which collection and transfer facility is available.

Acidic materials are stored in non-corrosive FRP tanks with spill control facility and the locations of the tanks are at a distance from other areas to prevent corrosion. The entire area has non-corrosive acid proof tiles and flooring.

Cylinders holding Hydrogen and Ammonia are stored as per Gas cylinder rules and away from each other to prevent any reaction hazards. Special precautions are taken for handling cylinders to avoid unsafe situation.

Small quantity of Furnace oil and diesel are held in MS tanks and the installations are approved by CCE, Nagpur. Bund walls of adequate capacity, level measurement facility, bonding and earthing and impermeable flooring are the other facilities provided.

#### 4. Process Reactor Hazards and controls:-

Process reactors are designed to withstand the maximum allowable working pressure. To take care of high pressures developed rupture disks and relief valves have been provided leading to blurb tanks.

Reactors for critical services are sized in pilot scale level, so that it will have no impact on other areas. Pressure gauge, temperature gauge and flow meters are provided and continuously monitored through indication and recording and also provided with alarms

for deviation. Pressure vessels and reactors are tested and certified by Factory Inspectorate.

### 5. Records and Past incidents: -

There had been no fire or explosion or toxic release in the past ten years and since the quantities handled are small and the care taken to handle and store chemicals being high there had been no event or incident relating to fire or release.

### 6. Identification of Hazard and Failure Scenarios: -

While past records have been quite encouraging with respect to fire, explosion or toxic release a theoretical approach to probable events and a maximum credible analysis through a Risk Analysis study identify the following areas for risk control.

- Bulk storage tank failure and pool fire
- Hydrogenation section of plant.
- Drum storage and handling areas of the plant (this would be practically all over the plant area).
- Release of gases due to scrubber failure
- Solvent fire or explosion in phyto area.

Risk Analysis Report has considered the above-identified areas for consequence analysis and the results are listed below.

#### 7. Summary of Consequence Analysis

Scenario	Vapour	Cloud	Thermal Radiation			Toxicity level in IDLH value in	Distance in m
	0.3 bar	0.1 bar	37.5 Kw/m	12.5 Kw/m²	4Kw/ m²	ppm	
			2				
Hydrogenation reaction explosion	37	18	-	-	-		
Methanol release	22	38	-	-	-		

Storage tank collapse- HSD –	-	-	-	18	30		
Pool fire							
Toluene tank truck collapse	-	-	-	5.8	23		
Drum leakage:	-	-	-	-	-	125	70
Acetyl chloride leak							
Scrubber failure & Release of							
chemicals:							
a. HCL	-	-	-	-	-	50	50
b. Methyl Mercaptan	-	-	-	-	-	150	70
c. Ammonia	-	-	-	-	-	300	not exceede d
d. Hydrogen cyanide						50	
							35

8. Fire Prevention Measures and Fire Fighting facilities details are mentioned 7.9

### 7.10.7 EMERGENCY ORGANISATION AND RESPONSIBILITIES

The Procedure outlined in this chapter is to be followed in the event of an emergency such as fire and explosion during manufacturing activity and operational matrix for handling Emergency is given in below picture

#### **OPERATIONAL MATRIX FOR EMERGENCY HANDLING**



#### Note:

Case-1: First Aid, Fire Brigade and Hazmat Team will report to Safety coordinator.

Case-2: In absence of Safety coordinator, First Aid, Fire Brigade and Hazmat Team will report to Incident controller (Shift in charge).

Key Persons to combat emergency are nominated with specific responsibilities for making the best use of resources available and handling any emergency in an orderly manner without confusion. Such key personnel include site main controller and Incident controller who are responsible for leading the emergency team.

Other key personnel and essential workers play their respective limited role so that the main objective is met in controlling emergency and mitigating the sufferings.

All such key personnel with their alternates will be available in all shifts and on call on offduty.

### 1. Responsibility of Key Personnel: -

### Site Main Controller: Factory In-charge /Head operation

Site Main Controller has overall responsibility for directing operations and calling outside help from Emergency control centre. Security Room will be the Emergency Control Centre. He will assume full responsibility for initiating action to meet the emergency. He will

- Relieve the Incident controller from overall responsibility.
- Exercise direct operational control over areas other than the one affected.
- Inform higher management about the incident and keep them posted with further development.
- Mobilize all manpower and resources through various sources.
- Exercise direct operational control of those parts of works outside the affected area.
- Direct the safe close down and evacuation of plant in consultation with the Incident Controller and key personnel. If necessary arrange for evacuation of neighboring population.
- Control the traffic movement within the Factory.
- Arrange for a chronological record of the emergency to be maintained.
- Issue authorized statements to the news media, and inform Corporate Office.
- Ensure that proper consideration is given to the preservation of evidences. Arrange for photographs / video.
- Liaise with Factory Inspectorate, Pollution Control Boards, Senior Police Officials, fire brigade and Medical Services.
- Ensure that the key Personnel are called in.
- Ensure that casualties receive medical attention.
- Issue authorized statements to news media and ensure that evidence is preserved for inquiries to be conducted by statutory authorities

- Revoke emergency and establish regular operation of safe areas.
- Ensure tally of head count and rescue of missing personnel.

#### Incident Controller : Respective Plant in charges

Alternate : Shift in-charge-Production

Incident controller reports to the Site Main Controller. He is responsible for the overall planning and control of defined emergencies. His primary duty is to take charge at the scene of the accident.

Till Site Main Controller takes control of the Emergency Control Room, Incident Controller will take decision involving the operation of other plants including the area under emergency.

Once Site Main Controller takes charge, Incident Controller will mainly handle the emergency and the area or section where emergency has overtaken. All other operations will be under the control of Site Main Controller.

On hearing of an emergency he will rush to the scene of the occurrence and take over from the shift charge. He will assess the situation and if emergency exists or likely to exist he will inform Site Main Controller, shift in charges, Supervisors and other section heads. He will

- Assess the scale of emergency and check whether major emergency exists.
- Give instructions for emergency siren. Direct all operations within the affected area.
- Ensure that all the Key Personnel are called in.
- Secure safety of personnel and minimize damage.
- Provide advice and information to the fire brigade.
- Direct rescue and fire fighting operations.
- Ensure that all non-essential workers and staff of the affected area are moved to the assembly points.
- Search the area for casualty.
- Report on all significant developments to the Site main Controller.
- Have regard to the need of evidence so as to facilitate enquiry into the causes for the accidents.

Communicate all persons involved in fire fighting and other shift officers on restoration of normalcy.

#### Responsibilities of Safety Coordinator : Safety in charge .

Alternate

#### : Asst.Safety in-charge.

The Safety Coordinator reports to the incident Controller and coordinates with the members of emergency response team & appraises the Site main controller on the emergency response form time to time.

The Safety Coordinator coordinates the activities of Fire Brigade, Hazmat Team and First aid Medical Team. Also ensures that adequate emergency response equipment is available in the plant. The Safety Coordinator may stop any activity that endangers emergency response personnel. He will be responsible for fire brigade and toxic gas control activities.

Responsibilities:

- Respond to all plant emergencies.
- Evaluate and provide the Emergency Response Equipment.
- Ensure that all Emergency Response activity is carried out in a safe manner and assist the Incident Controller in dictating the Emergency Response.
- Maintain inventory of spill control equipment to handle emergency.
- Ensure that all emergency equipment is restored to a state of readiness after the emergency is called off.
- Organize PPE required for emergency area.
- Assist incident controller in fire fighting operation.
- Arrange for additional extinguishers.

Prevent spread of fire by isolation of areas and equipment and materials.

#### Responsibilities of Administration and Media Controller : Admin in-charge .

Alternate	е
-----------	---

: Officer – Admin.

- The Administration/Media Controller reports to the Site Main Controller coordinates with the members of emergency response team to tackle the emergencies.
- Establish media contact if required.

١

- Contact outside emergency responders as & when required.
- Notify Custom Manufactured Chemicals Divn Limited, top management and corporate affairs department & appraise of the situation.
- Inform local Hospitals
- Advice Ambulance services and local hospitals to keep them prepared for treating injured.
- Call for trained fist aiders for handling large number of casualties.
- Arrange to send injured for specialized treatment.
- Arrangement transport for injured either through accompany vehicle or outside ambulance.
- Arrange for monitory resources for medical facilities under the instructions of site controller.

Organize refreshment/catering facility if the emergency is prolonged.

### Communication Coordinator : HR In charge Alternate : Officer – HR.

Communication coordinator will handle all communications and he will act as one point source for receiving and transferring communication.

He will take his instructions from the Site Controller and respond to Administration Controller.

Upon hearing emergency he will take up his role as Communication Coordinator and locate himself at the Emergency centre.

He will

- Inform company doctor regarding the nature of emergency to receive casualties for offering appropriate treatment.
- Inform security to keep ambulance and other vehicles to handle emergency.
- Inform fire brigade for fire fighting.
- Establish contact with Incident controller to know the situation inside emergency area and transfer the details to site controller.
- Maintain log of Incidents.
- Check the Head count at assembly point with attendance and report to site controller and Incident controller about tally & figures.

#### **Responsibilities of Operations Officer: Shift In-charge organic**

The Operations Officer will normally be the Shift in-charge at that time emergency. Once the emergency is declared shift in charge will take care of plant area other than the area under emergency and ensure normalcy.

He will report to Incident Controller during emergency and take instructions for controlling the activities associated with non-emergency operating plants.

When the Emergency Situation arises after office hours/holidays, the shift in charge will do the role of Incident Controller till the arrival of Site Main Controller/Incident Controller. Trained First aid, Fire fighting and Hazmat team is available round the clock and they report to Incident controller (Shift incharge)

#### **Responsibilities:**

- Will depute asst. shift incharge in the Emergency control centre during emergency after office hours.
- Maintain communication with the Site Main Controller through security.
- Recommend emergency shutdown and or evacuation of plant personnel of non-affected areas.
- Ensure that emergency does not spread to normally operating areas.

### Responsibilities of Environment Coordinator : Environment in-charge Alternate : Asst. Environment incharge

- The Environment Coordinator reports to the Incident Controller and coordinates with the members of emergency response team to tackle emergencies.
- The Environmental Coordinator, assesses the environmental impact of the incident, advises the Incident Controller in spill control and mitigation, and contacts outside Environmental agencies as & when required.
- Assess environmental impact of any release to the environment, which includes analytical monitoring as required.
- File follow-up reports with environmental agencies.

### Responsibilities of Security Coordinator : Head Guard Alternate : Asst Head Guard-Security

The Security Coordinator reports to the Site Main Controller and coordinates with the members of emergency response team to tackle the emergencies.

- Respond to all plant emergencies.
- Control all incoming and outgoing traffic.
- Block all non-essential entry into plant.
- Take head counts during emergencies.
- To keep control of the employees assembled near the gate.
- Prevent employees and others approaching the area of accident.

### Responsibilities of First Aid and Rescue Team:

When there is a Medical Emergency the employees of the affected area informs the Emergency control centre for getting assistance.

The medial team will be informed by the security about which area is affected & will proceed to the affected area.

- They report to the Safety Coordinator/Incident Controller at the time of medical emergency.
- Medical Team provided First aid to injured personnel.
- Bring the injured to the Medical Centre for first aid.
- Medical team is trained on First Aid.
- Evacuation of persons from emergency area to assembling points.
- They will coordinate with the External medical personnel as & when required during the emergency.

Medical team members will have their identification badges.31 no.s of employees are trained first aider.

#### **Responsibilities of Fire Brigade:**

- The Fire Brigade team works under the direction of the Safety Coordinators/Site main controller.
- The Fire Brigade shall respond to all fire emergencies as & when called, be prepared to extinguish all fires, prevent the spread of fire and prevent the damage caused by a fire.

- The Fire Brigade will fight the incipient fire inside or outside of an enclosed structure or building & has to perform full-fledged fire fighting in the open area only.
- When there is a fire alarm signal, the Fire Brigade members will call the Security Dept & get the details about which area is affected & proceed to the fire scene from an upwind direction.

Members of the Fire Brigade will have their identification badges. 34 no.s of employees are trained for fire fighting.

### **Responsibilities of Hazardous Materials Team: (HAZMAT TEAM)**

When there is leak or spill of hazardous substances the employee of the affected area informs the Emergency control centre (security office) for getting assistance.

The HAZMAT members will be informed by the security about which area is affected & will proceed to the affected area. HAZMAT Team members handle and control leak or spills of hazardous substances.

HATMAT Team members coordinate with the Safety Coordinator or Incident Controller tackling the emergency. Also, the HAZMAT members will be in regular contact with the Incident Controller/Environmental Coordinator & appraise of the emergency so that proper monitoring can be done during the incident/post incident. HAZMAT members will have their identification badges. 24 no.s of employees are trained for rescue for hazardous

In case, if the emergency is after office hours/holidays the Security in-charge will inform the Key personnel immediately. chemical.

### **Responsibilities of Essential Worker:**

A task force of essential trained workers is available to implement the instructions of Incident controller. Such workmen, on emergency will take permission from the departmental head and join the task force to fight emergency.

- Fire fighting as per instructions of safety officer, as part of Fire Brigade.
- Shutting down and making it safe.
- Safe transfer of material, urgent repairing or replacement.
- Provision of emergency power, lighting, equipment, material etc.
- Search, evacuation, rescue & welfare.
- First aid and medical help.
- Manning assembly points.
- To act as messengers wherever called for.

#### General Guidelines: -

• On hearing the fire alarm all the workstation in charges of the plant should carryout the following:

- Identified emergency brigade will go to the area of emergency.
- Stop all feed and ensure smooth stoppage of all production units.
- Stop all loading and unloading operations and keep transport vehicles in, as is where is condition without blocking emergency passage. Before leaving the vehicle transport drivers must leave the key in the vehicle and then move to assembly point.
- Under all circumstances, whenever an emergency is suspected, Hydrogen supply from cylinder will be isolated and the truck should be safely moved to the nearest safe spot. Ensure Nitrogen supply and power availability.
- Plant restart will be done only after hearing all clear siren and getting clearance from Site Controller. Head of production department will personally visit plant for restart of the plant.
- Restart of each plant will be through personal inspection and clearance from Incident Controller to respective plant Head.

#### Notification and Documentation: -

#### **Notification to Statutory Authorities:**

Depending on the scale & type of emergency, the appropriate statutory authorities will be informed in the appropriate formats by the Factory in-charge, at the immediate opportunity.

#### Documentation:

The person first witnessing the accident/incident will inform the Shift in charge. The Accident/Incident will be reported in FOR/FIC/001 & submitted to the SHE department. The Accident/Incident is investigated, the probable root cause will be identified & necessary corrective & preventive action will be taken.

ASSEMBLY POINTS: -

There are four Assembly Points. The locations are as follows:

Assembly point 1	Near Security office
Assembly point 2	Near Stores
Assembly point 3	Near Phyto entrance
Assembly point 4	Near Plant 4

#### 7.10.8 EMERGENCY CONTROL ROOM: -MAIN SECURTY OFFICE.

#### ALTERNATE EMERGENCY CONTROL ROOM: - NEAR PHYTO SECURITY OFFICE.

Security Office will be the Emergency Control Centre for any major emergency. It is the place from which the operation to handle the emergency are directed and coordinated. It will be attended by the Site Main Controller, key personnel and Senior Officers of Fire and rescue department, Police, Factory Inspectorate, District Authorities and Emergency Services.

The Centre is equipped to receive and transmit information and direction from and to the Incident Controller and areas of the Works as well as outside. Emergency contact no is 205

The established Emergency control room contains the following equipment/information:

- Self contained breathing apparatus
- Onsite Emergency plan, which contains safe shut down procedures, Information Emergency team members etc.
- Emergency contact numbers.
- Important contact numbers of government offices.
- Topo sketch showing the adjoining facilities.
- Site plan showing Entry & exit, Emergency assembly points, safety shower
- Location Fire hydrants points and portable fire extinguishers, Occupational health

centre and Emergency Control Room etc.

Additional layout of the plant which may be required to mark up during the emergency to show:

- Areas affected or endangered.
- Deployment of Emergency vehicles.
- Particular problem areas.
- Areas evacuated.
- Other relevant information
- Nominal roll of employees.
- List of key personnel addresses and telephone numbers.
- Emergency Preparedness plan.
- Material safety data sheets of various chemicals used.
- Details of various manufacturing processes.

### 7.10.9 COMMUNICATION SYSTEM

The communication system is crucial factor in handling an emergency. For the purpose of onsite emergency plan, the plant has a quick and effective communication.

- a) Inside the factory.
- b) To key personnel outside normal working hours.
- c) To the outside Emergency services and Authorities and
- d) To neighboring Factories and Public in vicinity.

The facility available for communication in the plant area is through Telephone& walky talky. Office and Residential Telephones provided by the company, Intercom facility within plant area.

The communication system beginning with raising the alarm, declaring the major emergency and procedure to make it known to others is explained below in brief.

#### 1. Raising the Alarm: -

When there is an emergency, the personnel working inside the plant will be notified by emergency alarm (Fire alarm / Toxic gas alarm). The activating buttons for the alarm system are located at:

Siren: 1-Near pilot plant. Siren: 2-Phytochemical Plant. Siren: 3-Plant 4 Siren: 4-Organic

An individual who has discovered an unusual situation should inform Shift In-charge, who in turn will take a decision whether to communicate to seniors or declare emergency by activating the siren, depending upon the contingency.

- Fire alarm- (30 seconds-5 seconds-30 seconds)
- Toxic gas alarm- (30 seconds-5 seconds-30 seconds-5 seconds-30 seconds)

### • All Clear (Continuous siren for 1 minute)

In addition to the alarm, the emergency to be announced through the Public Announcement System to alert all the personnel inside the plant and to summon the ERT members of the respective plant to begin the initial fire fighting measure.

The siren will alert key elements and essential workers who will proceed to the accident site and initiate emergency response actions.

The alarm system is connected to the UPS system so even during power failure the alarm can be activated.

If an individual attempting to report an emergency is unable to activate the emergency alarm, or if the emergency alarm is not working, he can use the intercom facility, which is nearest to him.

The security in-charge who sits in the ECR will inform the plant personnel through intercom & Walky talky & Public Announcement system. If there is power failure immediately alternate power is restored through generators. Internal telephones & Walky talky are available throughout the factory, which serves as the major source of communication.

The siren is checked every Monday afternoon for its reach and performance. Short sirens followed by gap are kept on to indicate an emergency situation. When the emergency is cleared as per procedure long siren is activated to indicate end of emergency and return of normalcy.

### 1.Declaring On-site emergency: -

Since declaration of emergency is a critical decision it calls for clearance from Site Main Controller or Incident Controller or their alternates.

But declaration of emergency is an important and timely decision requiring quick action without loss of time.

#### 1.Telephone Messages: -

After hearing the emergency alarm and emergency declaration, the person attending the telephone will play an important role. He will be very precise, sharp, attentive and quick in receiving and noting the message and then for immediate subsequent action of further communication.

List of telephone numbers are displayed in main gate.

#### LIST OF EMERGENCY CONTACT NUMBERS

Sl.no	Name	Designation	Interco m nos.	Mobile no
1	Dr. Krishna Kumar Rangachari	ED	2232 8569	9790961476
2	G.Sankara subramanian	Business Manager	2232 8625	9944941237
3	VSV Rajan	Corporate Safety Head	8545	9941419300
4	Guru srimanikandaraja	CSL Safety Head	5508	9840420750
5	Yogeeswara Basappa Gowda	Plant Head	2211	8940650999
6	P. Prabaharan	Production In charge	2220	98419 16772
7	K. Soundararajan	Production In charge	2240	98947 37249
8	R.Kumar	Safety In charge	2217	9994468779
9	M.Saravanan	Security & Admin In charge	2216	990061942
10	R.Jayakumar	Environment In charge	2238	9994564380
11	N.Rajesh	Stores In charge	2222	9750427987
12	G.Harisha	HR In charge	2208	9790098556
13	R. Sabarigiri	Mechanical In charge	2224	95510 57001
14	B.Prabakaran	Electrical In charge	2219	9489966500
15	P.Arun Prasath	Instrument In charge	2202	99429 37427
16	John Sundar Chellappa	QC & QA In charge	2228	98948 55245
17	Dr. Mahendranath Rao	R& D Head	2234	9945181726
18	Venkata Sravanth Poruri	Technical Service	2244	7350825900
19	Manivannan	Project Incharge	2245	9842629115
20	Magalingam	Production In charge	2230	7708122965
21	K.G.Ganesan	Quality Incharge	2212	8940448941

22	Venkatesa Perumal	Project Dy.Incharge	2319	9962662929
23	Main Gate	Security In charge	2205 & 2229	9384832788 & 04344 253005
24	Mr.M.Meganathan	OHC-Doctor	2299	7598340640

#### LIST OF STATUTORY AUTHROITIES WITH CONTACT NUMBERS

Statutory Authorities	Place	Contact Nos.
Fire station	Hosur	(04344) 276699
Police station	Berigai	(04344) 253521
Police station	Bagalur	(04344) 254121
Deputy Superintendent of Police	Hosur	(04344) 222624
Deputy Chief Inspector of Factories	Hosur	(04344) 274347
District Environmental Engineer, TNPCB	Hosur	(04344) 278922
Sub Collector	Hosur	(04344) 222622
District Collector	Krishnagiri	(04342) 230561 / 230562
District Superintendent of Police	Krishnagiri	(04342) 239700
Taluk Office	Hosur	(04344) 222493
Tamil Nadu Electricity Board	Berigai	(04344) 253879
Tamil Nadu Electricity Board	Bagalur	(04344) 254230

#### 1.Communication on possible Emergency: -

#### Inside the factory to workers:

All workmen are kept informed through dissemination of hazard information, storage details, safe handling procedures and role of workmen during emergency.

#### a. To Key personnel outside normal working hours:

Generally the key personnel and essential workers will be available in all shifts or on short call. But due to some reasons, if some are not available or not on duty and are outside and if their help is required, their updated lists are kept in the Emergency Control Centre from which the call-in will be made.

The names are listed in order of priority. Communicators are told to call-in the personnel in the order given. On making contact, the communicator will give a short prearranged message to the effect that an Emergency has been declared at works. Those contacted will not try to elicit further information at this stage, thereby delaying other calls.

#### b. To outside emergency services & Authorities:

The emergency will be communicated to authorities such as Police, Factory Inspectorate and Pollution Control Board for information and their involvement.

Since the levels of chemicals handled are small in volume off site emergencies are not possible and hence the information will be the statutory intimation and will not require their participation or help.

#### c. To neighboring Firms and Public:

Since no Off-site emergency or spill of on-site is contemplated such an exercise is not called for. However the emergency siren will work as a communicative for under standing the existence of emergency inside the plant.

#### 5. Post-Emergency Activities / Recovery:

- Incident Controller will inspect the affected area and other operating sections.
- Only after clearance from Incident Controller, Plants will be started, one by one.
- Incident Controller will ensure proper functioning of utilities before clearing restart of the plant.
- The affected area will be started only after total study, enquiry and incorporation of correction. It necessary statutory clearance will be obtained.
- Post emergency activities comprise of the steps to be taken after the emergency had been controlled. The actions involved are
  - Collection of records.
  - Conducting enquiries and concluding preventive measures.
  - Making insurance claims.
  - Preparation of enquiry reports and suggestion scheme.
  - o Implementation of enquiry reports and recommendations.
  - o Rehabilitate the affected persons within and outside the premises.
  - To restart the plant.
  - Administrative Controller will follow up with hospitals on treatment of injured.

#### 7.10.10 EMERGENCY RESPONSE PLAN / ACTION ON SITE

#### 1. FIRST RESPONSE: -

Copy of Plant Layout marking the hazardous areas in the plant is enclosed as Annexure-V.

Any employee noticing fire or toxic release will shout for help and to attract attention. Shift in charge will be informed through telephone or walky talky regarding location of emergency. Shift in charge officer, depending upon the nature, will declare emergency and activate suitable alarm.

Any employee/person noticing the fire will shout 'Fire' 'Fire' to attract attention of others, shift incharge will be informed through phone or walky talky regarding fire and the location. He will rush to the site and arrange for controlling the fire. Meanwhile he will organize communication through phone or walky talky to the security office regarding emergency and location. He will inform security to blow the fire siren.

- On hearing the fire siren the nominated Incident Controller will take over from the shift incharge and execute the responsibilities of Incident controller.
- Site Controller viz Manager of the Plant will proceed to the Emergency Control Room and call assistance from key elements.
- Safety Officer/Fire fighting coordinator or alternate will proceed to location and start fire-fighting activity.
- Communication coordinator will proceed to the Telephone section and take over the function of receiving and transferring messages.
- Administration coordinator will wait for instructions from Site Main Controller.
- Security Coordinator will take charge of entry operations at the gate and prevent movement of Transport vehicles inside the plant. Soon after hearing the siren main gate will be kept open for free movement of vehicles.
- Ambulance Van will be kept ready for emergency movement of injured.
- Company Medical Officer will reach his first aid centre and prepare the dispensary for receiving affected persons. He will take instructions from site main controller for necessary emergency action.
- Security Officer will ensure that roads inside plant are not blocked and free space is available for movement of vehicles.

### 2. Fire Brigade Team: -

The team members to go into action such as: -

- 1. Rush to the spot of the fire with all available fire extinguishers and try to put out the fire at the earliest.
- 2. Stop all other activities and concentrate only on fire fighting and prevention of spread of fire.
- 3. As other members rush to the scene of fire tell them about the nature of emergency and inform about the extinguisher to be used.
- 4. All the combat activities will have clearance from Fire Fighting coordinator, the team to report to Fire fighting coordinator.

### 3. First Aid/Rescue Team:-

The assigned operations are such as: -

- 1. Inform Site Controller through communication coordination about the situation available at emergency spot.
- 2. Ensure that transport trucks are moved away and do not block the escape routes.
- 3. Bring stretchers from the dispensary and move the injured to the dispensary.
- 4. Help company medical officer and work as per his instructions.

#### 4. What should not be done: -

- 1. Do not take unnecessary risk.
- 2. Do not run in panic.
- 3. Do not argue or discuss in the scene of fire.
- 4. Do not operate extinguishers if you do not have proper training.
- 5. Take instructions and act as per instructions of Incident Controller.
- 6. Only authorized team / persons will carry out respective role.

#### 5. First Response Common to All: -

- If you notice the fire first try to extinguish the fire or take immediate steps called for
- and shout "Fire" "Fire" and take the help of others. Shift Officer should be contacted
- immediately.
- The employees shall observe the windsocks, move crosswind to the nearest
- assembly point in case of Fire / Toxic gas alarm.
- All the personnel other than the Emergency response team personnel are to report to the nearest assembly point:
  - Assembly point 1 In front of Emergency control room.
  - Assembly point 2 Alternate Assembly point in Phyto plant
- A head count shall be performed to account for all personnel.
- The most senior SSC employee, present at each assembly point, will take charge of making a head count for that location.
- They will report the results to the Emergency control room.
- The total head count will include the persons handling emergency situations (this includes Site main controller, Shift in charge, Safety Coordinator, Environment Coordinator, and Emergency Response Team (Fire Brigade team, Hazmat team, First Aid Team) The total headcount should match the gate entry record of the personnel.
- All visitors and contractors shall follow directions given by the SSC representative during the time of emergency. The SSC Representatives shall direct visitors and contractors to the nearest safe assembly point.
- Contractors and visitors should not leave the plant site until a Head Count has been completed.
- When the Fire alarm / Toxic gas alarm is activated all the work permits shall come to a stand still.
- The employees shall observe the windsocks, move crosswind to the nearest safe assembly point.
• Finally, when the emergency is brought under control, "All Clear" alarm will be signaled out by the Site main controller. The "all clear" alarm will be a continuous alarm for 60seconds.

#### Process shutdown:

When the alarm is activated, depending on the type of emergency, the shift in charge will order for shutting down the process.

Emergency shutdown procedures are product specific as these depend on the type of raw materials used and the process.

All operating personnel shall follow the standard emergency shutdown procedure as per the BMR and report to the nearest Assembly points.

#### **Total Plant Evacuation:**

The Site main controller will consult with the members of Emergency response team to decide total evacuation of plant if the situation warranted.

The Plant Evacuation Exit points are located at

- Evacuation Exit point 1 Front Gate near Main Security Office.
- o Evacuation Exit point 2- Gate in Phytochemical Plant

## 6. Procedures in the event of a Fire: -

- 1. The person, who first notices the fire, if he is confident on the nature of fire, shall try to extinguish with the appropriate portable extinguisher, which is near to the fire scene.
- 2. If the situation is beyond his control he will activate the emergency fire alarm & simultaneously information is passed on to the ECR.
- 3. When the fire alarm signal is heard, the Fire Brigade members will rush to the fire scene & respond to the emergency.
- 4. The Emergency Response Team will provide necessary help to the Fire Brigade both internal & external as per the requirement.
- 5. If the fire fighting operation is prolonged for a longer period, Site main controller will arrange additional resource for water.

## 6.1 Procedure in the event of Hydrogen related Fire:

Hydrogen will burn with a pale blue, almost invisible flame.

Hydrogen fires will have the flame characteristic of a torch or jet and will originate at the point where the hydrogen is discharging.

## Procedure:

- 1. Shut off the flow of Hydrogen supply by closing the valve in the main header located in the Hydrogen shed.
- 2. If the fire is of small nature use  $CO_2$  / DCP fire extinguishers to extinguish the fire.

- 3. Cool the surrounding equipment / environment in the event of a hydrogen fire.
- 4. If the fire is of serious nature follow the normal procedure as described above.

## 6.2. Procedure for fire fighting in tank farm area:

- 1. The first person to come across the fire shall activate the emergency fire alarm & simultaneously inform ECR.
- 2. Immediately the Fire Brigade team will rush to the spot & will respond to the emergency.
- 3. The tanks which are not under fire will be cooled by water spray / sprinklers.
- 4. The barrels stored in the storage shed will be cooled by water spray to avoid any mishap.
- 5. If required the Site main controller will order for emergency shut down of all the processes in the plant.
- 6. Based on the nature and extent of fire, Site main controller will requisition assistance from Tamil Nadu Fire & Rescue services.

## 7. Chemical Spill & Toxic Gas release: -

## 7.1 Procedures for Major Spills & Toxic Gas release:

The spill or toxic release may happen due to abnormal working conditions, dangerous occurrences, human error, and dangerous chemical reaction involving toxic chemicals & hazardous chemicals

The primary concern in the event of a major spill / toxic gas release are:

- Protecting the environment.
- Protecting the employees and people in neighboring communities.
- Stop, contain the leak or spill and clean up.
- Determine the extent and material involved in the leak or spill and mitigate the damage caused to the people environment and the assets.

## Procedure

- 1. When there is a major spill the employee who first saw the spill will inform the Emergency control room.
- 2. Processes will be shut down as required to stop any atmospheric releases; this will be carried out as per the emergency shut down procedure as described in the BMR.
- 3. Primarily, the spread of the spill will be controlled by the HAZMAT team in the facility by constructing make shift dikes of dirt and / or absorbent material (including granular absorbent, spill pads,)
- 4. Closing valves, blocking lines, and / or sealing openings as needed, shall control spills.
- 5. Air monitoring will be conducted as & when required to evaluate the environment and determine chemical concentrations.
- 6. Clean-up of the area will continue by use of absorbent material, or other appropriate methods, until all of the spilled material has been removed.

- 7. If there is a possibility of spill escaping into adjacent waterways, control will be accomplished by making barricade or by other methods, which will contain or divert the material for collection.
- 8. All the above procedures will be carried out only with necessary PPE.
- 9. If necessary, the Site main controller will obtain external resources to fully contain the spill or toxic gas release.
- 10. The Site main controller will call the emergency off & initiate action to mitigate the damage caused.

## 7.2 Procedure for toxic gas release:

- 1. When there is toxic gas release in the process area / scrubber.
- 2. The workstation in-charge will activate the Toxic gas alarm & simultaneously informs ECR about the toxic gas release.
- 3. The workstation in-charge involved in that operation will wear appropriate PPE such as nose mask, air breathing apparatus or self-contained breathing apparatus (SCBA) & control the situation
- 4. The HAZMAT team members when they hear the toxic gas alarm will rush to the affected area with SCBA to control the release.
- 5. Simultaneously, HAZMAT team will also search out for any persons who are trapped inside the affected area.
- 6. If anyone is found in an unconscious stage, the affected person will be shifted out immediately to the near by hospital for treatment.
- 7. When the release is controlled, the HAZMAT team will carry out atmospheric monitoring. If everything is normal, the message will be passed on to the ECR.
- 8. All the above procedures will be carried out only after wearing necessary PPE.
- 9. HAZMAT team will be in regular contact with the ECR & appraise of the situation to the Site main controller.
- 10. The Site main controller will call the emergency off & initiate action to mitigate the damage caused.

## 7.3 Possible Toxic gas releases in the plant:

- 1. Hydrogen cyanide gas emission from the scrubber.
- 2. Ammonia.
- 3. HCL vapours. (This is not toxic but corrosive in nature.)

The procedure for handling the above abnormal releases is as follows: -

## 7.3.1 Procedure for handling Hydrogen Cyanide Emission from the scrubber:

The HCN online detector is installed in the Scrubber & Reactor area, if Hydrogen Cyanide emission is **above 5 ppm** then there will be an audible alarm in the Shift in charge station. 1. The workstation in-charge will wear the air breathing apparatus / SCBA.

- 2. Steam, reactant dosing in the reaction involving cyanation will be stopped automatically through PLC interlock.
- 3. If acidic reaction media is suspected as the cause for the emission, addition of sodium hydroxide solution from the emergency dosing tank, which is kept ready for mitigating emergency situation.
- 4. If the scrubber fails the agitator will be stopped, in addition to closing the steam valve and dosing valve.
- 5. If higher temperature is suspected cooling water will be circulated in the jacket
- HCN level in the atmospheric air will be checked using Drager tube by standing around 50 mts. away from the scrubber. If the HCN content is more than 5 ppm and if it is not reducing further, the Site main controller will take action for evacuating the people.
- 7. All the above procedures will be carried out **only after wearing necessary PPE.**

## 7.3.2 Procedure for handling Ammonia gas emission from the Scrubber / Reactor:

- 1. The workstation in-charge will immediately wear Air-breathing apparatus / Respirator for Ammonia handling.
- 2. Identify the cause for gas emission.
- 3. If the gas emission is from the reactor or from the pipeline, agitation will be stopped to control the progress of reaction.
- 4. Circulation of coolant (Chilled brine / chilled water) in the reactor jacket will be continued.
- 5. If the gas emission is from the scrubber due to scrubber failure, change over of scrubber and scrubbing solution line will be done.
- 6. Alternatively, the raw water will be allowed to flow in the scrubber.
- 7. Level of ammonia in the atmosphere will be checked by using Drager tube in the wind direction within the radius of about 50 m away from the scrubber. If the ammonia concentration is more than 5 **ppm** and if it is not reducing further, the Site main controller will take further action for evacuating the people in the area.
- 8. The above procedures will be carried out only after wearing necessary PPE.

# **7.3.3** Procedure for handling Hydrogen chloride (HCl) gas emission from the Scrubber / Reactor:

- 1. The workstation in-charge will wear SCBA / air breathing apparatus / respirator for the Acid vapours.
- 2. Identify the cause for emission.
- 3. If the gas emission is from the reactor or from the pipeline, agitation will be stopped to control the progress of reaction.
- 4. Circulation of coolant (Chilled brine / chilled water) in the reactor jacket will be continued.
- 5. If the gas emission is from the scrubber due to scrubber failure, change over of scrubber and scrubbing solution line will be done.
- 6. Alternatively the sodium hydroxide solution will be allowed to flow in the scrubber.
- Level HCl in the atmosphere will be checked by using Drager tube in the wind direction within the radius of about 50 m away from scrubber. If the HCl concentration is more than 5 ppm and if it is not reducing further, the Site main controller will take further action for evacuating the people in that area.

- 8. The above procedures will be carried out only after wearing necessary PPE.
- 8. Response to Medical Emergencies: -

#### **Procedure for handling Medical Emergencies:**

- 1. The first person to come across a grievous medical emergency shall inform ECR.
- 2. The ECR will immediately inform the Medical Team.
- 3. The medical team will rush to the emergency scene & administer first-aid.
- 4. All the responders attending on the medical emergency shall protect themselves from contact with the body fluids of the injured persons.
- 5. If the medical emergency is of serious nature & if External medical responders have to attend on it, then the medical team member attending on the emergency will contact the ECR for arranging the external responders.

#### 9. End of Emergency: -

After the emergency comes under control, Incident controller along with safety coordinator will go around all the areas and confirm total control of the situation. Communication coordinator will check for head count and tally of employees and organize further efforts through Incident Controller for search of missing persons. After ensuring tally of Head count and confirming control of emergency Incident controller will communicate end of emergency to site coordinator who in turn will inform security to go on long-siren to declare "End of Emergency". Plant start-up will be done stage by stage after taking separate clearance for each plant from Incident controller.

#### 7.10.11 NATURAL CALAMITIES AND BOMB THREATS

#### 1 Natural Hazards like floods, Earthquakes etc.

In view of the high elevation of the plant compared to the surroundings flooding cannot take place and has a tendency for quick draining towards the water stream. There had been no incidence of flooding or severe earthquake in the last five decades history of the plant. However the following precautions are considered as a matter of abundant preparation.

If no advance warning is received, employees are to seek shelter in the administration / amenities building basement, ground level interior rooms and rest room. If this is not possible, employees should seek safety under a table or heavy piece of equipment that offers protection from falling debris.

If a high wind warning is issued in TV or Radio, personnel should be assigned to monitor weather conditions and report on threatening conditions.

# When a warning issued by TV (meaning that a high wind has actually been sighted in the area) the following steps to be taken immediately:

- a. Personnel in the plant will be notified through PA/Paging system
- b. Emergency brigade will be placed on alert
- c. Plant personnel are to seek shelter in the (administration / amenities building basement, ground level interior rooms and rest room)
- d. All non essential utilities should be shut off

After the passing of a high wind, personnel should inspect their areas for damage. If the plant was struck, emergency brigade personnel will bring rescue, first-aid and damage control activities. Damage assessment, cleanup and restoration and other activities should follow.

#### Lightning:

The purpose of this section is to outline activities to be taken and following lightning to protect employees and to continue vital operations.

#### **Employee Safety:**

During these emergencies, all personnel will evacuate from buildings and proceed to safer areas. The shift in charge should contact operators by page phone for a report on employee safety and a condition of plant facilities and equipment. The emergency brigade should begin rescue, first aid and damage control activities.

#### **Emergency Shutdown:**

As soon as possible, emergency shutdown procedures should be implemented, including,

- a. Closing of batches
- b. Shutdown of Power
- c. Close main inflow gate and assess damage.

In case of vent fire during lightning isolate vent or supply inert gas and after fire is extinguished isolate vent.

It is preferable to have flash back arresters on process vents where fire probability exists. Tall structures, vents and chimneys are protected against lightning as per code.

## 2 Bomb Threats

Regarding emergency arising out of bombs or bomb threats the person receiving the call should inform Emergency Site main controller (Plant in charge) or his alternate.

- Person noticing an object that could be a bomb, should bring it to the notice of the nearest available officer.
- The officer should observe the same from a distance and raise an alarm to declare an emergency.
- Officer should cordon off the area, nobody should be authorized to go near the object.
- Police control room and fire station should be informed by Plant Manager.
- On arrival of the police and fire personnel, they should be allowed entry in the cordoned off area.
- After the bomb is diffused or found to be a hoax, clear siren should be given by watchman at gate number one.

The key persons associated with bomb threats will consist of

- 1. Emergency Site Main Controller or Alternate
- 2. Inspector or Station-in-charge of nearest Police Stations
- 3. District Fire Officer, Krishnagiri
- 4. District Superintendent of Police, Krishnagiri
- 5. District Collector, Krishnagiri
- 6. District Medical Officer, Krishnagiri

## **Responsibility of Site Main Controller:**

- Collect detailed information from the person receiving the first call on bomb threat.
- Soon after receipt of bomb threat inform all members of Bomb Threat Evaluation Committee, mainly Police Control Room, Fire station and District collector.
- The first responder should be informed to be available for further clarification.
- Close down all operations except utilities like cooling water circulation to ensure safety of the plant.

## <u>Responsibility of Plant Security Officer – Security:</u>

- Cordoning off the affected area
- Stop movement of vehicles
- Assist bomb search teams
- Collect intelligence and surveillance.

# Search team will be through external experts from Police department. They will carry the following in working condition:

- a. Metal Detector
- b. Search mirror
- c. Emergency Lights
- d. Flash Lights
- e. Tools
- f. Marking facility

Snifter dogs may be employed at the discretion of Police authorities, but taking into consideration toxic hazard.

It bombs threat is confirmed or suspected evacuation should be carried out leaving minimum number of persons for assistance and located in safe area.

## 3 .Evacuation Procedure:

- 1. Employees should be calm and walkout to designated place in orderly manner.
- 2. Follow instructions from guides regarding the route to be followed.
- 3. Remain in the Assembly or safe area till further instructions.

## Follow the rule of 'Taking away the employees and not taking away the bomb'.

## All clear signal:

All clean siren is to be communicated once the bomb is diffused or the threat is proved as hoax, subject to clearance from Plant authorities. After the siren the routine procedure for restart with clearance from all levels should be followed before startup of the plant.

## 4. Recovery Process

Introduction:-

Towards re-establishing normal operations at the earliest after an emergency the following procedure will be followed.

The section is divided into six parts:

- 1. Reconstruction of the accident scenario
- 2. Incident investigation
- 3. Establishing a recovery team
- 4. Damage Assessment
- 5. Clean-up and restoration
- 6. Post-Emergency and Recovery Reporting

After the major emergency has been cleared the scene needs reconstruction with the help of persons who were associated with the scenario.

## **Incident Investigation:-**

To investigate the cause of the emergency and to prevent recurrence the incident requires through investigation. The investigation team should immediately seal off the incident scene and commence its investigation to minimize the loss of any physical evidence. The investigation of the scene should include photographing the area, identifying equipment from fragments and note unusual items

Written or recorded statements are to be taken from all operators involved, potential witnesses and others who might have pertinent knowledge about the incident.

### Report: -

A final report will be prepared giving details about the basic reason for the accident and will work as a failure report covering equipment, maintenance, procedure, training, human error etc.

#### **Recovery Team: -**

In order to facilitate the restoration of normal operations of the company after an emergency, a team is to be constituted by Chief Executive to manage recovery activities, including damage assessment. As a general rule, however, individuals representing Maintenance, Production, Safety, Quality Control, Accounts, Engineering etc., will be involved.

The recovery team is responsible for damage assessment, clean-up and salvage operations and the restoration of normal operations. A primary function of the recovery team will be to assess the damage to structures, equipment and materials.

## 5. Clean-up and Restoration Operations:-

As soon as incident investigations are completed and restoration plans have been made, clean-up and restoration activities will commence.

#### **Damaged Equipment:-**

Prior to restoration of normal operations, all affected equipments are to be tested and checked according to procedures established.

#### 6.Post-Emergency Recovery Reports:-

The Plant- in-charge will hold review sessions with emergency response personnel to evaluate.

- 1. The adequacy of emergency response procedures.
- 2. The adequacy of the investigation of the cause of the incident.
- 3. Summaries the post-emergency activities.

## 7.10.12 TRAINING, REHEARSAL AND RECORDS

## **1. NEED OF TRAINING & REHEARSAL**

Training is important in order to –

- Teach worker's how to handle chemicals safely, how to act as a runner/messenger, how to use PPE, how to start and shut down the plant, how to carry out emergency repairs etc.
- Teach one to be a safe and alert worker.

Rehearsal is essential for -

 Explaining and making key personnel and essential workers aware of their role in case of an emergency.

- Testing the emergency procedure, emergency arrangements and ability of all involved with it to grasp the procedure and implement the same.
- Testing the effectiveness of communication system including the alternative arrangement in case of failure.
- Testing the speed of mobilization of resources, search, rescue and treatment of casualties, emergency isolation and shut down.
- Detecting the shortcomings in the emergency plan and incorporating remedial measures.
- Allowing professional emergency services to test their parts of the plan and testing coordination.
- Building confidence in workers which is helpful in facing real situations.

Training will be given to regular employees and contract personnel also. Effective and latest teaching aids will be used to train workers and supervisory staff. Such training courses will be conducted once in a year and co-ordination with offsite personnel shall be sought during such training. Records will be maintained for training.

## 7.11 OFF-SITE EMERGENCY PLAN

## 7.11.1 Need of the Site Emergency Plan

Depending upon the wind direction and velocity of the effects of accident in factory may spread to outside its premises. To avert major disaster, it is essential to seek guidance/assistance of statutory authorities, police and health department. The movement of traffic may have to be restricted. Required information will be given to the authority and consultation will be sought for remedial measures.

A purpose of the off-site emergency plan is:

- To provide the local/district authorities, police, fire, brigade, doctors, surrounding industries and public the basic information of risk and environmental impact assessment and appraise them of the consequences and the protection/prevention measures and to seek their help to communicate with public in case of major emergency.
- To assist district authorities for preparing the off-site emergency plan for district or particular area and to organize rehearsals from time to time and initiate corrective actions on experience.

## 7.11.2 Structure of the Off-Site Emergency Plan

Available with concerned authorities.

## 7.11.3 Role of the Factory Management

The site main controller will provide a copy of action plan to the statutory authorities in order to facilitate preparedness of district/area off-site emergency plan.

## 7.11.4 Role of Emergency Co-ordination Office (ECO):

He will be a senior police or fire officer co-ordination with site main controller. He will utilize emergency control centre.

## 7.11.5 Role of Local Authority

Preparation of Off Site Plan lies with local authorities. An emergency planning officer (EPO) works to obtain relevant information for preparing basis for the plan and ensures that all that organization involved in offsite emergency and to know their role and responsibilities.

## 7.11.6 Role of Fire Authorities:

The fire authorities will take over the site responsibility from incident controller after arrival. They will be familiarized with site of flammable materials, water and foam applies points, fire-fighting equipment.

## 7.11.7 Role of the Police and Evacuation Authorities:

Senior Police Officer designed, as emergency co-ordination officer shall take over all control of an emergency. The duties include protection of life, property and control of traffic movement. Their functions include controlling standards, evacuating public and identifying dead and dealing with casualties and informing relatives of dead or injured. There may be separate authorities/agencies to carry out evacuation and transportation work. Evacuation depends upon the nature of accident, in case of fire only neighbouring localities shall be alerted. Whole areas have to be evacuated in case of toxic release.

## 7.11.8 Role of Health Authorities

After assessing the extent of effect caused to a person the health authorities will treat them.

## 7.11.9 Role of Mutual Aid Agencies

Various types of mutual aid available from the surrounding factories and other agencies will be utilized.

## 7.11.10 Role of Factory Inspectorate

In the event of an accident, the Factory Inspector will assist the District Emergency Authority for information and helping in getting Neighbouring Industries/mutual aid from surrounding factories. In the aftermath, Factory Inspector may wish to ensure that the affected areas are rehabilitated safely.

## 7.12 OCCUPATIONAL HEALTH HAZARD AND SAFETY PROGRAM FOR THE PROJECT

Occupational Health is eventually a branch of preventive medicine which examines the relationship between work and health and effects of work on the health of the worker. Occupational health service is operated to achieve the statutory declared aim of occupational health by medical and technical measures. Its role is mainly preventive and to

give first aid and emergency treatment. It is certainly useful in early detection of any occupational or non-occupational disease or any man-adjustment of the man-job relationship.

- The Occupational health center (OHC) will be declared as Emergency communication center (ECC) which is near the administrative building and out of reach all the hazardous area. Its internal telephone contacts will be provided.
- Occupational health surveillance of the workers are done on a regular basis and records maintained as per the Factories Act in Form No. 32.
- Medical checkup of each employee and workers carry out yearly basis.
- ECC is facilitated with,
- (1) External telephone line,
- (2) The list of contact details of key personnel and list of internal Telephone numbers
- (3) List of external emergency services contact telephone numbers.
- (4) Site plan of the factory and Plot plan showing surrounding areas.
- (5) List of Fire Fighters and First Aider.
- (6) Copy of On-site Emergency Plan.

Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers.

One time investment for Occupational safety	In lakhs
Hydrant system, smoke detector & Sprinkler and Fire fighting devices	200
Process control, censor, interlock,guard and other instrumentation for safety	3000
Emergency shower, SCBA, ECC, gas detector	100
Total	3300

Annual plan for occupation Heath and safety	In lakhs/Annum
Employee periodical medical check-up	27
OHC operating cost	24
Ambulance	12
Personal protective equipments	34
Training and awareness	5
Total	102

## 7.12.1 OCCUPATIONAL HEALTH AND SAFETY PROGRAM:

1. Medical examinations: Pre-employment, periodic and others

- 2. Supervision of the working environment industrial hygiene, safety, job analysis and adaptation of the job to the worker in good working conditions.
- 3. Advice to management and worker.
- 4. Health education and training.
- 5. Health statistics.
- 6. Medical treatment-first aid, emergency and ambulatory treatment.
- 7. Health counseling-individual.
- 8. Nutrition.
- 9. Research in occupational health.
- $10. \ {\rm Co-operation}$  with other services in the undertaking.
- 11. Collaboration with external services.
- Other purposes of industrial medical services are:
- I) Identifying the Hazards
- II) Preventing or minimizing the Hazards
- III) Curative treatment in case of exposure
- IV) Determining the Compensation for damages

The working personnel shall be given the following appropriate **personnel protective** equipments.

- Industrial Safety Helmet;
- Face shield
- Welders equipment for eye and face protection;
- Ear muffs;
- Self contained breathing apparatus;
- Leather apron;
- Aluminized fiber glass fix proximity suit with hood and gloves;
- Boiler suit;
- Safety belt/line man's safety belt;
- Leather hand gloves;
- Acid/Alkali proof rubberized hand gloves;
- Canvas cum leather hand gloves with leather palm;
- Electrically tested electrical resistance hand gloves; and
- Industrial safety shoes with steel toe.

## **EXPECTED OCCUPATIONAL HEALTH HAZARDS & SAFETY**

- Physical Hazards: Noise, Heat, Dust
- Chemical Hazards: Corrosive, Toxic Substances, Irritants, Carcinogens, Chemical emissions

- Psychological hazards resulting from stress and strain
- Hazards associated with the non-application of ergonomic principles, for example badly designed machinery, mechanical devices and tools used by workers, improper seating and workstation design, or poorly designed work practices

## EXPECTED CHEMICAL HAZARDS IN WORK ENVIRONMENT

NAME OF CHEMICAL	HEALTH HAZARD DUE TO EXPOSURE TO THESE CHEMICALS
Acrylonitrile	Causes skin irritation
	May cause an allergic skin reaction Causes serious eye damage
	May cause respiratory irritation
	May cause cancer
	Suspected of damaging fertility or the unborn child
	Toxic if swallowed, in contact with skin or if inhaled
Acetic Acid	Causes severe skin burns and eye damage
Ammonia Gas	Contains gas under pressure; may explode if heated. May displace
	oxygen and cause rapid suffocation. Harmful if inhaled. Causes severe
	skin burns and eye damage.
Acetonitrile	Causes serious eye irritation
	Harmful if swallowed, in contact with skin or if inhaled
Acetone	Avoid breathing dust/fume/gas/mist/vapours/spray.
	Causes serious eye irritation
	May cause drowsiness or dizziness
Acetyl Chloride	Vapor irritates mucous membranes. Ingestion of liquid or contact with
	eyes or skin causes severe irritation.
Aluminum chloride	Causes severe skin burns and eye damage, May cause respiratory
	irritation
Ammonium carbonate	Inhalation causes irritation of nose and throat. Ingestion may cause
	gastric irritation. Contact with eyes or skin causes irritation
Ammonium Chloride	Inhalation of fumes irritates respiratory passages. Ingestion irritates
	mouth and stomach. Fumes are irritating to eyes. Contact with skin
	may cause irritation.
Caustic Soda	Causes severe burns of eyes, skin, and mucous membranes
Cyano acetic acid	Contact irritates eyes and may irritate skin.
Chloroform	It is classified as moderately toxic. Probable oral lethal dose for
	humans is 0.5 to 5 g/kg (between 1 ounce and 1 pint) for a 150 lb.

	person. The mean lethal dose is probably near 1 fluid ounce (44 g). It
	is a human suspected carcinogen. Also, it is a central nervous system
	depressant and a gastrointestinal irritant. It has caused rapid death
	attributable to cardiac arrest and delayed death from liver and kidney
	damage.
Cyclohexanone	Inhalation of vapors from hot material can cause narcosis. The liquid
	may cause dermatitis.
Formic Acid	Liquid causes skin and eye burns. Vapors are irritating and painful to
	breath. Vapor exposure may cause nausea and vomiting.
Hexane	INHALATION causes irritation of respiratory tract, cough, mild
	depression, cardiac arrhythmias. ASPIRATION causes severe lung
	irritation, coughing, pulmonary edema; excitement followed by
	depression. INGESTION causes nausea, vomiting, swelling of
	abdomen, headache, depression.
Hydro chloric acid	Causes severe skin burns and eye damage
	May cause respiratory irritation
Isopropyl Alcohol	Vapors cause mild irritation of eyes and upper respiratory tract; high
	concentrations may be anesthetic. Liquid irritates eyes and may cause
	injury; harmless to skin; if ingested causes drunkenness and vomiting.
Hydrogen gas	Vapors may cause dizziness or asphyxiation without warning. Some
	may be irritating if inhaled at high concentrations. Contact with gas or
	liquefied gas may cause burns, severe injury and/or frostbite. Fire may
	produce irritating and/or toxic gases.
Methanol	Exposure to excessive vapor causes eye irritation, head- ache, fatigue
	and drowsiness. High concentrations can produce central nervous
	system depression and optic nerve damage. 50,000 ppm will probably
	cause death in 1 to 2 hrs. Can be absorbed through skin. Swallowing
	may cause death or eye damage.
Potassium Hydroxide	Causes severe burns of eyes, skin, and mucous membranes.
Flakes	
Phenol	Toxic if swallowed, Harmful if swallowed,
	Toxic in contact with skin
	Harmful in contact with skin
	Causes severe skin burns and eye damage
	Causes serious eye damage
	Toxic if inhaled
	Harmful if inhaled
	May cause genetic defects
	Suspected of causing genetic defects
	May damage fertility or the unborn child

	Causes damage to organs Causes damage to organs through prolonged or repeated exposure May cause damage to organs through prolonged or repeated exposure
Sodium Cyanide	Super toxic; probable oral lethal dose in humans is less than 5 mg/kg or a taste (less than 7 drops) for a 70 kg (150 lb.) person. Sodium cyanide is poisonous and may be fatal if inhaled, swallowed or absorbed through the skin. Contact with sodium cyanide may cause burns to skin and eyes. Individuals with chronic diseases of the kidneys, respiratory tract, skin, or thyroid are at greater risk of developing toxic cyanide effects.
Sulphuric acid	Causes severe skin burns and eye damage May cause respiratory irritation
Ethylene oxide	It can cause death. Lowest inhalation concentration causing toxic effects is 12500 ppm/10 seconds. It is a strong skin irritant. Neurological disorders and even death have been reported.
Thionyl Chloride	CORROSIVE and/or TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns or death. Fire will produce irritating, corrosive and/or toxic gases. Reaction with water may generate much heat that will increase the concentration of fumes in the air. Contact with molten substance may cause severe burns to skin and eyes. Runoff from fire control or dilution water may cause environmental contamination.
Toluene	Vapors irritate eyes and upper respiratory tract; cause dizziness, headache, anesthesia, respiratory arrest. Liquid irritates eyes and causes drying of skin. If aspirated, causes coughing, gagging, distress, and rapidly developing pulmonary edema. If ingested causes vomiting, griping, diarrhea, depressed respiration.
Chlorine Gas	Poisonous; may be fatal if inhaled. Contact may cause burns to skin and eyes. Bronchitis or chronic lung conditions.
Bromine	Inhalation exposure to 11-23 mg/m3 produces severe choking. 30-60 mg/m3 is extremely dangerous. 200 mg/m3 is fatal in a short time. Vapors can cause acute as well as chronic poisoning. It has cumulative properties. It is irritating to the eyes and respiratory tract. Poisoning is due to the corrosive action on the gastrointestinal tract. Nervous, circulatory and renal disturbances occur after ingestion. Ingestion of liquid can cause death due to circulatory collapse and asphyxiation from swelling of the respiratory tract. The lowest oral lethal dose reported for humans is 14 mg/kg. The lowest lethal inhalation concentration reported for humans is 1000 ppm.

Nitric acid	TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts					
	or substance may cause severe injury, burns or death. Reaction					
	with water or moist air may release toxic, corrosive or flammable					
	gases. Reaction with water may generate much heat that will increase					
	the concentration of fumes in the air. Fire will produce irritating,					
	corrosive and/or toxic gases. Runoff from fire control or					
	dilution water may be corrosive and/or toxic and cause					
	environmental contamination					

## List of Occupational Hazards, Control Measures and Review

S.No	Location	Occupational Hazard	Control Measures	Test Done	Remark
1	Boiler	Heat	Proper Breaks, Insulation of steam line& Apron, Rotation of shift, Separate monitoring room & Water facility	Audiometric Test	
2	Compressor	Noise &Vibration	Proper Breaks, Ear plug/Ear Muff, Rotation of shift & medical testing, Silencer, Vibration pad, Vibration monitoring & proper PM	Audiometric Test	
3	Charging of powder material- AEP & Organic	Dust	Dust collection system, Online Breathing apparatus or Dust cartridge, Industrial Dust monitoring at work place, PPE	Pulmonary Function Test(PFT)	
4	Charging of Acidic/Organic material-AEP & Organic	Irritation, Fumes	Scrubbing system, Room scrubber , Mask with cartridge, monitoring at work place	Pulmonary Function Test(PFT)	
5	MEE	Noise & Biological	Proper PPE & Rotation of shift, Ear plug/Ear Muff, Rotation of shift & medical testing,	Blood test, Audiometric Test	

#### 7.12.2 PERIODIC MEDICAL EXAMINATION

It is proposed that client ensure that...

(1) Workers employed are medically examined by a qualified medical practitioner/Factory Medical Officer, in the following manner:

(a) Once in a period of 6 months, to ascertain physical fitness of the person to do the Particular job;

(b) Once in a period of 6 months, to ascertain the health status of all the workers in respect of occupational health hazards to which they are exposed and in cases where in the opinion of the Factory Medical Officer it is necessary to do so at a shorter interval in respect of any workers;

(c) In periodic and pre-medical examinations, various parameters are checked. Viz., LIVER FUNCRION TESTS, Chest X-rays, Audiometry, Spirometry, Vision testing (Far& Near vision, color vision and any other ocular defect) ECG and other parameters as found are necessary as per the opinion of Factory Medical officer.

(2) No person employed for the first time without a certificate of granted by the Factory Medical Officer.

## 7.12.3 EMP FOR THE OCCUPATIONAL SAFETY & HEALTH HAZARDS SO THAT SUCH EXPOSURE CAN BE KEPT WITHIN PERMISSIBLE EXPOSURE LEVEL (PEL)/THRESHOLD LEVEL VALUE (TLV) SO AS TO PROTECT HEALTH OF WORKERS.

Mitigation Measures for OSH: It is proposed to formulate and implement a structure for Occupational Safety and Health with following aims...

- To keep air-borne concentration of toxic and hazardous chemicals below PEL and TLV.
- Protect general health of workers likely to be exposed to such chemicals
- Providing training, guidelines, resources and facilities to concerned department for occupational health hazards.
- It is proposed that this EMP be formulated on the guidelines issued by Bureau of Indian Standards on OH&S Management Systems: IS 18001:2000 Occupational Health and Safety Management Systems
- Proposed EMP will be incorporated in Standard Operating Procedure also.

The proposed EMP also include measure to keep air-born concentration of toxic and hazardous chemicals below its PEL and TLV, like...

- Leak Surveys
- Separate storage for toxic chemicals
- Exhaust Ventilation
- Proper illumination
- Close processes to avoid spills and exposures
- Automation of process operations to hazards of manual handling of chemicals

- Supply of proper PPEs like Air mask, Berating canisters, SCBA sets, On-line breathing apparatus at the places where there is possibility of presence of toxic chemicals
- Decontamination procedure for empty drums and carboys.
- Regular maintenance program for pumps, equipment, instruments handling toxic and corrosive chemicals
- Training to persons handling toxic and corrosive chemicals

# 7.12.4 ARRANGEMENTS FOR ENSURING HEALTH & SAFETY OF WORKERS ENGAGED IN HANDLING OF TOXIC MATERIALS

- The top management is committed towards safety & employees' well-being is the numerous no and safety always takes precedence over production.
- Each and every process assessed with safety tools like HAZOP, JSA, PSSR, JRA etc.
- Emergency Response Team formed and mock drills are conducted regularly.
- Appropriate engineering controls are provided to prevent any mishap.
- Scheduled preventive maintenance are carried out in the plant including that of safety equipment.
- Standard Operating Procedures are provided to workers to ensure that all the work is done in a safe manner.
- Signage's are provided wherever required, instructing them to use PPEs and other safety equipment.
- MSDS are displayed at strategic locations. PPE matrix, Brief SOPs and chemical compatibility charts shall be displayed at prominent locations.
- Contract workmen are imparted induction training, Safety training on process and Health & safety awareness on a regular basis.
- Well established permit to work system are in place.
- All incidents including near misses are Investigated and learning's shared with all relevant personals.
- All employees undergo pre-employment& periodical medical check-up ensuring their well-being.
- Workplace monitoring are carried out to ensure there are no adverse health effect on workers.

## 7.12.5 WORKPLACE MONITORING PLAN

- It is proposed that a Workplace Monitoring Plan to be prepared & implemented in consultation with FMO and industrial hygienists.
- Each workplace must be evaluated to identify potential hazards from toxic substances or harmful physical agents. Air-borne concentration of toxic chemicals will be measured and record will be kept.
- The current state-of-the-art exposure measurement model is as follows: For purposes of measuring worker exposure across a single shift it is sufficient to place a reasonably

accurate exposure measuring device on the worker, within the worker's breathing zone, and have it operate for nearly the full shift. Client will propose to study the exposure data when the plant is operative.

• Permanent changes to workplace procedures or work location to be done if it is found necessary on the basis of findings from workplace Monitoring Plan.

## 7.12.6 HEALTH EVALUATION OF WORKERS

M/s. Chemplast Samar Limited committed towards the Health and Safety of workers and provided a facility of pre-medical and regular medical check-up of employees for detecting any kind of adverse effect on the health of employee due to the chemical or work place condition and will provide opportunity to improve the working condition. The workers exposed to fugitive emission provided with some protective devices like dust mask to prevent respiratory disorders. The workers exposed to higher noise level is provided with ear muffs/ ear plugs. The protective devices are provided to the employees who are exposed to any kind of hazard. Proper handling of the materials and the maintenance of Material Safety Data Sheet (MSDS) are following to ensure safety within the plant area. A regular monitoring of the Occupational Health and Safety will reduce the chances of accidents hence all the records of job-related accidents and illness shall be maintained as per the requirements of factory act.

Workers are checked for physical fitness with special reference to the possible health hazards likely to be presented where he/she is being expected to work before being employed for that purpose.

Tests carried out:

1)Physical test

2)General Examination like Temp., Pulse, Pressure, Haemoglobin/Total W.B.C/ Platelet/others

3) Microscopic Examination

4) Systematic Examination

5) Vision Testing

6) Blood Glucose analysis

7) Haemogram Profile

Occupational health surveillance of the employees is done on a regular basis and records maintained as per rule 62N of the Tamil nadu Factories rules, 1950.

Medical checkup of each employee and workers carry out yearly basis.

## Annual Health Report of Employee:

SANMAR CUSTOM I	MANUFACTUR	ED CHEMICA	LS DIVN- BERIG	AL.
(Periodical Medi	cal Examination as pe	ar Rule 62N of Tami	I Nadu Factories Rules	, 1950
Name	: M. 1000	Ha. L.	Designation	: II ENgl
Father's Name	: 0	, o c n	Date of Joining	: 11- 0
Date of Birth	PV. The	manay	Nature of Job	io, ma
	08.01	2001		
marita Status / Children	UN me	Deirce	Identification marks	i mole a
Department	moulain	at minutes	Contractor	
Details of Examination	19 01 2022	· 18/b/2Date of	Examination	
Present History	No Complaints	No compla	and	
Relevant Past History	ND request	to su		
Family History	ND Cambrat	Hte wir		
Height in am	INS	16.9		
Weight in Kg	bh	65		
Pulse tate / Min Span V.	76 m 97	. aby looking		
Ellood Pressure	10/70	120 /70		
Chest in cm - Expiration Anspiration	93/98 .	93/98		
Respiratory System Chest	BASENUBA	BREDINNES	3	
Blood			<u> </u>	
iemoglobin		and the second second		
fotal Count				
Afferential Count				
Patiet Count				
SR				
andom Blood Sugar Serum Billirubim (Direct, Indirect & otal)				
GOT, SGPT				
Samma Glutamyl Transferase	1			
Kaine Phosphatase (AkKP)				
otal Cholestrol				
riglycarides				
reatinine				
lood Urea Nitrogen				
ric Acid				
yes -CV/AV/NV				
rine : outine				
kin	Normal	Normal		
usquioskaletal system	NAD.	NIAD		
AI .	03.4	0.2.0		
ther insues:	0.0.1			
			1	
elevant. Investigations, if required		0		
of the Medical Officer	P-P-2	Saugal	MBBS.	

Registered Medical Practitioner

SAMMAR DIVISION	JF CHEMPLAS	SANMAR L	IMITED- BERIG	AI.
(Periodical Medica	Examination as per	Rule 62N of Tamil	Nadu Factories Rules	s. 1950
Name	M. Kavthi	ic.	Designation	John Cha
Father's Name	P.V. Mon	ival	Date of Joining	= 16-Mag-20
Date of Birth	08/01/2001	. 0	Nature of Job	. 0
Marital Status / Children	· Un mornied	6	Identification Marks	Mole at
Department	Mechanical	Malutaliance.	Employee/ Contractor	· Employee.
Details of Examination		Date of I	Examination	
Details of Examination	10 01 ROSE	17/06/2020	Intalizar	22 01 203
Present History	of a Coldx 3days.	NoComplants	No Comel t	No complete
Relevant Past History	NIL	Not Adarant	Not Par	Not we have
Family History	Moleery San 575	Methen REYS	Wotoso the xeyo	Mother HIN 15
Height in cm	163 cms	164 005	Ihere	+
Weight in Kg	62195	GI let.	La had	L.L. V.a
Pulse rate / Min	Solmint	82800	ps los	aul and an
Blood Pressure	1017	-11017-010	8.11 dd low	unime 41
Chest in cm - Expiration Anspiration	BITIO	OL QUENT	10 00 mms	a las in
Respiratory System Chest	PLL ATH HYRSE .	BLATELINVIRGE	K2 (8-1)	al as a week
Blood	1		BEDU TUBAL	DILAL ( NUBS
Hemoglobin				
Total Count				
Differential Count				
Platlet Count				
ESR				
Random Blood Sugar				
Serum Bilirubim (Direct, Indirect & Total)				
SGOT, SGPT				
Gamma Glutamyl Transferase				
Alkaine Phosphatase (ALKP)				
otal Cholestrol				
riglycerides				
reatinine				
lood Urea Nitrogen				
Iric Acid				
YOR CVIAUNY				
Time :				Muruloskut
outine			1	MIL Coroclad
Kin	(A)	Normal	Normal	Mar B
elevant investigations of regioned	BMI-A	Bm2 - (D)	BMI-()	BMI - (D)
git of the Mining of Cellson	SF. Par	P	R	- DATHINE

ų,



## MEDICAL RECORD

MEDICAL EXAMINATION



Name: Mr. Karthick Muniraj

Age / Sex: 21 yrs / Male

E.NO: MK47

Date of Medical Examination: 20.01.2022

Company: Chemplast Sanmar Ltd, Custom Manufactured Chemical Divn, Berigai.

# 1. Physical Examination:

a. BP

b. Pulse

c. Spo2

d. Vision

2. Respiratory System:

3. Cardiovascular system:

4. Abdominal Examinations:

5. ENT

( )

6. Specific Ailment

7. IMPRESSION:

- 82 b/mt

- 120/80 mm of Hg

- 97

- Right: 6/6 Left: 6/6 Colour: Normal

- NVBS +

- S1, S2 Heard, No murmurs

- Soft

- Nil

- Nil

- Certified that the above Medical Examinee is Medically Fit

Signature of the medical examiner

RES LINES

14

WEIGHT *This is a medical form which cannot be used for other purpose. A Unit of Vijay Sai Healthcare Hosur Pvt. Ltd., #76 R, Old Bangalore Road, HOSUR - 635 109 T +91 4344 320 888 / 310 000

1.12



VIJAY HOSPITAL



We add life to years and Years to life

76, Old Bangalore Road, HOSUR - 635 109. Ph: 04344 - 247247, 244966 www.vijayhospital.in E-mail : vijayhospital.lab@gmail.com

## LABORATORY REPORT

 $\gamma_A$ 

Lab No : LAB-OP-20357 Consultant : Dr.Rajeshkumar(HBTL). Specimen : BLOOD / SERUM / URI	NE		Reported On	: 24-01-2022 10:11 PM
	Kesuit	H/L	Units	Reference Range
	HAEN	ATOLOG	<u>x</u>	
COMPLETE BLOOD COUNT	-			
RBC	4.80		x10^6/uL	4.6 - 6.0
HB	13.1		g/dL	13.0 - 17.0
PCV	40.5		96	40 - 54
MCV	83.0		fL	. 80 - 100
MCH	26.8		pg	26 - 32
MCHC	. 32.5		%	32 - 36
PLATELETS	261		x10^3/uL	150 - 450
TOTAL LEUCOCYTE COUNT	6.00		x10^3/uL	4.5 - 11.5
NEUTROPHILS	43.0 *	(L)	%	50 - 70
-YMPHOCYTES	45.0 =	(H)	96	18 - 42
MONOCYTES	5.2		%	2.0 - 11.0
EOSINOPHIL	2.0		%	1.0 - 8.0
BASOPHIL	0.8		96	0.0 -2.0
ERYTHROCYTE SEDIMENTATION R	ATE (ESR)			
ESR	13		mm/hr	5-25
	BIO CI	HEMISTRY	t	250°07760
RANDOM BLOOD SUGAR (RBS)				
RBS	84.0	6	mg/df	80 - 140 maldt
BLOOD UREA NITROGEN (BUN)	<	1.2	and and	an - ran mg/m.
BUN	10.0		mg/dL	Adults (18-60 years) 6-20 mg/d1.
				Pagel of 4

VH/LAB/001



VIJAY HOSPITAL



We add life to years and Years to life

-

76, Old Bangalore Road, HOSUR - 635 109. Ph: 04344 - 247247, 244966 www.vijayhospital.in E-mail : vijayhospital.lab@gmail.com

## LABORATORY REPORT

Name UHID Age/Sex Lab No Consultant Specimen	Mr KARTHICK MUNIRAJ VJH-147345 (21 Y / Male) LAB-OP-20357 Dr.Rajeshkumar(HBTL). : BLOOD / SERUM / URINE			Bill No Collected On Reported On	EBILL-OP-105655 : 20-01-2022 10:11 PM : 24-01-2022 10:11 PM
( st Name		Result	H/L	Units	Pafarana P
CREATININE	-SERUM	/	-	- A partie	Reference Range
CREATININE	2	0.84		mg/dL	Males (0.70 - 1.20 mg/dL)
URICACID - S	SERUM	/			
URIC ACID		4.7		mg/dl	34-70 mold
SGOT					State into highlic
SGOT/AST	<i></i>	18.0		11/1	40.718
SGPT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4) (4)		and a	< 40 U/L
SGPT/ALT		190			
TOTAL CHOL	ESTEROL			10/L	<41 U/L
TOTAL CHOLE	STEROL	165.0	r.	1227	
CAMMA GLUT	TAMVI TRANSPERTIDACE	105.0		mg/dL	< 200 mg/dL
GAMMA GT	CAMIL TRAASTEFTIDASE	(GGT)			
BILIDIDD		13.0		U/L	8.0 - 61.0 U/L
BILIRUBIN SE	RUM - TOTAL/DIRECT/IND	RECT			
BILIRUBIN TO	TAL	0.36	5	mg'dL	0.3 - 1.2 mg/dL
Method: (COLO	RIMETRIC DIAZO METHOD	COBAS C31	1)		
BILIRUBIN DIR	ECT	0.18		mg/dL	0.0 - 0.3 mg/dL
Method: (DIAZO	METHOD ? COBAS C311)				
BILIRUBIN IND	IRECT	0.20		mg/dL	02-07
TRIGLYCERID	ES - SERUM	In		99 <b>3</b> 93779	
TRIGLYCERIDE	S	81.0		me/dl	< 160 mp 18
ALKALINE PHO	OSPHATASE	ي. توري	25 IR.	ang/ul.	< 150 mg/dL
Alkaline Phosphar	lase	66.0		11.1/1	
		2555 G/A		10/L	40 - 129 IU/L

Page2 of 4

VH/LAB/001

#### **ENVIRONMENTAL IMPACT & RISK ASSESSMENT REPORT** VIJAY HOSPITAL HOSUR We add life to years and Years to life 76, Old Bangalore Road, HOSUR - 635 109. Ph: 04344 - 247247, 244966 E-mail : vijayhospital.lab@gmail.com www.vijayhospital.in LABORATORY REPORT Name : Mr KARTHICK MUNIRAJ A BURGENIER OF UHID : VJH-147345 Bill No : BILL-OP-105655 Age/Sex : (21 Y / Male) : 20-01-2022 10:11 PM **Collected** On Lab No : LAB-OP-20357 Reported On : 24-01-2022 10:11 PM Consultant : Dr.Rajeshkumar(HBTL) . BLOOD / SERUM / URINE Specimen est Name Result H/L Units Reference Range CLINICAL PATHOLOGY COMPLETE URINE EXAMINATION VOLUME 25 ML COLOUR PALE YELLOW APPEARANCE SLIGHTLY TURBID PH 6.0 4.6 - 8.0 SPECIFIC GRAVITY 1.010 1.003 - 1.030 GLUCOSE NIL PROTEIN NIL BLOOD NIL KETONE BODIES NIL **'ILE SALT** NEGATIVE BILE PIGMENT NEGATIVE UROBILINOGEN NEGATIVE NITRATE NEGATIVE PUS CELLS 2-4 1-2 Cells/hpf EPITHELIAL CELLS 1-2 0 - 2/hpf RBC's 0-2 0 - 2 RBC's/hpf CAST NIL CRYSTALS NIL BACTERIA NIL OTHERS NIL

Page3 of 4

VH/LAB/001



-



There was not found any abnormality of any employees and workers. All employees and workers are found fit.

Occupational health surveillance program is undertaken as regular exercise for all employees specifically for those engaged in handling substances.

Medical records of each employee are maintained separately.

## 7.13 SAFETY PLAN

Safety of both men and materials during construction and operation phases is of concern. Safety plan shall be prepared and implemented in the project activity. The preparedness of an industry for the occurrence of possible disasters is known as emergency plan. The disaster in the plant is possible due to collapse of structures and fire/explosion etc.

- The project would formulate safety policy keeping in view the safety requirement during construction, operation, maintenance phases, with the following regulations:
- To allocate sufficient resources to maintain safe and healthy conditions of work;
- To take steps to ensure that all known safety factors are taken into account in the design, construction, operation and maintenance of plants, machinery and equipment;
- To ensure that adequate safety instructions are given to all employees;
- To provide wherever necessary protective equipment, safety appliances and clothing and to ensure their proper use;
- To inform employees about materials, equipment or processes used in their work which are known to be potentially hazardous to health or safety;
- To keep all operations and methods of work under regular review for making necessary changes from the point of view of safety in the light of experience and up to date knowledge;
- To provide appropriate facilities for first aid and prompt treatment of injuries and illness at work;
- To provide appropriate instruction, training, retraining and supervision to employees in health and safety, first aid and to ensure that adequate publicity is given to these matters;
- To ensure proper implementation of fire prevention methods and an appropriate fire fighting service together with training facilities for personnel involved in this service;
- To organize collection, analysis and presentation of data on accident, sickness and incident involving people injury or injury to health with a view to taking corrective, remedial and preventive action;
- To promote through the established machinery, joint consultation in health and safety matters to ensure effective participation by all employees;
- To publish/notify regulations, instructions and notices in the common language of employees;

- To prepare separate safety rules for each type of occupation/processes involved in a plant; and
- To ensure regular safety inspection by a competent person at suitable intervals of all buildings, equipment's, work places and operations.

## 7.14 HEALTH AND SAFETY MONITORING PLAN

The health of all employees shall be periodically monitored for early detection of any ailment due to exposure to heat and noise.

## 7.15 TRAINING, REHERASAL & RECORDS

## 7.15.1 NEED OF TRAINNING & REHEARASAL

Training is important in order to -

- Teach worker's how to handle chemicals safely, how to act as a runner/messenger, how to use PPE, how to start and shut down the plant, how to carry out emergency repairs etc.
- Teach one to be a safe and alert worker.

Rehearsal is essential for -

- Explaining and making key personnel and essential workers aware of their role in case of an emergency.
- Testing the emergency procedure, emergency arrangements and ability of all involved with it to grasp the procedure and implement the same.
- Testing the effectiveness of communication system including the alternative arrangement in case of failure.
- Testing the speed of mobilization of resources, search, rescue and treatment of casualties, emergency isolation and shut down.
- Detecting the shortcomings in the emergency plan and incorporating remedial measures.
- Allowing professional emergency services to test their parts of the plan and testing coordination.
- Building confidence in workers which is helpful in facing real situations.

Training shall be given to regular employees and contract personnel also. Effective and latest teaching aids will be used to train workers and supervisory staff. Such training courses shall be conducted once in a year and co-ordination with offsite personnel shall be sought during such training. Records will be maintained for training.

#### 7.15.2 RECORDS AND UPDATING THE PLAN

All records of On-Site and Off-Site Emergency Plan and modifications by experience and suggestion, the rehearsals and conclusions of such plans and the enquiries shall be well maintained and preserved. The necessary data bank shall be also maintained for the utility of industries and others. New information and the deficiencies identified during the rehearsal is reviewed and incorporated in the document for continual updating of the plan and such information shall be communicated to the concerned authorities.

## 7.16 CHECKLIST IN THE FORM OF DO'S & DON'TS OF PREVENTIVE MAINTENANCE, STRENGTHENING OF HSE, MANUFACTURING UTILITY STAFF FOR SAFETY RELATED MEASURES.

Do's:

- Store used oil at proper place as per plant guidelines.
- Use lubricating oil carefully to avoid spillage on ground.
- Use lubricating oil as per requirement.
- Use minimum amount of water wherever it is required as per plant guidelines.
- Waste disposal system for all plants should be separate.
- Avoid spillage of liquid, hand gloves, cotton waste on road, which will cause pollution. Recycle or dispose that material.
- Use cleaning equipment carefully. (i.e. cotton waste, oil & chemicals)
- Place all the equipments (i.e. Fire Hose, Rubber Pipe and Chisel) at proper place.
- Handling of chemicals should be as per plant guidelines to avoid undesired chemical reaction.
- Safety training and correct use of PPE's must for all the employees.
- Environment guidelines should follow during cleaning of vessels, Tank, channels etc.
- Follow shift in charge's instructions during loading or unloading of chemicals.
- In case of fire or any accident, immediately inform responsible person.
- In case of emergency, follow the site emergency procedure.
- Area of work during excavation, lifting work and any hot work shall be cordoned with warning tags of "work in progress", "no entry" etc.
- Switch off lights and computers when not in use.

- Shut the water cock properly when not in use.
- Always follow safety rule during the plant operation.

#### Do's during shut down:

- All equipment, vessels, lines where hot work is envisaged shall be purged, flushed thoroughly and positively isolated. Similar precautions should be taken for vessel entry also.
- Back flow of materials from sewers, drains should be avoided by proper isolations.
- In case of confined space entry and other cleaning jobs etc. which are to be carried out by the concern department trained person, confined space permit should be followed for all vessel entry issued by shift in charge by authorization of production head and plant operation head. This permit should be renewed by incoming shift in charge during every shift.
- Hoist, Platform, cages used for lifting persons or to send persons inside vessels by such means must be of sound construction with wire ropes slings, etc. to avoid failure.
- All steam, condensate, hot water connections should be made tight with clamps.
- Nitrogen hazard should be kept in mind. All nitrogen sources should be positively isolated from vessels/confined spaces to avoid oxygen deficiency where vessel entry is required.
- All underground sewers shall be flushed, protected from sparks.
- Full PPEs like PVC suits, gum boots, face shield & other required shall be used while draining, flushing and other reclaiming activities to avoid burn, poisoning etc.
- Wet asbestos cloth/metallic plate should be used to collect flying sparks.
- Water, steam flushing, nitrogen blanketing shall be continued where spontaneous combustion takes place. Precautions should be taken for pyrophoric nature of material.
- Temporary electrical connections, cords, boards and other electrical fixtures should be of sound material to prevent electrical shock.
- Oil spillage in the pit of oil slope tank should be cleaned with water/sand.
- Proper approach like aluminium ladder should be provided to reach to the platforms of scaffolding and ladder must be tied.
- All clumps of scaffolding should be tightened properly and planks should be tied at both ends and supported at proper distances along span to avoid sagging and failure.
- Always use safety belt while working at height of more than 2 meters and ensure tieing the life line of safety belt with firm support.

- Ensure area cordoning for hot work, X-ray, excavation, hazard material temporary storage.
- Ensure proper tagging of valves, switches etc to prevent its use.
- Ensure proper guidance to workman and make him aware about local area hazards before start of the job.
- All welding machines should be provided with power isolation switch of suitable rating.
- Portable electrical appliances/tools earthing should be in good working condition. Insulation portion should be free from damages.
- All electrical cables should be joints free and connection taken by using three pin plugs.
- While inserting fuse all care should be taken so that no one touches conductor to avoid the shock to the persons.
- During hydro jetting work workers should wear hand gloves, safety helmet goggles and PVC suit.

#### Don'ts:

- Do not use fire hydrant water for washing/bath purpose.
- Do not use water for cleaning purpose, use broomstick if possible.
- Do not wash or clean trolley, tractor or trucks which are used for chemical/fertilizer's transportation. Wash them at proper place.
- Smoking & carrying matchbox, cigarettes, lighter, bidis etc. are prohibited.
- Photography & carrying cameras/Mobile phones are strictly prohibited in all areas.
- Do not spill liquid or chemicals in open atmosphere.
- The use of Radio Active Source within the plant shall not be allowed without obtaining valid permission/work permit and intimation in the form of a circular to all plant persons shall be given in advance.
- Unauthorized entry of plant is strictly prohibited.

## Don'ts during shut down:

- Do not use gasket or other blinds as it can fail during job. All blinds should be metallic.
- No toxic/corrosive/irritating materials should remain plants or sections where hot work is to be carried out.
- No hot work should be permitted near sewers till areas have been cleaned flushed properly.
- No hot work irrespective of place of area shall be done without valid permit.
- No combustible material shall be there in flare line for taking up of flare line job. Isolations shall be ensured.

## 7.17 DETAILS ON VARIOUS SOP

LIST OF ENVIRONMENT, HEALTH & SAFETY RELATED PROCEDURES
TITLE
EHS
Sop For Treatment Of Concentrated Effluent
Sop For Treatment Of Lean Effluent
Sop For Handling And Disposal Of Waste
Sop For Packaging, Labeling & Transport Of Hazardous Waste
Sop For Operation Of Reverse Osmosis Plant
Sop For Operation Of Multiple Effect Evaporator Plant
Standard operating procedure for method of analysis of effluent.
Standard operating procedure for chemical treatment of RO feed water.
Standard Operating Procedure For Operation Of Agitated Thin Film Dryer
Standard Operating Procedure For Operation Of Sewage Treatment Plant
Standard Operating Procedure for Imparting First Aid
Standard Operating Procedure for Maintaining Overall Safety Including On-site Emergency.
Standard Operating procedure for General Do's and Dont's
Standard Operating Procedure for Operation of Fire protection system
Standard Operating Procedure for Noise Level Survey
Standard Operating Procedure for work inside Confined Space
Standard Operating Procedure for Carrying out Hot work
Standard Operating Procedure for Working at Height
Standard Operating Procedure for Incident Reporting Investigation
Standard Operating Procedure for Safety Committee
Standard Operating Procedure for LOTO Master Key Requisition
Standard Operating Procedure for Role and Responsibilities of Safety Stewards
Standard Operating Procedure for Identification of Personal Productive Equipments and it's
Usage
Standard Operating Procedure for Operation of Occupational Health Center (OHC)
-

SOP for Transport Emergency Plan

Standard Operating Procedure for Hazard Identification and Risk assessment and Job safety analysis

Standard Operating Procedure Vehicle movement inside plan

Standard Operating Procedure General Plant safety rules

Standard Operating Procedure for Occupational Health Programme

Standard Operating Procedure for Acrophobia Test for Height Worker

PLANT

SOP for Manufacture of Synthetic Organic Chemicals

SOP for Planning Production

SOP for Planning Raw Material and Packing Material

SOP Product Identification and Traceability

SOP for Blending and Packing of Liquid Product

SOP for Labeling of Process Material and Finished Product

SOP for Autoclave Cleaning

SOP for Utility Changing Over In a Reactor Jacket

SOP for Operating The Oil Vacuum Pump (OVP)

SOP for Operating Water Ring Vacuum Pump (WRP)

SOP for Reactors Cleaning - GLR, SSR And Distillation

SOP for Solid- Liquid Filtration Using a NF, CFG And ANF

SOP for Transferring A Liquid Product Into A Reactor Or Vessel Using Air Pump And Vacuum

SOP for Drying Operations In TD/FBD/RPVD/RCVD

SOP for Operating The Steam Jet Ejector

SOP for Blending And Packing Of Solid Product

SOP for Cleaning Of Accessories Equipments

SOP for Qualifying The Reactor And Pressure Vessel

SOP for Receiving Of The Batch Manufacturing Records

SOP for Recycling Of Packing Material

SOP for Handling Work-In-Process Material

SOP for Prevention Of Mix Up And Contamination

SOP for Assigning Lot Numbers And Batch Numbers To The Products

SOP for Cleaning And Disposal Of Empty Containers

SOP for Rodent Control

SOP for Maintaining Health And Hygiene In Manufacturing Area

SOP for Emergency Shutdown

SOP for Sodium Cyanide Charging In To a SS Reactor And Disposal Of Empty Drums

SOP for Material Weighing In Weigh Balance

SOP for Operation Of Glass Condenser

SOP for Dry Vacuum Pump Operation

SOP for Bag Lifting Centrifuge Machine – CFG-5 and CFG-6

SOP for Bromine Charging Into A Glass Lined Reactor

SOP for AU-2 Seal [Plan-54] Operation

SOP for Operating the PLC-Plant-4

SOP for sodium cyanide charging system

SOP for sodium cyanide cleaning system

SOP for Cleaning of Process Area

SOP for Plant Start-up after Long Term Shutdown

SOP for Plant Shutdown

Standard Operating Procedure for Gowning and De-Gowning Procedure in Organic plant Centrifuge room

Standard Operating Procedure for Gowning and De-Gowning Procedure in Organic plant Blending and Packing room

Standard Operating Procedure for Unloading of Liquid product into Drums from Reactor or Vessel using hose pipes

Standard Operating Procedure for Candle Filter Operation

Standard Operating Procedure for maintaining Equipment Log book

Standard Operating Procedure for Operation of Reactor

Standard Operating Procedure for Post campaign of equipment and its accessories.

Standard Operating Procedure for Double cone blender and Blending in RCVD

Standard Operating Procedure for Handling of Hydrogen gas cylinders

HR

Standard Operating Procedure for Safety Related Training

Standard Operating Procedure for Training validation

Standard Operating Procedure for Re-training

Standard Operating Procedure for Planning of Training for the New Recruits

Standard Operating Procedure for Planning of Training for all the Employees

Standard Operating Procedure for Evaluation of Training Effectiveness

## 7.18 PROCESS SAFETY

- Safety measures will be adopted from the design stage.
- Safety Valve and pressure gauge will be provided on reactor and its jacket (if jacket is provided).
- Utility like Chilling, cooling, vacuum, steaming and its alternative will be provided to control reaction parameters in a safe manner.
- Free Fall of any flammable material in the vessel will be avoided.
- Static earthing provision will be made at design stage to all solvent handling equipments, reactors, vessels & powder handling equipments.
- Any reaction upsets will be confined to the reaction vessel itself.
- All emergency valves and switches and emergency handling facilities will be easily assessable.
- Further all the vessels will be examined periodically by a recognized competent person under the Tamil nadu Factory Rules.
- All the vessels and equipments will be earthed appropriately and protected against Static Electricity. Also for draining in drums proper earthing facilities will be provided.
- Materials will be transferred by pumping through pipeline or by vacuum from drums.
- All solvents and flammable material storage tanks will be stored away from the process plant and required quantity of material will be charge in reactor by pump or by N2 pressure transfer.
- Jump over clamp will be provided on all solvent handling pipeline flanges.
- Caution note, safety posters, stickers, periodic training & Updation in safety and emergency preparedness plan will be displayed and conducted.
- Flame proof light fittings will be installed in the plant.
- All the Plant Personnel will be provided with Personal Protection
- Equipment's to protect against any adverse health effect during operations, leakage, spillages or splash. PPE like Helmets, Safety Shoes, Safety
- Glasses, Acid-Alkali Proof Gloves etc. will be provided to the employees.
- All employees will be given and updated in Safety aspects through periodic training in safety.
- Material Safety Data Sheets of Raw Materials & Products will be readily available that the shop floor

#### 7.18.1 FOR HAZARDOUS STORAGE FARM

- Farm will be constructed as per explosive department requirement and separation distance will be maintained.
- Tanks shall be located and marked in designated area of hazardous chemical storage.
- Static earthing provision will be made for road tanker as well as storage tank.
- Tanks of proper MOC will be selected.
- Flame arrestor with breather valve will be provided on vent line.
- Road tanker unloading procedure will be prepared and implemented.
- Fire load calculation will be done and as per fire load Hydrant System will be provided as per NFPA std. and Fire extinguishers will be provided as per fire load calculation.
- Spark arrestor will be provided to all vehicles in side premises.
- Flame proof type equipment's and lighting will be provided.
- Lightening arrestor will be provided on the top of chimney.
- Trained and experience operator will be employed for tank farm area.
- NFPA label (hazard identification) capacity and content will be displayed on storage tank.
- Solvents will be transferred by pump only in plant area and day tank will be provided. Overflow line will be return to the storage tank or Pump On-Off switch will be provided near day tank in plant.
- Jumpers will be provided on solvent handling pipe line flanges.
- Flexible SS hose will be used for road tanker unloading purpose and other temperature connection.
- All tanks shall be uniformly tagged.

- Level indicator shall be provided in tanks.
- Dyke will be provided.
- Industrial type electric fittings shall be provided.
- Adequate fire-fighting equipment's will be provided.
- Anti corrosive paint shall be done.
- Safety instruction board will be displayed.

#### 7.18.2 FOR DRUM/CARBOY STORAGE AREA

Some chemicals will be received at plant in drums/Carboys by closed containers and stored in a drum/Carboy storage area.

- FLP type light fittings will be provided.
- Proper ventilation will be provided in go down.
- Proper label and identification board /stickers will be provided in the storage area.
- Conductive drum pallets will be provided.
- Drum handling trolley / stackers/fork lift will be used for drum handling.
- Separate dispensing room with local exhaust and static earthing provision will be made.
- Materials will be stored as per its compatibility study and separate area will be made for flammable, corrosive and toxic chemical drums storage.
- Smoking and other spark, flame generating item will be banned from the Gate.

#### 7.18.3 TRANSPORTATION

- Road tanker unloading procedure will be in place and will be implemented for safe unloading of road tanker.
- Static earthing provision will be made for tanker unloading.
- Earthed Flexible Steel hose will be used for solvent unloading from the road tanker.
- Fixed pipelines with pumps will be provided for solvent transfer up to Day tanks/reactors.
- Double mechanical seal type pumps will be installed.
- NRV provision will be made on all pump discharge line.

CHAPTER - 8

**PROJECT BENEFITS** 

#### 8.1 BACKGROUND

M/s. Chemplast Sanmar Limited, Proposing expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) manufacturing in existing unit at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.

#### 8.2 IMPROVEMENTS IN THE PHYSICAL INFRASTRUCTURE

There will be increase in some small scale businesses like tea stall, catering services/ hotels, grocery, sweet marts, cycle shop etc. in study area.

#### 8.3 IMPROVEMENTS IN THE SOCIAL INFRASTRUCTURE

Following are the improvement which may occur due to proposed project;

- There will be no land acquisition, no Loss of livelihood to local communities as proposed project is in existing site area.
- There will be No Displacement of people because the proposed project is in existing site area.
- Use of existing skills in the region for minor developments, required for the proposed project
- Increased transportation and handling requirements, that could benefit the local economy
- Increased taxes to the State and Central Governments, which would add to the public good

Consequently, the project would have beneficial impacts on the socio-economic conditions of the study area and the Region.

#### 8.4 EXPORT

Majority of the products will be used for international market and some products will be used in domestic market depending on the market. Chemplast Sanmar Limited is a premier company that exports and imports goods from countries including China, France, Japan and Switzerland and host of other countries. Depending on the international demand of products we shall explore the possibility of exporting the products.

#### **8.5 EMPLOYMENT GENERATION**

The Chemplast Sanmar Group employs a diverse and competent workforce. A conducive and invigorating work atmosphere provides employees opportunities for growth and excellence. As project will have considerable employment & trade opportunities with the commencement of the production activities. This will increase the employment opportunity. Employment would be as per prevailing norms of state government for skilled and unskilled people for the proposed project. approximately 1350 people [Existing: 350 people + proposed: 1000 people] will be employed.

The project will benefit the people living in the neighboring villages by giving preference to them in relation to direct employment associated with the various project activities. Construction and operation phase of the proposed project will involve a certain number of laborers. There is a possibility that local people for construction phase as well as a number of local skilled and unskilled people will be engaged in the employment which will improve the existing employment scenario of the region.

There will direct employment generation as per following details:

During project phase: Permanent employment: 40 Temporary employment: 350 to 500

During operation phase: Permanent employment: 350 Temporary employment: 800

Total Employment: 1200 to 1400

However, indirect employment is likely to be about 1000 persons.

Enhanced direct employment for technical/administrative works and indirect employment opportunities for transporters of raw materials and finished goods;

Business opportunities for local people as there will be scope of hiring vehicle like tractors & trolleys.

#### 8.6 SOCIO-ECONOMIC DEVELOPMENTAL ACTIVITIES

CER @ 0.25 % of the additional project cost (i.e. 2000 Crore) and CSR will be carried out by the company in the surrounding villages. This fund will be administered by a local area development committee in accordance with the orders of the appropriate Government. This fund will be used for the creation of infrastructure and overall economic development of the project area. Such activities are stated as below:

S. No.	CER activity
1	Desilting of lakes and Increasing the depth; improving beautification of surrounding pond (7 Nos)
2	Tree plantation at schools and villages
3	Installing of Solar Light and panels in the villages to promote green energy
4	Afforestation programmes: Joining hand with Tamil Nadu Forest department and develop the Sanmar forest with fencing
5	Rain Harvesting in schools and villages

#### Action plan for the CER activity are as follows:

#### Details of CSR Projects for Financial Year 2021-22

S.No	Location /Area	Description of CSR
1	Berigai Panchayat office	Issued Covid-19 Kit
		PP Suits - 50Nos
		Disinfection Spray Machine- 1 No and Hypo Solution-
		100L
2	Shoolagiri & Berigai PHC	PC and Printer
3	B-Kurubarapalli Panchayat	Provided Bore well for common drinking water
4	Berigai PHC	Polio Camp organized
5	Berigai Panchayat	Constructed OHT (Over Head Tank) for storage and supply of drinking water

#### Details of CSR Projects for Financial Year 2022-2023

S.No	Location /Area	Description of CSR
1	B.Singiripalli	Temple compound wall painting work
2	Barigai police station	Provided the entrance gate
3	Suligunta Village	Panchayat union preliminary school painting work
4	B.Kuruparapalli village	Panchayat union preliminary School road revamping work
5	Kurubarapalli	Constructed Bus stop
6	Sikkanapalli	Constructed Bus stop

#### **8.7 CONCLUSION**

It can be concluded that the proposed project is beneficial in the interest of common person, the society, the state and as the country as a whole. The benefits can be summarized as below:

- Substantial Socio-economic benefits;
- Good Techno-commercial viability;
- Employment to the semi-skilled and unskilled workmen located around the project site during operation phase;
- Infrastructure facilities will be improved due to the proposed expansion.
- The proposed project will provide quality product at lower cost to the users.
- To generate local employment.
- These products also have export potential. Hence, possibility of earning foreign exchange.
- There should be positive impact on the socio-economic condition of the area in terms of direct and indirect employment due to the proposed project.

## Chapter - 9 Environmental Cost Benefit Analysis

#### 9.1 ENVIRONMENTAL COST BENEFIT ANALYSIS

The environmental cost benefit analysis is not recommended during scoping stage. Hence, environmental cost benefit analysis was not carried out.

## Chapter - 10 Environmental Management Plan

#### **10.1 BACKGROUND**

Environmental Management Plan is required to ensure sustainable development in the area surrounding the proposed project. EMP consists of the set of mitigation, management, monitoring and institutional measures to be taken during implementation and operation phase to eliminate adverse environmental impacts or reduce them to acceptable levels. The environmental management plan shall address the components of the environment affected during construction and operation of the plant and by the different activities forming part of the processes of the proposed plant. Mitigation measures at the source level and an overall Management Plan at the site level are elicited so as to preserve the surrounding environment. The EMP is herein outlined after taking into account the various Acts, Rules and Regulations /Standards concerned with the environmental management.

#### **10.2 OBJECTIVES OF ENVIRONMENTAL MANAGEMENT PLAN**

- To treat and dispose off all the pollutants viz. liquid, gaseous and solid waste so as to meet statutory requirements (Relevant Pollution Control Acts) with appropriate technology.
- To support and implement work to achieve environmental standards and to improve the methods of environmental management.
- To promote green-belt development.
- To reduce fire and accident hazards.
- Sudgeting and allocation of funds for the environment management system.
- To adopt cleaner production technology and waste minimization programs.
- Identification of mitigating strategies, such as prevention and control, for each environmental component, as well as a restoration and resettlement strategy.

The Environment Management area handled by a Qualified Manager with adequate training and experience in operation of ETP and management of other pollution control measures. He will be assisted by a Qualified Executive and three operator (in each shift) to run ETP and other pollution control system. All the necessary controls w.r.t. management of Liquid/ Hazardous/ Gaseous pollutants will be exercised. All the necessary controls w.r.t. management of Liquid / Hazardous / Gaseous pollutants will be exercised. For all liquid effluents, full-fledged effluent treatment plant consisting of primary treatment will be installed to ensure adequate treatment prior to discharge.

Process stacks will be equipped at safe height with scrubbers where required to ensure emissions within prescribed limits. DG sets will be provided with acoustic enclosure and stack.

To handle hazardous waste as per Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016 of Environment Protection Act, 1986. Hazardous waste will be disposed off at the secured land fill facility available in the nearby vicinity.

- Fixed gas detection system will be installed in the workplace area.
- Work place monitoring will be carried out regularly through continuous monitoring systems and periodic checking.
- Ambient air quality will be monitored regularly.
- Sufficient green belt will be maintained inside and outside the premises by planting local species of trees.
- R&D team will work for continuous improvement in process to reduce Pollution Load & moving towards adopting cleaner production technology.

#### **10.3 ENVIRONMENTAL MANAGEMENT CELL**

Apart from having an environmental management plan, it is also necessary to have a permanent organizational set up charged with the task of ensuring effective implementation. In this effect, **M/s. Chemplast Sanmar Limited** will assign responsibilities to officers from various disciplines to co-ordinate the activities concerned with management and implementation of environment control measures.

An organogram of Environment management cell is shown in in Chapter 6. This department shall undertake the monitoring of environment pollution level by measuring stack emissions, Ambient air quality, water and effluent quality, Noise level, etc. either departmentally or by appointing external agency whenever necessary.

**M/s. Chemplast Sanmar Limited** shall carry out the regular monitoring in future as well as ensure that pollution is limited below prescribed limits and shall take corrective action by providing new pollution control equipment if required. In case the monitored results of environment pollution are found to exceed the prescribed limits, remedial actions are taken through the concerned plant authorities. The actual operation and maintenance of pollution control equipment is under respective department heads.

The environmental department shall also look after preparation and submission of Water Cess Return, Environmental statement and Consolidated Consent & Authorization application/ renewal under water (Prevention and Control of Pollution) Act, 1974, Air (Prevention and Control of Pollution) Act, 1981, Ambient Air Quality as per NAAQS Standards, 2009 and Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016 under Environment Protection Act, 1986.

#### **10.4 ENVIRONMENT MANAGEMENT PLAN**

The Environment Management plan is meant for mitigation/ management of the adverse impacts and the strengthening positive impacts during proposed project. Environment Management Plan is tabulated in Table: -10.1

TABLE - 10.1

#### ENVIRONMENT MANAGEMENT PLAN

Environmental	Sources of Impact	Mitigative Measure
Components		
Water	Construction activity &	Company has provided the sanitation
Environment	abstraction of water for	facility for workers and domestic
	construction requirement	wastewater treated in STP and will
	and sanitation for workers.	reuse for domestic and gardening purpose.
Air Environment	There will be generation of	> At frequent interval water sprinkling is
	dust & vehicular emission	done on the roads and work zone areas
	due to transportation of	to reduce the fugitive dust.
	construction machineries	Vehicles having PUC certificates only be
	and raw materials	allowed to transport materials and
		equipment's at project site.
	Construction equipment and	Construction equipment shall be
	machineries	maintained and serviced regularly such
		that the gaseous emissions from this
		equipment are maintained within the
		design specifications
	Dust generation due to site	Unit has store raw materials stored in
	preparation	silos or in covered areas to prevent dust
		pollution and other fugitive emissions.
		Dust masks are provided to the workers.
NOISE	Noise generation during	✓ IT possible, provide noise protection
Environment	CONSTRUCTION WORK	worker Betation of work to minimize
		exposure.

#### CONSTRUCTION STAGE POTENTIAL IMPACTS & MITIGATION MEASURES

	Noise generation from vehicular movement for transportation of construction material and waste Condition of equipment and machineries during construction work	<ul> <li>Well maintained vehicles and properly designed equipment are used.</li> <li>Restrict movement of vehicle between 10 p.m. to 6 a.m. if possible.</li> <li>All machineries to be used for construction purpose will be of highest standard of reputed make and compliance of noise pollution control norms</li> </ul>
Land Environment	Generation of Debris due to Excavation and paving of site Soil degradation due to spillage/leakage of oil & grease.	<ul> <li>Debris reused in filling low lying area</li> <li>Designated construction area for prevention of oil &amp; grease getting mixed with soil.</li> <li>Construction of RCC roads and pavements to avoid soil contamination due to spillage/leakage of oil &amp; grease.</li> </ul>
	Generation of scraps due to construction activity	Sold to scrap vendors
Green belt Development	There shall be positive impact of greenbelt development as it will act natural barrier for dust emissions.	<ul> <li>Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (33 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises.</li> <li>Good greenery is maintained in and around the site by planting various types of local tress.</li> </ul>
Hazardous/Solid Waste	Wastes generated due to spillage/leakage, handling and disposal of construction wastes and other wastes.	<ul> <li>Construction waste categorized in to recyclable and non-recyclable and stored separately.</li> <li>Recyclable construction waste sent for recycling and non-recyclable waste will be sent to authorize dealers for disposal.</li> </ul>

		> Other wastes disposed off adequately.
Ecology and Biodiversity	The habitual activities of the birds and butterflies species will be affected. Noise from construction will create stress on animals and disturb their daily activities	<ul> <li>Idle vehicles to be shut off when it not in use.</li> <li>Speed limit of vehicles maintained.</li> <li>Loud horn in the vehicles are not be allowed.</li> <li>Acoustic enclose provided to construction machineries and equipments.</li> <li>Preference to be given that maximum construction activities are carried out during day time only.</li> </ul>
Other Risk and Hazards	Chances of accident during transportation of material	<ul> <li>All transportation within the working area carried out directly under the supervision and control of the management.</li> <li>Speed limit of vehicles maintained.</li> <li>Banksman to be available for all heavy vehicles.</li> <li>Driver competency to be ensured and adequate training to be provided</li> </ul>
	Fall from height, cut injury and fall injury during construction activities.	<ul> <li>Height work protection to be followed all height work. i.e. Ensured Full body harness to be used by all height work employees. Handrails to be provided for all working platforms. Safety net to be provided</li> <li>Escape ladders are providing in case of emergency</li> <li>Vehicles are strictly not allowing to work too close to excavated areas</li> <li>Safe construction practices are followed under supervisor's inspection.</li> <li>PPEs are provided to workers for safety against potential risk.</li> <li>All portable power equipment to be inspected and certificated by authority person on periodical interval.</li> <li>"No-Guard No-Work to be followed for all equipment</li> </ul>

Environmental	Sources of Impact	Mitigative Measure
Components		
Water Environment	Chances of contamination of surface water due to generation of Low COD effluent from process and utility effluent.	<ul> <li>Low COD effluent will be treated through the conventional wastewater treatment system and the pass through RO system.</li> <li>Operating by ZLD plant</li> </ul>
	Chances of contamination of surface water due to generation of High COD stream	Neutralized concentrate effluent and rejects from RO will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated will be disposed to TSDF (Common disposal Facility).
	Chancesofcontaminationofgroundwaterdueto	The spilled/ leaked material should be collected and diluted as per required properties of the leaked material.
	waste stream generated from spillage, leakages, vessel washing, used container washing etc.	The diluted material is collected/ stored separately/treated in ETP and then sent to MEE.
Air Environment	Generation of flue gas emission likes SPM, SO2 and NOx from diesel operated vehicles and machineries.	Valid PUC Certified vehicles used for transportation of material and equipment.
	Fugitive dust generation due to vehicle movement for transportation of raw material and finished goods.	Plot premises is well developed with concrete roads.
	Generation of Fugitive emission and VOC due to vaporization of raw material and product handling.	<ul> <li>The raw materials are stored in closed containers and handled through closed system to avoid the handling losses.</li> <li>Company is using Europee Oil &amp; Diosel for</li> </ul>

	NOx from flue gas emission sources like Boiler, TFH and D.G. Set.	<ul> <li>existing Boiler, Thermic Fluid Heater &amp; D.G.Sets.</li> <li>&gt; After expansion, Company will use Briquettes/ Furnace Oil &amp; HSD as fuel for proposed Boiler, TFH, &amp; D.G.Sets.</li> <li>&gt; Mechanical Dust collector &amp; Stack is provided to control flue gas emission.</li> <li>&gt; After expansion, Company will provide Mechanical Dust collector or ESP + water scrubber &amp; Stack to control flue gas emission.</li> </ul>
	Emissions from production processes	<ul> <li>Company has installed adequate Wet Alkali Scrubber &amp; Wet scrubber with stack systems to control process gas emission.</li> <li>All the process equipment will be connected to the scrubbers and equipment where solvents distilled are provided with condensers and after coolers and the receivers are connected to the scrubber. The scrubbers are circulated with appropriate scrubbing solution like caustic, hypochlorite, water etc. The pH indicator and pressure switches are provided to ensure quality of scrubbing liquid for effective scrubbing.</li> </ul>
	Emissions from materials handling storage or transport.	<ul> <li>All liquid raw materials shall be procured in tankers / Barrels / Carbouys and shall be transferred through a closed circuit pipe lines.</li> <li>Solid raw material charged through closed system into reactors and the dust collection hopper shall be connected to a bag filter and ID fan.</li> </ul>
Land Environment	Chances of odour from septic tank/ETP processing area and waste storage area may cause nuisance Proposed expansion project will not be	<ul> <li>Working areas are kept clean and maintained.</li> <li></li> </ul>

	distinct as there will be no major changes in the present land use of the site. In existing most of the development has already been matured. Hence, any additional impact on land environment will be insignificant.	
Noise	Increase noise level due	$\succ$ Noise emissions kept to a minimum by
Environment	to Operation of equipment and machineries	<ul> <li>regular maintenance of machineries.</li> <li>Regular oiling, lubrication and maintenance of the equipment carried out to minimize noise generation.</li> <li>Noise generating equipments to be isolated from operating area with adequate enclosure</li> <li>Workers/ Operators working near to high noise generating machinery to be provided with ear mufflers/ ear plug</li> </ul>
	Noise generation from	Preventive maintenance of pumps and
	pumps and blowers at ETP	blowers done periodically
Socio-Economic	Overall growth & development of area, increased employment, improvement in infrastructure and growth of downstream industries	<ul> <li>Positive impact on the Socio-Economic of the country &amp; region:</li> <li>➤ The budget for CER approx. Rs.5.0 Crore i.e 0.25 % of proposed expansion project cost should be allotted for development of locals and surrounding villages.</li> </ul>
Ecology and Biodiversity	Impact due to emission on surrounding flora and fauna	<ul> <li>Transportation of products and raw material avoided in the early morning and evening.</li> <li>Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (33 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54)</li> </ul>

		Hectors area) for green belt (3.33 %)
		within the plant premises.
	The impact on terrestrial ecology will be due to emission of pollutants like PM, NO2 and SO2.	Mechanical Dust collector or ESP + water scrubber & Stack will be provided for the Boiler, TFH and DG sets to to control flue gas emission.
Other Risks & Hazards	Chances of vehicle collision due to vehicle failure.	Well trained and licensed driver hire for transportation of raw material and final product.
	Tilting of moving vehicle due to overloading.	<ul> <li>Transport vehicles are properly examined before transportation.</li> <li>Concern officer ensure for leading will be</li> </ul>
		done as per vehicle capacity.
	Chances of fatal incident, severe injury and loss of property due to explosion of boiler and thermic fluid heater.	<ul> <li>All critical chemical storage, process, and equipment are properly safety study carried out and implement the all safety precautions.</li> <li>Dedicated safety department is available to advise and implement the safety precaution in all level.</li> </ul>
	Chances of accident to workers due to spillage, leakage of hazardous chemicals during handling	<ul> <li>Trained Competent person is involved the handling of hazardous chemical</li> <li>All hazardous chemicals storage area followed by layer of protection</li> <li>Closed loop handling system is used for hazardous chemicals handling</li> <li>Adequate PPE's are provided to workers for handling hazardous chemical.</li> <li>Safety interlock system, sensor and safety alarm system is installed all hazardous chemicals storage</li> </ul>
	Corrosion and leaching due to spillage and leakage of hazardous chemicals during handling.	<ul> <li>Closed loop handling system is used for hazardous chemicals handling</li> <li>Standard operating procedure prepare and be strictly followed by workers.</li> <li>Periodically scheduled preventive maintenance is carried by concern department for all hazardous chemicals handling equipments.</li> </ul>

	> Periodical inspection and replacement of
	equipment is followed
Occupational health	> All the employees will be eligible for pre-
hazard to workers work	employment medical check-up.
with hazardous	Employees will be expected to complete
chemicals	their mandatory check-up in an approved
	hospital before joining to the organization.
	Periodical medical examination will be
	carried out as per Factories Act and Rules
	for employees
	Occupational Health Centre is established
	at site and Doctor will be available on daily
	basis. Medical records of employees made
	available with the doctor.
	Products and raw material handled, stored
	and transported as per manufacture,
	storage and import of hazardous chemical
	rules, 1989.
	$\succ$ The training for awareness of MSDS
	provided.
Risk of fire/explosion	All chemicals are stored as per
within product/raw	compatibility.
material storage area	A additional full-fledge fire hydrant system
	with ring main will be provided and
	designed as per TAC (Tariff Advisory
	committee) regulations.
	A full-fledged fire hydrant system with
	ring main is provided and designed as per
	TAC (Tariff Advisory committee)
	regulations. The system is automatic and
	pressurized system. It is kept
	automatically under pressure with the
	help of a jockey pump. One electrical
	driven pump works as the main pump
	with a diesel driven pump as standby. A
	dedicated water reservoir for fire
	protection is provided with two-fire water
	storage of total capacity 1200 KL. 21 no. of
	emergency 'manual call point' and 43 no.
	of smoke detector was installed around

		the factory. Sprinkler system provided for
		Flammable bulk storage and unloading
		areas. Apart from fixed fire fighting
		system, portable fire extinguishers are
		provided at various locations of the plant
		so that in the incipient stage itself fires
		can be handled and extinguished.
Green belt	There shall be positive	Regular water sprinkling and maintenance
Development	impact of greenbelt	of greenbelt.
	development as it will	
	act natural barrier for	
	dust emissions.	
	Improvement in soil	➢ Maintenance of Greenbelt will be done
	quality due to binding of	regularly.
	top soil materials due to	
	root structure.	

#### **10.4.1 WATER ENVIRONMENT**

Water requirement will meet through the CGWA and TWAD. However, record of water consumption for different usages should be maintained.

The following measures would be taken to minimize the water usage in the operational phase:

- Endeavor to reduce the actual process water consumption by way of improvement in operation of processing units.
- ✓ Water conservation practice shall be done by recycling of treated water. The Effluent water will be completely recycled in Plant to reduce the fresh water demand.
- ✓ Water saving by shower head flow controls, spray taps and faucet aerators and photosensitive taps.
- Exploring other options of reusing the treated effluent besides fire water make up and cooling tower makeup
- ✓ The treated domestic water will be reuse for gardening purpose to reduce fresh water demand.

#### **10.4.1.1 WATER CONSERVATION AND RECHARGING**

#### Water Conservation:

- Water conservation measures will be taken to optimize the fresh water requirement and record of water consumption shall be maintained for each usage in future.
- Aware employees/workers to avoid wasting water during operation phase.

- Taps shall be closed when not in use.
- Explore **3** R's for conservation viz, **Re-use**, **Reduce and Re-cycle**.

#### Recharging (Rain Water Harvesting System):

Unit will harvest rainwater from the rooftop of the buildings. Rain water harvesting is under process.





#### **10.4.2 AIR ENVIRONMENT**

#### 10.4.2.1 Odor Control Measures

The chemicals used or manufactured related to the proposed project do not release any disagreeable odor. However, if any spillage or leakage of such chemicals are taken place then following material handling procedures are being followed to reduce the Odour and release of chemical vapors in atmosphere.

- All liquid raw materials charged into Reactors with pumps or under gravity through closed pipes.
- Suction Hoods placed near the Man-holes & Charging funnels of Reactors & Filters so that chemical vapors and dust do not escape into the Plant & surroundings, when the man-hole covers are opened for inspection or charging of RM.
- All storage tanks of low boiling chemicals provided with Conservation Vents.
- Vent lines of Dosing vessels shall be connected back to the vents of storage tanks to prevent contaminated air release during material transfer.
- All pumps handling hazardous chemicals provided with mechanical seals to prevent fugitive emission.
- Wherever possible magnetic coupled pumps are used.
- Any spillage from drums etc. absorbed with saw dust / soda ash and moped clean.
- The contaminated absorbent are safely dispose off along with hazardous waste.

#### Spill control measures

The accidental spill of chemicals is handled in a systematic manner to reduce the odor.

- 1. The area where the chemical spillage can take place is covered with appropriate adsorbent material like soda ash, saw dust or even an earth using all necessary Personal Protective equipment (PPE).
- 2. Contaminated area is then cleaned with soap and water and the water used is transferred to ETP.
- 3. Masking agents (e.g. PIION, ECOPEARL) spray is then used to reduce the impact of lingering odors.

#### **10.4.3 NOISE ENVIRONMENT**

The sound pressure level generated by a noise source decreases with increasing distance from the source due to wave divergence. The propagation and attenuation of noise pressure wave is dependent on many parameters amongst which, the medium of travel and the ambient conditions are the most significant parameters. In order to minimize adverse impact on the noise environment, due attention shall be given for implementing noise control measures. Comprehensive measures shall be taken at design stage for noise from proposed unit.

#### **10.4.4 LAND ENVIRONMENT**

- During the site clearing, excavated earth shall be stored in stockpiles and covered with plastic/tarpaulin sheets or stored in a closed room and reused for landscape development along the corridor.
- To avoid water logging, gradient of the area will be maintained during leveling.
- The construction material and diesel /oil to be used for various construction activities will be stored in designated storage yards to reduce the spills into unwarranted areas.
- Segregation, collection, storage and disposal of waste material generated during the construction phase to minimize its impact on soil quality.
- The construction debris as well as debris from demolition work will be utilized within the site for leveling purpose and base course preparation of internal roads.

#### **10.4.4.1 HAZARDOUS WASTE MANAGEMENT**

#### Storage of Hazardous Waste:

- Hazardous waste shall not be stored for a period more than 90 days. And shall maintain records and make them available for inspection.
- Store at a designated Onsite-secured area with impervious floor that affords protection from sun & rain fall, spreading of leachate, mixing of wastes etc.

#### Transportation of Hazardous Waste:

• Properly packed & labeled waste transport through dedicated vehicle to a captive facility/ authorized TSDF facility.

#### **10.5 SOCIO-ECONOMIC ENVIRONMENT**

- The activities of the proposed expansion in the production capacity will produce some improvements in the socio-economic levels in the study area.
- The unit will generate the local employment for the proposed project.
- Better literacy rates are possible due to assumed better economic conditions of the people.
- Project will lead to development of ancillary industries and an overall economic growth of nearby towns to supplement the population of the area.
- Project proponent will ensure to connect even last people with the infrastructural facility like educational, health, road etc in the locality.
- Other needs and social-economic aspects of local inhabitants will be dealt with CSR activities & CER activities in the region.
- The existing plant activities have already provided employment to persons of different skills and trades.

#### **10.6 ECOLOGICAL ENVIRONMENT**

The baseline flora and fauna has been referred in Chapter-3. There is no protected area, important or sensitive species within 15 kms from the proposed project boundary. There are no significant aquatic bodies & no forest land involved within the study area. The treated effluents will not be discharged into any surface water streams. Hence, no impact is envisaged from the proposed expansion project on aquatic bodies.

33% of greenbelt is already developed around the periphery of the projects site which will have positive impact since it will support various Faunal & Floral diversity. It helps in purifying the air and reduce noise pollution. Greenbelt will increase the aesthetic value of the site and increase employment. Hence, the propose expansion project will create positive impact on EB environment by increasing the green area of the region.

# 10.7 IDENTIFICATION OF RECYCLE/REUSE, CLEANER PRODUCTION AND CO-PROCESSING OPTION OF HAZARDOUS WASTE

- It is recommended to analyze each hazardous waste periodically and maintain records.
- Check the calorific value of the ETP Sludge and process waste and then explore possibilities of Co-Processing in Cement Industry as alternative fuel or raw materials. Waste materials used for co-processing are referred to as alternative fuels and raw materials (AFR).
  - 1. Reduce water consumption by proper housekeeping, utilizing low-flow, drip or microspray irrigation systems and technologies that reduce water loss.
  - 2. Repairing leaks to pipes, glands, seals and gaskets can significantly saves energy costs and water conservation.
  - 3. Recycle of product wash water in this process i.e. Second wash water will be re-used as first wash in the subsequent batch to reduce fresh water consumption.

#### **10.8 GREEN BELT DEVELOPMENT**

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (33 %) area is covered as greenbelt. The company has planted total 17000 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises.

Trees species are planted at plant in line with trees species recommended in CPCB's guidelines for developing Greenbelts.

#### **GREEN BELT DEVELOPMENT PLAN**

YEAR	NO. OF TREES	COST INCURED
Till-2022	16250	1,13,75,000/-
2022-2023	1000	7,00,000/-
TOTAL	17250	1,20,75,000/-

Cost of Maintenance of Green Belt: - Rs. 10, 50, 000/- Per Annum

#### **GREENBELT DEVELOPED WITHIN THE PLANT PREMISES**











#### LIST OF PLANTS AND AREA COVERED FOR THE GREENBELT ALONG WITH PLANT LAYOUT



S. No	Area	Saplings available	Species Name
1	North Side boundary	1710	1. Neem
2	West side boundary	1650	2. Silver Oak 3. Eucalyptus
3	South side boundary	1850	4. Pongamia 5. Gulmohur
4	East side boundary	1650	6. Spathodia 7 Ashoka
5	Process Plants	3420	8. Banyan
6	Eucalyptus grove	5970	9. Bamboo 10. Peapal
	Total Number of trees	16250	

#### **10.9 MEASURES FOR CONSERVATION OF ENERGY**

M/s. Chemplast Sanmar Limited, has adopted various measures for energy conservation:

- Company is going with 100% of LED lightings over the plant, it's better than other by, they are brighter, Require lesser energy to function and Last longer.
  - LED lamps consume 20% energy for heating
  - Metal halide lamps consume 75% energy
- Energy efficient machineries used during operation phase.
- Installation of economizer & high efficiency burner on steam boilers.
- Company has try to utilize renewable sources of energy for conservation of nonrenewable sources of energy.
- Enough care taken to prevent/minimize energy losses at each stage.
- Energy audit is used as a tool for monitoring purpose.
- External lights are control through timers for auto on/off function based on timings.
- The cable size is selected so as to minimize the power losses.
- The power factor improvement capacitors provided individually for AC loads.
- Using water cooled chillers, variable frequency drives for secondary pumps and building management system for HVAC equipments with non-CFC and non-HCFC based refrigerants.
- Installation of insulation over the steam line to reduce the heat loss.
- All rotating equipment are provided with variable frequency drive
- Steam condensate shall be recovered and reused.
- Boiler blow down are controlled by automatic system to save heat up losses.
- Batch processes are monitored stringently for heating and cooling operations so that there is minimum loss of energy and material by way of temperature, pressure and flow controls.

#### **10.10 SKILLED AND TRAINED MANPOWER**

Employment would be as per prevailing norms of state government for skilled and trained people for the project. **M/s. Chemplast Sanmar Limited.** has 1350 people [Existing: 350 people + proposed: 1000 people] of employment based on qualification and requirement. In addition to direct employment, indirect employment shall generate ancillary business to some extent for the local population.

#### **10.11 CAPITAL COST FOR ENVIRONMENTAL MANGEMENT**

Total capital investment for the project will be Rs. 2292.398 Crores [Existing: 292.398 Crore + Proposed: 2000 Crore]. Capital cost of air & water pollution control system and environmental monitoring equipments will be Rs. 118.482 Crores.

Sr.	Particulars	Existing	Proposed	Total
No.		Amount	Amount	Proposed
		(Rs. In Crore)	(Rs. In	Amount
			Crore)	(Rs. In Crore)
1	Land	5.915	-	5.915
2	Building and site development	81.446	374	455.446
3	Plant and machinery	186.555	1526	1712.555
4	Total Capital cost Environment	18.482	100	118.482
	protection measures (includes cost			
	of ETP, Tree Plantation, Evaporator			
	System and Rain Water Harvesting			
	etc.)			
	Total Cost of Project	292.398	2000	2292.398
5	Recurring Cost of Environment protection measures (includes cost		6.932	
	of ETP, Tree Plantation, Evaporator System etc.) Crores/Annum			Crores/Annum

#### **10.12 SOLVENT MANAGEMENT PLAN**

Solvent management will be carried out as follows:

- Chillier water circulation is provided for primary condenser and chilled brine circulation for secondary condenser is provided to condensate solvent vapours and reduces solvent losses. Solvent recovery.
- Double stage condensers are used for solvent recovery system
- Reactor and solvent handling pump have mechanical seals to prevent leakages.
- Automatic process control and interlocking system is provided for solvent recovery system.
- Continuous VOC monitoring system is provided in solvent storage area.
- The condensers will provided with sufficient HTA and residence time so as to achieve more than 97% recovery.

- Vent trap is provided with cooling and scrubbing system for solvent recovery system
- Solvents will store in a separate space specified with all safety measures.
- Proper earthing provided in all the electrical equipment wherever solvent handling is done.
- Entire plant is flame proof. The solvent storage tanks will be provided with breather valve to prevent losses.
- All the solvent storage tanks are connected with vent condensers with chilled brine circulation.

Coolant to be usedPrimary CondensersChiller WaterSecondary CondensersChilled Brine up to -5°CVent CondensersChilled Brine up to -10°C

#### FIGURE-10.1

#### FLOW DIAGRAM OF SOLVENT MANAGEMENT SYSTEM



#### TABLE-10.2

SOLVENT RECOVERY					
Solvent	Input (TPA)	Recovery (TPA)	Loss	% Recovery	% spent solvent recovery
Toluene	20000	16000	4000	80.0	20.0
ТВА	9900	6940	2960	70.1	29.9
МСВ	13600	13200	400	97.1	2.9
MTBE	21200	20700	500	97.6	2.4
ODCB	28000	27000	1000	96.4	3.6
Methanol	20000	16400	3600	82.0	18.0
Benzene	2000	1800	200	90.0	10.0

#### 10.12.1 LEAK DETECTION AND REPAIR (LDAR) PROGRAM

Periodic preventive maintenance and inspection is done for all the equipments by the in-house Engineering team and LDAR study carried yearly once by External lab and its report submitted to TNPCB, Hosur.

- Leak Free Pumps for Transfer of Solvents
- MSW Gaskets in Solvent Pipelines to Prevent Leakage from flanges
- Minimum Number of Flanges, Joints and Valves in Pipelines.
- To Eliminate Chances of Leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- All the rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- Condenser and scrubber post reactor with cooling arrangement
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- In case the small spillage or leakage observed, first pour the china clay (vermiculate) on material and collect the contaminated china clay (vermiculate) and send to ETP.
- If the spillage is of inflammable liquid, switch off all the power supply in the area to prevent electric spark.

#### MONITORING OF SOLVENT LOSSES

- In warding, storage and consumption of solvents in various products shall be measured through level transmitters and load cells weighing systems resp. The quantity at each stage shall be reconciled periodically to arrive at losses.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- VOC Detectors will be installed at various places to detect leak.

#### PREVENTIVE MAINTENANCE TO PREVENT LEAKAGES

In order to prevent leakage from pump, seals, valves etc, preventive maintenance shall be carried out periodically as per plan. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCS.

SR.	Component	Preventive
NO		Maintenance
		Schedule
1	Pump seals with visible liquid dripping	Daily
2	Valves/flanges	Quarterly
3	Compressor seals	Quarterly
4	Pressure relief devices	Yearly
5	Pipeline thickness testing	Yearly

#### IMMEDIATE REPAIR OF DEVICES IN CASE OF LEAKAGES

- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc to ensure no fugitive emissions shall take place.
- Plant shall also maintain adequate number of spares and consumables required to repair the leaking device
- Plant shall also have competent contractor team to handle leakages and can repair the same immediately
- Standby equipments like pumps, valves etc shall be kept basis the criticality and usage
- Plant shall also have access equipments like boom lift to handle leakages at height immediately

#### **10.13 ACTION PLAN FOR TRANSPORTATION OF RAW MATERIALS AND PRODUCTS**

- 1. Every material (FG and or Raw material) container are with TREM CARD, Material Safety Data Sheet.
- 2. Container marked with Emergency Information Panel (includes Correct Technical Name, Class Label, UN NO, HAZCHEM, Emergency Dial, Specialist advice etc).
- 3. Container or Tank thoroughly hydraulically tested and test certificate are available with driver.
- 4. Only trained driver having valid driving license are allowed to carry out transportation of material.
- 5. Driver is allowed with attendant to enter inside or going outside from the company.

- 6. Driver and attendant well trained on Driving rules, Chemical Properties, Emergency Preparedness (Communication, Leakage spillage handling, Use of PPE, First-aid, Fire fighting measures, Toxic release measures).
- 7. Container are certified for road worthiness, PUC certificate.
- 8. Vehicle are equipped with fire-fighting equipment, first aid box, Toolbox, Antidotes, PPEs and Emergency Exit.
- 9. Conditions of Valves and fittings should be checked at security gate and proper corrective action will be taken in case of any abnormality.

Transportation of all the raw material and products shall primarily by road only. The raw material and products received delivered in Tanks, MS/HDPE/FIBRE drums, and cylinders as well as through tankers & containers and stores at ambient temperature. All the storage tanks of hazardous flammable substance are located within premises in separate storage area i.e. solvent farm area at ambient temperature. Solvents are stored in cool and dry place with all precautionary process instrumentation and safety appliance.

Large area covered by well-designed warehouse, which is containing store office, raw material store, finished product stores etc. In case of any abnormality reported to site regarding road accident, company's emergency response team will reach at the site and take proper corrective action and information of such incident will be provided to local police station and other government authority as per situation.

#### **10.14. DETAILS OF CARBON FOOTPRINT AND CARBON SEQUSTRATION STUDY**

We have submitting carbon foot print for last 3 year and Publish Sustainability report conforming to GRI standards with

Assurance by external agency (Ernst &Young sustainability service)

#### Scope 1 Emissions

Fuel type	Fuel consumption	Total emissions(kg CO2 eq./year)	Total emissions (t CO2 eq. /year)
Furnace Oil	1992.5 t/ year	6177980	6177.98
Diesel	61.96 t/ year	197420	197.420
Total Category 1 emissions (t CO2 eq. /year) 6375.4			6375.400

#### Reference

Net Cal. Value for FO = 42.3 TJ/Gg (IPPC) Emission Factor = 77.4 tco2/TJ

Net Cal. Value for Diesel = 43 TJ/Gg (IPPC) Emission Factor = 74.1 tCO2/TJ

#### Scope 2 Emissions

Category	Consumption (kWh/ year)	Total emissions (kg CO2 eq./year)	Total emissions (t CO2 eq. /year)
non renewable	8897208	7028794	7028.794
renewable	534000		
Total Category 2 emissions (t CO2 eq. /year)			7028.794

#### Reference

Grid emission factor of 0.790 tCO2/MWh has been considered as per CEA data, Govt. of India..

#### Scope 3 Emissions

Raw material transportation

Material type	Means of Transportation	Material transported (t-Km/year)	Total emissions(t CO2 eq. /year)
Raw materials	By road	396545	212.27
Total emissions due to raw material transportation			212.27

Emission factor of 74100 KG/TJ has been considered as per CEA data, Govt. of India..

#### finished good transportation

Category	Quantity (t/year)	Total emissions (t CO2 eq. /year)
final product	1046.42	44.65
Emissions due to solid waste generation (t CO2 eq./year)		44.65

Emission factor of 74100 KG/TJ has been considered as per CEA data, Govt. of India..

#### **Total Scope 3 emissions**

Category	Emissions (t CO2 eq. /year)
Raw material Transportation	212.27
finished good transportation	44.65
Total Category 3 emissions (tCO2 eq. /year)	256.92

# Total emissions= 13661.114 t CO2 eq. / year Emissions by Scope

Scope	Emissions (t CO2 eq./year)
1	6375.400
2	7028.794
3	256.920
Total emissions (t CO2 eq. /year)	13661.114

Scope	Performance indicator value
Hazardous waste per MT of the product	2.39 MT/MT
Water withdrawal	63096 KL/Annum
## **Carbon Sequestration**

#### The Total Carbon sequestration done is as follows:

Initiatives to provide energy-efficient or renewable energy based products and services, and reductions in energy requirements as a result of these initiatives and initiatives to reduce the indirect energy consumption & reduction achieved

Scope	Energy savings KWh	Emissions (t CO2 eq./year)
Energy saved due to averting of travel of employees by carrying out the Microsoft / Google Meet	9965	9.22
Energy saved due to replacement of Energy efficient motors	7982	7.38
Replacement of conventional type Light fittings by "Go-Green" LED luminaries ,250W to 100W - 5Nos	765	0.71
Replacement of conventional type Light fittings by "Go-Green" LED luminaries: 125W to 45W - 10Nos	3302	3.05
Total emissions (t CO2 eq. /year)	22014	20.36

## CHAPTER - 11 SUMMARY & CONLCUSION

## **11.1 INTRODUCTION**

Chemplast Sanmar is over fifty years old and is a part of the SHL Chemicals Group, which in turn is a constituent of the Sanmar Group, one among the oldest and most prominent corporate groups in South India. It is a major manufacturer of Specialty Chemicals such as Specialty Paste PVC resin and Custom Manufactured Chemicals for agro-chemical, pharmaceutical and fine chemicals sector. The company also produces other chemicals such as Caustic Soda, Chlorochemicals, Hydrogen Peroxide, Refrigerant gas and Industrial Salt. The manufacturing facilities are located at Mettur, Berigai and Vedaranyam in Tamil Nadu and Karaikal in the Union Territory of Puducherry.

Chemplast Sanmar Limited, is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators. These intermediates involve complex multistep synthesis using unique chemistries.

The manufacturing facility is located at Berigai, Tamil Nadu.

## **Organic Chemicals**

- Custom manufacturing of organic intermediates supplying into Pharmaceutical, Agrochemical and other fine chemical applications.
- Exclusive custom development and manufacturing of key intermediates
- Organic synthesis building blocks with capacity ranging from 100 kgs to 100's of MTPA

#### **Phyto Chemicals**

- Manufactures Active Pharmaceutical Ingredients (API) extracted from locally available biomass.
- Phyto Chemical APIs are sold globally to the Pharmaceutical industry.

#### **11.2 PROJECT DESCRIPTION**

**M/s. Chemplast Sanmar Limited**, Proposing expansion of Synthetic Organic Chemicals & Pesticide Specific Intermediates (From 1601.4 MT/Annum to 20031.4 MT/Annum) Manufacturing in Existing Unit at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3, 10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India.

For proposed expansion project; following assumptions have been considered:

The reason of applying in category A [5(b) & 5(f)] Environmental Clearance at MoEF & CC, New Delhi.

- Chemplast Sanmar Limited has proposed for the Pesticide Industrial Product [Sector-17; 5(b)],
- Unit is located outside Industrial estate, &
- Inter-state boundary was there within 10 Kms from the existing project site (i.e. Karnataka state boundary at 0.89 km from the project site)

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises. Total Requirement is 14000 KVA from State Electricity Department (13470 KVA-DG Set will be kept for emergency power back up). The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source. The total wastewater generation will be 705 KL/Day and will be segregated into two stream High COD Stream & Low COD stream. Solid/ hazardous wastes will be disposed as per Hazardous waste rules, 2016. Approximately 1350 people [Existing: 350 people + proposed: 1000 people] will be employed to local skilled and unskilled people based on qualification and requirement and preference will be given to local person for fulfilment of the manpower requirement.

#### **11.3 PRODUCT AND CAPACITY**

### LIST OF PRODUCTS ALONG WITH THEIR PRODUCTION CAPACITY

S.No	PROPOSED PRODUCTS LIST FOR EC	CAS No.	LD50	As per Existing CTE (MTPA)	Additional (MTPA)	Total Proposed (MTPA)	Category
Α	PHYTO CHEMICALS		_			-	
1	COLCHICINE	64-86-8	5.87 mg/kg	1.4	0	1.4	5(f)
2	THIOCOICHICOSIDE	602-41-5	300 mg/kg				5(f)
В	ORGANIC CHEMICALS						
3	2-(1- CYLCOCHEXENY)LETHYLAMI NE (CHEA)	3399-73-3	2.5 mg/kg	1600	18400	20000	5(f)
4	3-[1,3,3-TRIS-(2-CARBOXY- ETHYL)-2-OXO- CYCLOHEXYL]-PROPIONIC ACID (T4C)	5107-67- 5	36 mg/kg				5(f)
5	SUBSTITUTED ARYL ALKYL AMINE	3625-06- 7	1540 mg/kg				5(f)
6	2-AMINO-2-PHENYLBUTYRIC ACID SODIUM SALT /METHYL 2-(N,N- DIMETHYLAMINO)-2- PHENYLBUTYRATE (TR1600/TR1400)	94133- 84-3 /39068- 93-4	36 mg/kg				5(f)
7	4-CHOLO-BUTYL VERATRATE	69788- 75-6	1540 mg/kg				5(f)

8	4-(2-AMINOETHYL)-2-	554-52-9	5000
	METHOXYPHENOL (AE		mg/kg
	PHENOL)		0.0
9	METHYL-2 PHENOXY	103-60-6	5000
	ISOBUTYRATE		mg/kg
10	(4R)- 2- OXOOXAZOLIDINE -	83841-	5000
	4- CARBOXYLIC ACID (COX)	00-3	mg/kg
11	4-t	3288-99-	236 mg/kg
	BUTYLPHENYLACETONITRILE	1	
12	1-BROMO-3,5-	19752-	1070
	DICHLOROBENZENE (DCBB)	55-7	mg/kg
13	4-CHLORO-2-NITRO BENZOIC	6280-88-	71 mg/kg
	ACID	2	
14	4-BROMO PHENYL	25574-	1020 mg/kg
	PROPANOL (BPP)	11-2	
15	2-CHLORO-5-	105827-	1020 mg/kg
	CHLOROMETHYL-1,3-	91-6	
	THIAZOLE (CCMT)		
16	TETRACHLORO BUTYRIC	97055-	2940 mg/kg
	ACID (TCBA)	35-1	
17	IONOPHOR	133338-	88 mg/kg
		85-9	
18	4-BROMO-2-FLUORO	41604-	1540 mg/kg
	HYDROXY BIPHENYL (BFB)	19-7	
19	PARA METHYL PHENCYL	2196-99-	8750 mg/kg
	CHLORIDE (PMPC)	8	
20	SODIUM 4-(2,4-DICHLOR M-	172343-	8750 mg/kg
	TOLUOYL)-1,3-DI METHYL -5-	40-7	
	PYRAZOLATE (MY710Na)		

21	2-TRIFLUOROMETHYL BENZENE SULFONAMIDE (TBSA)	1869-24- 5	180 mg/kg		5(f)
22	METHYL CARBAZATE	6294-89- 9	5000 mg/kg		5(f)
23	TETRALONE IMINE	79560- 20-6	810 mg/kg		5(f)
24	4-[2(4-CHLORO-2,6- DIMETHYLPHENYL)ACETTYL] METHYLAMINO]-1- METHOXY-N- PHENYLPIPERIDIN-4- CARBOXAMIDE (DIAMIDE)	1644459- 63-1	5000 mg/kg		5(f)
25	3(2,2,2-TRIFLUOROETOXY)2- PYRIDINE SULFONAMIDE SODIUM SALT (SULFONAMIDE)	227605- 94-9	5000 mg/kg		5(f)
26	5-CHLORO-8-HYDROXY- QUINOLINE (CHQ)	130-16-5	5000 mg/kg		5(f)
27	PHENYLGUANIDINE CARBONATE (PGC)	14018- 90-7	1000 mg/kg		5(f)
28	FE (III) ACETYL ACETANOATE	14024-18- 1	1872 mg/kg		5(f)
29	MANGANESE(II)HEXACYANO MANGANATE(II)SODIUM SALT (ANODE)	Not available	1020 mg/kg		5(f)

## ENVIRONMENTAL IMPACT &

## **RISK ASSESSMENT REPORT**

30	IRON(II)MANGANESE(II)	Not	1020 mg/kg			5(f)
	HEXACYANOFERRATE(II)	available				
	SODIUM SALT					
	TETRADECAHYDRATE					
	(CATHODE)					
31	1-CHLORO-3-NITROBENZENE	121-73-3	1000 mg/kg	0		5(f)
32	2,4,6- TRICHLORO ANILINE	634-93-5	1000 mg/kg			5(f)
33	PIVALOYL CHLORIDE	3282-30-2	5000 mg/kg			5(f)
34	5-CHLORO VALEROYL	1575-61-7	1000 mg/kg			5(f)
	CHLORIDE					
35	4-FLUORO PHENYL ACETIC	405-50-5	5000 mg/kg			5(f)
	ACID					
36	4-BROMO FLUOROBENZENE	460-00-4	2700 mg/kg			5(f)
37	3-FLUOROTOLUENE	352-70-5	7000			5(f)
			mg /kg			
38	4-FLUOROTOLUENE	352-32-9	7000			5(f)
			mg /kg			
39	ORTHO NITRO ANISOLE	91-23-6	2000 mg/kg			5(f)
40	PARA NITRO ANISOLE	100-17-4	2300 mg/kg			5(f)
41	O-CHLORO P-NITRO	121-86-8	1400 mg/kg			5(f)
	TOLUENE					
42	3-AMINO- 4- METHYL	40872-87-	1700 mg/kg			5(f)
	BENZOIC ACID METHYL	5				
	ESTER					
43	3-AMINO 4-METHYL	21447-47-	2000 mg/kg			5(f)
	BENZOIC ACID ISOPROPYL	2				
	ESTER					

44	5-AMINO-2-METHYL	1089339-	1400 mg/kg				5(f)
	BENZENE SULPHONIC ACID	15-0					
	PHENYL ESTER						
45	(3-AMINOPHENYL)	26408-93-	1400 mg/kg				5(f)
	BENZENESULFONATE	5					
46	4 -AMINO BENZOIC ACID	619-45-4	1700 mg/kg				5(f)
	METHYL ESTER						
47	2-FLUOROANISOLE	321-21-8	3700 mg/kg				5(f)
48	4-FLUOROANISOLE	459-60-9	3700 mg/kg				5(f)
49	2-PHENOXYETHYLAMINE	1758-46-9	800 mg/kg				5(f)
50	SPIROPIDION (SPID)	1229023-	1000 mg/kg				5(b)
		00-0					
51	4-AMINO BENZAMIDE	2835-68-9	1500 mg/kg				5(f)
52	P-TOLUIDINE	106-49-0	1400 mg/kg				5(f)
53	M-ANISIDINE	536-90-3	1400 mg/kg				5(f)
54	4-CHLORO,2 AMINO	95-85-2	1400 mg/kg				5(f)
	PHENOL (4-CAP)						
55	HYDROXY ESTER (HES)	27513-35-	1400 mg/kg				5(f)
		5					
56	PARA CHLORO PHENYL	6212-33-5	1400 mg/kg				5(f)
	GLYCINE (PCPG)						
57	DICHLOROFLUOROBROMO	17318-08-	1400 mg/kg				5(f)
	BENZENE (DCFBB)	0					
58	4-ACETYL-2-METHYL	55860-35-	1400 mg/kg				5(f)
	BENZOIC ACID (AMBA)	0					
С	R&D PRODUCTS						
	R&D and Pilot scale Products			00	30	30	
	Total			1601.4	18430	20031.4	

D	BY-PRODUCTS				
1	Dil. Hydrochloric Acid	1050	12090	13140	
2	Dil. Sulphuric Acid	750	8630	9380	
3	Dil. Acetic acid	00	22000	22000	
4	Potassium salt	00	11400	11400	

#### **11.4 DESCRIPTION OF THE ENVIRONMENT**

#### **BASELINE ENVIRONMENTAL STATUS**

The baseline environmental quality has been assessed in the Pre Monsoon Season, 2022 (July, 2022 to September, 2022) in a study area of 10 km radial distance from the project site.

#### AIR ENVIRONMENT

The dispersion of pollutants in the atmosphere is a function of several meteorological parameters viz. temperature, wind speed and direction, mixing depths, inversion level, etc. The ambient air samples were collected and analyzed for Suspended Particulate Matter, Respirable Suspended Particulate Matter (RSPM-PM₁₀), Respirable Suspended Particulate Matter (RSPM-PM_{2.5}), Sulphur Dioxide (SO₂), Nitrogen dioxide (NOx), Ammonia (NH₃), Ozone (O₃), Lead (Pb), Benzene (C₆H₆), Benzo ( $\alpha$ ) Pyrene (BaP), Hydro Carbon (HC), Arsenic (As), Nickel (Ni), & Carbon Monoxide (CO) were monitored at site and nearby villages for identification, prediction, evaluation and assessment of potential impact on ambient air environment.

#### SUMMARY

- During the study **SPM** concentration was observed in the range of 75.08 118.20  $\mu$ g/m³. Maximum concentration of **SPM** was found at **Project Site (118.20 \mug/m³)**.
- During the study PM_{10.0} concentration was observed in the range of 41.71 62.21 μg/m³. Maximum concentration of PM_{10.0} was found at Project Site (62.21 μg/m³), which is well within the standard limit.
- During the study PM_{2.5} concentration was observed in the range of 19.67 29.21 μg/m³. Maximum concentration of PM_{2.5} was found at Project Site (29.21μg/m³), which is well within the standard limit.
- During the study  $SO_2$  concentration was observed in the range of BDL 10.41 µg/m³. Maximum concentration of  $SO_2$  was found at **Project Site & Suligunta (10.41 µg/m³)**, which is well within the standard limit.
- During the study NO₂ concentration was observed in the range of  $13.12 19.10 \ \mu g/m^3$ . Maximum concentration of NO₂ was found at Suligunta (19.10  $\mu g/m^3$ ), which is well within the standard limit.
- During the study  $O_3$  concentration was observed in the range of  $10.51 14.54 \ \mu g/m^3$ . Maximum concentration of  $O_3$  was found at **Suligunta (14.54 \ \mu g/m^3)**, which is well within the standard limit.



The PM10 and PM2.5 concentrations at all the AAQM locations were primarily caused by local phenomena including industrial & vehicular activities and natural dust getting air borne due to manmade activities and blowing wind. PM10 and PM2.5 concentrations were observed below stipulated standards of CPCB for Residential & Other Area at all air quality monitoring locations during the monitoring period. Results of all parameters are found within limit. In Mahadevpuram, Anikarahalli & Kullur villages, SO2 values are below detection limit of 5  $\mu$ g/m3. These villages are free remote area and there is no source for SO2 pollution.

#### WATER ENVIRONMENT

11 nos. of ground water and 2 nos. of surface water samples were collected from the study area. These samples were analyzed for physic-chemical parameters to ascertain the baseline status in the existing surface water and ground water bodies. Samples were collected during the study period of July-2022 and analyzed as per the Standard Methods of Water.

#### **BASELINE GROUND WATER QUALITY**

- **pH** of Ground water samples varied from 7.22 to 7.63 Maximum **pH** was found at **Suggondahalli (7.63)**, which is well within the standard limit.
- Total Dissolved Solids was varied in range of 578 to 1012 mg/L. Maximum Total Dissolved Solids was found at Mahadevapuram (1012 mg/L), which is well within the standard limit.
- Total Suspended Solids was <2 mg/L, which is well within the standard limit.
- DO was varied in range of 5.4 to 5.7 mg/L. Maximum DO was found at Kurubarapalli and Kullur (5.7 mg/L), which is well within the standard limit.

- COD was varied in range of <4 to 8 mg/L. Maximum COD was found at Suligunta and Midithepalli (8 mg/L), which is well within the standard limit.
- Total Hardness (as CaCO3) was varied in the range of from 240 to 470 mg/L. Maximum Total Hardness was found at Mahadevapuram (470 mg/L), which is well within the standard limit.
- **Total Alkalinity** was varied in the range of from 290 to 440 mg/L. **Total Alkalinity** was found at **Mahadevapuram (440 mg/L)**, which is well within the standard limit.
- **Chlorides** were varied in the range of 147 to 254 mg/L. Maximum **Chlorides** was found at **Mahadevapuram (254 mg/L)**, which is well within the standard limit.

Sr. No.	Criteria Pollutants	Unit	Maximum Value	Minimum Value	Desirable Limit (Maximum)	Permissible Limit (Maximum)
1.	рН	pH Seele	7.63	7.22	6.5-8.5	No
		Scale				Relaxation
2.	Total Dissolved Solids	mg/l	1012	578	500	2000
3.	Total Suspended Solids	mg/l	<2	<2		
4.	Total Hardness	mg/l	470	240	200	600
5.	Fluoride	mg/l	0.63	0.37	1	1.5
6.	Chlorides	mg/l	254	147	250	1000
7.	Zinc	mg/l	0.14	0.03	5	15
8.	Total Alkalinity	mg/l	440	290	200	600



#### **BASELINE SURFACE WATER QUALITY**

- pH of Surface water samples varied from 7.81 to 8.07. Maximum pH was found at Berigai Lake (8.07), which is well within the standard limit.
- DO was varied in range of 5.3 to 5.6 mg/L. Maximum **DO** was found at **Berigai Lake (5.6** mg/L), which is well within the standard limit.
- COD was varied in range of 21 to 24 mg/L. Maximum COD was found at Pond near Gandlaalli Sri Thimmaraya Swamy Temple (24 mg/L), which is well within the standard limit.
- BOD₃²⁷ was varied in range of 3.3 to 3.6. Maximum BOD₃²⁷ was found at Pond near Gandlaalli Sri Thimmaraya Swamy Temple (3.6 mg/L), which is well within the standard limit.

Sr. No.	Criteria Pollutants	Unit	Maximum Value	Minimum Value	Classification of inland water body
1.	рН	рΗ	8.07	7.81	А

		Scale			
2.	DO	mg/l	5.6	5.3	A
3.	COD	mg/l	24	21	А
4.	BOD	mg/l	3.6	3.3	В
5.	Total	mg/l	424	356	
	Dissolved				
	Solids				
6.	Total	mg/l	6	4	
	Suspended				
	Solids				
7	Total	mg/l	180	130	
	Hardness				
8	Fluoride	mg/l	0.27	0.23	
9	Chlorides	mg/l	127	96	
10	Zinc	mg/l	0.16	0.14	
11	Total	mg/l	160	152	
	Alkalinity				
12	Total	MPN/	2	<2	
	Coliform	100ml			



#### NOISE ENVIRONMENT

The noise monitoring was carried out at 11 locations in day time during (6 am to 9 pm) and at night time (9 pm to 6 am) in the study area covering all the areas i.e. industrial and residential as mentioned in Noise (Pollution and Control) Rules, 2000. Hourly Equivalent noise levels Leq (day) and Leq (night) were measured at each monitoring locations.

Monitoring was done on 11-07-2022 TO 16-07-2022 during day and night time was carried out at all the locations.

## NOISE SUMMARY

During the study of noise monitoring level was observed during day time is the range of 46.1 - 58.2 dB (A) & during night time 41.8 - 49.2 dB (A). Maximum noise level in day time in night time was found at Project Site (58.2 dB (A)) & (49.2 dB (A)) respectively.



Based on noise level data obtained during the survey, Noise level varied at some place at different times due to fluctuations in traffic movements as well as in residential due to nearest Industrial / commercial and domestic activities going on in the study area. It is interpreted that noise levels of Project site and all villages are within the standard norms prescribed by MoEF&CC.

#### LAND ENVIRONMENT

Soil samples were collected from eleven locations during 11-7-2022 to 16-7-2022 within the study area to assess its physico-chemical characteristics.

- pH of samples varied from 6.59 to 7.48. Maximum pH was found at Pannapalli (Menandoddi) (7.48).
- Nitrogen (N) was varied in range of 96 to 178 mg/kg. Maximum Nitrogen (N) was found at Berigai (178 mg/kg).
- Phosphorus (P) was varied in range of **39.3 to 77 mg/kg**. Maximum Phosphorus (P) was found at Eluvapalli (77 mg/kg).

- **Potassium (K)** was varied in range of **258 to 394 mg/kg**. Maximum Potassium (K) was found at **Eluvapalli (394 mg/kg)**.
- Electric Conductivity was varied in range of 0.077 to 0.218 mS/cm. Maximum Electric Conductivity was found at Kurubarapalli (0.218 mS/cm).
- Calcium of samples varied from **14.8-18.2 mg/kg**. Maximum Calcium was found at **Project Site (18.2 mg/kg)**
- Magnesium of samples varied from **3.29-5.06 m.eq/100g.** Maximum Magnesium was found at **Kullur (5.06 m.eq/100g)**
- Organic Carbon as C of samples varied from **0.40-1.13%**. Maximum Organic Carbon as C was found at **Kullur (1.13%)**.

Sr. No.	Criteria Pollutants	Unit	Maximum Value	Minimum Value
1.	рН	pH Scale	7.48	6.59
2.	Nitrogen (N)	mg/Kg	178	96
3.	Phosphorus (P)	mg/Kg	77	39.3
4.	Potassium (K)	mg/Kg	394	258
5.	Electric Conductivity	mS/cm	0.218	0.077
6.	Calcium	mg/kg	18.2	14.8
7.	Magnesium	m.eq/100g	5.06	3.29
8.	Organic Carbon as C	%	1.13	0.40

Based on the soil analysis report, the following can be concluded:



#### **11.5 WATER REQUIREMENT, WASTE WATER GENERATION AND TREATMENT**

- The Total water requirement is 1207.5 KL/Day. Out of that 207.5 KLD ground water for which NOC from CGWA/PWD available and remaining 1000 KLD applied to get from government water source.
- The total wastewater generation will be 705 KL/Day. Industrial process wastewater = 600 KL/Day + washing = 75 KL/Day + Boiler/cooling = 30 KL/Day). and will be segregated into two stream High COD Stream & Low COD stream.
  - Low COD stream: Low COD effluent (105 KL/Day) will be treated through the conventional wastewater treatment system and the pass through RO system.
  - High TDS Stream: Neutralized concentrate effluent (600 KL/Day) and rejects from RO (225 KL/Day) will be evaporated in multi effective evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated will be disposed to TSDF (Common disposal Facility).
  - Domestic wastewater (100 KL/Day) will send to STP and Reuse in domestic and gardening purpose after treatment.

## 11.6 AIR POLLUTION SOURCE AND CONTROL MANAGEMENT FLUE GAS EMISSION RATE EMISSION FROM EACH UTILITY

SR.	Source of emission	Stack	Name of	Quantity	Type of	APCM
no.	With Capacity	Height	the fuel	of Fuel	emissions	
		(meter		MT/hr &	i.e. Air	
EVICTIA		)		MI/Day	Pollutants	
EXISTIN	IG	1	1	1	1	
1	Boiler-1 (9 TPH)	40	Furnace Oil	8 MT/Day	SOX,NOX,SP	Mechanical
					M,CO	Dust
						Stack
						Jotack
2	D.G set (600 KVA	12	HSD	80lit/Hr	SOX.NOX.SP	Stack
			_		M,CO	
3	D.G set (600 KVA)	12	HSD	80lit/Hr	SOX,NOX,SP	Stack
					M,CO	
4	D.G set (750 KVA)	12	HSD	90lit/Hr	SOX,NOX,SP	Stack
					M,CO	
5	DG (320 KVA)	9.8	HSD	40 lit/Hr	SOX,NOX,SP	Stack
					M,CO	
6	D.G Set (600 KVA)	12	HSD	80lit/Hr	SOX,NOX,SP	Stack
					M,CO	
7	D.G Set (600 KVA)	12	HSD	80lit/Hr	SOX,NOX,SP	Stack
				00 Ht /I	M,CO	
8	Thermic Fluid Heater	9	HSD	20 lit/hr	SOX,NOX,SP	Stack
	1 Lakn Kcal/Hr				м,со	
9	Thermic Fluid Heater	9	HSD	20 lit/hr	SOX,NOX,SP	Stack
	1 Lakh Kcal/Hr				M,CO	
PROPO	SED	•	•			
10	Boiler-1 (50 TPH)	40	Briquettes	250	SOX,NOX,SP	Mechanical
				MT/Day	M,CO	Dust
						collector
						,Stack or
						ESP
11	Boiler-1 (50 TPH)	40	Furnace Oil	90	SOX,NOX,SP	Mechanical
				MI/Day	M,CO	Dust
						collector
12	DG  set  -2000 KV/A	30		400 lit/br/		,slack Stack
12	DO SEL-ZUUUNVA	50	עכוי	DG set	M CO	JLALK
13	DG set -2000KVA	30	HSD	400 lit/hr/	SOX,NOX,SP	Stack
				DG set	M,CO	

14	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
15	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
16	DG set -2000KVA	30	HSD	400 lit/hr/ DG set	SOX,NOX,SP M,CO	Stack
17	Thermic Fluid Heater 2 Lakh Kcal/Hr	9	HSD	40 lit/hr	SOX,NOX,SP M,CO	Stack
18	Thermic Fluid Heater 2 Lakh Kcal/Hr	9	HSD	40 lit/hr	SOX,NOX,SP M,CO	Stack

## DETAILS OF PROCESS VENT

Sr. no.	Source of emission	Type of emission	Stack/Vent Height (meter)	АРСМ		
EXISTING						
1	Scrubber at Plant - I	SO _X ,NO _X ,CO	6.1	Wet Alkali Scrubber,Stack		
2	Scrubber at Plant -II	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack		
3	Scrubber at Plant - II	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack		
4	Scrubber at Plant - II	SO _x ,NO _x ,CO	15	Wet Alkali Scrubber,Stack		
5	Absorber at Plant - I	SO _X ,NO _X ,CO	4	Wet Alkali Scrubber,Stack		
6	Scrubber at R & D plant	SO _X ,NO _X ,CO	12	Wet Alkali Scrubber,Stack		
7	Phyto Plant Scrubber(Process)	SO _X ,NO _X ,CO	19	Wet Alkali Scrubber,Stack		
8	Scrubber at Plant - II	SO _x ,NO _x ,CO	15	Wet Alkali Scrubber,Stack		
9	Scrubber at Pilot Plant	SO _x ,NO _x ,CO	6.1	Wet Alkali Scrubber,Stack		
10	Scrubber at plant IV	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack		

11	Scrubber at plant IV	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
12	Scrubber at plant IV	SOx,NOx,CO	17	Wet Alkali Scrubber,Stack
13	Scrubber at Plant - V	SO _X ,NO _X ,CO	17	Wet scrubber with stack
14	Scrubber at Plant - V	SO _X ,NO _X ,CO	17	Wet scrubber with stack
15	Scrubber at Plant - V	SO _X ,NO _X ,CO	17	Wet scrubber with stack
16	Scrubber at Plant - V	SO _x ,NO _x ,CO	17	Wet scrubber with stack
PROP	OSED			
17	Scrubber -1	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
18	Scrubber -2	SOx,NOx,CO	17	Wet Alkali Scrubber,Stack
19	Scrubber -3	SO _X ,NO _X ,CO	17	Wet Alkali Scrubber,Stack
20	Scrubber -4	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
21	Scrubber -5	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
22	Scrubber -6	SOx,NOx,CO	17	Wet Alkali Scrubber,Stack
23	Scrubber -7	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
24	Scrubber -8	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
25	Scrubber -9	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
26	Scrubber -10	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
27	Scrubber -11	SO _x ,NO _x ,CO	17	Wet Alkali Scrubber,Stack
28	Scrubber -12	SOx,NOx,CO	17	Wet Alkali Scrubber,Stack
29	Scrubber -13	SO _x ,NO _x ,CO	17	Wet scrubber with stack
30	Scrubber -14	SOx,NOx,CO	17	Wet scrubber with stack
31	Scrubber -15	SO _x ,NO _x ,CO	17	Wet scrubber with stack

32	Scrubber -16	SO _x ,NO _x ,CO	17	Wet scrubber with stack
33	Scrubber -17	SO _x ,NO _x ,CO	17	Wet scrubber with stack
34	Scrubber -18	SO _x ,NO _x ,CO	17	Wet scrubber with stack
35	Scrubber -19	SO _x ,NO _x ,CO	17	Wet scrubber with stack
36	Scrubber -20	SO _x ,NO _x ,CO	17	Wet scrubber with stack
37	Scrubber -21	SO _x ,NO _x ,CO	17	Wet scrubber with stack
38	Scrubber -22	SO _x ,NO _x ,CO	17	Wet scrubber with stack
39	Scrubber -23	SO _x ,NO _x ,CO	17	Wet scrubber with stack
40	Scrubber -24	SO _x ,NO _x ,CO	17	Wet scrubber with stack
41	Scrubber -25	SO _X ,NO _X ,CO	17	Wet scrubber with stack

## **11.7 HAZARDOUS WASTE**

11 Categories of Hazardous/Solid Wastes shall be generated from this Unit.

Sr. No	Name of Waste	Source of Generation	Cat No.	Existing Quantit Y (MT/Ye ar)	Total Propos ed Quanti ty (MT/Y ear)	Disposal Method
1.	Empty barrels/ containers/liner s contaminated with hazardous chemicals /wastes	Storage & handling of Raw Materials	Sch-I/ 33.1	40	500	Collection, Storage, Transportation, Decontamination & Disposal to TNPCB Authorized Recyclers (Recyclable)
2.	Used / Spent Oil	Equipment & Machineries	Sch-I/ 5.1	10	200	Collection, Storage, Transportation, Decontamination & Disposal to TNPCB Authorized Recyclers (Recyclable)
3.	Chemical sludge from waste water treatment	In-house ETP & MEE	Sch-I/ 35.3	2500	43000	Collection,Storage,Transportation&disposaltoCommon

Non I	Hazardous waste	1			ı	1
10.	Process wastes or residues	Process	Sch-I/ 29.1	NA	30000	Collection, Storage, Transportation & disposal to Co- processor by following protocol of Hazardous Waste Rule – 2016.
9.	Spent Carbon or Filter medium	Process	Sch-I/ 36.2	NA	4000	Collection, Storage, Transportation & disposal to Common TSDF site / Co- processor by following protocol of Hazardous Waste Rule – 2016.
8.	Contaminated cotton rags or other cleaning materials		Sch-I/ 33.2	2	40	Collection, Storage, Transportation & disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016.
7.	Spent catalyst	Process	Sch- I/28.2	1	40	Collection, Storage, Transportation for Regeneration, Recovery and Reuse. (Recyclable)
6.	Contaminated aromatic, aliphatic or naphthenic solvents may fit for reuse		Sch- I/20.1	6	10000	Collection, Storage, Transportation & disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016
5.	Distillation residues	Process	Sch- I/20.3	20	4000	Collection, Storage, Transportation & disposal to Common TSDF site by following protocol of Hazardous Waste Rule – 2016.
4.	Spent solvents	Process	Sch-I/ 28.6	350	20000	Collection, Storage, Transportation, Decontamination & Disposal to TNPCB Authorized Recyclers (Recyclable)
						TSDF site by following protocol of Hazardous Waste Rule – 2016.

11.	Fly Ash	Utility	 	18250	Collection,	Storage,
					Transportation	n and
					sent for	brick
					manufacturer	and/or
					in cement indu	ustries.

#### **11.8 GREEN BELT**

Total 16.64 Hectares land area is available at site; out of this area about 5.34 Hectares (32 %) area is covered as greenbelt. The company has planted total 16250 nos. of trees for green belt within the plant premises. Company will plant additional 1000 Nos. of trees (in 0.54 Hectors area) for green belt (3.33 %) within the plant premises.

#### **11.9 POWER REQUIREMENTS & FUEL REQUIREMENT**

#### Power Requirement:

Sr.	Description	Existing	Proposed	TOTAL
No.		Requirement	Requirement	Requirement
		(KVA)	(KVA)	(KVA
1	State Electricity	2000	12000	14000
	Department			
2	D.G. Set	3470	10000	13470
			(5 x 2000 kVA)	

#### Note: DG Set will be kept for emergency power back up.

**Fuel Requirement:** 

SI.	Type of	Existing	Proposed	Total	
No.	Fuel	( MT/day)	( MT/day)	( MT/day)	
1	Furnace Oil	8	90	98	
2	Briquettes	00	250	250	
3	HSD	1.7	20.3	22	
4	LPG	0.008	0.192	0.20	

## **11.10 DETAILS OF HAZARDOUS CHEMICALS STORAGE**

The detail of Hazardous Chemical Storage & Handling is as under...

Sr.	Name of the	Type of	Kind of	Max.	Storage	Tank	Dyke
No.	Material	Hazard	Storage	quantity to be stored	condition i.e. temp., pressure	Dimen sions in (m)	Dimensions
				(MT)			

1	Acrylonitrile	Fire	MS	5 MT	25 TO 35 C	NA	Hx34cm
			DRUMS				Wx13cm
2	Acetic Acid	corrosive	CARBOYS	1MT	25 TO 35 C	NA	Hx34cm
							Wx13cm
3	Ammonia Gas	toxic	Cylinder	0.1 MT	-20 to -60 C	NA	NA
4	Acetonitrile	Toxic &Fire	MS	5 MT	25 TO 35 C	NA	Hx34cm
			DRUMS				Wx13cm
5	Acetone	Fire	MS	5 MT	25 TO 35 C	NA	Hx38c
			DRUMS				Wx24cm
6	Acetyl	corrosive	MS	0.50 MT	25 TO 35 C	NA	Hx34cm
	Chloride		DRUMS				Wx13cm
7	Aluminum	corrosive	PLASTIC	0.50 MT	25 TO 35 C	NA	Hx34cm
	chloride		DRUMS				Wx13cm
8	Ammonium carbonate	irritation	BAGS	10 MT	25 TO 35 C	NA	NA
9	Ammonium	irritation	BAGS	0.25MT	25 TO 35 C	NA	Hx34cm
	Chloride						Wx13cm
10	Caustic Soda	severe burns	BAGS	10 MT	25 TO 35 C	NA	NA
11	Caustic soda	severe burns	TANK	23 MT	25 TO 35 C	Wx254	WX500CM
	lye					CM	LX515CM
						HX200	HX80 CM
						CM	
12	Cyano acetic	severe burns	Carboy	0.25MT	25 TO 35 C	NA	Hx34cm
	acid						Wx13cm
13	Chloroform	Toxic &Fire	PLASTIC	3 MT	25 TO 35 C	NA	Hx38cm
			DRUMS				Wx24cm
14	Cyclohexanon	Fire	MS	4 MT	25 TO 35 c	NA	Hx38cm
	е		DRUMS				Wx24cm
15	Diesel	Fire	TANK	32 MT	25 TO 35 C	WX25	WX500CM
				(35 KL and 15		8CM	LX515 CM
	1	1			1	1	

				KL		НХ	HX 80CM
				capacity		460	
				Nos		СМ	
				tank)		2.HX4	
						20CM	
16	Formic Acid	irritation	Carboy	0.1 MT	25 TO 35 C	NA	Hx34cm
							Wx13cm
17	Hexane	Toxic &Fire	MS	0.50 MT	25 TO 35 C	NA	Hx38cm
			DRUMS				Wx24cm
18	Hydro chloric	corrosive	TANK	53 MT	25 TO 35 C	WX25	WX500CM
	acid			(30 KL capacity		8CM	LX515 CM
				*2 Nos)		ΗХ	HX 80CM
						460	
						СМ	
						2.HX4	
						20CM	
19	Isopropyl	Toxic &Fire	MS	1.8 MT	25 TO 35 C	NA	Hx34cm
	Alcohol		DRUMS				Wx13cm
20	Hydrogen gas	EXTREMELY	TRUCK	120	25 TO 35 C	NA	NA
		FLAMMABLE	(Cylinder &	Cubic meter			
			manifold)	3* 2 No			
21	Mothanal	Toxic & Eiro	ΤΛΝΙΖ	of truck	25 TO 25 C	WV76	
21	Wethanor	TOXIC AFILE	TAINK	50 1011	2510 550		
						40101	
						HX400	HX8UCIVI
						CM	
22	Potassium Hydroxide Flakes	irritation	BAGS	0.50 MT	25 TO 35 C	NA	NA
23	Phenol	Toxic &Fire	MS	5 MT	25 TO 35 C	NA	Hx34cm
			DRUMS				Wx13cm

24	Sodium Cyanide	Highly toxic	MS DRUMS	25.MT	25 TO 35 c	NA	NA
25	Sulphuric acid	corrosive	TANK	50MT	25 TO 35 C	LX380	LX1240CM
						СМ	WX560 CM
						HX	HX60CM
						250C	
						М	
26	Ethylene oxide	Flammable	Cylinder	0.03 MT	25 °C	NA	NA
		&Toxic			ML- 0 °C		
27	Thionyl	corrosive	MS	10 MT	25 TO 35 C	NA	Hx34cm
	Chloride		DRUMS				Wx13cm
28	Toluene	Toxic & Fire	TANK	20 MT	25 TO 35 C	WX25	WX445CM
						4CM	LX590CM
						HX300	HX80CM
						СМ	
29	Chlorine Gas	Toxic	Cylinder	0.05 MT	-15 to -34 C	NA	NA
					at 11		
					kg/cm ²		
30	Bromine	Toxic	Cylinder	0.05 MT	-30 to -60 C	NA	NA
					at 6 kg/cm ²		
31	Nitric acid	corrosive	Carboy	0.5 MT	25 TO 35 C	NA	Hx34cm
							Wx13cm

# 11.11 CAPITAL AND RECURRING COST EARMARKED FOR ENVIRONMENTAL PROTECTION MEASURES

Total capital investment for the project will be Rs. 2292.398 Crores [Existing: 292.398 Crore

+ Proposed: 2000 Crore]. Capital cost of air & water pollution control system and environmental monitoring equipments will be Rs. 118.482 Crores.

Sr.	Particulars	Existing	Proposed	Total
No.		Amount	Amount	Proposed
		(Rs. In Crore)	(Rs. In Crore)	Amount
				(Rs. In Crore)
1	Land	5.915	-	5.915

2	Building and site development	81.446	374	455.446
3	Plant and machinery	186.555	1526	1712.555
4	Total Capital cost Environment protection measures (includes cost of ETP, Tree Plantation, Evaporator System and Rain Water Harvesting etc.)	18.482	100	118.482
	Total Cost of Project	292.398	2000	2292.398
5	Recurring Cost of Environment protection measures (includes cost of ETP,			6.932
	Tree Plantation, Evaporator System etc.)			Crores/Annum

## **11.12 CONCLUSION**

The EIA study of **M/s. Chemplast Sanmar Limited** has been carried out with respect to the Std. TORs awarded by MoEF&CC, Delhi. All the impacts likely to have an effect on the environment have been identified and efficient/adequate mitigation measures have been proposed for the same.

- The proposed expansion project will provide quality product at lower cost to the users.
- There should be positive impact on the socio-economic condition of the area in terms of direct and indirect employment due to the proposed expansion project.
- Country will save valuable foreign exchange as import of these products will be reduced by corresponding amount.

## Chapter – 12 Disclosure of Consultants Engaged

## Aqua-Air Environmental Engineers Pvt. Ltd.

**Environmental Consultants, Engineers & Turnkey Project Executors** 



NABET/QCI ACCREDITED EIA CONSULTANT MoEFCC APPROVED LABORATORY NABL ACCREDITED TESTING LABORATORY ISO 9001:2015 Certified Company ISO 45001:2018 Certified Company

#### **12.1COMPANY PROFILE**

Aqua-Air Environmental Engineers Pvt. Ltd. is a Surat based company; one of the leading and multidiscipline Environmental Management Consulting firms of the region.

Aqua-Air Environmental Engineers Pvt. Ltd. was founded by Mr. Jayesh S. Patel & Mrs. Archana J. Patel on May 7, 2008 and Aqua-Air Environmental Engineers Pvt. Ltd. was registered under the companies Acton May 7, 2008.

Office having 6,756 Sq. Ft. of area covering EC/EIA Department, R & D Centre (Environmental Laboratory), Consent (CTE &CC&A) Department, ETP/Project Department, Solar Department and Account Department, Library, Conference room and Administration Department, etc. with experienced and qualified staff to render services in the field of Environmental Management of various types of industries.

Aqua-Air Environmental Engineers Pvt. Ltd. has a well-established track record in monitoring legislation and developing and implementing strategies for organizations that enable them to manage the impact of environmental issues on their business.

The company has built a reputation for delivering innovative and practical solutions to environment related business issues. These solutions help our clients to achieve successful business outcomes and make sustainable environment serving improvements within their business operations.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. has applied to get the recognition as Environmental Laboratory under Environment (Protection) Act, 1986 on June 12, 2019. Based on recommendations of the Expert Committee for recognition of Environmental Laboratories in its 63rd meeting held on 1st October, 2020, Ministry of Environment, Forest and Climate Change (MoEFCC) approves the recognition of M/s. Aqua Air Environmental Engineers Pvt. Ltd., considering the current validity of mandatory accreditation / certifications of the laboratory. This recognition shall be valid up to Dec 3rd, 2023.

Aqua-Air Environmental Engineers Pvt. Ltd. started the process for "EIA Consultant Organization" accreditation under National Accreditation Board for Education And Training (NABET)/Quality Council of India (QCI), New Delhi on January 7, 2010 and submitted the application (Rev. 06) for "EIA Consultant Organization" accreditation under NABET, New Delhi on April 8, 2010. Office assessment was done by external NABET/QCI auditors on Feb. 3 & 4, 2011. NABET/QCI closed the application of Aqua-Air Environmental Engineers Pvt. Ltd. on March 15, 2011. Aqua-Air Environmental Engineers Pvt. Ltd. on March 15, 2011. Aqua-Air Environmental Engineers Pvt. Ltd. filed SCA in Hon'ble High Court of Gujarat against MOEFCC, QCI & NABET, New Delhi on April 13, 2012. Hon'ble High Court of Gujarat issued stay order against operation of all OMs (related to NABET/QCI Scheme) of MOEFCC, New Delhi for the company on Jan. 24, 2013. MOEFCC, New Delhi published Notification regarding mandatory implementation accreditation scheme of NABET/QCI on March 3, 2016. Aqua-Air Environmental Engineers P. Ltd. along with 11 EIA Consultants of Gujarat filed SCA No. 5312 of 2016 in Hon'ble High Court of Gujarat. Hon'ble High Court of Gujarat gave Stay Order on Apr. 5, 2016 against implementation of Notification dated March 3, 2016 of MOEFCC, New Delhi till further orders.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. have written letter to withdraw their name from Court case from Hon'ble High Court of Gujarat and have received the Withdrawal receipt copy from their Advocate.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. has applied for NABET/QCI Accreditation on March 11, 2020 along with Desktop Assessment – 1 (DA-1) fees covering 22 Sectors. M/s. Aqua-Air Environmental Engineers Pvt. Ltd.'s Desktop Assessment – 1 (DA-1) is already completed and all NC's generated by QCI/NABET secretariat have been closed by Aqua-Air. Aqua-Air has paid the Desktop Assessment – 2 (DA-2) fees and DA-2 was completed on May 28, 2020. Aqua-Air's Office Assessment took place during Oct. 5 to 8, 2020 & NABET's Accreditation committee granted accreditation on Nov. 6, 2020 (valid till Oct. 7, 2023) for 28 sectors i.e. Mining of minerals (opencast) & Mining of minerals including opencast / underground mining, Onshore oil and gas exploration, development & production, Mineral beneficiation, Metallurgical industries (ferrous only), Cement plants, Petroleum refining industry, Chlor-alkali industry, Soda ash Industry, Chemical fertilizers, Pesticides industry and pesticide specific intermediates , Petro-chemical complexes, Manmade fibers manufacturing, Petrochemical based processing, Synthetic organic chemicals industry, Distilleries, Pulp & paper industry, Sugar Industry, Oil & gas transportation pipeline, Air ports, Industrial estates/ parks/ complexes/areas, Common

hazardous waste treatment, storage and disposal facilities (TSDF), Bio-medical waste treatment facilities, Ports, harbours, break waters and dredging, Highways, Common Effluent Treatment Plants (CETPs), Common Municipal Solid Waste Management Facility (CMSWMF), Building and construction projects.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. started the process for ISO/IEC 17025:2005 Accreditation by NABL, New Delhi for the Competence Testing & Calibration Laboratories on June 24, 2008 and submitted the application (Version No. 10) to NABL, New Delhi for ISO/IEC 17025:2005 registration on October 7, 2008. After final assessment and Non-Conformances resolved and corrective actions taken against the Non-Conformances, Laboratory Department, M/s. Aqua-Air Environmental Engineers Pvt. Ltd. was accredited with the certification of ISO/IEC 17025:2005 on Oct. 15, 2010 and was valid up to Oct. 14, 2012. Re-accreditation of ISO/IEC 17025:2005 was received on June 5, 2013 and was valid up to June 4, 2015. Re-accreditation of ISO/IEC 17025:2005 was received on Jan. 6, 2016 and was valid up to Jan. 5, 2018. Re-accreditation of ISO/IEC 17025:2005 was received on May 28, 2018 and is valid up to May 27, 2020. We have obtained ISO 9001:2015 which was received on December 04, 2018 which is valid up to December 03, 2024.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. started the process for ISO 9001:2008 registration for Quality Management System on December 1, 2009 and submitted the application for ISO 9001:2008 registration on March 4, 2010. After final assessment, M/s. Aqua-Air Environmental Engineers Pvt. Ltd. was certified from ANAB by M/s. Intertek System Certification on May 4, 2010 and it was valid up to May 4, 2013.We were re-certified on May 4, 2013 and it was valid up to May 4, 2016. We were re-certified on May 30, 2016 and it was valid up to Sept. 14, 2018. M/s. Aqua-Air Environmental Engineers Pvt. Ltd. got ISO 9001:2015 from M/s. Equalitas Certifications Ltd. on Dec, 4, 2018 and it is valid up to Dec. 3, 2021. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. got OHSAS18001:2007 from M/s. Equalitas Certifications Ltd. on March 16, 2019 and it is valid up to March 15, 2022. We have obtained ISO 45001:2018 which was received on March 16, 2019 which is valid up to November 23, 2024.

M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for recognition as "Schedule–II Environmental Auditor" with Gujarat Pollution Control Board (GPCB) on Sept. 11, 2008 and got its first recognition as "Schedule–II Environmental Auditor" from the GPCB on Dec. 24, 2008 and it was valid from Jan. 1, 2009 to Dec. 31, 2010. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for renewal of recognition as

"Schedule–II Environmental Auditor" with Gujarat Pollution Control Board (GPCB) on Dec. 21, 2010 and got its second recognition as "Schedule-II Environmental Auditor" from the GPCB on Oct. 24, 2011 and it was valid from Jan. 1, 2011 to Dec. 31, 2012. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for renewal of recognition as "Schedule-II Environmental Auditor" with Gujarat Pollution Control Board (GPCB) on Dec. 12, 2012 and got its third recognition as "Schedule-II Environmental Auditor" from the GPCB on Jan. 4, 2014and it was valid from Jan. 1, 2013 to Dec. 31, 2014. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for renewal of recognition as "Schedule–II Environmental Auditor" with Gujarat Pollution Control Board (GPCB) on Dec. 6, 2014 and got its fourth recognition as "Schedule-II Environmental Auditor" from the GPCB on Jan. 17, 2015 and it was valid from Jan. 1, 2015 to Dec. 31, 2016. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for renewal of recognition as "Schedule-II Environmental Auditor" (under Modified Environmental Audit Scheme dated Jan. 23, 2015) with Gujarat Pollution Control Board (GPCB) on Nov. 27, 2017 and got its fifth recognition as "Schedule–II Environmental Auditor" from the GPCB on Feb. 13, 2017 and it was valid from Jan. 1, 2017 to Dec. 31, 2018. M/s. Aqua-Air Environmental Engrs. Pvt. Ltd. applied for renewal of recognition as "Schedule–II Environmental Auditor" with Gujarat Pollution Control Board (GPCB) on Nov. 5, 2018 and got its sixth recognition as "Schedule-II Environmental Auditor" from the GPCB on March 28, 2019 and it is valid from Jan. 1, 2019 to Dec. 31, 2020. Last Certificate of Gujarat Pollution Control Board Recognized Schedule – II Environmental Auditor is valid up to Dec. 31, 2022.

M/s. Aqua-Air Environmental Engineers Pvt. Ltd. received the Certificate of Registration of Trade Mark, Section 23 (2), Rule 62 (1) from Trade Marks Registry, Govt. of India on January 18, 2011.

The company's work is spread all over Gujarat in India & Oman. Company have already prepared 578 Form-1, 496 EIA & EMP reports, 477 Risk Assessment & DMP reports, conducted 90 Public Hearings and obtained 453 Environmental Clearances so far that includes Mining of minerals including opencast / underground mining, Thermal power plants, Mineral beneficiation, Metallurgical industries (ferrous & non-ferrous), Cement Plants, Chlor-alkali industry, Soda ash Industry, Chemical fertilizers, Pesticides industry and pesticide specific intermediates (excluding formulations), Manmade fibers manufacturing, Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes), Synthetic organic chemicals industry (dyes & dye intermediates; bulk drugs and intermediates excluding drug formulations; synthetic rubbers; basic organic chemicals, other synthetic organic chemicals and chemical intermediates), Distilleries, Pulp and Paper Industry, Sugar Industry, Industrial estates/ parks/ complexes/areas, export processing Zones (EPZs), Special Economic Zones (SEZs), Biotech Parks, Leather Complexes, Common hazardous waste treatment, storage and disposal facilities (TSDFs), Bio-medical waste treatment facilities, Common Effluent Treatment Plants (CETPs), Common Municipal Solid Waste Management Facility (CMSWMF), Building and construction projects & Townships and Area development projects.

Company's MoEFCC Approved Laboratory & NABL Accredited Testing Laboratory has conducted Environmental Monitoring & Analysis with Environmental Institute and Gujarat Pollution Control Board in Industrial Estates of Ankleshwar, Panoli & Jhagadia. Company is also doing Turnkey/Consulting Projects for M/s. BASF (Detail Engineering for Effluent Treatment Plant) & M/s. Reva Proteins Ltd. (Design of Effluent Treatment Plant, supply of mechanical items, Commissioning and operation of Effluent Treatment Plant).

#### 12.2 ABOUT US

**Aqua-Air Environmental Engineers Pvt. Ltd.** has registered office in one of the top five fastest growing cities of India – Surat. We are one of the most trusted and reliable environmental engineering and consultancy service providers. With complete hold in the related domain and proficiency, we execute our work all over India as well as in Oman.

In addition to engineering consultancy, we also execute turnkey projects for effluent treatment plants at the client's site.

#### Aqua-Air Environmental Engineers Pvt. Ltd is:

- One of the leading companies in the region providing high quality services in environmental engineering and consulting to the best of client's satisfaction.
- Posses a well developed design office with Computer Center and Laboratory -cum- R&D Center to carry out designing and analysis in the field of environmental engineering.
- Recognized as Schedule-II Environmental Auditor under the Environment Audit Scheme proposed by the Hon'ble High Court of Gujarat.
- Listed with Gujarat Pollution Control Board as Consultants and proposing to get enlisted with GPCB as Pollution Control Equipment Suppliers.
- Going to become a member of Consulting Engineers Association of India.

 Having well-developed library to render services in the field of environmental auditing, consulting, monitoring and analysis.

#### **12.3 ACHIEVEMENTS**

- 1. Registered under the companies Act on May 7, 2008.
- Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor on Dec. 24, 2008. Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor on May 4, 2011. Latest Certificate of Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor is valid up to Dec. 31, 2020. Latest Certificate of Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor is valid up to Dec. 31, 2020. Latest Certificate of Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor is valid up to Dec. 31, 2020.
- Certificate of ISO 9001:2008 received on May 4, 2010. Certificate of ISO 9001:2015 received on Dec. 4, 2018 & Certificate is valid up to Dec. 03. 2024
- 4. Import Export License received from Government of India on May 31, 2010.
- Solvency Certificate of Rs. 1,40,00,000/- received from Bank of India, Gopipura branch, Surat on Sept. 3, 2010.
- Certificate of National Accreditation Board for Testing and Calibration Laboratories (NABL) received on Oct. 15, 2010. And last Certificate of NABL is valid up to May 27, 2020. Latest Certificate of NABL is valid up to Jun 2, 2023.
- Certificate of Registration of Trade Mark, Section 23 (2), Rule 62 (1) from Trade Marks Registry, Govt. of India on Jan. 18, 2011.
- 8. Certificate of Authorization as dealer in India received from Spectrum Technologies, Inc., USA on May 1, 2011.
- 9. Gujarat Pollution Control Board Recognized Schedule II Environmental Auditor on May 4, 2011.
- 10. SMERA solar grading SMERA SP 2A.
- 11. Ministry of New and renewable Energy (MNRE) and Gujarat Energy Development Agency (GEDA) Channel Partner for grid connected Roof Top division.
- 12. Got registered with Ministry of Micro, Small & Medium Enterprises (MSME) (UAN: GJ22D0183036) on Dec. 5, 2017.
- 13. Got Certificate of ISO 9001:2015 on Dec. 4, 2018 and valid up to Dec. 03, 2024
- 14. Got Certificate of OHSAS 18001:2007 on March 16, 2019 and valid up to March 15, 2022. ISO 45001:2018 which was received on March 16, 2019 which is valid up to November 23, 2024.

15. M/s. Aqua-Air Environmental Engineers Pvt. Ltd. have received NABET/QCI Accreditation on December 08, 2020 covering 14 Sectors. Then after M/s. Aqua-Air Environmental Engineers Pvt. Ltd. applied for Supplementary Assessment - 1 for Additional Sectors and Functional Areas, for which Revised NABET/QCI Accreditation Certificate (Rev. 01) was issued on July 16, 2021 covering 23 Sectors. Then M/s. Aqua-Air Environmental Engineers Pvt. Ltd. again applied for Supplementary Assessment - 2 for Additional Sectors, for which Revised NABET/QCI Accreditation Certificate (Rev. 02) was issued on April 01, 2022 covering 25 Sectors. Then after again applied for Supplementary Assessment - 3 for Additional Sectors, for which Revised NABET/QCI Accreditation Certificate (Rev. 03) was issued on May 12, 2022 covering 28 Sectors. Certificate is valid up to Oct. 07, 2023

#### **12.4 SERVICE PROVIDE**

**M/s. AQUA-AIR ENVIRONMENTAL ENGINEERS PVT. LTD.** offers following specialized services in Environmental Engineering, Water Supply Engineering and Civil Engineering.

#### 4.1 TURN KEY/BOOT/BOO PROJECTS

#### 4.1.1 ENVIRONMENTAL ENGINEERING

- Detailed design
- Construction
- Fabrication

- Water Treatment Plants (WTPs)
- Common Effluent Treatment Plants (CETPs)
- Recycling Plants (RPs)
- Zero Discharge Plants (ZDPs)

Piping

- Electrification
- Supply
- Erection
- Testing and Commissioning of Effluent Treatment Plants (ETPs)
- Sewage Treatment Plants (STPs)

#### 4.1.2 CIVIL ENGINEERING

Construction of

- Water Treatment Plan
- Sewage Treatment plant
- Industrial Wastewater Treatment plant

- Incineration System Plants (ISPs)
- Hazardous waste Storage areas (HWSAs)
- Secured/ Sanitary Landfill Facilities
- Bio–Medical Waste (BMW) Treatment Facilities on a turnkey or BOOT/BOO basis.

- Elevated Service Reservoirs (ESRs)
- Underground Reservoirs (UGRs)
- Sewage Pumping Stations, etc.

#### 4.2 CONSULTING

#### 4.2.1 ENVIRONMENTAL ENGINEERING

1. Complete study of the Pollution Problem in industries from wastes generation to dispose and providing necessary technical knowledge like–					
<ul> <li>Know how including design</li> <li>Basic engineering, detailed engineering</li> <li>Water Treatment Plants (WTPs)</li> <li>Tender preparation for Effluent Treatment Plants (ETPs) for industrial wastewater</li> <li>Sewage Treatment Plants (STPs) for residential wastewater</li> <li>Common Effluent Treatment Plants (CETPs)</li> </ul>	<ul> <li>Zero Discharge Plants (ZDPs)</li> <li>Recycling plants (RPs) for reuse of water upto maximum extent</li> <li>Incineration System Plants (ISPs) for various non-biodegradable or toxic industrial wastes</li> <li>Design of Hazardous waste Storage area and Secured/ Sanitary Landfill Facilities</li> <li>Design and Consultancy Services for Bio – Medical Waste Treatment Facilities.</li> </ul>				
2. Water Supply Distribution System	Tondor proparation				
Design	• Tender preparation				
<ul> <li>3. Laboratory Analysis of</li> <li>Ambient Air/Stack/Vent</li> <li>Water</li> <li>Sewage</li> </ul>	<ul> <li>Industrial Waste Water</li> <li>Soil</li> <li>Industrial Sludge</li> </ul>				
4. Process Study					
Reduce the pollution at source	Reuse / Recycle effluent				
<ul> <li>Performance study of existing</li> </ul>	• Suggesting scheme for the optimization of the				
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	--	--	--
	facility				
Environment Management					
Environmental Clearance from	Environmental Impact Assessment Studies				
	(EIAs)				
MoEFCC, New Delhi	Short term (Rapid)				
SEAC & SEIAA, Gandhinagar	<ul> <li>Long term (Comprehensive)</li> </ul>				
Environmental statements	Environmental Auditing				
7. Statutory Requirements under Factory Act					
Safety Audit	HAZOP study				
<ul> <li>On-site / Off-site Emergency Plan</li> </ul>					
8. For Various Energy Conservation					
Schemes					
Energy Audit	• Design				
-					
<ul> <li>Preparing Adequacy Report</li> </ul>	Preparing Efficacy Report				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> </ul>	Preparing Efficacy Report				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sowage Treatment Plants (STPs)</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vont</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> <li>12. Pollution Control</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> <li>12. Pollution Control Effluent Survey</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> <li>Feasibility Studies</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> <li>12. Pollution Control Effluent Survey Environmental review of Pollution control</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> <li>Stack</li> <li>Feasibility Studies</li> <li>Laboratory bench scale Treatability studies</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> <li>12. Pollution Control</li> <li>Effluent Survey</li> <li>Environmental review of Pollution control equipment and systems</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> <li>Stack</li> <li>Feasibility Studies</li> <li>Laboratory bench scale Treatability studies</li> <li>Pilot Plant studies, etc.</li> </ul>				
<ul> <li>Preparing Adequacy Report</li> <li>10. Operation and Maintenance (O &amp; M)</li> <li>Effluent Treatment Plants (ETPs)</li> <li>Sewage Treatment Plants (STPs)</li> <li>11. Air Monitoring</li> <li>Ambient Air</li> <li>Vent</li> <li>12. Pollution Control</li> <li>Effluent Survey</li> <li>Environmental review of Pollution control equipment and systems</li> <li>13. Consulting Service</li> </ul>	<ul> <li>Preparing Efficacy Report</li> <li>Water Treatment Plants (WTPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Common Effluent Treatment Plants (CETPs)</li> <li>Stack</li> <li>Stack</li> <li>Feasibility Studies</li> <li>Laboratory bench scale Treatability studies</li> <li>Pilot Plant studies, etc.</li> </ul>				

Consent to Establish (CTE)/NOCCTE for revised product mix

- Consolidated Consents & Authorization (CCA)
- Rule-9 Permission, etc.

14. As per requirements under Factory Act-	1948 and Gujarat Factory Rules
<ul> <li>Monitoring</li> <li>Monitoring &amp;Analysis of Work Area Environment</li> </ul>	• Filling up Form-37
15. Technical Consultation & assistance compliance	to ensure and assure compete Environ-Legal
Required permits from statutory bodies	<ul><li>Clearance</li><li>Consents</li></ul>

ANNEXURE					
NO.	IIILE	NO.			
1.	National ambient air quality monitoring standards	A-2			
2.	CPCB recommendations for community noise exposure	A-5			
3.	CPCB standards classification of inland surface water	A-6			
4.	Indian standards specifications for drinking water	A-7			
5.	Indian standards for industrial and sewage effluents discharge	A-11			
6.	Damage risk criteria for hearing loss occupational safety & health administration (osha)	A-14			
7.	NABET - QCI Accreditation Certificate	A-15			
8.	Life Structure & Sustainability for Carbon and Water Foot Print	A-16			
9.	EC for Modernization of Existing Unit With Change in Product Mix	A-18			
10.	Certified EC Compliance report	A-26			
11.	No Increase in Pollution Load Certificate (From TNPCB)	A-50			
12.	Chemplast Sanmar Name Change Amendment Environmental Clearance	A-75			
13.	Copy of CTE & CTO Renewal	A-78			
14.	Material Safety Data Sheet	A-100			
15.	Undertaking for no use of banned products	A-108			

## LIST OF ANNEXURES

NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS) (2009)

Sr.	Pollutant	Time	Concentration in Ambient Air				
No.		Weighted Average	Industrial Residential, Rural and Other Area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement		
(1)	(2)	(3)	(4)	(5)	(6)		
1	Sulphur Dioxide	Annual*	50	20	<ul> <li>Improved West and Geake</li> </ul>		
	(SO ₂ ), μg/m ³	24 Hours**	80	80	<ul> <li>Ultraviolet fluorescence</li> </ul>		
2	Nitrogen Dioxide (NOx), μg/m ³	Annual*	40	30	Modified Jacob & Hochheiser (Na-Aresenite)		
		24 Hours**	80	80	Chemiluminescence		
3	Particular Matter (size less than 10	Annual*	60	60	<ul><li>Gravimetric</li><li>TOEM</li></ul>		
	μm) or PM10 µg/m ³	24 Hours**	100	100	<ul> <li>Beta attenuation</li> </ul>		
4	Particular Matter (size less than 2.5	Annual*	40	40	<ul><li>Gravimetric</li><li>TOEM</li></ul>		
	$\mu$ m) or PM2.5 $\mu$ g/m ³	24 Hours**	60	60	<ul> <li>Beta attenuation</li> </ul>		
5	Ozone (O₂) μg/m³	8 Hours**	100	100	<ul><li>UV photometric</li><li>Chemiluminescence</li></ul>		
		1 Hour**	180	180	<ul> <li>Chemical Method</li> </ul>		
6	Lead (Pb) μg/m ³	Annual* 24 Hours**	0.50 1.0	0.50 1.0	<ul> <li>AAS/ICP method after sampling on EPM 2000 or equivalent filter paper</li> <li>ED-XRF using Teflon filter</li> </ul>		
7	Carbon Monoxide	8 Hours**	02	02	Non Dispersive Infra Red		
	(CO) mg/m ³	1 Hour**	04	04	(NDIR) Spectrology		
8	Ammonia (NH ₃ )	Annual*	100	100	Chemiluminescence		
	μg/m³	24 Hours**	400	400	<ul> <li>Indophenol blue method</li> </ul>		
9	Benzene (C ₆ H ₆ ) μg/m ³	Annual*	05	05	<ul> <li>Gas chromatography based continuous analyzer</li> <li>Absorption and Desorption followed by GC analysis</li> </ul>		
10	Benzo (a) Pyrene (BaP) particulate phase only, g/m ³	Annual*	01	01	<ul> <li>Solvent extraction followed by HPCL/GC analysis</li> </ul>		
11	Arsenic (AS), ng/m ³	Annual*	06	06	<ul> <li>AAS/ICP method after sampling on EPM 2000 or equivalent filter paper</li> </ul>		
12	Nickel (Ni), ng/m ³	Annual*	20	20	<ul> <li>AAS/ICP method after sampling on EPM 2000 or equivalent filter paper</li> </ul>		

- * Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hours at uniform intervals.
- ** 24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed he limits but not on two consecutive days of monitoring.
- **Note:** Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

## CPCB RECOMMENDATIONS FOR COMMUNITY NOISE EXPOSURE

CATEGORY	Leq (dBA)	Leq (dBA)		
OF AREA	(DAY TIME)	(NIGHT TIME)		
	(06:00 TO 21:00 HRS)	(21:00 TO 06:00 HRS)		
Industrial Area	75	70		
Commercial Area	65	55		
Residential Area	55	45		
Silence Zone	50	40		

## CLASSIFICATION OF INLAND SURFACE WATER (CPCB STANDARDS)

SR. NO.	CHARACTERISTICS	A@	B@	<b>C</b> @	D [@]	E@
1	Dissolved Oxygen (mg/L), Min	6	5	4	4	-
2	Biochemical Oxygen Demand	2	3	3	-	-
	(mg/L), Min					
3	Total Coliform Organisms,	50	500	5000	-	-
	MPN/100 ml, Max.					
4	Total Dissolved Solids (mg/L),	500	-	1500	-	2100
	Max					
5	Chlorides (as Cl ⁻ ), mg/L, Max.	250	-	600	-	600
6	Colour,	10	300	300	-	-
	Hazen units, Max					
7	Sodium absorption ratio, Max	-	-	-	-	26
8	Boron (as B), mg/L, Max	-	-	-	-	2
9	Sulphates (as SO ₄ -2), mg/L,	400	-	400	-	1000
	Max.					
10	Nitrates (as NO ₃ ⁻ ), mg/L, Max	20	-	50	-	-
11	Free Ammonia	-	-	-	1.2	-
	(as N), mg/L, Max					
12	Conductivity at 25°C,	-	-	-	1.0	2.25
	micromhos/cm, Max					
13	pH value	6.5-8.5	6.5-8.5	6.5-8.5	6.5-8.5	6.0-8.0
14.	Arsenic (as As), mg/L, Max	0.05	0.2	0.2	-	-
15	Iron (as Fe), mg/L, Max	0.3	-	50	-	-
16	Fluorides (as F), mg/L, Max	1.5	1.5	1.5	-	-
17	Lead (as Pb), mg/L,	0.1	-	0.1	-	-
	Max					
18	Copper (as Cu), mg/L, Max	1.5	-	1.5	-	-
19	Zinc (as Zn), mg/L,	15	-	15	-	-
	Max					

*: If the Coliform count is found to be more than the prescribed tolerance limits, the criteria for coliforms shall be satisfied if not more than 20 percent of samples show more than the tolerance limits specified, and not more than 5 percent of samples show values more than 4 times the tolerance limit. Further, the feacal coliform should not be more than 20 percent of the coliform.

# INDIAN STANDARDS/SPECIFICATIONS FOR DRIINKING WATER IS: 10500-1991

SR.	SUBSTANCES	REQUIR		PERMISSIBLE	METHOD	REMARKS		
NO.	OR CHARCTERIST	E MENT	DUT-SIDE THE DESIRABLE LIMIT	ABSENCE OF	OF TEST			
	ICS	(DESIRA		ALTERNATE	IS: 3025			
	ΜΑΧ	BLE		SOURCE				
		LIMIT)						
			ESSENTIAL CHARA	CTERISTICS	I			
1	Colour, Hazen	5	Above this, consumer	25	4 of	Extended upto 25		
	unit		acceptance decreases		3025,	only if toxic		
					1983	substances are not		
						of alternate Source		
2	Odour		Unohiectionable	_	5 of	a Test cold and when		
2	Cucui				3025.198	heated		
					3	b. Test at several		
						dilutions		
3	Taste		Agreeable	-	-	Test to be conducted		
						only after safety has		
						been established		
4	Turbidity,	5	Above this, consumer	10	8	Test to be conducted		
	NTU		acceptance decreases			only after safety has		
_						been established		
5	pH Value	6.5-8.5	Beyond this range the	NO	8	-		
			water will affect the	relaxation				
			and/or water supply					
			system					
6	Total	300	Encrustation on water	600	-	-		
	Hardness		supply structure and					
	mg/L (as		adverse effects on					
	CaCO₃)		domestic use					
7	Iron (as Fe),	0.3	Beyond this limit,,	1.0	32 of	-		
	mg/L		taste/appearance are		3025,			
			affected has adverse		1964			
			effect on domestic					
			uses and water supply					
			iron bacteria					
	A - 7							

8	Chlorides (as Cl ⁻ ) mg/L	250	Beyond this limit taste, corrosion and palatability are affected	1000	32 3025	of	-
9	Residual free chlorine, mg/L	0.2	-	-	26 3025, 1986	of	To be applicable only when water is chlorinated tested at consumer end, when protection against viral infection is required it should be min 0.5 mg/L
			DESIRABLE CHARA	CTERISTICS			
10	Dissolved Solids, mg/L	500	Beyond this palatability decrease and may cause gastrointestinal irritation	2000	16 3025	of	
11	Calcium (as Ca) mg/L	75	-	200	40 3025 <i>,</i> 1984	of	
12	Copper (as Cu), mg/L	0.05	Astringent,taste discoloration of pipes, fittings and utensils will be caused beyond this	1.5	36 3025, 1964	of	
13	Manganese (as Mn), mg/L	0.1	Astringent, taste discoloration of pipes, fittings and utensils will be caused beyond this	0.3	35 3025,1 4	of .96	
14	Sulphate (as SO4 ⁻² ), mg/L	200	Beyond this causes gastrointestinal irritation when magnesium or sodium are present	400	24 3025, 1986	of	May be extended upto 400 provided (as Mg) does not exceed 30 mg/l
15	Nitrate (as NO₃⁻), mg/L	45	Beyond this methaemoglo- binemia	100	-		-
16	Fluoride (as F ⁻ ), mg/L	1.0	Fluoride may be kept as low as possible. High fluoride may cause fluorosis	1.5	23 3025, 1964	of	-
17	Phenolic	0.001	Beyond this, it may	0.002	54	of	

	substances		cause objectionable		3025			
	mg/L		taste and odour					
	(as C ₆ H₅OH)							
18	Mercury	0.01	Beyond this, the water	No	See note	To be tested when		
	(as Hg), mg/L		becomes toxic	relaxation	mercury	pollution is suspected		
					ion			
10	Cadmium	0.01	Poyond this the water	No	anaiyzer	To be tested when		
19	(as Cd) mg/l	0.01	becomes toxic	relaxation	mercury	nollution is suspected		
	(as Cu), mg/ L		Decomes toxic	Telaxation	ion	pollution is suspected		
					analyser			
20	Selenium	0.01	Beyond this the water	No	28 of	To be tested when		
	(as Se) mg/L		becomes toxic	relaxation	3025,	pollution is suspected		
					1964			
21	Arsenic (As),	0.05	Beyond this the water	No	37 of	To be tested when		
	mg/L		becomes toxic	relaxation	3025,	pollution is suspected		
					1988			
22	Cyanide (CN⁻),	0.05	Beyond this the water	No	27 of	To be tested when		
	mg/L		becomes toxic	relaxation	3025,	pollution is suspected		
					1986			
23	Lead (Pb),	0.05	Beyond this the water	No	See note	To be tested when		
	mg/L		becomes toxic	relaxation	86			
						plumbosolvency is		
24	Zinc (as Zn).	5	Revond this limit it can	15	39 of	To he tested when		
2,	mg/L	2	cause astringent taste		3025.196	pollution is suspected		
			and an opalescence in		4			
			water					
25	Anionic	0.2	Beyond this limit	1.0	Methylen	To be tested when		
	detergents		undesirable taste and		e blue	pollution is suspected		
	mg/L		odour after		extractio			
	(as MBAS)		Chlorination takes		n method			
			place					
26	Chromium	0.01	May be carcinogenic	0.05	28 Of	To be tested when		
	(as Cr ⁺ ),		above this limit		3025	pollution is suspected		
~7	mg/L				20 of	The tracked such as		
27	Polynuclear	-	May be carcinogenic	-	28 OT	To be tested when		
	aromatic				л 3022,190	pollution is suspected		
	nyurocarbons, mg/l				4			
28	Mineral Oil,	0.01	Bevond this limit	0.03	Gas	To be tested when		
	Δ - <b>9</b>							

	mg/L		undesirable taste and		chromato	pollution is suspected
			odour after		graphic	
			Chlorination takes		method	
			place			
29	Pesticides	Absent	Тохіс	0.001	58 of	-
	mg/L				3025,	
					1964	
30	Radioactive					
	materials					
	a. Alpha	-	-	0.1	-	-
	emitters Bq/L					
	b. Beta	-	-	1.0	-	-
	emitters pci/L					
31	Alkalinity	200	Beyond this limit taste	600	13 of	-
	(as CaCO₃),		becomes unpleasant		3025,196	
	mg/L				4	
32	Aluminum	0.03	Cumulative effect is	0.2	31 Of	-
	(as Al), mg/L		reported to cause		3025,196	
			dementia		4	
33	Boron (as B),	1	-	5	29 of	-
	mg/L				3025,196	
					4	

## INDIAN STANDARDS FOR INDUSTRIAL AND SEWAGE EFFLUENTS DISCHARGE IS: 2490-1982

SR.	PARAMETERS	INDUSTRIAL EFFLUENT				
NO.		INTO INLAND ON LAND FOR INTO MARINE			INTO	
		SURFACE WATER	IRRIGATION	COASTAL AREA	PUBLIC	
					SEWERS	
1	Colour / odour	-	-	-	-	
2	Suspended Solids	100	200	100 (for Process	600	
	(mg/L)			Waste)		
3	Particle Size	Shall pass 850 micron	-	Floatable Solids	-	
	Suspended Solids	IS sieve		Max 3 mm		
				Settable Solids		
				Max 850 micron		
4	Dissolved Solids	2100	2100	-	2100	
	(Inorganic), mg/L					
5	pH Value	5.5-9.0	5.5-9.0	5.5-9.0	5.5-9.0	
6	Temperature °C	Shall not exceed 40 in	-	45 at the point of	-	
		any section of the		discharge		
		stream within 15 mts.				
		downstream from the				
		effluent outlet				
7	Oil & Grease, mg/L,	10	10	20	20	
	Max.					
8	Total Residual	1	-	1	-	
	Chlorine, mg/L, Max					
9	Ammonical	50	-	50	50	
	Nitrogen (as N) mg/l					
10		100		400		
10	lotal Kjeldani	100	-	100	-	
	Nitrogen (as N), mg/L,					
11	IVIdX					
11	Free Ammonia (as	5	-	5	-	
12	Riochomical Oxygon	20	100	100	250	
12	Demand	50	100	100	550	
	5 Dave at 20 ° C					
12	Chamical Oxygon	250		250		
12	Domand mg/L May	250	-	200	-	
14	Arconic (ac Ac) mg/L	0.2	0.2	0.2	0.2	
14	Arsenic (as As), mg/L,	0.2	0.2	0.2	0.2	

	1	Γ		1	
	Max.				
15	Mercury (as Hg) mg/L	0.01	-	0.01	0.01
16	Lead (as Pb), mg/L, Max	0.1	-	1.0	1.0
17	Cadmium (as Cd), mg/L, Max	2	-	2	1
18	Hexavalent Chromium (As Cr ⁺⁶ ), mg/L, Max.	0.1	-	1	2
19	Total Chromium (as Cr) mg/L, Max	2	-	2	2
20	Copper (as Cu), mg/L, Max	3	-	3	3
21	Zinc (as Zn), mg/L, Max.	5	-	15	15
22	Selenium (as Se), mg/L, Max	0.05	-	0.05	0.05
23	Nickel (as Ni), mg/L, Max	3	-	5	3
24	Boron (as B), mg/L, Max	2	2	-	2
25	Percent Sodium, Max	-	60	60	-
26	Residual Sodium Carbonate, mg/L, Max	-	50	-	-
27	Cyanide (as CN ⁻ ), mg/L, Max	0.2	0.2	0.2	0.2
28	Chloride (as Cl ⁻ ), mg/L, Max	1000	600	-	1000
29	Fluoride (as F ⁻ ) mg/L, Max	2	-	15	15
30	Dissolved Phosphate (as P), mg/l, Max	5	-	-	-
31	Sulphate (as SO4 ⁻² ) mg/L, Max	1000	1000	-	1000
32	Sulphide (as S ⁻² ) mg/l, Max	2	-	5	-
33	Phenolic Compounds (as C ₆ H₅OH) Max	1	-	5	6
34	Radioactive materials				

_					
	a.) Alpha emitters	10-7	10-8	10-7	10-7
	μc/mL, Max				
	b.) Beta emitters	10-6	10-7	10-6	10-6
	μc/mL, Max				
35	Manganese (as Mn),	2	2	-	2
	mg/L				
36	Iron (as Fe), mg/L	3	3	-	3
37	Vanadium (as V), mg/L	0.2	-	0.2	0.2
38	Nitrate Nitrogen,	18	20	-	0.2
	mg/L				

# DAMAGE RISK CRITERIA FOR HEARING LOSS OCCUPATIONAL SAFETY& HEALTH ADMINISTRATION (OSHA)

MAXIMUM ALLOWABLE DURATION PER DAY	NOISE LEVEL
(HOURS)	(SLOW RESPONSE)
	dB(A)
8	90
6	92
4	95
3	97
2	100
1.5	102
1	105
0.5	110
0.25 or Less	115

# NABET - QCI ACCREDITATION CERTIFICATE

	for Education and Tra			
	NABET IUI LUUCAUUII AIIU II A	ining		
		nnng	ł.	ABET
	Certificate of Accred	litation		
	Aqua-Air Environmental Engineers	Pvt. Ltd.		
	403, Centre Point, Nr. Kadiwala School, Ring Road, S	surat, Gujarat-39	5002	
he.	organization is accredited as Category-A under the OCI-NA	BET Scheme fo	r Accredito	tion of EIA
ons	ultant Organizations, Version 3: for preparing EIA EMP repor	ts in the followi	ing Sectors	ATTRACT OF LEGISLA
54.	Sector Description	fecto	(at por)	Cat.
-	Mining of minerals-opercest mining	Nepti	1(0)(i)	
	Menng of minerals including opencast / onderground mining		1.761	6
	Thermal power plants	4	1.105	A .
Ę.	Minural beneficiation	Ť,	2 (2)	19 <b>8</b> 1
	Metallurgical industries (terrous anny) Cerrous planti	0	3 (0)	
	Petroleum refining Industry	10	4 (#)	4
E	Chice-alkali industry	14	4.jd)	A
0	Soda mini Educiny Chemical femilion	14	4.042	A
u	Petiticides inductry and pesticide specific interwediates	17	2.(当) 4	(A)
2	Fetro-chemical complexes	-18	546	- A :
3	Manmade fibers markitacturing	19	5 (d)	
3	Synthetic organic chamicals isdustry	21	310	A
5	Distriers	22	5 (4)	A
8	Pilip & paper industry Super Industry	29	510	
9	OI & ges transportation pipeline	27	6 (A)	4
0	Air ports	29	714	A
1	Industrial estates/ parks/ complexes/areas Common hazations works treatment, storage and literase facilities (1976)	31	7.10	A.
12	Bio-medical waite treatment facilities	324	7 (da)	9
14	Ports, harbours, break waters and dredging	30	2.041	4
5	Common Efficient Treatment Plants (CETPs)	36	7.02	8
7	Common Municipal Solid Warte Management Facility (CMSWM#)	37	7.0	(E
8	Building and construction projects	30 .	0 (a)	
ote ove CI-I	Names of approved EIA Coordinators and Functional Area Expe mber 6, 2020, supplementary assessment minutes dated Januar VABET website.	rts are mentione y 18, 2022 and	ed in IAAC n April 12, 20	inutes date 22 posted o
ie A CI-N Cre Nov	Accreditation shall remain in force subject to continued compliance VABET's letter of accreditation bearing no. QCI/NABET/ENV/ACG dilation needs to be renewed before the expiry date by Aqua-Ai wing due process of assessment.	to the terms and V20/1557 dated r Environmental	t conditions   December Engineers P	mentioned i 8, 2020. Th vt. Ltd, Sura
(	Aning.			

#### LIFE STRUCTURE & SUSTAINABILITY FOR CARBON AND WATER FOOT PRINT.

A **carbon footprint** is the total greenhouse gas (GHG) emissions caused by an individual, event, organization, service, place or product, expressed as carbon dioxide equivalent (CO₂).

Carbon footprint from energy consumption can be reduced through the development of a zero carbon emissions energy source and alternative energy projects, such as solar and wind energy, which are renewable resources.

Life cycle assessment and carbon footprint analysis are two of the most common evaluations. Both can be helpful in assessing environmental impact and providing a business with information about how to create greener systems.

The Water Footprint concept is primarily rooted in the desire to illustrate the hidden links between human consumption and water use and between global trade and water resources management.

	Carbon footprint (CF)	Water footprint (WF)
What is measured	The anthropogenic emission of greenhouse gases (GHG).	The human appropriation of freshwater resources in terms of volumes of water consumed and polluted.
Unit of measurement	Mass of carbon dioxide (CO2)- equivalents per unit of time or per unit of product.	Water volume per unit of time or per unit of product.
Footprint Components	CF per type of GHG: SO2, NO2, CO, CO2, CH4. Emissions per type of gas are weighted by their global warming potential before adding.	Blue, green and grey WF. If added, the three components are added without weighting.
Entities for which the footprint can be calculated	Processes, products, companies, industry sectors, individual consumers, groups of consumers, geographically delineated areas.	Processes, products, companies, industry sectors, individual consumers, groups of consumers, geographically delineated areas.

# The carbon and water footprint concepts complement each other, addressing different environmental issues: climate change and freshwater scarcity.

<b>6</b>		
Scope	1. Direct emissions	Always includes direct and indirect
	2. Indirect emissions from	WF.
	electricity used	
	3. Other indirect emissions	
Sustainability of the	Additional information is	Additional information is required
footprint	required to assess the	to assess the sustainability of the
	sustainability of the CF.	WF.
	For the planet as a whole, a	Per catchment area, freshwater
	maximum allowable GHG	availability and waste assimilation
	concentration needs to be	capacity need to be estimated,
	estimated, which needs to be	which form a WF cap for the
	translated to a CF cap.	catchment.
	1-	
	For specific processes and	For specific processes and
	products, CF benchmarks can be	products, WF benchmarks can be
	used	used

EC FOR MODERNIZATION OF EXISTING UNIT WITH CHANGE IN PRODUCT MIX



#### By speed post

#### Government of India Ministry of Environment & Forests (IA Division)

Paryavaran Bhawon CGO Complex, 1 odhl Road New Delhi 110 003 E-mail: <u>hsmalviva@gmail.com</u> Telephone: 011: 2436 7076 Dated : April 29, 2009

F. No. J-11011/104/2009-1A-II (I)

To

M/s Sanmar Specialty Chemicals Limited Village Suligunta, Berigai, Mosur taluk Krishnagiri District. Tamil Nadu

Pin - 635105

Sub: Modernization of existing unit with Change in products mix for M/s Sanmar Specialty Chemicals Limited at 44, Theertham Road, Suliguota village, Berigai, Hosur Taluka Krishangiri District Tamil Nadu by M/s Sanmar Specialty Chemicals Limited - Environmental Clearance reg.

Sir,

This has reference your letter no. MV/mdk/MoEF/081205 dated January 28, 2009 along with Form-I and detailed feasibility report seeking environment clearance under EIA Notification 2006 for the above-mentioned project and subsequent communication vide letter no. MV/rt/MoEF/090113 dated 28th January 2009 and letter no. MV/MoEF/090306 dated 9th March 2009.

The Ministry of Environment and Forests has examined the proposal and noted that the 2.0 proposal is for environment clearance for modernization of existing unit with Change in products mix for M/s Sanmar Specialty Chemicals Limited at 44. Theertham Road. Suligunta village. Berigai, Hosur Taluka Krishangiri District Tamil Nadu by M/s Sanmar Specialty Chemicals Limited, M/s Sanmar Specialty Chemicals Limited (SSCL) (erstwhile M/s Drachem Speciality Chemicals Ltd.) was established in 1991 to manufacture organic chemicals. In the year 1998, M/s Naturchem India Limited (NCIL), another company was merged with SSCL. M/s Naturchem India Limited (NCIL) was commissioned in the year of 1997, after obtaining environmental clearance from MoEF and the consent to operate from TNPCB to manufacture 1.4 MT of Phytochemicals. In the year 2001-02 TNPCB granted consent orders under Water and Air Acts to manufacture 1084.6 MT/Annum of organic chemicals & 0.45 MT of Phyto chemicals and it is valid till date. Now the company has proposed to replace some of the existing products of speciality chemical. The total cost of the project will be Rs. 30 Crores. The total land required for the project will be 40 acres. No eco-sensitive areas are located within 15 km periphery of the plant. Details of the existing and proposed products are as given below:

Page 1 of 7

	List of Existing Products			List of Proposed Products		
5.No	Product	roduct Existing (MTPA)		Product	Proposed (MTPA)	
		202		Synthetic Organic chemi	cals	
	PHYTO CHEMICALS			PHYTO CHEMICALS (BU	LK DRUGS)	
-	Colchieine	0.45	1	Colchicine	11.4	
10.00	Thiocolchicoside	1	12	Thiocolchicoside		
	Total	0.4	5	Total	1.	
	Organic Chemicals			Organic Chemicals		
1	Mahagonate		1	Mahagonate	terret killi diste i taalii La	
2	Vetikone		2	Vetikone		
3	Anisyl acetone	1	3	Anisyl acetone		
-	Para Methyl acetophenone		4	Para Methyl acetophenone		
100	Para Methoxy phenylacetone		5	Para Methoxy phenylacetone		
6	Tyramine	-	6	Para methoxy benzyleyanide		
1	Para methoxy phenyl ethyl amine		7	Para methoxy phenylethy lamine		
8	CHEA		8	Tyramine/Tyramine HCI.	1	
9	Para Methoxy benzyl cyanide		9	CHEA		
10	Para Methoxy phenyl acetic acid		10	внба		
11	BHBA		11	ATSC		
12	ATSC	gistinasies	12	Sandur-3		
13	Saudur-3		13	T4C	0.00	
14	T4C		14	4- Hydroxy Indanone		
15	2-Chlorophenothiazine		15	Substituted alkyl aryl amine		
16	Ethyl Benzoylacrylate	]	16	Nitreaniline	1	
17	DiChloro phenyl-1- Tertralone	-	17	Aminobenzenetricarboxylic acid		
18	D (-)Mandelic acid		18	TR1600/TR1400	5	
19	L (+)Mandelic acid		19	Aminophthalicacid		
20	Chloromandelic acid	1	20	PSH	1.00	
21	TTC		31	Cyanodiester		
22	Ethyl -2-Bromo isovalarate		22	Cabsans	1	

Alant Page 2 of 7

- 3	Grand Total	1085.05	t :	Grand Total	1081.
- 1	Total	1684.6	-	Total	108
			38	2-S-Aminobutramide HCI	
		11-2-2-11	37	Substituted benzophenone	
36	Forskolin		36	Phenoxyethylamine	
35	Cupferron ammonium	Ĩ	35	PAPT	
34	Dicthoxy acctophenone		34	Benzliydrol	
33	нора		33	2- Caloro-N.N- dimethylpropylamine	-
32	DBEDD		32	3.4-Dichloro benzamideamine	
31	Methyl Benzoyal Formate		31	Long chain alcohol ester	
30	DS 10C		30	AE phenol	
29	3-Amine 4- CyanoPyrazole		39	2-Thionyl methyl malonic mono ester	
28	Sandrol		28	4-Chloro butyl veratrate	
27	Methyl Benzoate	. Santer	37	Methyl-2-phonoxy isobutyrate	ĺ.
26	Rosatol		26	Methoxy tetralone	
25	Greenyl Acetato		25	2- Fluoro acetophenone	1030
24	FRAMBINONE	00-60-5	24	CD 675	1060
23	Anisyi Alcohol		23	Aloin	

3.0 All the process equipments will be connected to the scrubbers and equipment where solvents are distilled will be provided with condensers, vent condensers and after coulers and the receivers will be connected to the scrubber. The scrubbers will be circulated with appropriate scrubbing solution like caustic, hypochlorite, water etc. The pH indicator and pressure switches will be provided to ensure quality of scrubbing liquid for effective scrubbing. All the storage tanks of solvents will be provided vent condensers with chilled water/chilled brine circulation to prevent emission from storage tanks. The total water requirement of 207.5 KLD for the proposed plant will be sourced from existing bore wells. The waste water generated from the plant will be segregated into two streams (lean and concentrate effluent). The lean effluent is treated through the conventional wastewater treatment system and then passed through Reverse Osmosis (RO) system. The rejects from the RO system and the neutralized concentrate effluent bearing high TDS will be evaporated in the Multiple Effect Evaporator (MEE). The treated wastewater will be totally recycled and the solid waste generated is deedorized and disposed in the secured landfill constructed as per CPCB guidelines and approved by TNPCB located within the premises. The zero liquid discharge effluent treatment is fully operational. No additional water pollution is envisaged due to the proposed modernization project with change in the product mix.

4.0 The project activity is listed at S.N. 5(1) under Category "A" hence the proposal was considered and appraised at central level in 92^{ad} meeting of the Expert Appraisal Committee (Industry) held during 18th - 20th March, 2009. The Public hearing was exempted as per para 7(ii) of the EIA Notification, 2006.

Page 3 of 7

5.0 Based on the information submitted by the Project Authorities, the Ministry of Environment and Forests hereby accords the environmental clearance to the above project under the provisions of EIA Notification dated 14th September, 2006 subject to compliance of the following specific and general conditions:

#### A SPECIFIC CONDITIONS:

- i) The project authorities shall install full-fledged own Effluent Treatment Plant (ETP) to treat the wastewater and ensure zero discharge from the plant through recycling/reuse of the treated wastewater or evaporation. The domestic wastewater shall be disposed of through the septic tanks and soak pits. The company shall segregate and treat the cyanide bearing effluent chemically to ensure that treated effluent conform to prescribed limits.
- ii) The Company shall obtain permission for drawl of ground water from the Central Ground Water Authority or State ground Water Board and copy of the same shall be submitted to the Ministry's Regional Office at Bangalore.
- The Company shall install sufficient air pollution control arrangements to achieve the standards prescribed by the Tamil Nadu Pollution Control Board (TNPCB).
- iv) Data on amblent air quality stack emission and fugitive emissions shall be uploaded on the company's website and also regularly submitted online to Ministry's Regional office at Bangalore. Tamil Nadu Pollution Control Board and Central Pollution Control Board as well as hard copy once in six months. Data on SPM, SO₂ and NOx shall also be displayed prominently outside the premises at the appropriate place for the general public.
- v) The Company shall provide the monitoring arrangement with stacks/vents and regular monitoring shall be carried out and reports submitted to the TNPCB. CPCB and Ministry's Regional Office at Bangalore.
- Fugitive emissions in the work zone environment, product, raw materials storage area etc. shall be regularly monitored. The emissions shall conform to the limits imposed by TNPCB.
  - vii) For control of fugitive emission and VOCs following steps shall be followed :-
    - A. Closed handling system shall be provided for solvents.
    - B. Reflux condenser shall be provided over reactors wherever volutile solvents are used.
    - C. Pumps shall be provided with mechanical seals to prevent leakages.
    - D. System of leak detection and repair of pump/pipeline based on preventive maintenance.
    - E Solvents shall be taken from underground storage tanks to reactors through closed pipeline. Solvent Storage tanks in the tank farm shall be vented through condenser operated on chilled water.
  - viii) The process emissions and particulate matter from various units shall conform to the standards prescribed by the concerned authorities from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of

Page 4 of 7

pollution control system(s) adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.

- ix) The project authorities shall sale spent oil shall be sold to approved recycler. The empty containers and bags shall be sold to TNPCB registered dealers.
- x) During transfer of materials, spiilages shall be avoided and garland drains be constructed to avoid mixing of accidental spillages with domestic waste and storm drains.
- xi) The project authorities shall develop greenbelt in 33% of project area as per the guidelines of CPCB to mitigate the effect of fugitive emission.
- xii) Adequate financial provision shall be made in the budget of the project for implementation of the above suggested environmental safeguards. Fund so carmarked shall not be diverted for any other purposes.
- xiii) Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.
- xiv) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- xv) Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP. Safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.

#### GENERAL CONDITIONS

- The project authorities shall strictly adhere to the stipulations of the SPCB state government or any statutory body.
- ii. No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.
- iii. The project authorities shall strictly comply with the rules and regulations under Manufacture. Storage and Import of Hazardous Chemicals Rules. 1989 as amended. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.
- iv. Ambient air quality monitoring stations shall be set up in the downwind direction as well as where maximum ground level concentration are anticipated in consultation with the State Pollution Control Board.
- For control of process emissions, stacks of appropriate height as per the Central Pollution Control Board guidelines shall be provided. The scrubbed water shall be sent to ETP for further treatment.

Page 5 of 7

vî.	<ul> <li>The company shall undertake following Waste Minimization measures :-</li> <li>Metering of quantities of active ingredients to minimize waste.</li> <li>Reuse of by-products from the process as raw materials or us raw material substitutes in other processes.</li> <li>Maximizing recoveries</li> <li>Use of automated material transfer system to minimize spillage.</li> <li>Use of "Closed Feed" system into batch reactors.</li> </ul>
vii)	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waster (Management and Handling) Rules, 2003. Authorization from the SPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
vin.	The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silescers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz, 75 dBA (day time) and 70 dBA (night time).
īx.	A separate Environmental Management Cell equipped with full fledged laboratory facilities shall be set up to carry out the environmental management and monitoring functions.
x.	The project authorities shall provide rainwater harvesting system and ground water recharge.
xî.	The implementation of the project vis-d-vis environmental action plans shall be monitored by Ministry's Regional Office /SPCB / CPCB. A six monthly compliance status report shall be submitted to monitoring agencies.
xii.	The project proponent shall inform the public that the project has been accorded covironmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry at <u>http://envfor.nic.in.</u> This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the Ministry's Regional Office.
ciii.	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.
6.0 condit	The Ministry may revoke or suspend the clearance, if implementation of any of the above ions is not satisfactory.
7,0 сонтра	The Ministry reserves the right to stipulate additional conditions. If found necessary. The iny in a time bound manner shall implement these conditions.
	Page 6 of 7

Any appeal against this environmental clearance shall lie with the National Environment 8.0 Appellate Authority, if preferred within a period of 30 days as prescribed under Section 11 of the National Environment Appellate Authority Act, 1997.

The above conditions shall be enforced, inter-alia under the provisions of the Water 9.0 (Prevention & Control of Pollution) Act. 1974. Air (Prevention & Control of Pollution) Act. 1981, the Environment (Protection) Act. 1986, Hazardous Wastes (Management and Handling) Rules. 2003 and the Public Liability Insurance Act. 1991 alongwith their amendments and rules.

(H.S. Malviya) Joint Director

Copy to : -

- 1. The Secretary (Environment), Govt, of Tamil Nadu, Fort, St. George, Chennal- 560560.
- 2. The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110032.
- 5. The Chairman, Tatati Nadu Pollution Control Board, 100, Anna Salui, Guindy, Chemnai -600032.
- 4. The Chief Conservator of Forests (Central), Regional Office (SZ), Kendriya Sadan, IV¹⁰
- Floor, E&F Wings, 7th Main Road, 17th Block, Koramaogala, Bangalore-560034, 5. Monitoring Cell, Ministry of Environment and Forests, Paryavaran Binyan, CGO Complex. New Delhi.
- 6. Guard File.
- Monitoring File.
   Record File.

(H.S. Malviva)

Joint Director

Page 7 of 7

#### **CERTIFIED EC COMPLIANCE REPORT**

भारतसरकार GOVERNMENT OF INDIA पर्यावरण, वनएवंजलवायुपरिवर्तनमंत्रालय MINISTRY OF ENVIRONMENT, FOREST & CLIMATE CHANGE Integrated Regional Office (South Eastern Zone), 1st floor, Additional Office Block for GPOA, Shastri Bhawan, Haddows Road, Nungambakkam, Chennai - 600 006 E.P./12.1/862/TN/1206 3 08.12.2021 To, Shri Yogeeswara Basappa Gowda. Sr. Vice President (Operations) Chemplast Samnar limited Sanmar Speciality Chemicals Divn. 44, Theertham Road, Berigai-635 105 Shoolagiri Taluk, Kristinagiri District, Tamil Nadu Modernization of existing unit with change in products mix for M/s Sanmar Subject: Speciality Chemicals Limited at 44, Theertham Road, Sulignuta village, Berigni, Hosur Taluka, Krishnagiri District, Tamil Nadu by M/s Sanmar Speciality Chemicals Limited-Environmental Clearance reg. Ref. No. J-11011/104/2009-IA-II (I) dated 29th April 2009 Your letter Number Nil dated 30.10.2021 Sir. With reference to the above mentioned subject, please find enclosed herewith a Certified Copy of the Compliance Report. This has been approved by the Competent Authority vide diary No. 632 dated 06.12.2021. Yours faithfully, Encl: As above. ( Dallast (Dr. C. Palpandi) Scientist *D Dr. C.Palpandi Sciences D' 17.71

#### CERTIFIED COPY OF THE COMPLIANCE REPORT

Subject:

ni Si

> Modernization of existing unit with change in products mix for M/s Sanmar Speciality Chemicals Limited at 44, Theertham Road, Suliguata village, Berigal, HosurTaluka, Krishnagiri District, Tamil Nadu by M/s Sanmar Speciality Chemicals Limited-Environmental Clearance reg.

Reference No: J-11011/104/2009-IA-II (I) dated 29th April 2009

Present status of the project:



The Ministry of Environment, Forest and Climate Change, New Delhi was accorded Environmental Cleanance to the above said project for manufacturing Phytochemicals (Extracted from the seeds of *GloriosaSuperba*, the alkaloids, Thiocolchiocoside and Colchieine are sold globally to pharmaceutical industries) and Organic Chemicals (Various organic chemicals used in agrochemicals, pharmaceuticals, fine chemicals are being manufactured to the requirements of customers). Briefly, ChemplastSanmar Limited- Sanmar Speciality Chemicals Division, Berigal started in 1991, is a leading supplier of intermediates for global Agrochemical, Pharmaceutical and Fine Chemical innovators. These intermediates involve complex multi-step synthesis using unique chemistries. The manufacturing facility is located at Berigal.

The detailed productsprofiles are given by the Project Authority (PA)are as follows:

Current number of Products manufactured: 40 Number of products to be dropped: 31 Number of products to be added: 21 Hence Number of products post approval: 30

1.00

Now, the PA is proposed to change the product mix with 50 percent increase in production espacity from 1081.4 MTPA to 1601.4 MTPA with no increase in pollution load as they have proposed to drop 31 No's of existing products and introduce 21 new products.

The PA has obtained CFO renewal from SPCB vide proceedings No. T5/TNPCB/F.0027HSR/RL/HSR/RL/HSR/A/2020 dated 19.08.2020 which is valid up to 31.03.2022. At present, the industry is running well and production is going on.

385

C. Datranti

In view of the above, the PA has requested the Integrated Regional Office of MoEF&CC, Chennai vide letter dated 30.10.2021 to provide the Certified Compliance Report to the said project.

Accordingly, the above project was monitored on 24.11.2021 along with the representative of the Project Authorities. The status of compliance on the stipulated conditions contained in the EC cited above is given below in Part III.

Date of site visit: 24.11.2021

(63) ______

Name of the officer: Dr. C. Palpandi, Scientist 'D'

## PART-III

S. No.	Conditions	Compliance status
1.	The project authorities shall install full- fledged own Effluent Treatment Plant (ETP) to treat the wastewater and ensure zero discharge from the plant through wastewater or evaporation. The domestic wastewater shall be disposed recycling/reuse of the treated of through the septic tanks and soak pits. The company shall segregate and treat the cyanide bearing effluent chemically to ensure that treated effluent conform to prescribed limits.	Complied. The Project Authority (PA) has installed Effluent Treatment Plant (ETP) with the capacity of 100 KLD. All effluents are being segregated into High Total Dissolved Solids (HTDS) and Low Total Dissolved Solids (LTDS). All HTDS effluents are treated through stripper followed by Mult Effect Evaporator (MEE) and Agitated thin film dryer (ATFD). The condensates generated from MEE and ATFD are mixed with LTDS effluent and further treated in biological ETF and RO Plant. The salts generated from ATFD are being diaposed to TSDF for secured landfill. The LTDS effluents are being treated in Biological ETP and outlet of Biological ETP final is sent to RO plant for

_		
		recycle. The treated waste water is being utilized for utilities.
		The ETP sludge generated from ETP operations are being sent to TSDF for secure landfill.
		They have established Sewage Treatment Plant with the capacity of 25 KLD for treatment of domestic effluents.
		The treated water is being used for the plantation purpose,
		The cyanide bearing wastewater is chemically treated with Sodium hypochlorite solution and taken for evaporation in the MEE.
		Monitoring of ETP and STP inlet and outlet water is being carried out on monthly basis through MoEF&CC recognized third party laboratory. The monitored data above that the values are within the limits.
		ETP and STP photos are at Annexure-I & Annexure-II.
	The Company shall obtain permission for drawl of ground water from the Central Ground Water Authority or State ground Water Board and copy of the same shall be submitted to the Ministry's Regional Office at Chennai.	Complied. As informed by the PA that the source of water is from bore well (6 Nos.). However, the PA informed that water is drawl only from three Bore wells. At present, the water requirement is 207.5 KLD as informed.
		The PA has obtained permission for drawl of ground water from Central Ground Water Authority vide letter No. No.21-4(134)/SECR/CGWA/09-3708 dated 01.06.2012.
Ē	The Company shall install sufficient air pollution control arrangements to achieve the standards prescribed by the Tamil Nadu	Refer below.

A - 29

11

(5₆₅₅₎

anii 23

	Pollution Control Board (TNPCB).	connected to the scrubbers and equipment where solvents distilled are provided with condensers and after coolers and the receivers are connected to the scrubber. The scrubbers are circulated with appropriate scrubbing solution like caustic, hypochlorite, water etc. Scrubbers are monitored and maintained to ensure quality of scrubbing liquid for effective scrubbing.
	24	Monitoring of stack emission is being carried out on monthly basis by MoEF&CC authorized third party laboratory and monitoring is also being carried out twice in a year by the District Environment Laboratory, TNPCB, Hosur. The monitored data shows that the values are within the limits.
4	Data on ambient air quality stack emission and fugitive emissions shall be uploaded on the company's website and also regularly submitted online to Ministry's Regional office at Bangalore, Tamil Nadu Pollution Control Board and Central Pollution Control Board as well as hard copy once in six months. Data on SPM, SO2 and NOx shall also be displayed prominently outside the premises at the appropriate place for the general public.	Refer below. The PA has not uploaded the data on ambient air quality stack emission and fugitive emissions on the company's website. However, the PA has agreed to upload the data in future. Ambient air quality and stack monitoring reports are being regularly submitted along with six monthly compliance reports to the Integrated Regional Office, MoEF&CC, Chennai. During the visit, it was observed that Data of SPM, SO ₂ and Nox were displayed outside the factory premises by the PA ison the factory premises
5.	The Company shall provide the monitoring arrangement with stacks/vents and regular monitoring shall be carried out and reports submitted to the TNPCB, CPCB and Ministry's Regional Office at Chennai.	Refer below. They have engaged a third party environment-monitoring agency to monitor process stack emissions on monthly basis and they are sending the

		report to TNPCB, Chennai every month and to the Integrated Regional Office, MoEF&CC, Chennai once in six months.
6.	Fugitive emissions in the work zone environment, product, raw materials storage area etc. shall be regularly monitored. The emissions shall conform to the limits imposed by TNPCB.	Complied. Fugitive emissions in the work zone environment, product and raw material storage areas are being monitored regularly through MoEF&CC recognized third party laboratory. Monitoring report shows that emissions are within the limit. They are cleaning the work area including the flooring every shift regularly by a dedicated ream of people. They have stored raw materials in a separate warehouse. The raw material storage area is kept neat and clean. In view of this, there are no much fugitive emissions in the work zone remvinement
7.	For control of fugitive emission and VOCs following steps shall be followed: A. Closed handling system shall be	A. Closed handling system is
	provided for solvents	provided for chemicals.
	<li>B. Reflux condenser shall be provided over reactors wherever volatile solvents are used.</li>	B. Closed handling system is provided for chemicals.
	C. Burney Auto by constant with	C. Closed handling system is
	mechanical seals to prevent leakages.	provided for chemicals.
	<ul> <li>C. Pumps shall be provided with mechanical seals to prevent leakages.</li> <li>D. System of leak detection and repair of pump/pipeline based on preventive maintenance.</li> </ul>	provided for chemicals. D. System of leak detection and repair of pump/pipeline based on preventive maintenance.

8. The process emissions and particulate matter from various units shall conform to the standards prescribed by the concerned authorities from time, to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the anti, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved. The various process gas emission the type of gas and effluent generative in the respective operations are bein sent to ETP for treatment and disposel. Monitoring of gaseous emissions are bein sent to ETP for treatment and disposel. Monitoring of gaseous emissions are bein sent to ETP for treatment and disposel. Monitoring of gaseous emissions are bein sent to ETP for treatment and disposel. Monitoring MOEF&CC recognized this particulate matter from various process units was carried out on monthly bas through MOEF&CC recognized this matter bein sent to ETP for treatment and disposel. Monitoring of gaseous emissions are within the limits.		reactors through closed pipeline. Solvent Storage tanks in the tank farm shall be vented through condenser operated on chilled water.	condensers circulated with chilled water and are also provided with flash back flame arrestors. Solvents are handled through closed pipelines.
schieved.	8	The process emissions and particulate matter from various units shall conform to the standards prescribed by the concerned authorities from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.	Complied. The source of gaseous emissions are from Boller (1 No 6 TPH), four DG sets (4x600 KVA), one Thermic Fluid Heater and reactors (51 Nos.). Furnace oil is used as the fuel for Boiler. Two stage wet scrubbers are provided for process vents. The various process gas emissions containing SPM, SO ₂ , HCI and NOx are controlled by passing through scrubbers containing media solutions like (ye, bicarbonate etc. depending on the type of gas and offluent generated in the respective operations are being sent to ETP for treatment and disposel. Monitoring of gaseous emissions and particulate matter from various process units was carried out on monthly basis through MoEF&CC recognized third party laboratory. The monitured datas shows that the values are within the limits. The PA informed that at no time, the emissions levels has exceeded the prescribed limits and assured that in the ovent of failure of any pollution control system adopted by the unit, the unit will be put out of operations immediately and will not be restarted until the desired efficiency has been achieved.
Boiler photo is at Annexure-III.			Boiler photo is at Annexure-III.

---

У.	The project authorities shall sale spent of shall be sold to approved recycler. The empty containers and bags shall be sold to TNPCB registered dealers.	<ul> <li>Complied.</li> <li>As informed by PA that the used oil/waste lubricant oil/Grease is being disposed to TNPCB authorized recyclers.</li> <li>The HDPE drums, containers, plastic bags and wastes are being sent to TNPCB authorized recyclars.</li> <li>Inorganic &amp; evaporation salts and ETP aludge is being disposed to TSDF for recorded land 61</li> </ul>
10.	During transfer of materials, spillages shall be avoided and garland drains be constructed to avoid mixing of accidental spillages with domestic waste and storm drains.	Complied. They have provided pipelines for transferring the chemicals/materials to prevent the spillages. They have constructed garland drains to avoid accidental spillages with domestic waste and storm drains. Dyke wall is provided for material storage tanks.
1.	The project authorities shall develop greenhelt in 33% of project area as per the guidelines of CPCB to mitigate the effect of fugitive emission.	Complied. Grown belt has been developed in an area of 16.1 acres of the total project area of 43.00 acres by planting Eucalyptus, Teak wood, Mango, Penganila, neum, etc. in consultation with the local DFO and survival of the Green belt is good. Green belt development photographs
2.	Adequate financial provision shall be made in the budget of the project for implementation of the above-suggested environmental safeguards. Fund so carmarked shall not be diverted for any other purposes.	meiosed as Annexure-IV. Refer below. The fund provided / allocated was not diverted for any other purpose as informed. The PA informed that an amount of Rs. 100 Lakhs has been

SIL

		earmarked for environmental protection measures for the year 2021-22 and operation cost for sustaining Zero liquid discharge (ZLD) is around Rs 900 Lakhs per annum.
13.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Complied. Occupational health centre has been set up in the premises of the Industry. They have engaged full time Doctor and these male nurses. One ambulance is provided especially to the workers. The occupational bealth surveillance of the workers is being carried out regularly and the records are being maintained as per Factories Act.
14.	The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.	OHC Centre photo is at Annexure-V. Complied. A full-fledged fire hydrant system with ring main is provided and designed as per TAC (Tariff Advisory committee, regulations. The system is automatic and pressurized system. It is kep automatically under pressure with the help of a jockey pump. One electrical driven pump works as the main pump with a diesel driver pump as standby. A dedicated water reservoir for fire protection is provided with two-fire water storage of total capacity 1200 KL 21 no. of emergency 'manual cal point' and 43 no. of stroke detectors were installed around the factory.

aa^{li} aali
		Flammable bulk storage and unloading areas. Apart from fixed firefighting system, portable fire extinguishers are provided at various locations of the plant so that in the incipient stage itself fires can be handled and extinguished. Firefighting system photo is at Annexure-VL
15.	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, modical health care, creobe etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Refer below. The necessary infinitructure and facilities such as fuel for cooking, toilets, STP, drinking water, medical health care etc. were provided during the construction time. The housing was in the form of temporary structures and was removed after the completion of the project construction works.
	B. GENERAL CON	DITIONS
1.	The project authorities shall strictly adhere to the stipulations of the SPCB/state government or any statutory body.	Refer below. The PA informed that all the stipulations made by the State Pollution Control Board are being adhered.
2.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied. No further expansion or modifications in the plant were carried out without prior approval of the Ministry of Environment, Forest and Climate Changa. Now, the PA is proposed to change the product mix with 50 percent increase in production capacity from 1081.4 MTPA to 1601.4 MTPA with no increase in pollution load as they have proposed to drop 31 No's of existing products and introduce 21 new products.
	in the second second	R.

A - 35

- 21		P. 4. 1.7
3,	The project authorities shall strictly comply with the rules and regulations under Manuficture, Storage and Import of Hazardous Chemicals Rules, 1989 as amended. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes	Refer below. The project authorities informed that they are strictly complying with the rules and regulations under manufacture, Storage and Import of Hazardous Chemical Rules, 1989 as amended in October 1994 and January 2000. Authorization from the TNPCB has been obtained for collection, treatment, storage, and disposal of hazardous wastes and it is valid up to 31.03.2026.
<b>4</b>	Ambient air quality monitoring stations shall be set up in the downwind direction as well as where maximum ground level concentration are anticipated in consultation with the State Pollution Control Board.	Complied. Ambient air quality monitoring stations have been set up in the downwind direction as well as where maximum ground level concentrations are anticipated in consultation with the SPCB as informed. Monitoring of ambient air quality was carried out at Four locations (Near Tank Form area, near phyto gate area, near ETP plant area & near canteen) on meastick basis through MoFFACC
		monthly basis through MotFrace, recognized third party laboratory, in addition to the above, ambient air quality monitoring is also carried out twice in a year by the TMPCB, Hosar. The monitored data shows that the values are within the limits.
5.	For control of process emissions, stacks of appropriate beight as per the Central Pollution Control Board guidelines shall be provided. The scrubbed water shall be sent to ETP for further treatment.	Complied. Stacks of uppropriate height ure provided as per the CPCB guidelines. The scrubbed water is being sent to ETP for further treatment.
		Stack Photo is at Annexure-VII.
6,	The company shall undertake following Waste Minimization measures: -	The industry has adopted following waste minimization measures:

14.1

	<ul> <li>a) Metering of quantities of acti- ingredients to minimize waste.</li> <li>b) b) Reuse of by-products from the process as raw materials or as ra- material substitutes in othe processes</li> </ul>	<ul> <li>All raw materials taken by Metering and Weighing.</li> <li>b) At present no by-products have w been produced.</li> </ul>
	<ul> <li>c) Maximizing recoveries.</li> <li>d) Use of automated material transit system to minimize spillage.</li> <li>e) Use of "Closed Feed" system int batch Reactors.</li> </ul>	<ul> <li>c) Solvent recovery is about \$1%.</li> <li>d) Use of automated filling to minimize spiilage.</li> <li>a) Closed feed system for charging of row materials into a system.</li> </ul>
7.	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003. Authorization from the SPCB shall be obtained for collections/treatment/ storage/disposal of hazardous wastes.	<ul> <li>Refer below.</li> <li>The PA has obtained Authorisation from TNPCB to handle Hazardous waste as per notification and they are implementing the stipulations.</li> <li>During the visit they informed that MEE saits is collected, stored and being disposed to Authorised recyclers.</li> <li>Process organic residue and spent carbon is being sent to Authorised recyclers.</li> <li>The Hazardous Waste Authorization is</li> </ul>
8.	The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all scorees of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 BBA (night time).	Complied. The ambient noise levels in and around the plant area are being monitored on monthly basis at 20 locations both day and night through authorised third party and the values are within the limit. Noise control equipments such as acoustic boods, enclosures, silencers
9.	A separate Environmental Management Cell (EMC) equipped with full-fledged aboratory facilities shall be set up to carry	Complied. A dedicated EMC is established which

(operations) contained team of it members,	monitoring functions.	
Full-fiedged laboratory facility established with all necessary equipment for waste water analysis. The Environmental parameters an monitored through external agencies.		
Complied. Rainwater harvesting system is implemented for ground water rocharge in the plant. Photo is at Annexure. VIII	The project authorities shall provide reinwater harvesting system and ground water recharge.	10,
Complied. They are submitting six monthly compliance reports along with the monitored data regularly to the Integrated Regional Office of MoEF&CC, Chennal.	The implementation of the project vis-à-vis environmental action plans shall be monitored by Ministry's Regional Office /SPCB / CPCB. A six monthly compliance status report shall be submitted to monitoring agencies.	11.
Complied. Paper advertisement had been given in The Hindu (English) and The Daily Thanthi (Tamil) on 19.5.2009. Copies of advertisements were submitted to the Integrated Regional Office of the MoEF&CC.	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry at http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the Ministry'n Regional Office	12.
Refer below. There is no project activity at present However while starting new project they will inform the Integrated	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	13.

		Regional Office as well as the Ministry about the financial closure and final approval of the project. Start of the project was: 2009 (May); Financial closure of the project: 2011 (August), as informed.
6.0	The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.	Agreed to comply.
7.0	The Ministry reserves the right to stipulate additional conditions if found necessary. The company in a time bound manner will implement these conditions.	Agreed to comply. No additional conditions were stipulated. The PA has agreed to comply with as and when the additional conditions stipulated.
8.0	Any appeal against this environmental clearance shall lie with the National Environmental Appellate Authority, if preferred within a period of 30 days as prescribed under Section 11 of the National Environment Appellate Authority Act, 1997.	Complied The PA informed that no such appeals are made against this Environmental Clearance.
9.0	The above conditions will be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 197 4, Air (Prevention & Control of Water Pollution) Act, 1981, the Environment (Protection) Act, 1986 Hazardous Wastes (Management and Handling) Rules, 2003/ 2008 and the Public Liability Insurance Act, 1991 along with their amendments and rules.	Complied. (i) They have obtained CFO and is valid up to 31.03.2022. (ii) Copy of the Public Liability Insurance was provided and valid up to 31.03.2022.

This has the approval of the competent authority vide diary No. 632 dated 06.12.2021.

C. Dallarroly (Dr. C. Palpandi) Scientist 'D' , ²²

Dr. C.Palpandi Sacata D' Matery of Zadmonat Forst and Climite Ouage Integrated Reports Office, Chemic

Aonexure-I



10.000



Fig. Effluent Treatment Plant (ETP)



Fig. Sewage Treatment Plant (STP)

















#### **ANNEXURE-11**

### NO INCREASE IN POLLUTION LOAD CERTIFICATE (FROM TNPCB)

BYSPEED POST



### TAMIL NADU POLLUTION CONTROL BOARD

From Thiru R.Kannan, M.Tech., Member Secretary (I/c), Tamil Nadu Pollution Control Board 76, Mount Salai, Guindy Chennai – 600 032. To The Director M/S. Chemplast Sanmar Lismited- Sanmar Speciality chemicals division S.F.No.5, 7/1, 2, etc., Suligunta Village, Berigai, Shulagiri Taluk, Hosur, Krishnagiri District

#### Lr No. TNPCB/T6/F.13598HSR/2021 Dated : 17.03.2022

Sir,

- Sub: TNPCB- Industries M/S. Chemplast Sanmar Lismited- Sanmar Speciality chemicals division S.F.No.5, 7/1, 2, 3A, 3B, 8/1, 2A, 2B, 9/1, 2, 3, 10/1,2, 3A, 3B, 4, 12/1A,1B, 13/1, 14/1A, 2A, Suligunta Village, Berigai, Shulagiri Taluk, Hosur, Krishnagiri District – application for " No Increase in Pollution Load Certificate – decision of Pollution Load Assessment Committee meeting held on 27.01.2022 – communicated - Reg
- Ref: 1. Environmental Clearance issued by MoEF F.No.J-11011/104/2009-IA-II(I) dated: 29.04.2009
  - Your application submitted for requesting " No increase in Pollution Load Certificate Dt. 5.11.2021
  - 3. Minutes of PLAC meeting held on 27.01.2022

Your kind attention is invited to the reference 1st cited, wherein you have applied for "No Increase in Pollution Load Certificate" for the following modification/increase in production in the existing unit of M/s. Chemplast Sanmar Lismited- Sanmar Speciality chemicals division S.F.No.5, 7/1, 2, 3A, 3B, 8/1, 2A, 2B, 9/1, 2, 3, 10/1,2, 3A, 3B, 4, 12/1A,1B, 13/1, 14/1A, 2A, Suligunta Village, Berigal, Shulagiri Taluk, Hosur, Krishnagiri District

1. Products:

Sr. No.	Name of the products, by products and intermediate products	Existing production (Ton/Year)	Name of the products, by products and intermediate products	Proposed productio n (Ton/Year)	Remark
A	PHYTO CHEMICALS		PHYTO CHEMICALS		
1.	COLCHICINE	1.4	COLCHICINE	1.4	No change ir productio n
2.	THIOCOLCHICOSIDE		THIOCOLCHICOSID E		
в	ORGANIC CHEMICALS		ORGANIC CHEMICALS		
3.	MAHGONATE	1080	MAHGONATE	1600	Removed

No. 76, MOUNT SALAI, GUINDY, CHENNAI - 600 032. Telephone : 22353134 to 141. Fax : 044-22353068

Email : tnpcb-chn@gov.in Web : www.tnpcb.gov.in

Sr. No.	Name of the products, by products and intermediate products	Existing production (Ton/Year)	Name of the products, by products and intermediate products	Proposed productio n (Ton/Year)	Remark
4	VETIKONE		VETIKONE		Removed
5.	ANISYL ACETONE		ANISYL ACETONE	1 1	Removed
-	PARA METHYL		PARA METHYL		Removed
6.	ACETOPHENONE		ACETOPHENONE		-
-	PARA METHOXY		PARA METHOXY		Removed
1	PHENYLACETONE		PHENYLACETONE		
8.	PARA METHOXY BENZYL CYANIDE	6	BENZYL CYANIDE		Removed
9.	PARA METHOXY PHENYL ETHYLAMINE		PARA METHOXY PHENYL ETHYLAMINE		Removed
10.	TYRAMINE/THYRAMIN		TYRAMINE/THYRA MINE HCL		Removed
111	BHBA		BHBA	]	Removed
12	ATSC	1	ATSC		Removed
13.	SANDUR-3		SANDUR-3		Removed
14.	4-HYDOXY INDANONE		4-HYDOXY INDANONE		Removed
15.	NITROANILINE		NITROANILINE		Removed
16.	AMINOBENZENETRIC ARBOXYLIC ACID		AMINOBENZENETR CARBOXYLIC ACID		Removed
17.	AMINOPHTHALIC		AMINOPHTHALIC ACID		Removed
18	PSH	1	PSH		Removed
19	CYANODIESTER		CYANODIESTER	1	Removed
20	CABSANS		CABSANS	2	Removed
21	ALOIN	]	ALOIN	1	Removed
22	CD675		CD675	-	Removed
22	2-FLURO		2-FLURO		Removed
20	ACETOPHENONE		ACETOPHENONE	4	Demonstra
24	TETRALONE	-	TETRALONE	-	Removed
25	2-THIONYL METHYL MALONIC MONO ESTER		2-THIONYL METHY MALONIC MONO ESTER	-	Removed
26	LONG CHAIN		LONG CHAIN ALCOHOL ESTER		Removed
27	3.4 DICHLORO BENZAMIDEAMINE	1	3,4 DICHLORO BENZAMIDEAMINE		Removed
28	2-CHLORO-N.N- B. DIMETHYLPROPYLAN	1	2-CHLORO-N,N- DIMETHYLPROPYL AMINE		Removed
29	BENZHYDROL		BENZHYDROL		Removed
30	D. PAPT		PAPT		Removed
3	1. PHENOXYETHLAMIN	E	PHENOXYETHLAM	1	Removed

-

11106-119

 $\mathbf{x}_{\mathbf{y}}$ 



19.191

а 2

### TAMIL NADU POLLUTION CONTROL BOARD

Sr. No.	Name of the products, by products and intermediate products	Existing production (Ton/Year)	Name of the products, by products and intermediate products	Proposed productio n (Ton/Year)	Remark
32.	SUBSTITUTED		SUBSTITUTED BENZOPHENONE		Removed
33.	2-S- AMINOBUTRAMIDE		2-S- AMINOBUTRAMIDE HCL	-	Removed
34.	CHEA*	ar -	CHEA*		Increase in capacity
35.	T4C*		T4C*		in capacity
36.	AE PHENOL*		AE PHENOL*		Increase in capacity
37.	4-CHOLO-BUTYL VERATRATE*		4-CHOLO-BUTYL VERATRATE*		Increase in capacity
38.	TR1600/TR1400*		TR1600/TR1400*		Increase in capacity
39	SUBSTITUTED ARYL ALKYL AMINE*		SUBSTITUTED ARYL ALKYL AMINE*		Increase in capacity
40	METHYL-2 PHENOXY ISOBUTYRATE*		METHYL-2 PHENOXY ISOBUTYRATE*		Increase in capacity
41	-		(4R)- 2- OXOOXAZOLIDINE 4- CARBOXYLIC ACID (COX)		Newly added product
42			4-1 BUTYLPHENYLACE TONITRILE		Newly added product
43			1-BROMO-3,5- DICHLOROBENZEN E (DCBB)	4	Newly added product
44	-		4-CHLORO-2-NITRO BENZOIC ACID	D	Newly added product
4	5		2-(4-BROMO PHENYL) PROPANOL (BPP)		Newly added product
4	3		2-CHLORO-5- CHLOROMETHYL- 1,3-THIAZOLE (CCMT)		Newly added product

Sr. No.	Name of the products, by products and intermediate products	Existing production (Ton/Year)	Name of the products, by products and intermediate products	Proposed productio n (Ton/Year)	Remark
47.	•		TETRACHLORO BUTYRIC ACID (TCBA)		Newly added product
48.	•		IONOPHOR		Newly added product
49.	•		4-BROMO-2- FLUORÓ HYDROXY BIPHENYL (BFB)		Newly added product
50.	•		PARA METHYL PHENCYL CHLORIDE (PMPC)		Newly added product
51.	-		SODIUM 4-(2,4- DICHLOR M- TOLUOYL)-1,3-DI METHYL -5- PYRAZOLATE (MY710Na)		Newly added product
52.	-		2- TRIFLUOROMETHY L BENZENE SULFONAMIDE (TBSA)		Newly added product
53.	-		METHYL CARBAZATE		Newly added product
54.	•		TETRALONE IMINE		Newly added product
55			DIAMIDE		Newly added product
56	•		SULFONAMIDE		Newly added product
57			5-CHLORO-8- HYDROXY- QUINOLINE (CHQ)		Newly added product
58	. •		PHENYLGUANIDIN CARBONATE (PGC	E )	Newly added product
59			FE (III) ACETYL ACETANOATE		Newly added product
60	)	а. —	ANODE		Newly added



# **TAMIL NADU POLLUTION CONTROL BOARD**

Sr. No.	Name of the products, by products and intermediate products	Existing production (Ton/Year)	Name of the products, by products and intermediate products	Proposed productio n (Ton/Year)	Remark
-					product
61.	-		CATHODE		Newly added product
	BYPRODUCTS		BY PRODUCT		From
1			Dii. HYDROCHLORIC ACID	1050	new proposed products
2	•		DII. SULPHURIC	750	

### 2.Raw materials (Product - wise)

 $\hat{N}^{(2)}$ 

90). Tana

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
A	Phyto Chemicals			1
1	COLCHICINE	1.4	Caustic Soda	1.134
			Hyflo	1.778
			Sodium Chloride	1.638
		1 1	Acetic acid	0.196
		1	Activated carbon	0.224
	1		Chloroform	10.64
		(i )	DNS	11.97
	1		Ethyl acetate	5.67
			Hexane	1.778
			Methanol	15.12
			Sub Tota	al 50.148
2	THIOCOLCHICOSIDE	1.4	Caustic Soda	3.5
			Calcium carbonate	2.52
			Hyflo	1.078
			Sodium Carbonate	2.31
		1	Sodium Chloride	9.114
			Sodium methyl mercaptide	1.918
			Sodium Hypochlorite	16.912
			Acetic acid	2.128
	1		Activated Carbon	0.616
			Chloroform	65.8
			DNS	42.7
	1	1	Ethyl acetate	3.36
			G S. Seed	377.86

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
-	11.		Hexane	4.718
			Isopropyl alcohol	7.49
			Methanol	16.562
-		J	Sub Tota	1558.586
в	Organic Chemicals			1000.0
1	MAHGONATE	1080	Alpha Terpinene	880.2
			Methyl acrylate	544.32
			Hydroquinone	1.08
			Sub Tota	1425.6
2	VETIKONE	1080	Aluminum chloride	367.2
		1	Mesityl oxide	816.48
		1	Benzene	972
		i i	Acetic acid	17.28
		ř.	Caustic soda	293.76
		1	HCI	176.04
			Zinc dust	108
			Calcium carbonate	108
_		_	Sub Tot	al 2858.7
3	ANISYL ACETONE	1080	Frambinon	864
	, and the second	050010	Dimethyl sulphate	972
			Caustic soda	810
			EDC	520.56
			PT catalyst	1.08
			Sub Tol	tal 3167.6
4	PARA METHYL	1080	Aluminum chloride	1454.7
	ACETOPHENONE	ACETOPHENONE	Toluene	451.44
			Acetyl chloride	800.28
		ŝ.	EDC	181.44
			Sodium chloride	154.44
		1	Sodium carbonate	18.36
			Sub To	tal 3060.7
5	PARA METHOXY	1080	0 Methanol	1620.0
	PHENYL ACETONE	1 200	Sodium methoxide	540.00
		1	Dimethyl foramide	108.0
L I	1		P-Anisic aldehyde	1080.
			Methyl-2-chloro propionate	1080.
	1		нсі	1425.
			Toluene	216.0
		1	Sodium bi carbonate	21.60
-		<u> </u>	Sodium bi carbonate Sub To	otal



## **TAMIL NADU POLLUTION CONTROL BOARD**

I.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
6	PARA METHOXY	1080	Hydrogen gas	41.04
0	BENZYL CYANIDE		Anisaldehyde	1249.56
-			Raney Nickel catalyst	8.64
			Hyflo	57.24
			Toluene	174.96
		1	Sodium Cyanide	434.16
			Caustic Soda	83.16
		1	Potassium permanganate	4.32
		1	Potassium iodide	4.32
		1	wise) Hydrogen gas Anisaldehyde Raney Nickel catalyst Hyflo Toluene Sodium Cyanide Caustic Soda Potassium permanganate Potassium iodide Sodium bi carbonate Sodium carbonate Sodium chloride Sodium hypo chlorite HCI Anisyl cyanide Hydrogen gas Armonia gas Raney Nickel catalyst Hyflow Sub Tota Methyl Phenyl Ethyl amine HBr HCI Ammonia solution Sub Tot Cyano Acetic acid Cyclohexanone Hydrogen Ammonium acetate Totuene Armonium gas Raney cobalt Sub Tot D Bromine Butanol Butanol Butanol Butanol Butanol Butanol Butanol	22.68
			Sodium carbonate	5.40
		1	Sodium chloride	147.96
			Sodium hypo chlorite	756.00
	1		HCI	1123.20
		1	Sub Tot	al 4112.64
7	PARA METHOXY PHENYL ETHYLAMINE	1080	Anisyl cyanide	1335.96
6			Hydrogen gas	92.88
			Ammonia gas	1.08
		h	Raney Nickel catalyst	36.72
		1	Hyflow	6.48
			Sub To	tal 1473.12
	TYPAMINE/THYPAMINE	E 1080	Methyl Phenyl Ethyl amine	1188
0	HCL		HBr	2170.8
			HCI	648
			Ammonia solution	2700
		_	Sub To	tal 6706.8
9	CHEA	1080	Cyano Acetic acid	1107.7 6
	)		Cyclohexanone	1404
			Hydrogen	70.2
		1	Ammonium acetate	7.02
1			Toluene	6.156
1			Ammonium gas	70.2
1	1		Raney cobalt	2.808
-			Sub T	otal 2668.1
10	BHBA	108	0 Bromine	918
1 10	DI IUN	1	Butanol	1134
1	2 I		BHT	864
			Ammonia solution	810
			Methanol	1041.1

No. 76, MOUNT SALAI, GUINDY, CHENNAI - 600 032.

Telephone : 22353134 to 141, Fax : 044-22353068

Email : tnpcb-chn@gov.in Web : www.tnpcb.gov.in

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
			Hexane	313.2
			Acetic acid	64.8
			Toluene	587.52
			Sodium boro hydride	135
		1 1	Sodium meta sulphite	54
			Sodium Thiosulphite	54
			Sub Tota	5975.64
11	ATSC	1080	HCI	1188
• •	, Aloo		Ammonium thio cyanate	751.68
	<u>k</u>		Acetone Hydrazine hydrate Sub T Sub T Sodium dithionate Toluene Methanol Ammonia	293.76
			Hydrazine hydrate	619.92
21		<u> </u>	Sub Tota	12853.36
10	SANDUR.3	1080	Nitrobenzene	723.60
12	SANDOR-S	1000	Sodium dithionate	12.96
		1	Toluene	540.00
	1	1	Toluene Methanol Ammonia EDC	1185.8
	1	1	Ammonia	874.80
			EDC	982.80
	1	1	Ammonium nitrate	766.80
	25	1	Ammonium chloride	248.40
	-		HCI	108.00
		1	Zinc	162.00
	1	1	n-Butanol	324.00
		1	Ammonia EDC Ammonium nitrate Ammonium chloride HCI Zinc n-Butanol Sodium nitrite	226.80
0			Heyane	237.60
			Lirea	86.40
			Sub Tot	al 6480
10	TAC	1080	TBA	540.00
13	140	1000	Acrylonitrile	1024.9
			Potassium Hydroxide	54.00
1			Cycloberanone	421.20
1		1	Coustie soda	405.00
				1080.0
			Huflet Activated carbon	17.28
L	1		Sub To	tal 3542.
		E 400/	Ethyl acetate	680.4
14	4-HYDOXY INDANON	E 1080	Courada	1328
			Undergroup	432.0
			nydrogen	3.24
			P0/C	1044



 $3.02 \pm 0.01$ 

# TAMIL NADU POLLUTION CONTROL BOARD

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
			Sodium chloride	1177.20
	7		Ammonia solution	1080.00
	1		HCI	1080.00
			Activated carbon	21.60
			Sub Tota	6847.2
45	SUBSTITUTED ARYI	1080	4-Methoxy phenyl acetone	983.88
15	ALKYL AMINE		Mono Ethyl amine	720.36
			Hydrogen	16.2
	- K		Pd/c	2.16
_			Sub Tot	al 1722.6
40	NITROANILINE	1080	Methyl amine	1476.38
10	NITROPATIENTE		Ortho chloro Nitro benzene	1198.8
	I		Sub Tot	al 2675.16
47	AMINOBENZENE	1080	1.2.3 BTC	1296
¹ U	TRICARBOXYLIC ACID		Sulphuric acid	2160
			Potassium nitrate	270
			Ammonia solution	324
			Hydrogen	378
			Pd/C	10.8
			Sub To	al 4438.8
40	TP1600/TP1400	1080	Toluene	907.20
10	I RIGGO IIIIIGO	1	DMS	734.40
			Methanol	216.00
		1	Ammonium carbonate	1274.4
		1	Sodium hydroxide	1792.8
		1	Formic acid	864.00
1			Formaldehyde	1069.2
1		1	Propiophenone	799.20
1.			Sodium cyanide	270.00
-		1	Sub To	tal 7927.2
10	AMINOPHTHALIC ACID	1080	Sulphuric acid	2160
10	AMINOLITINEDITION	1	Potassium nitrate	1134
		1	Pthalamide	1080
1		1	Hydrogen	108
			Caustic soda	459
			HCI	32.4
			Activated carbon	10.8
			Palladium carbon	3.24
-			Sub T	otal 4987.
-	Deu	108	0 Acetyl chloride	486.0

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
-		1	Aluminum chloride	648.00
20			Chloroform	864.00
		1	Poly styrene beads	799.20
			Ammonia solution	54.00
			HCI	756.00
			Sodium cyanide	907.20
			Ammonia carbonate	864.00
			DNS	1080.00
		<del>-</del>	Sub Tota	6458.4
21	CYANODIESTER	1080	Hexane	288.36
-		0	Glacial acetic acid	374.76
		Glacial acetic acid Diethyl malonate Di-n—propyl amine Isovaleraldehyde Sodium cyanide Denatured spirit Sub Tota	803.52	
		ić. V	Di-n-propyl amine	57.24
		k.	Isovaleraldehyde	537.84
		1	Sodium cyanide	271.08
		1	Denatured spirit	239.76
			Sub Tot	al 2572.56
22	CABSANS	1080	Methane Sulphuric acid	1188
66			Phosphoric acid	307.152
			4-Amino phenyl acetic acid	511.812
			Phosphorous tri chloride	1134
			Caustic soda	711.72
			Sub Tol	al 3852.68 4
23	ALOIN	1080	Crude Yellow Sap	5940
20			Calcium hydroxide	540
		1	Oxalic acid	324
			ButalatedHydroxy Toluene	3.24
			DNS	1836
		1	Chloroform	1080
-			Sub To	tal 9723.24
24	CD675	1080	4-MPA	1101.6
64	00010		Methyl magnesium chloride	1155.6
		1	Toluene	864.00
			Sulphuric acid	475.20
			Sodium bi carbonate	162.00
			n-Heptane	540.00
1			Acetonitrile	788.40
			Acetic acid	864.00
			Tertiary butyl methyl ether	1209.6



3.PC 34 - 8

## TAMIL NADU POLLUTION CONTROL BOARD

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
-			4-Methyl cyclo hexane	604.80
			Ammonia	540.00
			DNS	864.00
			Sub Tota	19169.2
25	2-ELUBO	1080	2-Fluoro Aniline	1263.60
20	ACETOPHENONE	100.000	Sodium nitrite	1188.00
			Sodium carbonate	648.00
			Sodium cyanide	712.80
			HCI	939.60
			wise)         4 Methyl cyclo hexane         Ammonia         DNS         Sub 7         2-Fluoro Aniline         Sodium nitrite         Sodium carbonate         Sodium cyanide         HCI         Cuprous Cyanide         MDC         Methyl magnesium chloride         Sulphuric acid         Sub         0       Di Hydroxy Naphthalene         Di methyl sulphate         Toluene         Isopropyl alcohol         Caustic soda         HCI         Sodium         Sub         30       Phenol         Sodium methoxide         Toluene         Methyl -2-Bromo iso butyrate         Caustic soda         Sub         30       Phenol         Sodium methoxide         Totuene         Methyl -2-Bromo iso butyrate         Caustic soda         Sut         80       3.4-Dimethoxy Benzoic acid         Thionyl chloride         EDC         Tetrahydrofuran         Zinc chloride         Sodium bi carbonate         Toluene <td>756.00</td>	756.00
	1		MDC	1188.00
	1	1	Methyl magnesium chloride	1090.80
	1		Sulphuric acid	1189.08
	1	1	Sub Tot	al 8975.88
26	METHOXY TETRALONE	1080	Di Hydroxy Naphthalene	1080
20		1. 1000	Di methyl sulphate	1296
			Toluene	1080
			Isopropyl alcohol	432
1			Caustic soda	324
1			HCI	1080
1			Sodium	1620
			Sub To	tal 6912
27	METHYL 2 PHENOXY	1080	Phenol	907.2
1.60	ISOBUTYRATE		Sodium methoxide	550.8
			Toluene	950.4
1		1	Methyl -2-Bromo iso butyrate	1263.6
			Caustic soda	151.2
-	1	-	Sub To	tal 3823.2
28	4-CHOLO-BUTYL	1080	3.4-Dimethoxy Benzoic acid	1134
20	VERATRATE		Thionyl chloride	950.4
1	the second s		EDC	1134
1		1	Tetrahydrofuran	594
1		÷	Zinc chloride	54
		1	Sodium bi carbonate	183.6
1	1		Toluene	680.4
-			Sub Te	otal 4730.4
20	2-THIONYL METHYL	108	0 2-Thiophene Carboxaldehyde	777.6
£.2	MALONIC MONO		Diethyl malonate	1058.4
1	ESTER		Hexane	604.8
1		1	Di-n-propyl amine	75.6

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
-			Acetic acid	86.4
			Sodium borohydride	64.8
			Methanol	1112.4
			EDC	626.4
1			DNS	1274.4
6			Potassium hydroxide	140.4
			HCI	507.6
8			Methyl tert. Butyl ether	712.8
			Sub Tota	7041.6
30	AE PHENOL	1080	Vanillin	1144.8
1999			Sodium cyanide	518.4
		Sulphuric acid MTBE Chloro acetic acid Methanol Palladium carbon Sodium hydroxide Hydrogen Sub Tota	1058.4	
			MTBE	1144.8
			Chloro acetic acid	21.6
			Methanol	1166.4
		÷.	Palladium carbon	(TPA) 86.4 64.8 1112.4 626.4 1274.4 140.4 507.6 712.8 17041.6 1144.8 518.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 1058.4 10.80 572.4 43.2 al 5680.8 604.8 734.4 2008.8 21.6 10.8 43.2 10.8 43.2 1155.6 766.8 874.8 10.8 43.2 129.6 745.2 129.6 745.2 129.6 745.2 129.6 745.2 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8
			Sodium hydroxide	572.4
			Hydrogen	43.2
		1	Sub Tota	1 5680.8
31	LONG CHAIN ALCOHOL ESTER	1080	4-Chloro-3-Nitrobenzoic acid	604.8
			C-16 Alcohol	734.4
			Toluene	2008.8
			Sulphuric acid	21.6
			Palladium carbon	10.8
		1	Hydrogen	43.2
_		-	Sub Tota	1 3423.6
32	3,4 DICHLORO	1080	3,4-Dichlorobenzoyl chloride	842.4
	BENZAMIDE		2-Amino-4-Chloro-5-Nitrophenol	745.2
	AMINE		Ethyl acetate	1155.6
	Î.		Methanol	766.8
			Dimethy! formamide	874.8
			1% Palladium on Carbon	10.8
			Hydrogen	43.2
		1	Sodium Dithionite	129.6
			Acetone	745.2
	· · · · · · · · · · · · · · · · · · ·		Sub Tot	al 5313.6
33	2-CHLORO-N, N-	1080	1,1-Dimethyl amino-2-propanol	810
1000	DIMETHYLPROPYLAM	1	Chloroform	972
	NE		Thionyl chloride	853.2
<u> </u>			Sub Tot	al 2635.2



isar it G

# TAMIL NADU POLLUTION CONTROL BOARD

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
34	BENZHYDROL	1080	Benzophenone	1350
3.4			Raney Nickel catalyst	108
		50	Methanol	540
		1	Hydrogen	32.4
			Hexane	540
			Sub Tota	al 2570.4
25	PAPT	1080	Pivaloyl Acetonitrile	928.8
35	1.1.5	0.000	Isopropyl alcohol	248.4
	-		Hydrazine hydrate	453.6
			Methanol	583.2
			Heptane	108
			Toluene	324
			4-Nitrobenzamide	237.6
			Dimethyl formamide	302.4
			Methane sulfonyl chloride	237.6
		Sec. 11	Sodium hydroxide	561.6
	Ť.		Sodium methoxide	259.2
			Acetic acid	334.8
	1		Conc. Hydrochloric acid	302.4
	1		Hydroxylamine hydrochloride	302.4
			Sodium acetate N,N-Dimethyl acetamide	183.6
	1	1		756
1	1		Acetone	194.4
1	1		Sodium bicarbonate	108
ì –		1	Pyridine	183.6
1		1	Ethyl acetate	334.8
			5% Palladium carbon	8.64
1		1	Hydrogen gas	32.4
-	1	_	. Sub To	tal 6985.4
26	PHENOXY	1080	Acetonitrile	680.4
1 30	ETHYLAMINE		Ethanolamine	810
			Zinc acetate	86.4
1			Phenol	410.4
	1		Sodium hydroxide	637.2
			Orthophosphoric acid	378
			n-Butanol	356.4
-			Sub T	otal 3358.
	SUBSTITUTED	108	0 4-Chloro Benzotrichloride	1166.
31	BENZOPHENONE		Phenol	658.8
		1	Aluminum chloride	1144

No. 76, MOUNT SALAI, GUINDY, CHENNAI - 600 032.

Telephone : 22353134 to 141, Fax : 044-22353068 Email : tnpcb-chn@gov.in Web : www.tnpcb.gov.in

SI.No	Name of Product name	Quantit y (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
			EDC	367.2
			Sodium hydroxide	216
			Sodium Dithionate	3.24
		( ) (	Acetic acid	237.6
			Sub Total	3794.04
38	2-S- AMINOBUTRAMIDE	1080	S-1-Phenylethyl Amine	1177.2
00	HCL		нсі	1036.8
			Sodium cyanide	345.6
			Isopropyl alcohol	237.6
		1	Propionaldehyde	626.4
		1	Toluene	334.8
			Sodium bicarbonate	118.8
		1	Conc Sulphuric acid	475.2
		1	NaOH	572.4
£			5% Palladium carbon	10.8
			Hydrogen	32.4
			Activated carbon	75.6
			Sub Tota	1 5043.6

### PROPOSED

SI. No.	Name of Product name	Qty (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
A	Phyto Chemicals			
1	COLCHICINE	1.4	Caustic Soda	1.134
· · ·			Hyflo	1.778
	1		Sodium Chloride	1.638
			Acetic acid	0.196
			Activated carbon	0.224
	1		Chloroform	10.64
	1		DNS	11.97
	1		Ethyl acetate	5.67
	9		Hexane	1.778
			Methanol	15.12
-			Sub Total	50.148
2	THIOCOL CHICOSIDE	1.4	Caustic Soda	3.5
-	THIOCOLONICOCIDE	- Cal	Calcium carbonate	2.52
	1		Hyflo	1.078
	1		Sodium Carbonate	2.31
		1	Sodium Chloride	9.114
		1	Sodium methyl mercaptide	1.918



19 × 19

# **TAMIL NADU POLLUTION CONTROL BOARD**

SI.	Name of Product name	Qty (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
10.		111.19	Sodium Hypochlorite	16.912
- 1			Acetic acid	2.128
			Activated Carbon	0.616
			Chloroform	65.8
	1		DNS	42.7
- 8			Ethyl acetate	3.36
			G.S. Seed	377.86
			Hexane	4.718
			Isopropyl alcohol	7.49
			Methanol	16.562
-			Sub Total	558.586
B	Organic Chemicals			
1	CHEA	1600	Cyano Acetic acid	1641.12
	0.0000000000000000000000000000000000000		Cyclohexanone	2080
			Hydrogen	104
	1	1	Ammonium acetate	10.4
	1	1	Toluene	9.12
	1		Ammonium gas	104
			Raney cobalt	4.16
			Sub Total	3952.8
0	TAC	1600	TBA	800.00
2	140		Acrylonitrile	1518.40
			Potassium Hydroxide	80.00
			Cyclohexanone	624.00
	1		Caustic soda	600.00
	1		HCI	1600.0
		1	Hyflo+ Activated carbon	25.60
_			Sub Total	5248
-	OUDSTITUTED ADVI	1600	4-Methoxy phenyl acetone	1457.6
3	ALKYLAMINE	1000	Mono Ethyl amine	1067.2
	ALKILAMINE		Hydrogen	24
	1		Pdic	3.2
_			Sub Total	2552
-	TD4000/TD1400	1600	Toluene	1344
4	181600/181400	1000	DMS	1088
		1	Methanol	320
		1	Ammonium carbonate	1888
		1	Sodium hydroxide	2656
		1	Eormic acid	1280
			Formaldebyde	1584
		1	Propionbenone	1184
		1	Propioprienorie	400
			Sodium cyanide	1 11744
-				

sl.	Name of Product name	Qty (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
	ISOBUTYRATE		Sodium methoxide	816
			Toluene	1408
			Methyl -2-Bromo iso butyrate	1872
			Caustic soda	224
			Sub Total	5664
7	4-CHOLO-BUTYL	1600	3.4-Dimethoxy Benzoic acid	1680
	VERATRATE		Thionyl chloride	1408
			EDC	1680
	-		Tetrahydrofuran	880
			Zinc chloride	80
			Sodium bi carbonate	272
			Toluene	1008
			Sub Total	7008
0		1600	Vanillin	1696
0	AEPHENOL	1000	Sodium cvanide	768
			Sulphuric acid	1568
			MTRE	1696
			Chloro acetic acid	32
		l.	Mothanol	1728
			Reliedium carbon	16
			Paliaulum carbon	848
			Hudragoo	64
-			Rydrogen Sub Total	8416
_		4000	Desting	1104
9	(4R)- 2-	1600	D-senne	992
			Methyl chioroformate	416
	(COX)			320
	(00.0)		HUI	160
_			Methylene Di chioride	2002
		1	Sub lotal	4504
10	4-tert BUTYLPHENYL	1600	4-tert butyl benzaldenyde	1504
	ACETONITRILE		Hydrogen	10
			Hydrochloric Acid	330
			Sodium cyanide	448
1			Sub Total	2304
11	DCBB-(1 Bromo 3-5	1600	3,5 Dichloroaniline	1152
	Dichlorobenzene)		Hydrochloric Acid	1152
		-	Sodium nitrite	496
			Sub Total	2800
12	4-Chloro-2-Nitro Benzoic	1600	4-Chloro-2-Nitro toluene	1216
1000	Acid		Potassium permanganate	2272
			Sub Total	3488
13	2-(4-Bromo Phenvl)	1600	4-Bromo benzyl bromide	1216
	Propanol	- Oste	Diethyl malonate	784
			Sodium methovide	256

SI. No.	Name of Product name	Qty (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
21	TETRALONE IMINE	1600	1-Naphthol	800
			1,2-dichloro benzene	800
		2.55°	Sub Total	13648
23	DIAMIDE	1600	Methoxy amine HCI	896
			Methyl acrylate	1264
			Chloro dimethyl phenyl acetic acid	864
			Phenyl isonitrile	608
			Methyl amine	336
			Sub Total	9089.6
24	SULPHONAMIDE	me of Product name (TPA)         Qty (TPA)         Name of the Raw material (product wise)         Q (product wise)     <	896	
			Methanesulfonyl chloride	1024
			Triethylamine	912
			Furfurylomine	1184
			n-Butanol	160
			Chlorine gas	1264
			Sodium hydroxide	2800
		1	Sodium Hypo chloride	928
			Hydrochloric acid	2048
			Ethyl ester (TFEMS)	1344
			Isopropyl mercaptan	480
			n-Heptane	160
			potassium hydroxide	352
			Ammonia	96
			Sub Total	2048
25	5-CHLORO-8-	1600	4 CAP	1280.00
7770	HYDROXY-QUINOLINE		Glycerol	816.00
	(CHQ)		Sulphuric acid	6481.60
			Sodium hydroxide	352.00
			Acetone	160.00
			Sub Total	2256
26	PHENYLGUANIDINE	AMIDE 1600 Trifluoroethanol 855 Methanesulfonyl chloride 100 Triethylamine 91 Furfurylomine 11 n-Butanol 160 Chlorine gas 122 Sodium hydroxide 265 Sodium Hypo chloride 922 Hydrochloric acid 200 Ethyl ester (TFEMS) 133 Isopropyl mercaptan 466 n-Heptane 100 potassium hydroxide 383 Ammonia 960 Sub Total 26 Sodium hydroxide 383 Ammonia 960 Sub Total 26 Sodium hydroxide 333 Acetone 110 Sub Total 26 Sodium hydroxide 333 Acetone 110 Sub Total 26 Sodium carbonate 4 CETYL 1600 Aniline 8 Hydrochloric Acid 3 30% Cyanamidesoln 3 Sodium carbonate 4 DE 1600 Manganese acetate tetrahydrate 1 Sodium cyanide 7 Sub Total 27 Ammonium hydroxysoln 1 Sub Total 27 Sub Total 27 Sub Total 27 Sub Total 27 Sub Total 1 Sodium cyanide 7 Sub Total 1	848	
	CARBONATE (PGC)	Direct Els	Hydrochloric Acid	336
		1	30% Cyanamidesoln	384
			Sodium carbonate	480
			Sub Total	1792
27	FE (III) ACETYL	1600	Acetylacetone	1360
-	ACETANOATE	1.7.7.70	Iron III chloride	736
		1	Ammonium hydroxysoln	160
	10.0	1	Sub Total	2256
28	ANODE	1600	Manganese acetate tetrahvdrate	1040
20	,		Sodium cvanide	752
			Sub Total	1792



## TAMIL NADU POLLUTION CONTROL BOARD

SI.	Name of Product name	Qty (TPA)	Name of the Raw material (product wise)	Quantity (TPA)
NO.		1	Sodium ferrocyanidedecahydrate	336
			Manganese sulfate monohydrate	224
	1		Sodium sulfate	176
_	1		Sub Total	1808

### 3.Sewage:

 $\mathbf{F}(\mathbf{A})$ 

•

	E	xisting	- 12 KI	D	Proposed -12 KLD						
	Exist	ing (Qui	antity i	n KLD)	Proposed*(Quantity in KLD)						
Details	Pollution load before		Pollution load after		Pollut be trea	ion load fore tment	Pollution load after treatmen				
	ma/lit	Ka/day	ma/lit	Kg/day	mg/lit	Kg/day	mg/lit	Kg/day			
BOD	485 0.005	0.0058	64	0.0001	485	0.0058	6.4	0.0001			
TSS	900	0.0108	19.6	0.0002	900	0.0108	19.6	0.0002			

Details	1	Existing -	12 KL	D	Proposed -12 KLD						
	Existi 4 0	ng (Quan 5 KL/ton	tity in l	KLD) – luct	Proposed*(Quantity in KLD)- 2.74 KL/ton of product						
	Polluti be	on load fore tment	Pollution load after treatment		Pollut before	ion load treatment	Pollution load afte treatment				
	mg/lit	kg/Ton of Product	mg/lit	kg/Ton of Product	mg/lit	kg / Ton of Product	mg/lit	kg/Ton of Product			
ROD	485	485 0.002 6.4	0.00003	485	0.001	6.4	0.00002				
TRS	900	0.004	19.6	0.00007	900	0.002	19.6	0.00005			

### 4.Trade Effluent:

Details	Existin (22.95 KL/t	ng 68KLD- ton of product)	Proposed 68KLD* (15.50 KL/Ton of product)			
	Pollution concentratio n before treatment (mg/l)	Pollution concentration after treatment (mg/l)	Pollution concentrati on before treatment (mg/l)	Pollution concentration after treatmen (mg/l)		
BOD	118.83	6.5	128.87	6.4		
COD	341.65	20.0	533.25	19.4		
TSS	86 15	3.0	87.39	2.8		
TDS	2376 70	96.0	1925.64	96.0		
Chlorides	1039.80	37.5	340.7	36.2		

Sulphates	77.24	6.0	47.40	5.9
Oil and Grease	8.10	1.0	8	0.8
Ammonia cal Nitrogen	40.11	4.4	63.69	4.4
Sulphide	11.88	2.0	14.81	2.0

*Boiler blow down and cooling tower bleed off is included in the calculation of all the above parameters

Total Pollution load (Kg/Day) (For all manufacturing process and Utilities)

Details		Existing		F	Proposed*	
	Qty o	f Effluent in I	KLD	Qty of	Effluent in	KLD
-	Pollution Load before treatment( kg/day)	Pollution load after treatment (kg/day)	Performa nce efficiency . (%) [(2- 3)/2*100]	Pollutio n load before treatme nt (kg/day)	Pollutio n load after treatme nt (kg/day)	Perfor mance efficien cy. (%) [(5- 6)/5*10 0
1	2		4	5	6	7
BOD	8.07	0.44	94.53	8.72	0.43	95.03
COD	23.19	1.36	94.15	36.07		96.36
TSS	5.85	0.20	96.52	8.91	0.19	96.79
TDS	161.38	6.52	95.96	130.27	6.50	95.01
Chlorides	70.60	2.55	96.39	23.05	2.45	89.37
Sulphates	5.24	0.41	92.23	3.21	0.39	87.55
Oil and Grease	0.55	0.07	87.65	0.54	0.05	90.00
Ammoniac al Nitrogen	2.72	0.29	89.03	4.31	0.29	93.09
Sulphide	0.81	0.13	83.16	1.00	0.13	86.49

Details	Existing			Proposed*					
	Qty of Effluen (22.95 KL/ton	t in KLD of produ	ct)	Qty of Effluent in KLD (15.50 kl/to of product)					
	Pollution Load before treatment(kg /day) Kg/Ton	PollutionPollutiPerformaLoad beforeonncetreatment(kgloadefficienc/day)aftery. (%)Kg/Tontreatm[(2-ent3)/2*100]Kg/To		Pollution load before treatment Kg/Ton	Pollution load after treatmen t <u>Kg/Ton</u>	Performan ce efficiency. (%) [(5- 6)/5*100			
1	2	3	4	5	6	7			
BOD	2.72	0.15	94.53	1.988	0.098	95.03			
COD	7.83	0.46	94.15	8.221	0.299	96.36			
TSS	1.97 0.0		96.52	2.031	0.043	96.79			



### TAMIL NADU POLLUTION CONTROL BOARD

	F 4 47	0.00	05 08	20.602	1 482	95.01
TDS	54.47	2.20	80.90	29.092	1.402	00.01
Chlorides	23.83	0.86	96.39	5.254	0.558	89.37
Sulphates	1.77	0.14	92.23	0.732	0.089	87.55
Oil and Grease	0.19	0.02	87.65	0.123	0.011	90.00
Ammoniac al Nitrogen	0.92	0.10	89.03	0.982	0.066	93.09
Sulphide	0.27	0.04	83.16	0.228	0.030	86,49

Boiler blow down and cooling tower bleed off is included in the calculation of all the above parameters *

#### 5.AIR POLLUTION

44

14

#### Pollution Load (Existing)

S.	Source of emission	Pollu	tion loa	d befo	re treatr	nent	Poll	ution le	oad aft (Kg/Da	er trea y)	atment
		PM	SO2	NOx	co	Cyani de	PM	SO2	NOx	co	Cyanide
Fue	Gas Stacks										
1	Boiler-1 (9 TPH)	251.16	124.10	94.80	280.71	NA	69.77	34.47	27.09	73.87	NA
3	D.G Set (750 KVA)- 1 Nos.	3.63	1.70	1,28	5,57	NA	1.04	0.47	0.38	1.64	NA
3	D.G Set (600 KVA)- 1 Nos.	3.24	1.76	1.45	5.35	NA	0.93	0.50	0.42	1,53	NA
4	D.G Set (600 KVA)- 1 Nos.	12.92	7.19	5.32	23.16	NA	3.80	2.12	1.56	6.81	NA
5	D.G Set (320 KVA)- 1 Nos.	6.28	3.05	1.52	10.04	NA	1.74	0.85	0.42	2.79	NA
6	Thermic Fluid Heater	1.30	3.38	0.15	BDL	NA	0.36	0.94	0.04	BDL	NA
Pro	cess gas stacks	1							-		
1	Scrubber at plant -I	BDL	B	DL 7.	32 BC	DL BDL	BDL	BDL	2.09	BDL	BDL
2	Scrubber at plant -II	BDL	B	DL 5.	91 BC	DL BDL	BDL	BDL	1.60	BDL	BDL
3	Scrubber at plant -II	BDL	5	5 B	DL BC	DL BDL	BDL	1.57	BDL	BDL	BDL
4	Scrubber at plant -II	BDI	B	DL B	DL BL	DL BDL	BDL	BDL	BDL	BDL	BDL
5	Absorber at plant -I	BDI	. В	DLB	DL B	DL BDL	BDL	BDL	BDL	BDL	BDL
6	Scrubber at R& D plant	BDI	. В	DL B	DL BI	DL BDL	BDL	BDL	BDL	BDL	BDL
7	Phyto Plant Scrubber (Process)	BDI	В	DL B	DL B	DL BDI	BDL	BDL	BDL	BDL	BDL
8	Scrubber at Plant-II	BDI	В	DL B	DL B	DL BDI	BDL	BDL	BDL	BDL	BDL

76, MOUNT SALAI, GUINDY, CHENNAI - 600 032. Tel :22353134, 22353135, 22353136, 22353137, 22353138, 22353139, 22353140, 22353141 Fax : 044-22353068

Email : tnpcb@md3.vsnl.net.in www.tnpcb.gov.in

S. No.	Source of emission	Pollut	ion load (K	l before g/Day)	e treat	Pollution load after treatment (Kg/Day)					
		PM	SO ₂	NOx	CO	Cyani de	PM	SO2	NOx	со	Cyanide
9	Scrubber at Pilot Plant	BDL	BD	L BD	L BD	L BDL	BDL	BDL	BDL	BDL	BDL
10	Scrubber at Plant-IV	BDL	BD	L BD	L 0.2	24 BDL	BDL	BDL	BDŁ	0.07	BDL
11	Scrubber at Plant-IV	BDL	BD	L BD	L   1.2	28 BDL	BDL	BDL	BDL	0.34	BDL
12	Scrubber at Plant-IV	BDL	BD	L BD	L 0.3	31 BDL	BDL	BDL	BDL	0.09	BDL

S. No.	Source of	Pollu	tion lo	ad bef	ore tre	atment	Pollution load after treatment					
	emission		Kg/T	on of p	oroduc	t		K	g/Ton	of pro	oduct	
		PM	SO ₂	NOx	co	Cyanide	PM	SO ₂	NOx	co	Cyanide	
uel G	as Stacks								_			
1	Boiler-1 (9 TPH)	84.77	41.89	32	94.75	NA	23.55	11.63	9.144	24.93	NA	
2	D.G Set (750 KVA)- 1 Nos.	1.225	0.574	0.432	1.88	NA	0.351	0.159	0.128	0.554	NA	
3	D.G Set (600 KVA)- 1 Nos.	1.094	0.594	0.489	1.806	NA	0.314	0.169	0.142	0.516	NA	
4	D.G Set (600 KVA)- 1 Nos.	4.361	2.427	1.796	7.817	NA	1.283	0.716	0.527	2.299	NA	
5	D.G Set (320 KVA)- 1 Nos.	2.12	1.029	0.513	3.389	NA	0.587	0.287	0.142	0.942	NA	
6	Thermic Fluid Heater	0.439	1.141	0.051	BDL	NA	0.122	0.317	0.014	BDL	NA	
Proce	ess gas stac	ks										
1	Scrubber at plant -l	BDL	BDL	2.471	BDL	BDL	BDL	BDL	0.705	BDL	BDL	
2	Scrubber at plant -II	BDL	BDL	1.995	BDL	BDL	BDL	BDL	0.54	BDL.	BDL	
3	Scrubber at plant -II	BDL	1.856	BDL	BDL	BDL	BDL	0.53	BDL	BDL	BDL	
4	Scrubber at	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL.	
5	Absorber at	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
6	Scrubber at R& D plant	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
7	Phyto Plant Scrubber (Process)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	


# TAMIL NADU POLLUTION CONTROL BOARD

8	Scrubber at Plant-ll	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
9	Scrubber at Pilot Plant	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
10	Scrubber at Plant-IV	BDL	BDŁ	BDL	0.081	BDL	BDL	BDL	BDL	0.024	BDL
11	Scrubber at Plant-IV	BDL	BDL	BDL	0.432	BDL	BDL	BDL	BDL	0.115	BDL
12	Scrubber at Plant-IV	BDL	BDL	BDL	0.105	BDL	BDL	BDL	BDL	0.03	BDL

Pollution Load (Proposed)

. .

Sr. No.	o. emission		ollutio ti Kg/To	on loa reatm on of	ad befo ent produc	ore :t		Po	llution <u>Kg</u>	load a Ton of	fter treatment product
		ΡM	SO2	N C	Cya	nide	PM	SO2	NOx	co	Cyanide
Fue	Gas Stacks										
1	D.G Set ( 600 KVA)- 1 Nos.	0.83	0.41	0.28	1.28	NA	0.22	0.11	0.08	0.36	NA
2	D.G Set ( 600 KVA)- 1 Nos.	0.73	0.38	0.29	1.15	NA	0.23	0.11	0.08	0.35	NA
3	Thermic Fluid Heater	0.18	1.08	0.05	BDL	NA	0.05	ö.30	0.01	BDL	NA
Pro	cess Emission Stac	ks									
1	Scrubber at plant -V	BDL	BDL	0.07	BDL.	BDL	BDL	BDL	0.02	BDL	BDL
2	Scrubber at plant -V	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
3	Scrubber at plant -V	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
4	Scrubber at plant -V	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Hazardous waste generation:

SI. No.	Details of waste Categor	y wise	Existing (T/T of product)	Proposed* (T/T of product)	Remark If Any
1.	Contaminated aromatic, aliphatic or napthenic solvents may or may not be fit for reuse	I- 20.1	0.006	0.004	Reduction by 0.002 Ton/Ton
2.	Distillation residues	1-20.3	0.018	0.012	Reduction by 0.006 Ton/Ton
3.	Used or spent oil	<b>I-5</b> .1	0.009	0.006	Reduction by 0.003 Ton/Ton
4.	Chemical sludge from waste water treatment	I- 35.3	2.312	1.561	Reduction by 0.751 Ton/Ton
5.	Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	1-33.1	0.037	0.025	Reduction by 0.012 Ton/Ton

76, MOUNT SALAI, GUINDY, CHENNAI - 600 032. Tel :22353134, 22353135, 22353136, 22353137, 22353138, 22353139, 22353140, 22353141 Fax : 044-22353068

Email : tnpcb@md3.vsnl.net.in www.tnpcb.gov.in

6	Spent catalyst	I-28.2	0.001	0.001	No change
7.	Contaminated cotton rags or other cleaning materials	1-33.2	0.002	0.001	Reduction by 0.001 Ton/Ton
8.	Spent solvents	1-28.6	0.324	0.219	Reduction by 0.105 Ton/Ton

The difference between existing and proposed pollution load of the water air and solid waste parameters:

Maximum pollution load derived for each environmental parameters like COD, BOD, TDS, TSS, Air emission load is given in below table:

Sr. No	Param eters	Exis	ting	Proposed Kg/	Value in day	Remark		
		Value in Kg/day	Value in Kg/MT	Value in Kg/day	Value in Kg/MT			
А	Water po	lution						
1.	COD	18 <b>14.94</b>	613.15	1804.81	412.05	Reduced by 10.13 Kg/day	Reduced by 201.1 Kg/MT	
2.	BOD	604.34	204.16	599.44	136.85	Reduced by 4.90 Kg/day	Reduced by 67.31 Kg/MT	
3.	TDS	6802.07	2298.0	6798.43	1552.15	Reduced by 3.64 Kg/Day	Reduced by 745. 85 Kg/MT	
4.	тѕѕ	47.91	16.19	47.65	10.85	Reduced by 0.26 Kg/day	Reduced by 5.33 Kg/MT	

Sr.	Parameters	Existing		Propo	Remark		
No		Value in Kg/day	Value in Kg/MT	Value in Kg/day	Value in Kg/MT		
B	Air pollution						
1.	Air emission Load	239.30	80.84	237.12	54.13	Reduced 2.18 Kg/Day Reduced 26.71 Kg/MT	by by



### TAMIL NADU POLLUTION CONTROL BOARD

This subject was discussed in detail in the PLAC meeting held on 27.01.2022 and the committee decided to certify that there is no increase in pollution load due to the above said modification/increased in production by the unit. Hence the committee has recommended that request of the unit to grant Consent without Environmental Clearance can be considered by TNPCB subject to the following conditions:

- The unit shall comply with all the conditions imposed in the Environmental Clearance issued by MOEF vide F.No.J-11011/104/2009-IA-II(I) dated: 29.04.2009 and EC amendment from SEIAA videLr No. SEIAA/TN/EC/IND2/C.No.14969/Amendment /2020 dated: 06.08.2020.
- The unit shall compty with all existing norms of discharge and emission as well as changes if any made by Authorities like MoEF& CC, CPCB and TNPCB from time to time.
- The unit shall comply with all the conditions imposed by the TNPCB in the consent order when granted.
- The TNPCB shall monitor the unit periodically to confirm the real time pollution load after operation.
- The unit shall not go for any expansion or installation of new machineries without prior consent of the Board.
- The unit shall under take to work out the pollution loads after commencing the operation of product mix change and submit report to TNPCB.
- Sewage to be monitored for quantity and quality on monthly basis and the reports to be submitted to TNPCB.
- Ambient Air Quality and stack emission to be monitored by external agency once in a month and the reports to be submitted to TNPCB on regular basis.
- Hazardous wastes to be segregated and stored in designated areas and properly disposed for recycling/TNWML for disposal.
- 10. The unit shall furnish Environmental Management Plan and 3rd party Audit.
- 11. The unit shall install the approved retrofit emission control device in the DG sets for reduction of emission of Particulate matter before 31.03.2022.

76, MOUNT SALAI, GUINDY, CHENNAI - 600 032. Tel :22353134, 22353136, 22353136, 22353137, 22353138, 22353139, 22353140, 22353141 Fax : 044-22353068 Email : tnpcb@md3.vsnl.net.in www.tnpcb.gov.in

- 12. The unit shall provide online monitors for effluent, ambient and emission parameters and shall make proper connectivity with WQW and CAC of TNPCB for continuous monitoring of water and Air Quality.
- The unit shall comply with the consent order conditions, various directions issued by TNPCB/CPCB/NGT etc., from time to time.
- 14. The unit shall obtain NOC from the Tamil Nadu bio Diversity Board-National Bio diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.
- 15. As per EIA notification, if on verification the TNPCB holds that the change or expansion or modernization will result or has resulted in increase in pollution load, the exemption claimed under this clause shall not be valid and it shall be deemed that the project proponent was liable to obtain prior Environmental clearance before undertaking such changes or increase, as per the clause (a) of sub para (ii) of para 7 of EIA notification and the provisions of Environment (Protection) Act, 1986 shall apply accordingly.
- 16. It shall be the responsibility of the project proponent to satisfy itself about "no increase in pollution load" as a result of changes, expansion or modernization, as the case may be, before under taking such changes or increase, and the project proponent shall be liable for action under the provisions of the Environment (Protection) Act, 1986 if on verification of facts or claim it is found that such change or expansion or modernization involves increase in pollution load.

Receipt of this letter shall be acknowledged

For Member Secretary

JL 2(13

Copy to

The District Environmental Engineer, Tamil Nadu Pollution Control Board, Hosur

### **ANNEXURE-12**

### CHEMPLAST SANMAR NAME CHANGE AMENDMENT ENVIRONMENTAL CLEARANCE



THIRUR.VIJAYABASKARAN, ME, M.B.A MEMBER SECRETARY (A/c)

### STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY - TAMIL NADU

MEMBER SECRETARY

SELAA-TN

3rd Floor, Panagal Maaligat, No.1 Jeenis Road, Saidapet, Chennai-15, Phone No.044-24359973 Fax No. 044-24359975

## ENVIRONMENTAL CLEARANCE (EC) AMENDMENT Lr No. SELAA/TN/ EC/IND2/C.No.14969/Amendment/2020 Dated; 06.08.2020.

#### To,

M/s. Chemplast Sammar Limited No 9: Cathedral Road, Chennai -600 086.

### Sir.

Sub: SELAA, TN - Name change Amendment in the Environmental Clearance from M/s. Sanmar Specialty Chemicals Limited to M/s. Chemplast Sanmar Limited Manufacturing of the Phyto Chemicals ( Bulk drugs) at 44, Theertham Road, Subguma Village, Berigai, Hosur Taluk, Krishangiri District, Tamil Nadu - Reg.

### Ref: 1. F.No.J-11011/104/2009-IA-II(1) dated 29.04,2009.

- 2. MoEF&CC Notification No.S.O.1223 (E) dated 27:03.2020.
- 3. Online Proposal No: SIA/TN/IND2/162859/2020 dated 22:07:2020.
- The Hon'ble National Company Law Tribunal, Single Bench, Chennai dated 26.04.2019.
- 5. Minutes of 387th SEIAA meeting held on 06.08.2020.

This has reference to your online application dated 22.07.2020, for change of name from Samuer Specialty Chemicals Limited, Suligunta Village, Berigai, Hosur Taluk, Krishnagiri

Page 1 of 3

#### State Level Environmental Impact Assessment Authority, Tamil Nadu

2020

District to M/s. Chemplast Sammar Limited as per the Hon'ble National Company Law Tribunal, Single Bench, Chennai.

- The MoEF&CC has earlier accorded Environment Clearance vide F-NoJ-11011/104/2009-IA-II(I) dated 29.04.2009 in the name of M/s. Sanmar Specialty Chemicals Limited, for the modernization of existing unit with change in products mix.
- 2. The unit M/s. Sanmar Speciality Chemicals Limited (SSCL), has been amalgamated with its subsidiary company Chemplast Sanmar Limited (hereinafter referred to as "CSL"), having registered office at 9, Cathedral Road, Chennai 600 086, ander a Scheme of Amalgamation/Arrangement approved by the Hon'ble National Company Law Tribunal, Chennai Bench ("NCLT"), vide its order dated 26th April 2019 under the provisions of Companies Act, 2013 read with rules there under. Under the said Scheme as approved by NCLT, the Company has been amalgamated with CSL as a going concern and all assets, liabilities, contracts, arrangements, Permits, Licenses, approvals, employees etc. of their Company have been transferred to and vested in CSL.
- The unit has submitted the Memorandum of Association in the companies Act, 1956 company limited by shares in the name of M/s. Chemplast Sanmar Limited.
- 4. The MoEF&CC has issued the amendment Notification dated 27.03.2020 in this notification, it is stated that " All the proposals for projects or activities in respect of Active Pharmaceutical Ingredients(API) received up to 30th September 2020 shall be apprised as category B2 projects ".
- 5. The proposal was placed in the 387th SEIAA meeting held on 06.08.2020. The Authority decided to issue the name change amendment as per the request of the proponent. The name of the said company shall be read hereafter as "M/s. Chemplast Sammar Limited M/s Sammar Speciality chemicals Limited" instead of Sammar Speciality Chemicals in the Environment Clearance and all other conditions stipulated in the Environment Clearance accorded vide reference 1th cited is remains unaltered.

MEMBER SECRETARY SELAA-TN

Page 2 of 3

2020

### Copy to:

- The Principal Secretary to Government, Environment & Forests Dept. Govt. of Tamil Nada, Fort St. George, Chennai - 9.
- The Chairman, Central Pollution Control Board, PariveshBhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600 032.
- The APCCF (C), Regional Office, Ministry of Environment & Forest (SZ), 34, HEPC Building, 1st& 2nd Floor, Cathedral Gurden Road, Nungampakkam, Chennai - 34.
- Monitoring Cell, J A Division, Ministry of Environment & Forests, Paryavaran Bhavan, CGO Complex, New Delhi 110003.

6. The Commissioner, Shoolagiri Panchayat Linion, Berigai.

7. Stock File.

Page 3 of 3

### **ANNEXURE-13**

**COPY OF CTE & CTO RENEWAL** Category of the Industry : *),.... அமுகப் இருநாள் RED DATED: 03/06/2022. CONSENT ORDER NO. 2206241783392 PROCEEDINGS NO.T6/TNPCB/F.0027HSR/RL/HSR/A/2022 DATED: 03/06/2022 SUB: TNPC Board-Consent for Establishment FOR EXPANSION- I CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION , S.F. No. 5.7/1.2.3A.3B.8/1.2A.2B.9/1.2.3.10/1.2.3A.3B.4.12/1A.1B.13/1.14/1A.2A. SULIGUNTA Village. Shoolagiri Taluk, Krishmagiri District- for the establishment or take steps to establish the industry for Expansion under Section 21 of the Air(Prevention and control of Pollution)Act,1981, as amended in 1987 (Central Act, 14 of 1981)-Issued- Reg. REF: 1. Unit's Application for CTE (exp) dated: 01.04.2022
2. IR No : F.0027HSR/RL/JCEE-M/HSR/2022 dated 30/05/2022
3. Board's (Technical Sub Committee) Resolution No.196 - 05(revised) dt. 13.05.2022 Consent to establish or take steps to establish for Expansion is hereby granted under Section 21 of the Air (Prevention and control of Pollution) Act, 1981, as amended in 1987 and the Rules and Orders made there under to The Director, M/s CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION Authorizing occupier to establish or take steps to establish the industry in the site mentioned below S.F.No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, SULIGUNTA Village. Shoolagiri Taluk, Krishnagiri District. This Consent to establish for Expansion is valid upto March 31, 2027, or till the industry obtains consent to operate under Section 21 of the Air (Prevention and control of Pollution) Act, 1981, as amended in 1987 whichever is earlier subject to special and general conditions enclosed JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYARANI Date 2022/05/03 21:33:05 405'30' For Member Secretary, Tamil Nadu Pollution Control Board, Chennai To The Director. M/s.CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION No 9 CATHEDRAL ROAD II FLOOR CHENNAL Pin: 600086 1

#### Copy to:

1 The Commissioner, SHOOLAGIRI-Panchayat Union, Shoolagin Taluk, Krishnagin District

2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, HOSUR.

3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore.

4 File

#### SPECIAL CONDITIONS

 This consent to establish for Expansion is valid for establishing the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Description	Quantity	Unit
	Product Details		
1.	PHYTO CHEMICALS (1.Colchicine,2.Thiocolchicoside)	1.4	Tons/Year
2.	ORGANIC CHEMICALS (1.CHEA, 2.T4C, 3.AE PHENOL, 4.4-CHOLO-BUTYL VERATRATE, 5.TR1600/TR1400, 6.SUBSTITUTED ARYL ALKYL AMINE, 7.METHYL-2 PHENOXY ISOBUTYRATE, 8.(4R)- 2- OXOOXAZOLIDINE -4- CARBOXYLIC ACID (COX), 9.4-t BUTYLPHENYLACETONITRILE, 10.1- BROMO-3,5-DICHLOROBENZENE (DCBB), 11.4-CHLORO-2-NITRO BENZOIC ACID, 12.2- (4-BROMO PHENYL) PROPANOL (BPP), 13.2- CHLORO-5-CHLOROMETHYL-1,3-THIAZOLE (CCMT), 14.TETRACHLORO BUTYRIC ACID (TCBA), 15.IONOPHOR, 16.4-BROMO-2- FLUORO HYDROXY BIPHENYL (BFB), 17.PARA METHYL PHENCYL CHLORIDE (PMPC), 18.SODIUM 4-(2,4-DICHLOR M- TOLUOYL)-1,3-DI METHYL -5-PYRAZOLATE (MY710Na), 19.2-TRIFLUOROMETHYL BENZENE SULFONAMIDE (TBSA), 20.METHYL CARBAZATE, 21.TETRALONE IMINE, 22.DIAMIDE, 23.SULFONAMIDE, 24.5- CHLORO-8-HYDROXY-QUINOLINE (CHQ), 25.PHENYLGUANIDINE CARBONATE (PGC), 26.FE (III) ACETYL ACETANOATE, 27.ANODE, 28.Cathode)	1600	Tons/Year
	By-Product Details		1
1.	1.DII. HYDROCHLORIC ACID	1050	Tons/Year
2.	2.Dil. SULPHURIC ACID	750	Tons/Year

2. This consent to establish for Expansion is valid for establishing the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent has to be obtained if necessary.

Ι	Point source emission with sta	ick :		
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
1	Scrubber at Plant - I (Existing)	Wet Alkali Scrubber,stack	6.1	35715.214
2	Scrubber at Plant - II (Existing)	Wet Alkali Scrubber,stack	17	35528.924
3	Scrubber at Plant - II (Existing	Wet Alkali Scrubber,stack	17	35528.924
4	Scrubber at Plant - II (Existing)	Wet Alkali Scrubber,stack	15	35715.214
5	Absorber at Plant -I (Existing)	Wet Alkali Scrubber,stack	4	
6	Scrubber at R & D plant (Existing)	Two stage wet alkali scrubber,stack	12	35892.46
7	Phyto Plant Scrubber (Process) (Existing)	Wet Alkali Scrubber,stack	19	11106.18
8	Scrubber at Plant - II (Existing)	Wet Alkali Scrubber,stack	15	34273.728
9	Scrubber at Pilot Plant (Existing)	Wet Alkali Scrubber,stack	6.1	24205.255
10	Scrubber at Plant - IV (Existing)	Wet Alkali Scrubber,stack	17	800
11	Scrubber at Plant - IV (Existing)	Wet Alkali Scrubber,stack	17	8600
12	Scrubber at Plant - IV (Existing)	Wet Alkali Scrubber,stack	17	416
13	Boiler- 9MT/Hr (Existing)	Mechanical Dust Collector, Stack	40	58362.913
14	D.G Set (600 KVA) (Existing)	Stack	12	7080
15	D.G Set (600 KVA) (Existing)	Stack	12	7080
16	D.G Set (750 KVA) (Existing)	Stack	12	10870
17	D.G Set (320 KVA) (Existing)	Stack	9.8	8302
18	Thermic Fluid Heater (Existing)	Stack	9	10194.798
19	Scrubber at Plant - V (Proposed)	Wet scrubber with stack	17	416
20	Scrubber at Plant - V (Proposed)	Wet scrubber with stack	17	416
21	Scrubber at Plant - V (Proposed)	Wet scrubber with stack	17	416
22	Scrubber at Plant - V (Proposed)	Wet scrubber with stack	17	416
23	D.G Set (600 KVA) (Proposed)	Stack	12	7080
24	D.G Set (600 KVA) (Proposed)	Stack	12	7080

25	Thermic Fluid Heater (Proposed)	Stack	9	10194.798
п	Fugitive/Noise emission :			
SI. No.	Fugitive or Noise Emission sources	Type of emission	Control measures	
1.	FBD(2Nos)	Noise	Bag Filter	
2.	Compressor	Noise	PPE	
3.	MEE	Noise	PPE	
4.	DG Set(4Nos)	Noise	Acoustic enclosures with stack	
5.	ETP Blower	Noise	Silencers and Bellow with Acoustic Enclosures	

#### 3 Special Additional Conditions:

- The unit shall install the approved retrofit emission control device/equipment with at least 70% Particulate matter reduction efficiency on all DG sets with capacity of 125 KVA and above or otherwise the unit shall be shift to gas based generators within the time frame prescribed in the notification No. TNPCB/Labs/DD(L)02151/2019 dated 10.06.2020 issued by TNPCB.
- ii. The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

#### 4 Additional Conditions:

1. The unit shall operate and manufacture the products as per the existing consented quantity (Annual production should be within the consented capacity) till getting CTO Expansion from the Board and also the unit shall start their construction and other establishing activities towards expansion only after getting CTE Expansion from the Board. 2. The unit shall operate and maintain the existing ADC

2. The unit shall operate and maintain the existing APC measures efficiently and continuously so as to bring the quality of emission to satisfy the NAAQ/SM /ANL standards as prescribed by the Board and also unit establish the proposed emission sources as mentioned in the application with APC measures only after getting CTE Expansion from the Board.

3. The unit shall ensure the online connectivity with Care Air Centre of TNPCB, Chennai/CPCB to provide proper quality data at all times for the existing.

 The unit shall comply with emission standards as prescribed in MOEF &CC notification dated 25.08.2014 and 09.05.2016.

5. The unit shall continue to develop green belt within the premises.

 The unit shall comply with the provisions contained in this Ministry's OM vide F.No. 22-65/2017-IA.II dated 1st May 2018, as applicable, regarding Corporate Environment Responsibility.

 The unit shall comply all the conditions as mentioned in the 'No increase in Pollution load' certificate issued to the unit by PLAC vide Board's Lr. No. TNPCB/T6/F.13598 HSR/2021/dated: 17.03.2022 strictly without any lapse.

8. The unit shall ensure and comply with CPCB directions dated 05/02/2014 and 27/07/2015.

9. The unit shall continue to develop adequate green belt with thick canopy within the premises, so as to attenuate air and noise pollution furnish the exact green belt area ear marked/developed as per norms in the unit premises and furnish photographs along with latitude and longitude co-ordinates. 10. The unit shall liable to pay the consent fee and shall remit the difference

- in amount in case of any revision of consent fee by the Government.
- The unit shall not evoke any complaint from the nearby public due to its establishment activity.

12. In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification. failing to remit the consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

JOSEPHINESAHAYARANI Diata U2020.06.03 21 33:44 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

#### GENERAL CONDITIONS

- This consent to establish cannot be construed as consent to operate and the unit shall not commence the operation without obtaining the Consent to operate.
- The applicant shall make a request for grant of consent to operate at least thirty days, before the commissioning of trial production.
- 3. Any Change in the details furnished in the conditions has to be brought to the notice of the Board and got approved by the Board, before obtaining consent to operate under the said Act.
- 4. The unit has to comply with the provisions of Public Liability Insurance Act, 1991 to provide immediate relief in the event of any hazard to human beings, other living creatures/plants and properties while handling and storage of hazardous substances (wherever applicable).
- Consent to operate will not be issued unless the unit complies with the conditions of consent to establish.
- 6. The unit shall provide adequate water sprinklers for the control of dust emission during the loading and unloading of construction material so as to minimize the dust emission.
- The unit shall provide water sprinklers along the temporary roads inside the premises to avoid fugitive dust emission during the vehicle movements.
- 8. The unit shall develop green belt of adequate width around the premises.
- In case there is any change in the management, the unit shall inform the change with relevant documents immediately.

JOSEPHINESAHAYARANI Diptrilly signed by sOSEPHINESAHAYARANI Date: 2022.06.03 21:34:22 +05:30

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

Category of the Industry :

RED



கிருநாள் Supaù

DATED: 03/06/2022.

PROCEEDINGS NO.T6/TNPCB/F.0027HSR/RL/HSR/W/2022 DATED: 03/06/2022

SUB: TNPC Board-Consent for Establishment FOR EXPANSION- I CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION S.F. No. 5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, SULIGUNTA Village, Shoolagiri Taluk, Krishnagiri District- for the establishment or take steps to establish the industry for Expansion under Section 25 of the Water(Prevention and control of Pollution)Act,1974, as amended in 1988 (Central Act 6 of 1974) -Issued- Reg.

REF: 1. Unit's Application for CTE (exp) dated: 01.04.2022 2. IR.No : F.0027HSR/RL/JCEE-M/HSR/2022 dated 30/05/2022

3. Board's (Technical Sub Committee) Resolution No 196 - 05(revised) dt. 13.05.2022

Consent to establish or take steps to establish for Expansion is hereby granted under Section 25 of the Water (Prevention and control of Pollution) Act, 1974, as amended in 1988(Central Act 53 of 1988) (hereinafter referred to as 'The Act') and the Rules and Orders made there under to

> The Director: M/s. CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION

Authorizing occupier to establish or take steps to establish the industry in the site mentioned below:

S.F. No 5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, SULIGUNTA Village. Shoolaom Taluk Krishnagiri District.

This Consent to establish for Expansion is valid upto March 31, 2027, or till the industry obtains consent to operate under Section 25 of the Water (Prevention and control of Pollution) Act, 1974, as amended in 1988 whichever is earlier subject to special and general conditions enclosed

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYARANI Date: 2022.06.03 21:30:06 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board. Chennai

To The Director. M/s CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION, No. 9, CATHEDRAL ROAD, II FLOOR CHENNAL Pin: 600086

Copy to:

1 The Commissioner, SHOOLAGIRI-Panchayat Union, Shoolagiri Taluk, Krishnagiri District .

- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, HOSUR.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore.

4. File

### SPECIAL CONDITIONS

 This consent to establish for Expansion is valid for establishing the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SL No.	Description	Quantity	Unit
	Product Details		
1.	PHYTO CHEMICALS (1.Colchicine,2.Thiocolchicoside)	1.4	Tons/Year
2.	ORGANIC CHEMICALS (1.CHEA, 2.T4C, 3.AE PHENOL, 4.4-CHOLO-BUTYL VERATRATE, 5.TR1600/TR1400, 6.SUBSTITUTED ARYL ALKYL AMINE, 7.METHYL-2 PHENOXY ISOBUTYRATE, 8.(4R)- 2- OXOOXAZOLIDINE -4- CARBOXYLIC ACID (COX), 9.4-1 BUTYLPHENYLACETONITRILE, 10.1- BROMO-3,5-DICHLOROBENZENE (DCBB), 11.4-CHLORO-2-NITRO BENZOIC ACID, 12.2- (4-BROMO PHENYL) PROPANOL (BPP), 13.2- CHLORO-5-CHLOROMETHYL-1,3-THIAZOLE (CCMT), 14.TETRACHLORO BUTYRIC ACID (TCBA), 15.IONOPHOR, 16.4-BROMO-2- FLUORO HYDROXY BIPHENYL (BFB), 17.PARA METHYL PHENCYL CHLORIDE (PMPC), 18.SODIUM 4-(2.4-DICHLOR M- TOLUOYL)-1.3-DI METHYL -5-PYRAZOLATE (MY710Na), 19.2-TRIFLUOROMETHYL BENZENE SULFONAMIDE (TBSA), 20.METHYL CARBAZATE, 21.TETRALONE IMINE, 22.DIAMIDE, 23.SULFONAMIDE, 24.5- CHLORO-8-HYDROXY-QUINOLINE (CHQ), 25.PHENYLGUANIDINE CARBONATE (PGC), 26.FE (III) ACETYL ACETANOATE, 27.ANODE, 28.Cathode)	1600	Tons/Year
_	By-Product Details		
1.	1.Dil. HYDROCHLORIC ACID	1050	Tons/Year
2.	2.Dil. SULPHURIC ACID	750	Tons/Year

2. The unit shall provide Sewage Treatment Plant and /or Effluent Treatment Plant as indicated below.

L. No. 1. L. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Treatment sta Name of the Treatment Unit Septic tank Treatment Unit Name of the Treatment Unit Screen chamber	tus: Septic Tank and SI No. of Units 1 t status: Individual STE No. of Units	Dimensions in metres 3.5x3.5x2.2
L. No. 1. L. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Name of the Treatment Unit Septic tank Treatment Unit Screen chamber	No. of Units 1 t status: Individual STE No. of Units	Dimensions in metres 3.5x3.5x2.2
1. L. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Septic tank Treatment Name of the Treatment Unit	1 t status: Individual STE No. of Units	3.5x3.5x2.2
L. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Treatment Name of the Treatment Unit	t status: Individual STE No. of Units	
L. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Name of the Treatment	No. of Units	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Screen chamber		Dimensions in metres
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Eff	Scieen Granber	1	1x1x0.5
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. En	Oll Trap	1	1.5x1.5x1.30
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. En	Collection tank	1	2x2x3
5. 6. 7. 8. 9. 10. 11. 12. 13. En	Anoxic tank	1	1.25x1.65x3
6. 7. 8. 9. 10. 11. 12. 13. Ef	Aeriation tank	1	1.25×2.65×3
7. 8. 9. 10. 11. 12. 13. En	Tube Settler tank	1	1x1.5x2.7
8. 9. 10. 11. 12. 13. En	Filter feed tank	1	1x1.5x2.7
9. 10. 11. 12. 13. En	STP treated water tank	1	1.25×2×3
10. 11. 12. 13. En	Pressure Sand Filter	1	0.4 m dia x 1.5 m ht
11. 12. 13. En	Activated Carbon Filter	1	0.4 m dia x 1.5 m ht
12. 13. En	Cartridge Filter	2	1.25 m3/hr
13. En	UV system	1	140mm dia x 900 mm
En	Sludge drying bed	2	2x2x1.3

SL. No.	Name of the Treatment Unit	No. of Units	Dimensions in metres
1.	Primary Treatment unit	1	3x2x4.05
2.	Buffer Tank	1	5x5.5x2
3.	Anaerobic Tank	1	12x6.15x4
4.	Aeration 1	1	15.3x15.3x3.5
5.	Aeration 2	1	14x9x4.5
6.	Aeration3	1	6.5×5.6×4
7.	Aeration 4	1	6.6×6.6×4
8.	Secondary Clarifier 1	1	4 m dia x 3.9 m Ht
9.	Secondary Clarifier 2	1	5.5 m dia x 3.5 m Ht
10.	Sludge Holding Tank	1	2x2x3
11.	Tertiary Treatment Unit	1	4x2x3
12.	Clear Water Tank	1	6.5x7.2x3
13.	Permeate Tank	1	6.5x7.2x3
14.	Drain Pit	1	2x2x2.5
15.	TSS Sludge Bed	2	4x2.2x1.2
16.	TSS Inlet	1	2.5 m dia x 2 m Ht
17.	TSS Outlet	1	2.5 m dia x 2 m Ht
18.	TSS Clarifier	1	4 m dia x 3 m Ht
19.	Activated Carbon Filter	1	0.5 m2
20.	Pressure Sand Filter	1	0.5 m2
21.	Equalization Tank	2	5x3x3.5
22.	Collection Tank (Syntex)	4	10 KL
23.	Collection Tank (Syntex)	1	5 KL
24,	Multiple Effect Evaporator	1	70 KLD
25.	ATFD	1	300kg/Hr @30-35% sol
26.	Filter Press	1	0.83m2 (25 plates)
27.	Ultra Filtration	1	110 KLD
28.	RO Plant	1	100 KLD

3. This consent to establish for Expansion is valid for establishing the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage		8
1.	Sewage	12.0	On Industrys own land
Effluent Ty	pe : Trade Effluent		
1.	Trade effluent	68.0	Reuse to Cooling Tower Makeup

### 4. Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

#### 5 **Additional Conditions:**

1. The unit shall operate and manufacture the products as per the existing consented quantity (Annual production should be within the consented capacity) till getting CTO Expansion from the Board and also the unit shall start their construction and other establishing activities towards expansion only after getting CTE Expansion from the Board. 2. The unit shall operate and maintain the STP efficiently and continuously so as to achieve the

The unit shall not increase the quantity of sewage in the CTE Expansion activity without prior

Permission of the Board and also EC.
 The unit shall operate and maintain the ETP, RO, RMS(MEE & ATFD) efficiently and continuously

so as to achieve the standards as prescribed by the Board and to achieve the ZLD at all times

The unit shall not increase the quantity of trade effluent in the CTE Expansion activity without prior permission of the Board and also EC.
 The unit shall ensure that the entire treated sewage shall be used for gardening purpose within the

premises.

The unit shall ensure the online connectivity with WQW, of TNPCB. Chemnai to provide proper quality data at all times

8. The unit shall comply all the conditions as mentioned in the 'No increase in Pollution load ' Certificate issued to the unit by PLAC vide Board's Lr. No. TNPCB/T6/F.13598 HSR/2021/dated: 17.03.2022 strictly without any lapse.

9. The unit shall comply with the provisions contained in this Ministry's OM vide F.No. 22-65/2017-IA II dated 1st May 2018, as applicable, regarding Corporate Environment Responsibility, 10. The unit shall not evoke any complaint from the nearby public due to its

establishment activity. 11 The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead it shall encourage use of eco friendly alternative such as banana leaf, areca nut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag. Jute bag etc.,

12. In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification. failing to remit the consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

# JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYARAS

For Member Secretary Tamil Nadu Pollution Control Board, Chennai

#### GENERAL CONDITIONS

- This consent to establish cannot be construed as consent to operate and the unit shall not commence the operation without obtaining the Consent to operate.
- The applicant shall make a request for grant of consent to operate at least thirty days, before the commissioning of trial production.
- Any Change in the details furnished in the conditions has to be brought to the notice of the Board and got approved by the Board, before obtaining consent to operate under the said Act.
- 4. The unit has to comply with the provisions of Public Liability Insurance Act. 1991 to provide immediate relief in the event of any hazard to human beings, other living creatures/plants and properties while handling and storage of hazardous substances (wherever applicable).
- Consent to operate will not be issued unless the unit complies with the conditions of consent to establish.
- 6. The unit shall provide adequate water sprinklers for the control of dust emission during the loading and unloading of construction material so as to minimize the dust emission.
- The unit shall provide water sprinklers along the temporary roads inside the premises to avoid fugitive dust emission during the vehicle movements.
- 8. The unit shall develop green belt of adequate width around the premises.
- In case there is any change in the management, the unit shall inform the change with relevant documents immediately.

JOSEPHINESAHAYARANI Digitally signed by JOSEPHINESAHAYABANE Date: 2022/06.03 21:31:42 +05:30 For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

FI OF CIO REINEW	AL			
				- Consus
				அழகப்பொருவிழ
	TAMIL NADU P	OLLUTION CONT	ROL BOARD	
Category of the Indu	ishy :			
RED				
CONSENT ORDER	R NO. 2208242904446	DATED: 01/08/2	022,	
PROCEEDINGS N	O.T6/TNPCB/F.0027HS	R/RL/HSR/A/2022	DATED: 01/08/202	2
SUB: Tamil Na	du Pollution Control Boar	I - RENEWAL OF C	ONSENT -M/s. CHI	MPLAST SANMA
LIMITE 5,7/1,2.37	ED-SANMAR SPEC A.3B.8/1.2A.2B.9/1.2.3.10	1ALITY CHE 1/1.2.3A.3B.4.12/1A	MICALS DIVIS .1B.13/1.14/1A.2A. 9	ION S.F.N. ULIGUNTA villag
discharge as amende	of emissions under Section ed in 1987 (Central Act 14	on 21 of the Air (Prev of 1981) –Issued- R	ention and Control o.	Pollution) Act, 198
REF: 1. TNPC	B Proc. No. T5/TNPCB/F.	0027HSR/RL/HSR/A	&W/2020 dated: 19/0	8/2020
3. IR.No	: F.0027HSR/RL/JCEE-M	29/01/2022 for C1O /HSR/2022 dated: 16	/06/2022	
RENEWALC	OF CONSENT is hereby g	ranted under Sectio	n 21 of the Air (Prev	ention and Control
REPARATE C	as amended in 1987 (Cent le there under to	ral Act 14 of 1981) (	hereinafter referred to	as "The Act") and th
Pollution) Act, 1981 rules and orders mad				
Pollution) Act, 1981 rules and orders mad				
Pollution) Act, 1981 rules and orders mad The Director M/s CHEMPLAST 5 S F No. 5.7/1.2.3A.3	SANMAR LIMITED-SAN 18.8/1 2A 28.9/1 2 3 10/1.	MAR SPECIALITY 23A 3B 4.12/1A.1B.	CHEMICALS DIVIS	ION.
Pollution) Act, 1981 rules and orders mad The Director M/s CHEMPLAST S S.F.No. 5,7/1,2,3A,3 SULIGUNTA villag	SANMAR LIMITED-SAN 1B,8/1,2A,2B,9/1,2,3,10/1, 2,	MAR SPECIALITY 2,3A,3B,4,12/1A,1B,	CHEMICALS DIVIS 13/1.14/1A.2A.	ION.
Pollution) Act, 1981 rules and orders mad The Director M/s CHEMPLAST 5 S F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District.	SANMAR LIMITED-SAN 88,8/1,2A,2B,9/1,2,3,10/1, c,	MAR SPECIALITY 2,3A,3B,4,12/1A,1B,	CHEMICALS DIVIS 13/1.14/1A,2A	ION.
Pollution) Act, 1981 rules and orders mac The Director M/s CHEMPLAST 5 S.F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District. Authorizing the	SANMAR LIMITED-SAN B.8/1.2A.2B.9/1.2.3.10/1. re, e occupier to operate the in	MAR SPECIALITY 2.3A,3B,4,12/1A,1B, dustrial plant in the 4	CHEMICALS DIVIS 13/1.14/1A.2A. Air Pollution Control 2	ION. Area as notified by f
Pollution) Act, 1981 rules and orders mac The Director M/s CHEMPLAST 5 S.F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District, Authorizing the Government and to r This is subject t	SANMAR LIMITED-SAN NB,8/1,2A,2B,9/1,2,3,10/1, re, e occupier to operate the in nake discharge of emission to the provisions of the Act	MAR SPECIALITY 2,3A,3B,4,12/1A,1B, dustrial plant in the 4 1 from the stacks/chir 1 from the stacks/chir 1 the rules and the or	CHEMICALS DIVIS 13/1.14/1A.2A. Air Pollution Control 2 uneys. lers made there under	ION. Area as notified by th and the terms and
Pollution) Act, 1981 rules and orders mad The Director M/s CHEMPLAST S S.F.No. 5,7/1,2,3A.3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District. Authorizing the Government and to r This is subject t conditions incorpora	SANMAR LIMITED-SAN B,8/1.2A.2B.9/1.2.3.10/1. te, e occupier to operate the in make discharge of emission to the provisions of the Act ted under the Special and 6	MAR SPECIALITY 2.3A,3B,4,12/1A,1B, dustrial plant in the 4 1 from the stacks/chir , the rules and the ord 3eneral conditions sti	CHEMICALS DIVIS 13/1,14/1A,2A, Air Pollution Control A meys. lers made there under pulated in the Consen	ION. Area as notified by th and the terms and t Order issued earlie
Pollution) Act, 1981 rules and orders mac The Director M/s CHEMPLAST 5 S.F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District, Authorizing the Government and to r This is subject to conditions incorpora and subject to the spa	SANMAR LIMITED-SAN B,8/1,2A,2B,9/1,2,3,10/1, ie, e occupier to operate the in make discharge of emission to the provisions of the Act ted under the Special and ( ecial conditions annexed.	MAR SPECIALITY 2,3A,3B,4,12/1A,1B, dustrial plant in the 4 1 from the stacks/chir 1, the rules and the or Jeneral conditions sti	CHEMICALS DIVIS 13/1.14/1A.2A. Air Pollution Control a meys. lers made there under pulated in the Consen	ION. Area as notified by th and the terms and t Order issued earlie
Pollution) Act, 1981 rules and orders mac The Director M/s CHEMPLAST 5 S.F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District, Authorizing the Government and to r This is subject to conditions incorpora and subject to the spa- This RENEW.	SANMAR LIMITED-SAN B,8/1,2A,2B,9/1,2,3,10/1, ie, e occupier to operate the in make discharge of emission to the provisions of the Act ted under the Special and ( ecial conditions annexed. AL OF CONSENT is vali	MAR SPECIALITY 2,3A,3B,4,12/1A,1B, dustrial plant in the 4 1 from the stacks/chir 1, the rules and the or Jeneral conditions sti id for the period end	CHEMICALS DIVIS 13/1.14/1A.2A. Air Pollution Control a meys. lers made there under pulated in the Consen ling March 31, 2027	ION. Area as notified by th and the terms and t Order issued earlie
Pollution) Act, 1981 rules and orders mac The Director M/s CHEMPLAST S S F.No. 5,7/1,2,3A,3 SULIGUNTA villag Shoolagiri Taluk, Krishnagiri District, Authorizing the Government and to r This is subject to conditions incorpora and subject to the spa- This RENEW.	SANMAR LIMITED-SAN BB,8/1,2A,2B,9/1,2,3,10/1, ie, e occupier to operate the in make discharge of emission to the provisions of the Act ated under the Special and 6 ecial conditions annexed. AL OF CONSENT is vali	MAR SPECIALITY 2,3A,3B,4,12/1A,1B, dustrial plant in the 4 1 from the stacks/chir 1, the rules and the or Jeneral conditions sti id for the period end	CHEMICALS DIVIS 13/1.14/1A.2A. Air Pollution Control A meys. lers made there under pulated in the Consen ling March 31, 2027	ION. Area as notified by th and the terms and t Order issued earlier

### SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SL No.	Description	Quantity	Unit
	Product Details		
1.	PHYTO CHEMICALS (1.Colchicine,2.Thiocolchicoside)	1.4	Tons/Year
2.	ORGANIC CHEMICALS (1.Mahagonate, 2.Vetikone, 3.Anisyl Acetone, 4.Para Methyl Acetophenone, 5.Para Methoxy Phenyl Acetone, 6.Para Methoxy Benzyl Cyanide, 7.Para Methoxy Phenyl Ethylamine, 8.Tyramine/Thyramine HCL, 9. CHEA, 10. BHBA, 11. ATSC, 12. Sandur-3, 13. T4C, 14. 4-Hydoxy Indanone, 15. Substituted Aryl Alkyl Amine, 16. Nitroaniline, 17. Aminobenzenetricarboxylic acid, 18. TR1600 / TR1400, 19. Aminophthalic acid, 20.PSH, 21. Cyanodiester, 22. Cabsans, 23. Aloin, 24. CD675, 25. 2-Fluro acetophenone, 26. Methoxy tetralone, 27. Methyl-2 phenoxy isobutyrate, 28. 4- Chloro-Butyl veratrate, 29. 2-Thionyl methyl malonic mono ester, 30. AE Phenol, 31. Long chain alchohol Ester, 32. 3.4 Dichoro Benzamideamine, 33. 2-Choro-N,N-Dimethylpropylamine, 34. Benzhydrol, 35. PAPT, 36, Phenoxyathlamine, 37. Substituted Benzophenone, 38. 2-S- Aminobutramide HCL)	1080	Tons/Year

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

1	Point source emission with st	ack :		
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
1	Scrubber at Plant - I	Wet Alkali Scrubber,stack	6.1	35715.214
2	Scrubber at Plant - II	Wet Alkali Scrubber,stack	17	35528.924
3	Scrubber at Plant - II	Wet Alkali Scrubber,stack	17	35528.924
4	Scrubber at Plant - II	Wet Alkali Scrubber,stack	15	35715.214
5	Absorber at Plant -I	Wet Alkali Scrubber,stack	4	
6	Scrubber at R & D plant	Two stage wet alkali scrubber,stack	12	35892.46
7	Phyto Plant Scrubber (Process)	Wet Alkali Scrubber,stack	19	11106.18
9	Boiler - 6 MT/Hr	Stack	40	58362.913
11	Thermic Fluid Heater (1 Lakh Kcal/Hr)	Stack	9	10194.795
15	Scrubber at Plant - II	Wet Alkali Scrubber,stack	15	34273.728
16	Scrubber at Pilot Plant	Wet Alkali Scrubber,stack	6.1	24205.255
17	Scrubber at Plant - IV	Wet Alkali Scrubber,stack	17	800
18	Scrubber at Plant - IV	Wet Alkali Scrubber,stack	17	8600
19	Scrubber at Plant - IV	Wet Alkali Scrubber,stack	17	416
20	Diesel Generator Set 600 KVA	Stack	12	7080
21	Diesel Generator Set 600 KVA	Stack	12	7080
22	Diesel Generator Set 600 KVA	Stack	12	7080
23	Diesel Generator Set 600 KVA	Stack	12	7080
11	Fugitive/Noise emission :			
SI. No.	Fugitive or Noise Emission sources	Type of emission	Control measures	
1.	MEE	Noise	PPE	
2.	DG Set(4Nos)	Noise	Acoustic enclosures with stack	
3.	FBD(2Nos)	Noise	Bag Filter	
4.	Compressor	Noise	PPE	
5,	ETP Blower	Noise	Silencers and Bellow with Acoustic Enclosures	

#### **Special Additional Conditions:**

- The unit shall install the approved retrofit emission control device/equipment with at least 70% ŝ. Particulate matter reduction efficiency on all DG sets with capacity of 125 KVA and above or otherwise the unit shall be shift to gas based generators within the time frame prescribed in the notification No. TNPCB/Labs/DD(L)02151/2019 dated 10.06.2020 issued by TNPCB.
- ii. The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

#### Additional Conditions:

1. The unit shall operate and maintain the Air Pollution Control measures provided for the control of The unit shall operate and maintain the Air Poliution Control measures provided for the control of process emissions/Acoustic measures efficiently and continuously so as to satisfy the National Ambient Air Quality/ Emission standards & Ambient Noise Level Standards prescribed by the Board.
 The unit shall conduct periodical survey for Ambient Air Quality/ Noise Level/Stack Emission through TNPC Board's lab every year and submit the report regularly to the TNPC Board.
 The unit shall maintain Online Continuous Emission Monitoring System (OCEMS) attached to boiler & Thermic Fluid Heaters & process stacks properly to ensure continuous connectivity with CAC of TNPCB/CPCB server for transmission of emission data of PM, SO2 and HCN without any

interruption

Any problem in uploading the emission data to the Care Air Centre. TNPCB shall be brought to the notice of the TNPCB immediately

5. The unit shall provide interlocking system in such a way that whenever the pollution control system fails, the feed of raw material is cut off automatically and the emissions are controlled 6. The unit shall continue to develop adequate green belt (33% of total area) within the premises with

native specie

The unit shall obtain revised consent under Air Act in case of any name change, supporting with certificate of Incorporation issued by Registrar of Companies in this regard. 8. The unit shall obtain consent (CTO-Expansion) before commissioning of expansion activity and

comply with conditions of CTE expansion issued vide proc dated 03/06/2022 based on minutes of PLAC meeting held on 27.01.2022.

9 In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification. Failing to remit the consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

#### For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To

The Director. M/s.CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION. No. 9, CATHEDRAL ROAD, II FLOOR CHENNAL Pin: 600086

#### Copy to:

1. The Commissioner, SHOOLAGIRI-Panchayat Union, Shoolagiri Taluk, Krishnagiri District. 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, HOSUR, 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore. 4. File

** This consent order is computer generated by OCMMS of TNPCB and no signature is needed**





#### TAMIL NADU POLLUTION CONTROL BOARD

Category of the Industry :

RED

CONSENT ORDER NO. 2208142904446 DATED: 01/08/2022.

PROCEEDINGS NO.T6/TNPCB/F.0027HSR/RL/HSR/W/2022 DATED: 01/08/2022

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION SF. No. 5.7/1.2.3A.3B.8/1.2A.2B.9/1.2.3.10/1.2.3A.3B.4.12/1A.1B.13/1.14/1A.2A. SULIGUNTA village. Shoolagiri Taluk and Krishnagiri District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Issued-Reg.

REF: 1. TNPCB Proc. No. T5/TNPCB/F.0027HSR/RL/HSR/A&W/2020 dated: 19/08/2020 2. Application No. 42904446 dated: 29/01/2022 for CTO-Renewal 3. IR.No : F.0027HSR/RL/JCEE-M/HSR/2022 dated: 16/06/2022

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act. 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Director M/s CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION, S.F.No. 5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2,3A,3B,4,12/1A,1B,13/1,14/1A,2A, SULIGUNTA village, Shoolagiri Taluk, Krishmagiri District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2027

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

#### SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity	Unit
	Product Details		
1.	PHYTO CHEMICALS (1.Colchicine,2.Thiocolchicoside)	1.4	Tons/Year
2.	ORGANIC CHEMICALS (1.Mahagonate, 2.Vetikone, 3.Anisyl Acetone, 4.Para Methyl Acetophenone, 5.Para Methoxy Phenyl Acetone, 6.Para Methoxy Benzyl Cyanide, 7.Para Methoxy Phenyl Ethylamine, 8.Tyramine/Thyramine HCL, 9. CHEA, 10. BHBA, 11. ATSC, 12. Sandur-3, 13. T4C, 14. 4-Hydoxy Indanone, 15. Substituted Aryl Alkyl Amine, 16. Nitroaniline, 17. Aminobenzenetricarboxylic acid, 18. TR1600 / TR1400, 19. Aminophthalic acid, 20.PSH, 21. Cyanodiester, 22. Cabsans, 23. Aloin, 24. CD675, 25. 2-Fluro acetophenone, 26. Methoxy tetralone, 27.Methyl-2 phenoxy isobutyrate, 28. 4- Chloro-Butyl veratrate, 29. 2-Thionyl methyl malonic mono ester, 30. AE Phenol, 31. Long chain alchohol Ester. 32. 3.4 Dichoro Benzamideamine, 33. 2-Choro-N.N-Dimethylpropylamine, 34. Benzhydrol, 35. PAPT, 36, Phenoxyethlamine, 37. Substituted Benzophenone, 38. 2-S- Aminobutramide HCL)	1080	Tons/Year

This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage		
1.	Sewage	12.0	On Industrys own land
Effluent Ty	pe : Trade Effluent		
1.	Trade effluent	68.0	Zero Liquid Discharge system

#### Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

#### Additional Conditions:

1) The unit shall operate and maintain the Sewage Treatment Plant (STP) continuously and efficiently for the treatment of sewage [12 KLD] so as to bring the quality of treated sewage to satisfy the discharge standards prescribed by the Board at all times. 2) The unit shall utilise the treated sewage for gardening/green belt development within the premises

without stagnation/ponding

3) The unit shall operate and maintain the Effluent Treatment Plant (ETP), RO system, MEE & ATF effectively & continuously for the treatment of trade effluent [68 KLD] so as to bring the quality of treated effluent to satisfy the discharge standards prescribed by the Board at all times. 4) The unit shall maintain Zero Liquid Discharge (ZLD) of trade effluent by recycling RO permeate &

(4) The unit shall maintain Zero Enque Discharge (ZED) of trade efficient by recycling RO permeate & MEE condensate completely in the process & evaporating entire MEE concentrate thro' AFTD
 (5) The unit shall comply with CPCB Guidelines issued during Jan. 2015 regarding implementing & achieving ZLD for water polluting industries including pharmaceutical units.
 (6) It shall be ensured that there is no discharge of treated/untreated effluent either directly or indirectly

outside the premises under any circumstances

The unit shall maintain the connectivity of ten EMFMs provided at the STP & ETP area with Water Quality Watch of TNPCB / CPCB portals properly for continuous monitoring of flow & also maintain surveillance camera at treatment area with connectivity for ensuring ZLD of trade effluent. 8) The unit shall collect the solid wastes properly and dispose the same for beneficial use without

accumulation within the premises

9) The unit shall comply with the provisions of the Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016 as amended from time to time while handling of hazardous waste.

10) It shall be ensured that the hazardous wastes generated are collected, stored properly and disposed as per the permission granted vide Authorisation under HOWM Rules, 2016. 11) The unit shall obtain REVISED Authorisation under HOWM Rules, 2016 for the handling &

management of mixed salt generation from ATFD, Off-Specification products & Date-expired products etc within one month. It shall be ensured that HWs such as Off-Specification products & Date-expired products are disposed scientifically in safe manner with valid permission of TNPCB. 12) The unit shall have valid permission from Competent Authority for drawl of ground water from bore well to meet its raw water requirements and adopt reuse of treated sewage to extend possible to reduce raw water consumption. Water audit shall be conducted in this regard & furnished to TNPCB.
13) The unit shall ensure and comply with CPCB directions dated 05/02/2014 and 27/07/2015

14) The unit shall handle the hazardous chemicals by adhering to the MSDS. The MSDS of the said

(chemicals shall be displayed in the storage and working area.
(15) The unit shall submit Environmental Statement for every financial year ending the 31st March in Form -V as per the Rule 14 of the Environment (Protection) Rules, 1986.
(16) The unit shall obtain revised consent under Water Act in case of any name change, supporting with certificate of Incorporation issued by Registrar of Companies in this regard.
(27) The unit shall obtain revised consent under Water Act in case of any name change, supporting with certificate of Incorporation issued by Registrar of Companies in this regard.

certificate of Incorporation issued by Registrar of Companies in this regard.
17) The unit shall furnish audited balance sheet showing GFA value every year to TNPCB.
18) The unit shall obtain consent (CTO-Expansion) before commissioning of expansion activity and comply with conditions of CTE expansion issued vide proc dated 03/06/2022 based on minutes of PLAC meeting held on 27.01.2022.
19) The unit shall not use 'single use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead it shall encourage use of eco friendly alternative such as banana leaf, arecanut nalw nalte stainless steel glass, porcelain plates/cups, cloth bag. Jute bag etc. arecanut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag. Jute bag etc., 20) In case of revision of consent fee by the Government, the unit shall remit the difference in amount

within one month from the date of notification. Failing to remit the consent fee, this consent order will be withdrawn without any notice and further action will be initiated against the unit as per law.

#### For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To The Director. M/s CHEMPLAST SANMAR LIMITED-SANMAR SPECIALITY CHEMICALS DIVISION. No. 9, CATHEDRAL ROAD, II FLOOR CHENNAL Pin: 600086

Copy to:

1 The Commissioner, SHOOLAGIRI-Panchayat Union, Shoolagiri Taluk, Krishnagiri District .

- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, HOSUR.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore.

4. File

......

** This consent order is computer generated by OCMMS of TNPCB and no signature is needed**

# ANNEXURE-14

# MATERIAL SAFETY DATA SHEET

Date	of issue: 01/01/1979 Revision date: 11/30/2016 Supersedes: 10/17/2016
SECTION 1 Product and compar	ny Hentification
1.1 Rectard dentifier	D/RECEIRING RECO.
Product form	Substance
Name	Chiorine
CASNo	7782-50-5
Formula	CI2
1.2 Relevant identified uses of the s	ultistance or muture and takes advised against
Use of the substance minture	: Industrial use. Use as directed
1.3. Details of the supplier of the sale	sty data show
	Praxair, Inc 10 Riverview Drive Danbury, CT 06810-0268 - USA T 1-800-772-9247 (1-800-PRAXAIR) - F 1-716-979-2146 where present colling
1.4. Emergency talephone number	
Emergency number	Chsite Emergency: 1-800-645-4633
	CHEMTREC, 24twiday 7daysovees. — Within USA: 1-800-424-9300, Outside USA: 001-709-527-3887 (collect calls accepted, Contract 17729)
SECTION 2: Hazard identification	
2.1 Classification of the substance (	20034057777
the second	M TRIVILLAS
eten tre allere the states	A UIKTINA
GHE-US classification	A UNKLUP
GK0-US classification Or. Gas 1 H270 Liquefed gas H280	ar mikilung
GH0-US classification Or. Gas 1 H270 LiqueFed gas H280 Acute Tox. 2 (inhalation: gas) H330	ar mikilung
GH0-US classification Or. Gas 1 H270 Lique5ed gas H280 Acute Tox. 2 (inhalution: gas) H330 Skin Corr. 1A H314 Exc. Dom. 1 H314	
GH8-US classification Oz. Gas 1 H270 LiqueFed gas H280 Acute Tox: 2 (inhalwton: gas) H330 Skin Cori. 1A H314 Eye Dam. 1 H318 STOT SE 3 H335	A URINELUIS
GH0-US classification Dr. Gas 1 H270 Lique5ed gas H280 Acute Tox. 2 (inhalation: gas) H330 Skirl Corr. 1A H314 Eye Dam. 1 H318 STOT SE 3 H335 Aquatic Acute 1 H400	A URBELLUIS
GHE-US classification Dr. Gas 1 H270 Lique5ed gas H280 Acute Tox 2 (inhalation: gas) H330 Bkin Corr. 1A H314 Eye Dam. 1 H318 STOT SE 3 H335 Aquatic Acute 1 H400 2.2 Lightal assuments	
GH0-US classification Oz. Gas 1 H270 LiqueSed gas H280 Acute Tox 2 (inhelation: gas) H30 Skin Corl, 1A H314 Eye Dam, 1 H318 STOT SE 3 H355 Aquatic Acute 1 H400 2.2 Lintel eterments GHS-US labelling	
GHD-US classification Or. Gas 1 H270 LiqueEed gas H280 Acute Tox 2 (inhalvation: gas) H330 Skin Cori, 1A H314 Eye Dam, 1 H318 STOT SE 3 H335 Aquatic Acute 1 H400 2.2 Lattel eterments GHS-US labeling Hazard pictograms (GHS-US)	
GH0-US classification Or. Gas 1 H270 Lique5ed gas H280 Acute Tox 2 (inhalation: gas) H330 Skin Cori, 1A H314 Eye Dam 1 H318 STOT SE 3 H335 Aquatic Acute 1 H400 2.2 Listed elements GHS-US (abeling Hazard pictograms (GHS-US)	
GH0-US classification Or. Gas 1 H270 Liquesed gas H280 Acute Tox 2 (inhelation: gas) H330 Skit Corr, 1A H314 Eye Dam, 1 H318 STOT SE 3 H335 Aquatic Acute 1 H400 2.2 Lathel eterments GHS-US latheling Hazard pictograms (GHS-US) Signal word (GHS-US)	A TRANSPORT SHOULD BE SHOULD BE

This document is only controlled while on the Pravair, inc. website and a copy of this controlled version is available for downloade. Pravair cannot assure the integrity or accuracy of any version of this document after II has been downloaded or removed from our website.

Making our planet more productive	Safety Data Sheet P-49 This SDS conforms to U.S. Code o Date of indue: 01/01/1979 Revi	580 f Federal Regulations 2 sion date: 11/30/2016	S CFR 1910 1200, Hazard Communication, Supersedes: 10/17/2018
	P280+P284 - Wear pro and/or face protection P370+P375 - In case of P405 - Store locked up P501 - Dispose of com local/hational regulatio CGA-PG35 - Use a ba CGA-PG35 - Use a ba CGA-PG35 - Use a ba CGA-PG32 - Do not of CGA-PG36 - Close va CGA-PG36 - Close va CGA-PG32 - Protect fi	stective gloves, protective of fite. Stop leak if safe it ients/container Dispose ris of flow preventive device D - Use only with equip one valve until connects unning cylinder, install i ve after each use and one sunlight when ambi-	ve clothing, eye protection, respiratory protecti to do so in a safe manner in accordance with be in the piping iment of compatible materials of construction a tel to equipment prepared for use eak tight value outlet cap or plug when empty ient temperature exceeds 52°C (125°F)
2.3. Other fatards			
Other hazards not contributing to the classification	. None		
2.4. Unknown south toxicity (Q	And Malaj)		
	No data avaitable		
SECTION SCOMPOSITION III	ormation on ingredients		
Name	Product identifier	5	
Chiome	(CAS Nov 7782-60-5	100	
The state of the s		-	
a set and a set of the			
Not applicable			
Not applicable State (1917) - State (1917) - State (1917)	PC		
Not applicable SECTION 45 First mid monsur 4.1. Description of first aid mis	<b>95</b>	_	
Not applicable SECTION ESTIMATIO monetur 4.1. Description of first aid mer First-aid messures after inhalation	CC Remove to fresh ar ar give artificial respiratio physician WARNINO any subaled air from th	d keep at rest in a posi n. If breathing is difficul . To avoid possible che le victim.	tion comfortable for breathing. If not breathing I, trained personnel should give oxygen. Call mical burns, the rescuer should avoid breathin
Not applicable SECTION SUBATION Contracts 4.1. Description of first aid mer First-aid measures after inhalation First-aid measures after skin contact	E 3 Starten Framove to fresh ar ar give artificial respiratio physician. WARNING any exhaled air from th Avoid treathing vapor vater for at least 15 m Wash dothing before 1	d keep at rest in a posi I breathing is difficul To avoid possible che le victim I noase of contact, im nutres while removing c euse. Discard contami	tion combrtable for breathing. If not breathing t, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic matter shoes.
Not applicable SIGNTON STITUTED OF MODELLS 4.1. Description of first aid mer First-aid measures after skin contact First-aid measures after skin contact First-aid measures after eye contact	Remove to fresh ar ar give artificial respirato physician	d keep at rest in a posi in. If breathing is difficult in to avoid possible che is victim. In case of contact, im inutes while removing c euse. Discard contami thoroughly with water is to ensure that all surfa- taney.	tion comfortable for breathing. If not breathing I, trained personnel should give oxygen. Gall emcal burns, the rescuer should avoid oreathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic rated shoes. for at least 15 minutes. Hold the eyelids open o aces are flushed thoroughly. Contact an
Not applicable SECTION SUMATION CONTRACTOR 4.1. Description of first aid mer First-aid measures after skin contact First-aid measures after skin contact First-aid measures after eye contact First-aid measures after ingestion	<ul> <li>Remove to fresh as an give artificial respiration of ystician. WARMiNG any subaled air from the Avoid breathing vapor water for at least 15 m Wash clothing before - I immediately flush ever away from the evel away from the evel</li></ul>	d keep at rest in a posi in. If breathing is difficult in or avoid possible che ie victim. In case of contact, im nutris while removing c euse. Discard contams it horoughly with water to ensure that all surfa- tiately, ered a potential route o	tion confortable for breathing. If not breathing t, trained personnel should give oxygen. Call emcal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of confaminated clothing and shoes. Call a physic nated shoes for at least 15 minutes. Hold the eyelids open a cose are flushed thoroughly. Contact an if exposure.
Not applicable SECTION SUPPLY AND ADDRESS	Farmove to fresh as an give artificial respiratio physician WARNING any schaled air from th Avoid breathing vapor water for at least 15 m Wash clothing before + Immediately flush eyes away from the eyeball optithalmologist imme- ingestian is not consid and affects, both asume and dologi	d keep at rest in a posi in. If breathing is difficult > To avoid possible che ie victim s. In case of contact, im nutris while removing c euse. Discard contants it boroughly with water to ensure that all surfa trately. ered a potential route o ed	tion contortable for breathing. If not breathing I, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic nated shoes for at least 15 minutes. Hold the cyclus open i cose are flushed thoroughly. Contact an if exposure
Not applicable SECTION SUITABLIC Intersects 4.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after inhalation 4.2. Most important symptoms Symptoms/injuries after inhalation	Remove to fresh an an give artificial respirato physician	Id keep at rest in a posi In if breathing a difficult To avoid possible che is voorn. In case of contact, im nutris while removing o subcoughly with water is to ensure that all surfa- tiately, ened a potential noute o ed phrations moderately a brief exposure to a con- centrations. Inhalation ing suming of the thro- ronary edema, bronchil	tion conflortable for breathing. If not breathing t, trained personnel should give oxygen. Call emcal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic raited shoes for at least 15 minutes. Hold the eyelids open is acces are flushed thoroughly. Contact an if exposure. Boyle the TLV of 1 ppm initiates the eyes and contration of 1000 ppm may be fatal. Acts as of high conpentrations (e.g. greater than 15 pp at and sever irritation of the upper respiratory is, and pneumontis may result.
Automatication     Not applicable     SEPTION SUPPLY ALL Description of Syst and measures     All Description of Syst and measures after inhalation     First-aid measures after skin contact     First-aid measures after eye contact     First-aid measures after inhalation     A.2. Most important symptome     Symptoms injuries after inhalation     A.3. Indication of any immoduli     Outain medical assistance	Remove to fresh an ar give artificial respirato physician WARNING any schaled air from th Avoid breathing vapor water for at least 15 m Wash clothing before r Wash clothing before r Immediately fluch even away from the cyclaid optitulationidges imme- ingestion a not consid and effects, both anote and dolay Overexposure to cono respiratory trad. Very asphysiant at high con causes choking, coug tract additionally, pulv	d keep at rest in a oosi in if breathing is difficul > To avoid possible che is victin is in case of contact, im nutres while removing c euse. Discard contants is thoroughly with water is to ensure that all surfa- tiately. ered a potential route o end entrations moderately a brief exposure to a con- centrations. Inhaliation ling burning of the thiro- nonary edema, bronchil rationant meeded	tion combinable for breathing. If not breathing I, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic nated shoes for at least 15 minutes. Hold the eyelids open is aces are flushed thoroughly. Contact an if exposure bove the TLV of 1 ppm initiates the eyes and centration of 1000 ppm may be fatal. Acts as of high concentrations (e.g. greater than 16 pp at, and severe irritation of the upper respitator is, and pneumontis may result.
A. product Not applicable SECTION SUITABLIC Intersects A.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after inhalation 4.2. Most important symptoms Symptoms injuries after inhalation 4.3. Indication of any immediat Obtain medical assistance SECTION SUITABLIC INTERSECTION	Remove to fresh as an give artificial respiratio physician. WARMING any schaled air from th Avoid treatming vapore water for at least 15 m Wash clothing before i Wash clothing before i Wash clothing before i way from the cyclash optithalmologist jumes ingestion is not consid and sheets, both assess and doiny Overexposure to cono respiratory tract. Very asphysiant at high con causes choking, coug tract additionally, point	d keep at rest in a posi- in if breathing is difficult : To avoid possible che is victim. s. In opse of contact, im nutris while removing of use. Discard contact is theroughly with water is to ensure that all surfa- tiately, enait a potential route of entrations moderately a phraft sposure to a con- centrations. Inhalation ionally edema, bronchil routement meeded	tion confortable for breathing. If not breathing t, trained personnel should give daygen. Call emcal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic nated shoes for at least 15 minutes. Hold the eyelids open o aces are flushed thoroughly. Contact an if exposure.
A. product Not applicable  SECTION SUITABLIC Intersects  4.1. Description of first ald mer First-aid measures after inhalation  First-aid measures after skin contact  First-aid measures after eye contact  First-aid measures after inhalation  4.2. Most important symptoms  Symptoms injuries after inhalation  4.3. Indication of any immedia  5.1. Exclinguishing media  5.1. Exclinguishing media	Remove to fresh as an give artificial reprints physician WARNING any exhaled air from it Avoid treating vapor water for at least 15 m Wash clothing before i Wash clothing before i Wash clothing before i way from the cyclaid optituation of the consid and effects, both access and delay Coverexposure to conso respiratory tract. Very applyvant at high con causes choking, cough tract, additionally, point emission and special line could attend attention and special line could attent a special line.	d keep at rest in a posi- in if breathing is difficult. To avoid possible che te victim. I no ase of contact, im nutes while removing of euse. Discard contact is theroughly with water is the resure that all surfa- tately, end a potential route of other and a potential route of attractions modecately a brief exposure to a con- centrations. Inhibition ring burning of the thro- contrations modecately brief exposure to a con- centrations. Inhibition ing burning of the thro- contration medded attraction medded	tion confortable for breathing. If not breathing t, trained personnel should give oxygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic nated shoes for at least 15 minutes. Hold the eyelids open o aces are flushed thoroughly. Contact an if exposure bove the TLV of 1 ppm initiates the eyes and continuation of 1000 ppm may be fatal. Acts as of high concentrations (e.g. greater than 15 pp at, and severe initiation of the upper respiratory is, and pneumontis may result.
And applicable     Section of applicable     Section of first and measures after initiation     First-aid measures after skin contact     First-aid measures after skin contact     First-aid measures after eye contact     First-aid measures after initiation     A.1. Exclusion of any immunitiat     Obtain medical assistance     Section Section Section     A.1. Exclusion shifting media     Suitable extinguishing media	Remove to fresh an an give artificial respiration physician WARNING any exhaled air from th Avoid breathing vapor water for at least 15 m Wash clothing before r Wash clothing before r Wash clothing before r Wash clothing before r wash more the cyclaid avoid at the system ingestion is not consid- and attests, both anote and delay Coverexposure to consol respiratory tract. Very apply and attests, both anote and delay Coverexposure to consol respiratory tract. Very apply and attests, both anote and delay respiratory tract. Very apply and attests, both anote and delay respiratory tract. Very apply and the system respiratory tract. Very apply and the system tract additionally, point a medical attestion and special for EU1125	d keep at rest in a oosi n. If breathing a difficulty To avoid possible che is victim is in case of contact, im nutres while removing c euse. Discard contants is thoroughly with water is thoroughly with water is to ensure that all surfa- diately. ered a potential route o with potentiations moderately a brief exposure to a con- centrations. Inhaliation ing burning of the thiro- nonary edema, bronchil rationant meeded. Is appropriate for sumo	tion combinable for breathing. If not breathing I, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic nated shoes. for at least 15 minutes. Hold the eyelids open is aces are flushed thoroughly. Contact an if exposure. bove the TLV of 1 ppm initiates the eyes and contration of 1000 ppm may be fatal. Acts as pat, and severe initiation of the upper respirator is, and pneumontis may result.
A. product     Not applicable     SECTIONES HITAMOSTICALLY     A.1. Description of first aid mer     First-aid measures after inhalation     First-aid measures after skin contact     First-aid measures after eye contact     First-aid measures after inhalation     4.2. Most important symptoms     Symptoms/injuries after inhalation     4.3. Indication of any immunitat     Obtain medical assistance     SECTIONESE FIRST ON MIDPLES     5.1. Exclinguishing media     Subable extinguishing media     S.2. Spectral hazards artising file     First-aid	Remove to fresh an an give artificial respirato physician WARNING any scholed air from th Avoid breathing vapor- water for at least 15 m Wash clothing before r Wash clothing before r Immediately fluch even avay from the cyclaid optituation a not consid and affects, both anote and doley Overexposure to cono respiratory tract. Very actives choking, coug tract additionally, pully mediately flucter and special for EU/125 Use extinguishing med- m the substance, or mixture Oxidizer. May accessor	d keep at rest in a posi in if breathing is difficully in our of possible che is victori is in case of contact, im nutres while removing c euse. Discard contact, im nutres while removing c to encurre that all surfa- tio encurre that all surfa- bild of the possible that all surfa- tion of the possible that all surfa- surface and that all surfa- bild of the possible that all surfa- tion of the possible that all surfa- tion of the possible that all surfa- bild of the possible that all surfa- bild of the possible that all surfa- tion of the possible that all	tion combinable for breathing. If not breathing I, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic rated shoes. For at least 15 minutes. Hold the eyelide open of aces are flushed thoroughly. Contact an if esposure hows the TLV of 1 ppm instates the eyes and constitution of 1000 ppm may be fatal. Acts as of high concentrations (e.g. greater than 15 pp at, and severe irritation of the upper respiratory is, and pneumontis may result.
A. product Not applicable SECTION SUITABLIC INVESTIG A.I. Description of Prest aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after inhalation 4.2. Most important symptoms Symptoms injuries after inhalation 4.3. Indication of any immunitat Obtain medical assistance SECTION SECTION SECTION INTERPOLATION 5.1. Exclusionity media 5.2. Special hazards arising the First-azard Reactivity	Constants     Normactively hazard of	d keep at rest in a posi In the athing a difficult in to evolve of possible che is victom. In case of contact, im nutres while removing of suse. Discard contacts is the resure that all surfa- barely, ered a potential route of ord ord ord potential route of an centrations modecately a brief exposure to a con- centrations. Indulation this burning of the third isonary edema, bronchil retowned meeted file appropriate for sumo- te the burning of other her than the effects des-	tion conflortable for breathing. If not breathing It trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic raited shoes for at least 15 minutes. Hold the eyelids open of aces are flushed thoroughly. Contact an if exposure boye the TLV of 1 ppm initiates the eyes and contration of 1000 ppm may be fatal. Acts as of high concentrations (e.g. greater than 15 pp at, and severe irritation of the upper respirator is, and pneumontis may result.
A. preside Not applicable SECTION SUTTAFIC INCLESS 4.1. Description of first aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after inhalation 4.2. Most important symptoms Symptoms injuries after inhalation 4.3. Indication of any immediat Outain medical assistance SECTION SECTION INTERIAL S.1. Extinguishing media S.2. Special hazards arising fro First-bazard Reactivity	Premove to fresh as an give artificial respirato physician. WARMING any exhaled air from th Avoid breathing vapore water for at least 15 m Wath clothing before r Wath clothing before r Wath clothing before investigation in not consid and etherts. both accessed on doiny Overexposure to conce respiratory tract. Yery asphysion a not consid and etherts. both accessed only out respiratory tract. Yery asphysion a not consid access choking, cough method attention and special for causes choking, cough method attention and special for causes choking, cough method attention and special for causes thoring over a method attention and special for causes thore and special for causes choking cough method attention and special for causes choking aspects for causes and special for causes and the special f	d keep at rest in a pose in if breathing a difficult is To avoid possible che is victim. In ouse of contact, im nutres while removing c use. Discard contants is thoroughly with water is to ensure that all surfa- tately, ener a potential route o ad ord apotential route o ad prototions modecately a brief exposure to a con- centrations, indecately a the potential because of the through the three the surring of other her than the effects dec	tion conflortable for breathing. If not breathing I, trained personnel should give caygen. Call encal burns, the rescuer should avoid breathin mediately flush affected areas with plenty of contaminated clothing and shoes. Call a physic ruled shoes. for at least 15 minutes. Hold the eyelide open of aces are flushed thoroughly. Contact an if exposure. Boove the TLV of 1 ppm initiates the eyes and contraction of 1000 ppm may be futal. Acts as of high concentrations (e.g. greater than 15 pp at and severe irritation of the upper respiratory is, and pneumontis may result. munding fire. computible materials. acribed in sub-sections bejow.

	Date of issue: 01/01/1979 Revision date: 11/S0/2016 Supersedes: 10/17/2016
5.2. Advice for finilighters	
Firefighting instructions	Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective dofhing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fre if safe to do so. On-site fire brigades must comply with DSHA 29 CFR 1910-156 and applicable standards under 29 CFR 1910 Subpart L—Fire Protection.
Protection during firefighting	DANGER! Toxic, corrosive, high-pressur# ges.
Special protective equipment for fire t	ighters Standard protective dothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
Specific methods	Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas containers to rupture. Coni endangered containers with water scray jet from a protected position. Prevent water used in emergency cases from entering sewers and dramage systems.
	Stop flow of product if safe to do so
	Use water spray or top to knock down fire turnes if possible
Other Information	<ul> <li>Containers are equipped with a pressure relief device. (Exceptions may exist where authorized by DCT.)</li> </ul>
SECTION 6: Accidental relea	ase measures
6.1. Personal precautions, pro	Nective equipment and emergency procedures
	tight, chemical-protective) Approach suspected leail area with caution. Remove all sources of ignition. Toxic, corrosive vapor can spread from split. Contact with farmsable isatemais may cause fire or explosion. Verifiate area or move container to a well-vertilated area. Before
	entering the area, especially a confined area, check the abriosphere with an appropriate device. Prevent from entering servers, basements and workpits, or any place where its accumulation can be dangerous.
E1.1. For nun-emergency period	entering the area, especially a confined area, check the atmosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accurrulation can be dangerous.
E1.1. For nun-emergency period	entering the area, especially a confined area, check the atmosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accurrigitation can be dangerous. No additional information available.
E.1.1. For nun-emergency period 6.1.2. For emergency responder	entering the area, especially a confined area, check the abriosphere with an appropriate device. Prevent from entering servers, basements and workpits, or any place where its accumulation can be dangerous. No additional information available No additional information available No additional information available
E.1.1. For nun-emergency period 6.1.2. For emergency responder 6.2. Environmental precounter	entering the area, especially a confined area, check the abrosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accumulation can be dangerous. No additional information available in No additional information available into additional information additional informational information additional informational info
E1.1. For nun-emergency period 6.1.2. For emergency responder 6.2. Environmental precaution	entering the area, especially a confined area, check the abriosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accumulation can be dangerous. No additional information available No additional information available Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution Dispose of contents/container in socordance with locativegronal/nutconal/international/regulations. Contact supplier for any special regulatements.
E.1.1. For nun-emergency period 6.1.2. For emergency responder 6.2. Environmental precaution 6.3. Methods and material for	entering the area, especially a confined area, check the atmosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accumulation can be dangerous. No additional information available No additional information available Prevent waste from contaminating the surrounding environment. Prevent soil and water pollutor, Dispose of contents/container in accordance with locat/regional/national/international regulations, Contact supplier for any special requirements.
E1.1. For nun-emergency period 6.1.2. For emergency responder 6.2. Environmental precaution 6.3. Methods and material for	entering the area, especially a confined area, check the atmosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accumulation can be dangerous. No additional information available No additional information available Prevent waste from contaminating the sumsunding environment. Prevent soil and water pollutor Dispose of contents/container in accordance with local/regional/national/international/regulations. Contact supplier for any special regulationers. Scontact supplier for any special regulations. No additional information available
E.1.1. For nun-emergency period 6.1.2. For emergency responder 6.2. Environmental precaution 6.3. Methods and material for 6.4. Reference to other sector	entering the area, especially a confined area, check the atmosphere with an appropriate device. Prevent from entering severs, basements and workpits, or any place where its accumulation can be dangerous.  No additional information available No additional information available Prevent wasts from contaminating the surrounding environment. Prevent soil and water pollutor Dispose of contents/container in accordance with local/regional/international/regulations.  contail-information available No additional information available

EN (English US)

50510:P-4560

3/10

This document is only controlled while an the Pracer, enc. website and a copy of this controlled version is evaluable for document affer a heat been downloaded or removed from our website.



This document is only controlled while on the Prever, Inc. vecisite and a copy of this controlled vectors is available for dol-moved. Prever cannot assure the integrity of accuracy of any version of this document effer it has been downloaded in removed from our website.

<b>IPRAXAIR</b>	Safety Data Sheet P-4580 This 505 conforms to U.S. Code of Federal Regulations 29 CFR 1910 1200. Haberd Communication
aniorand one burner anne baorer not	Date of Issue: 01/01/1979 Revision date: 11/30/2016 Supersedes: 10/17/2016
Skin and body protection	Wear metatarsal shoes and work gloves for cylinder handling, and protective clothing where needed. Wear appropriate chemical gloves During cylinder changeout or wherever contact with product is possible. Select per OSH6 29 CFR 1910 132, 1910 136, and 1910 138.
Respiratory protection	When workplace conditions warrant respirator use, follow a respiratory protection program that meets 05HA 29 CFR 1910 (54, ANS) 208.2, or MSHA 30 CFR 72.710 (where applicable). Use an air-supplied or air-purfying cartridge if the action level is exceeded. Ensure that the respirator has the appropriate protection factor for the exposure level. If cartridge type respirators are used, the cartridge must be appropriate for the chemical exposure. For emergencies or instances with unknown exposure levels use a self-contained breathing apparating (SCBA).
Thermal hazard protection	What cold insulating gloves when transfilling or breaking transfer connections.
SECTION 9: Physical and cher	nical properties
9.1 Information on havin physics	al and chemical properties
Physical state	- Gas
Appearance	: Greensh-yellow gas. Amber liquid funder pressure)
Molecular mass	- 71 gmol
Color	: Oreensh pas
Ottor	Purpent
Odor threshold	<ul> <li>Odor threshold is subjective and inadequate to warn for overseposite.</li> <li>0.23 mg/m³ (Cixon and Reis)</li> </ul>
<b>1</b> 14	Not applicable
Relative evaporation rate (butyl acetate=	1) No data available
Relative evaporation rate (ether=1)	1 Not applicable
Melling port	101 °C (-149.85'F)
Freezing point	No data available
Boiling point	34.05 °C (-30.35°F)
Flash onirt	Net anticable
Concel terroritoria	144.50
auto-controp temperature	- Not applicable
Decomposition temperature	No data positiva
rummachity (solid, gas)	The loss section of the section of t
Ashor biszenis	C A DA (100 Bara) (622 C (20 T))
Children and described as 200 km	1 art 11 Car (11 Car pola)
receive vapor density at 20 °C.	No data avalacie
ready benefy	
	A visite in the
relative gas density	2.5
Schouth	Water: escu regi
Leg Pew	Not applicable
Leg Kow	Not applicable.
necosity, kinematic	Not applicable.
viscosity, dynamic	Not applicable
Explosive procerties	Not applicable
Oxidizing properties	Ondizer
Explosion limits	Non flammatse
<ol> <li>Other Hopmatten</li> </ol>	
Gas group	Liaumfied gas
Additional Information	Gas/vapor heaver than ar. May accumulate in confined spaces, particularly at or below ground level
EN (English US)	505 ID P-4580 5/1

This document is only controlled while on the Process Inc. Website and a copy of this controlled variable for document as establis for document and entrolled variables and a copy of this controlled variables are associated as a stability of a process of the document after it has been introduced or removed from our variable.

Making our planet more productive Making our planet more productive Date of	Orine ty Data Sheet P-4580 DS conforms to U.S. Colle of Federal Regulations 29 CFR 1910.1200, Hazard Communication. (Insue: 01/01/1979 Revision date: 11/30/2016 Supersedes: 10/17/2016
SECTION 10: Stability and reactivity	y -
10:1: Bawethily	
Disk Wooden According	No reactivity hazaro other than the effects described in sub-sections below.
10.2. Chemical anability	warnen (11 ater 1 contraction construct)
	Stable under normal conditions.
(6.3. Possibility of hazandous machines.	8 bet spectra
	way occur.
U.4. Constantions to avoid	All contact Medi terreporting Mighing Incompatible materials
	The survivery many service and a measure in the measure measures
	Chlorine reacts with most materials, especially fisarinable materials, other reducing agents, and nearly all metals. At temperatures below 250°F (121°C) certain common metals (e.g. iron, copper, steel, lead, nickel) resist reaction with dry chlorine, but others (e.g. alluminum, arsenic, gold, mercury, tin, btanium) react. Noist chlorine is highly corrosive except to glass, stoneware, porcelain, and certain alloys and only at low pressure. Titanium ighties spontaneously on contact with dry chlorine. Carbon steel (gnites in chlorine af temperatures near 483°F (251°C).
to.6. Histardous decomposition periduit	
	Taxic fumes. Childrides.
SECTION 11: Toxicological informa	tion
Acute toworky	inhalation:gas: FATAL IF INHALED.
Chiorine ( 1/ 17782-50-5	
LC50 inhalation rat (ppm)	146.5 ppm/4h
ATE US (gmes)	146,500 ppmV/4h
un corresion/initiation	CAUSES SEVERE SKIN BURNS AND EYE DAMAGE
enous eye damage/initiation	pH: Not applicable CAUSES SERIOUS EYE DAMAGE. pH: Not applicable. Not classified
erm cell mutagenicity	Not classified
arcinogenicity	Not classified
Reproductive toxicity	Not classified
Specific target organ toxicity (single exposure)	. MAY GAUSE RESPIRATORY IRRITATION.
Specific target organ toxicity (repeated sposure)	<ul> <li>Not classified</li> </ul>
Aspiration hazard Symptomologuries after inhalation	Not classified Overexposure to concentrations moderately above the TLV of 1 ppm initiates the eyes and respiratory trad. Very brief exposure to a concentration of 1000 ppm may be fate. Acts as an applysiant at high concentrations. Inhalation of high concentrations (e.g. greater than 15 ppm) causes choking, coughing, burning of the throat, and severe imitation of the upper respiratory tract, additionally, pulmonary edema, bronchits, and pneumonitis may result.
	n
SECTION 12: Ecological information	
SECTION 12: Ecological information 12.1. Taxing Icology - general	VERY TOXIC TO AQUATIC LIFE
SECTION 122 Ecological (m)ormatic 12.1. Taxing Ecology – general Chlorine (7782-58-5)	VERY TOXIC TO ADUATIC LIFE
SECTION 122 Ecological III)ormatic 12.1. Taxinity Ecology – general Chiorine (7782-50-5) LC50 fan 1	VERY TOXIC TO ADUATIC LIFE 0.44 mg/l (Exposure time: 96 h - Species: Lepontis macrochinas (flow-through)

The document is only controlled while on the Present, hit: website and a copy of this controlled version is evaluate for download. Present assume the integrity of accuracy of any version of this document after it has been downloaded or removed from our veballe.


waitable. The load space is not separated from the driver's two is aware of the potential hazards of the load and knows closer or all emergency. Before transporting product containers lation - Ensure that containers are finnly secured - Ensure lasking - Ensure valve cutlet cap null or plug (where provided) protection device (where provided) is correctly filled.
waitable. re the load space is not separated from the driver's rer is aware of the potential hazards of the load and knows odent or an emergency. Before transporting product containers ident or an emergency before transporting product containers ident or an emergency. Before transporting product on the second ident or an emergency. Before transporting product on the second ident or an emergency. Before transporting product on the second ident or an emergency. Before transporting product on the second ident or an emergency. Before transporting product on the second ident of the sec
waitable. re the load space is not separated from the driver's iver is aware of the potential hazards of the load and knows ident or an emergency. Before transporting product containers lation - Ensure that containers are timely secured - Ensure leaking - Ensure valve outlet cap nut or plug (where provided) protection device (where provided) is correctly filted.
waitable. re the load space is not separated from the driver's two is aware of the potential hazards of the load and knows cident or an emergency. Before transporting product containers lation - Ensure that containers are firmly secured - Ensure leaking - Ensure valve cuttet cap nut or plug (where provided) protection device (where provided) is correctly fitted.
re the load space is not separated from the driver's iver is aware of the potential hazards of the load and knows cident or an emergency. Before transporting product containers lation Ensure that containers are finnly secured Ensure leaking Ensure valve cutlet cap nut or plug (where provided) protection device (where provided) is correctly filted.
re the load space is not separated from the driver's iver is aware of the potential hazards of the load and knows cident or an emergency. Before transporting product containers lation Ensure that containers are firmly secured - Ensure leaking Ensure valve cuttet cap nut or plug (where provided) protection device (where provided) is correctly fitted.
eic under pressure
rd d द्वन्त
to ta



employees, agenta, and contractors of the information in this SDS and of any other known product hazards and safety information. (2) furnish this information to each purchaser of the product, and (3) ask each purchaser to notify its employees and customers of the product hazards and safety information.

The opinions expressed herein are those of qualified experts within Praxair, Inc. We believe that the information contained herein is current as of the date of this Safety Data Sheet. Since the use of this information and the conditions of use are not within the control of Praxair, inc. It is the user's obligation to determine the conditions of safe use of the product.

Praxair SDSs are furnished on sale or delivery by Praxair or the independent distributors and suppliers who package and sell our products. To obtain current SDSs for these products, contact your Proximit sales representative, local distributor, or supplier, or download from www.praxair.com. If you have questions regarding Praxair SDSs, would like the document number and date of the latest SDS, or would like the names of the Praxair suppliers in your area, phone or write the Praxair Call Center (Prione: 1-800-PPRAXAIR 1-800-P72-9247, Address: Praxair Call Center, Pravaer, Inc. P.O. Box 44, Tonawanda, NY 14151-0044)

PRAXAIR and the Flowing Airstream design are trademarks or registered trademarks of Pravair Technology, Int. in the United States and/or other countries.

## EN (English US)

## 5D5 ID P-4580

9/10

The obsument is any controlled while on the Preset, inc, website and a copy of this controlled version is available for download. Preset cannot assure the integrity or accuracy of any version of this document after thes been downloaded or versioned from our website.

Making our planet more productive	Chlorine Safety Data Sheet P-4580 This SDS conforms to U.S. Code of Federal Regulations 29 CFR 1910,1200, Hazard Communication, Date of issue: 01/01/1979 Revision date: 11/30/2016 Supersedee: 10/17/2016
NFPA heath hazard	# - Very short exposure dould cause death or serious residual injury even though prompt medical attention was given.
NFPA fire hazard	0 - Materials that will not burn.
NFPA madrivity	0 - Normally stable, even under fire exposure conditions, and are not reactive with water
NFPA specific hazard	OX - This denotes an oxidizer, a chemical which can greatly increase the rate of combustion/fire.
HMD III Ration	
Health	3 Serious Hazard - Major injury likely unless promot action is taken and medical treatment is given
Flammability	0 Minimal Hastard
Photo and a second s	<ul> <li>2 Electrony Management</li> </ul>

The advantation is based on our control to average and a Weinlard to average the point of the the purpose of health, subsy and economics expansions only it around not increase as a presentence on y and the present of the present of

EN (English US)

5DS (D: P-4500

10/10

This document is any controlled while on the Pranati, mo, website and a copy of this controlled version is available for co-mast, Pranati cannot assure the integrity of any version of any version of the Socurrent after it has been do-moved an versional from our veballe.

## **ANNEXURE-15**

## UNDERTAKING FOR NO USE OF BANNED PRODUCTS

Chemplast Sanmar Limited Sanmar Speciality Chemicals Divn. SANMAR 44 Theertham Road Berigai 635 105 Shoolagiri Taluk Krishnagiri District Tamil Nadu India Tel + 91 4344 253 005 www.sanmargroup.com CIN U24230TN1985PLC011637 UNDERTAKING We, M/s. Chemplast Sanmar Limited, at S.F No.5,7/1,2,3A,3B,8/1,2A,2B,9/1,2,3,10/1,2, 3A,3B,4,12/1A,1B,13/1,14/1A,2A Suligunta Village, Berigai 635105. Shoolagiri Taluk, Krishnagiri District, Tamil Nadu, India hereby solemnly undertake that company will not use/manufacture any banned pesticides products or chemicals in future. Thanking You, SAN Yours faithfully, or Chemplast Sanmar Limiteda BERIGA 5 105 4 Name: Mr. G. Sankara Subramanian (President) Date: 15.03.2023 Place:Berigai Regd Office: 9 Cathedral Road Chennal 600 086 India Responsible Care