DRAFT ENVIRONMENTAL IMPACT ASSESSMENT

82

ENVIRONMENT MANAGEMENT PLAN

FOR OBTAINING

Environmental Clearance under EIA Notification – 2006 Schedule Sl. No. 1 (a) (i): Mining Project "B1" CATEGORY – MINOR MINERAL – CLUSTER – NON-FOREST LAND

CLUSTER EXTENT = 9.28.5 ha
THIRU. M. SHANMUGAM ROUGH STONE & GRAVEL QUARRY

Mooduthurai Village, Mettupalayam Taluk, Coimbatore District

S.F.No.410/1A and 410/1B, Extent: 1.43.5 ha

Project Proponent
Thiru. M. Shanmugam,

S/o. Muthusamy Gounder, No.36, Kaithemillath Street, Mathampalayam Road, Punjai Puliampatti Post, Sathiyamangalam Taluk, Erode District,

For Obtaining

Tamil Nadu State – 638 459.

Environmental Clearance under EIA Notification – 2006 Schedule Sl. No. 1 (a) (i): Mining Project

Complied as per ToR obtained vide Lr. No. SEIAA- TN/F.No.9033/SEAC/ToR-1155/2022 Dated: 06.06.2022

Environmental Consultant

GEO EXPLORATION AND MINING SOLUTIONS

Old No. 260-B, New No. 17, Advaitha Ashram Road, Alagapuram, Salem – 636 004, Tamil Nadu, India

Accredited for sector 1 Category 'A' & 38 Category 'B'
Certificate No: NABET/EIA/1922/SA0139

Phone: 0427-2431989, Email: ifthiahmed@gmail.com, geothangam@gmail.com **Web:** www.gemssalem.com

Baseline Monitoring Period - March 2021 to May 2021

Laboratory

Enviro-Tech Services

Plot No. 1/32, South Side G.T. Road Industrial Area, Ghaziabad (U.P.) - 201 001 An ISO 9001: 2015, 14001:2015 and 45001: 2018 Certified & MoEF & CC Recognised Laboratory, Accredited by ISO/IEC-17025:2017 (NABL) & UPPCB

NOVEMBER 2022

For easy representation of Proposed and Existing Quarries in the Cluster are given unique codes and identifies and studied in this EIA EMP Report.

PROPOSED QUARRIES				
CODE	Name of the Owner	S.F. Nos	Extent	Status
P1	Thiru.M.Shanmugam, S\o. Muthusamy Gounder, No.36, Kaidhey Millath Street, Madhampalayam Road, Punjai puliampatti, Sathyamangalam Taluk, Erode District	410/1A, 1B	1.43.5 ha	ToR Obtained vide Lr.No.SEIAA- TN/F.No.9033/SEAC/ToR- 1155/2022 Dated:06.06.2022
P2	Thiru.K.Kalisamy No.5/113, Karappadi (Post), Punjai puliampatti via, Sathyamangalam Taluk, Erode District - 638459	409/1B2, 409/2 & 409/3	1.73.0	Application Processed
Р3	Thiru.M.S.Manivasagam, S\o.N.M.Shanmugam, No.7/171, Nelipalayam, Alathur Village, Avinashi Taluk, Tiruppur District	407/1,2,3,4, 409/1A, 462/1A2 & 462/1B	2.91.5	Application Processed
	TOTAL		6.08.0 ha	
	EXIS	TING QUARR	IES	
CODE	Name of the Owner	S.F. No	Extent	Lease Period
E1	Tvl. Venkateswara Blue Metals Thiru.B.Nandakumar (Partner), No. 486/3B, Mangalakarai Pudur, Karamadai, Mettupalayam Taluk, Coimbatore District - 641 104	460/1(P) & 461	3.20.5 ha	24.03.2022 – 23.03.2027
			3.20.5 ha	
Notes	TOTAL CLUSTER EXTENT		9.28.5 ha	

Note:-

• Cluster area is calculated as per MoEF & CC Notification – S.O. 2269 (E) Dated: 01.07.2016

TERMS OF REFERENCE (ToR) COMPLIANCE

Thiru. M. Shanmugam

"Lr.No. SEIAA- TN/F.No.9033/SEAC/ToR-1155/2022 Dated: 06.06.2022"

	SPECIFIC CON	NDITIONS
1	The Proponent shall carry out the cumulative &	Noted and agreed
	comprehensive impact study due to mining operations	The cumulative Environment Impact Assessment
	carried out in the quarry cluster specifically with	study is detailed in Chapter 7, Page No:.136-141.
	reference to the environment in terms of air pollution,	A detailed EMP is discussed in Chapter10, page: 145.
	water pollution & health impacts, accordingly the	
	Environment Management Plan should be prepared	
	keeping the concerned quarry and the surrounding	
	habitation in the mind.	
2	The PP shall carry out controlled blasting & vibration	The Study report will be submitted in the Final
	study with the reputed institution and furnish the same	EIA/EMP Report.
	along with EIA report.	
3	Certified EC compliance report shall be included in	The CCR will be submitted in the Final EIA/EMP
	the EIA report	Report.
4	If the proponent has already carried out the mining	Mining operation already carried out in the proposed
	activity in the proposed mining lease area after	project area.
	15.01.2016, then the proponent shall furnish the	Previous lessee: Thiru.M. Shanmugam,
	following details from AD/DD, mines,	Proceeding No. Rc.No. 880/Mines/2015,
		Dated: 17.09.2016,
	a) What was the period of the operation and stoppage	Previous lease period
	of the earlier mines with last work permit issued by	17.09.2016 to 16.09.2021 – 5 years
	the AD/DD mines?	Environmental Clearance No
	b) Quantity of minerals mined out.	Lr.No. SEIAA-TN/F.No.5065/1(a)/3220/2016
	c) Highest production achieved in any one year	dated:06.07.2016
	d) Detail of approved depth of mining.	EC Approved depth = 22m bgl
	e) Actual depth of the mining achieved earlier.	
	f) Name of the person already mined in that leases	
	area.	
	g) If EC and CTO already obtained, the copy of the	
	same shall be submitted.	
	h) whether the mining was carried out as per the	
	approved mine plan (or EC if issued) with stipulated	
	benches.	
5	All corner coordinates of the mine lease area,	Co-ordinates of the lease area - Chapter 2, Table 2.2,
	superimposed on a High-Resolution	Page:12.
	Imagery/Toposheet, topographic sheet	High resolution imagery of the lease area - Chapter 2,
	geomorphology, lithology and geology of the mining	Figure 2.1, Page:11.
	lease area should be provided. Such an Imagery of the	Geomorphology map of the lease area - Chapter 2,
	proposed area should clearly show the land use and	Figure 2.9, Page:22.
	other ecological features of the study area (core and	Geology map of the lease area - Chapter 2, Figure 2.8,
	buffer zone).	Page:21.
6	The PP shall carry out Drone Video survey covering	Noted and agreed
	the cluster, Green Belt, fencing etc.,	
7	The proponent shall furnish photographs of adequate	Fencing & Greenbelt development photographs are
	fencing, green belt along the periphery including	given in chapter No.2, Figure No 2.1, Page No 10.
	replantation of existing trees & safety distance	It is an existing quarry no cutting of trees within the
	between the adjacent quarries & water bodies nearby	project area.
	provided as per the approved mining plan.	
8	The Project Proponent shall provide the details of	Details given in Chapter 2, Table:2.4, Page: 17.
	mineral reserves and mineable reserves, planned	The anticipated impacts and mitigation measures are
	production capacity, proposed working methodology	discussed in Chapter:4, Page No. 104-123.
	with justifications, the anticipated impacts of the	
	mining operations of the surrounding environment	
	and the remedial measures for the same.	
9	The Project Proponent shall provide the Organization	Organization chart of this mining project indicating
	chart indicating the appointment of various statutory	competent persons is given in the Chapter No.6.Page
	officials and other competent persons to be appointed	no.127
	as per the provisions of Mines Act'1952 and the	

	MMR, 1961 for carrying out the quarrying operations	
	scientifically and systematically in order to ensure	
10	safety and to protect the environment.	That I is the terminal to A. I. is the state
10	The Project Proponent shall conduct the hydro- geological study considering the contour map of the	Hydrogeological study was conducted in the study area. The details of open wells and bore wells along
	water table detailing the number of ground water	with contour maps are discussed in Chapter:3, Page:
	pumping & open wells, and surface water bodies such	85-92 in this EIA report.
	as rivers, tanks, canals, ponds etc. within 1 km (radius)	05 72 in this Eli Treport.
	along with the collected water level data for both	
	monsoon and non-monsoon seasons from the PWD /	
	TWAD so as to assess the impacts on the wells due to	
	mining activity. Based on actual monitored data, it	
	may clearly be shown whether working will intersect	
	groundwater. Necessary data and documentation in	
1.1	this regard may be provided.	D 1: 1
11	The proponent shall furnish the baseline data for the	Baseline data is given in Chapter:3, page:32-80.
	environmental and ecological parameters with regard	
	to surface water/ground water quality, air quality, soil	
	quality & flora/fauna including traffic/vehicular movement study.	
12	A tree survey study shall be carried out (nos., name of	It is an existing quarry no trees within the proposed
12	the species, age, diameter etc) both within the mining	excavation areas, trees located within the safety
	lease applied area & 300m buffer zone and its	barrier will be maintained.
	management during mining activity.	Details of the trees in the buffer zone given in Chapter
		No.3. Page No.91.
13	A detailed mine closure plan for the proposed project	Mine closure plan is detailed in Chapter:4, Page:123
	shall be included in EIA/EMP report which should be	
	site-specific.	
14	The Public hearing advertisement shall be published	Noted and agreed
	in one major National daily and one most circulated	
1.5	vernacular daily.	Noted and agreed
15	The PP shall produce/display the EIA report, Executive summery and other related with respect to	Noted and agreed
	public hearing should in Tamil Language also.	
16	The recommendation for the issue of "Terms of	Noted and agreed
	Reference" is subjected to the outcome of the Hon'ble	8
	NGT, Principal Bench, New Delhi in O.A No.186 of	
	2016 (M.A.No.350/2016) and O.A. No.200/2016 and	
	O.A.No.580/2016	
	(M.A.No.1182/2016) and O.A.No.102/2017 and	
	O.A.No.404/2016 (M.A.No.758/2016,	
	M.A.No. 920/2016, M.A.No. 1122/2016,	
	M.A.No.12/2017 & M.A. No.843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No.	
	O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).	
17	The purpose of green belt around the project is to	Species are proposed to plant in the safety barrier as
1 /	capture the fugitive emissions, carbon sequestration	mentioned in the ToR appendix.
	and to attenuate the noise generated, in addition to	Proposed species are given in the Chapter No 4 Page
	improving the aesthetics. A wide range of indigenous	No.119.
	plant species should be planted as given in the	
	appendix in consultation with the DFO, State	
	Agriculture University and local school/college	
	authorities. The plant species with dense/moderate	
	canopy of native origin should be chosen. Species of	
	small/medium/tall trees alternating with shrubs	
1.0	should be planted in a mixed manner.	Na4-11
18	Taller/one year old Saplings raised in appropriate size	Noted and agreed
	of bags, preferably ecofriendly bags should be planted in proper escapement as per the advice of local forest	
	authorities/botanist/Horticulturist with regard to site	
	specific choices. The proponent shall earmark the	
	greenbelt area with GPS coordinates all along the	
	5. The state of the contaminates an along the	<u>I</u>

	boundary of the project site with at least 3 meters wide	
	and in between blocks in an	
10	organized manner	D' - 1' Cl + 7 D N 122
19	A Disaster management Plan shall be prepared and included in the EIA/EMP Report.	Discussed in Chapter:7, Page.No:132.
20	A Risk Assessment and management Plan shall be prepared and included in the EIA/EMP Report.	Discussed in Chapter:7, Page.No:130
21	The specific flora & fauna studies shall be carried out with the help of local School/college students and the same shall be included in EIA Report.	Details are listed in Chapter:3, Page. No:81-94.
22	The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.	Details are listed in Chapter:3, Page. No:94-104.
23	If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.	The quarry lease was granted previously to Thiru. M. Shanmugam vide Rc.No. 880/2015/Mines, dt: 17.09.2016. 17.09.2016 to 16.09.2021 – 5 Years.
24 ADI	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Reference besides attracting penal provisions in the Environment (Protection) Act, 1986. DITIONAL CONDITIONS	Noted and agreed.
		D' 1' Cl
1	Detailed study shall be carried out regard to impact of mining around the proposed mine lease area on the nearby Villages, Water-bodies/ Rivers, & any ecological fragile areas.	Discussed in Chapter:4,
2	The project proponent shall furnish VAO certificate with reference to 300m radius regard to approved habitations, schools, Archaeological structures etc.	Noted and Agreed
3	As per the MoEF& CC office memorandum F.No.22-6512017-\A.III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan.	The issues raised during public hearing will be addressed in Final EIA/ EMP Report.
4	The Environmental Impact Assessment shall study in detail on the carbon emission and also suggest the measures to mitigate carbon emission including development of carbon sinks and temperature reduction including control of other emission and climate mitigation activities.	Details of carbon emission and mitigation activities are given int the Chapter No.4
5	The Environmental Impact Assessment should study the biodiversity, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.	Discussed in Chapter: 3, Page.No:81.
6	Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.	The Eco System of the area will be retained during the mining operation by the way of planting trees in the boundary barrier and un utilized areas. After completion of mining operation, the quarried-out pit will be facilitated to collect the rainwater to pit act as temporary reservoir.
7	The project proponent shall study impact on fish	The nearest water bodies from the project area are

<u> </u>		
8	The Terms of Reference should specifically study impact on soil health, soil erosion, the soil physical, chemical components and microbial components.	No proposal for the disposal of pit water to the nearby water bodies hence this project will not create impact to the food chain in the water body. After completion of quarry operation, the pit will act as temporary reservoir and pisciculture activities will be involved. Nearest water bodies details are given in the Chapter No 3, Table No 3.4, Page No 37 There is no Top soil in the project area, the overburden in the form of Gravel formation. The Gravel has been removed during the previous lease period. No proposal for the removal of Top soil in this plan period. Details of impact on soil environment is detailed in Chapter No.4, Page No 106.
9	The Environmental Impact Assessment should study impact on forest, vegetation, endemic, vulnerable and endangered indigenous flora and fauna.	The area is surrounded by quarries on the North, East, South side. Coconut plantation is the main agriculture activity in the study area. Details of flora and fauna studies given in the Chapter No.3, Page No. 81.
10	The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.	It is a broken land, Few trees within the project area.
11	The Environmental Impact Assessment should study on wetlands, water bodies. Rivers streams, lakes and farmer sites.	Details are discussed in the Chapter No 3.
12	The Environmental Impact Assessment should hold detailed study oh EMP with budget for green belt development and mine closure plan including disaster management plan.	Detailed Environmental Management plan with budgetary allocations given in the Chapter No. 10, Page No. 145.
13	The Environmental Impact Assessment should study impact on climate change, temperature rise, pollution and above soil & below soil carbon stock.	The project will not cause significant impact on climatic change. Description about the project and climatic changes is described in Chapter No.3, Page No 59
14	The Environmental Impact Assessment should study impact on protected areas, Reserve Forests, National Parks; Corridors and Wildlife pathways, near project site.	Anticipated Environment Impact and Mitigation measures are detailed in Chapter No.4
15	The project proponent shall study and furnish the impact of project on plantations in adjoin patta lands, Horticulture, Agriculture and livestock.	The project area is bounded by Existing quarries on the East, South and west side and crusher located on North side. Nearest Coconut agriculture land is situated South side of the area. Proponent proposed to erect green mesh along with fencing on the South side besides, Budgetary allocation given in the Chapter No. 10.
16	The project proponent shall study and furnish the details on potential fragmentation impact of natural environment, by the activities.	Details given in Chapter:4
17	The project proponent shall study and furnish the impact on aquatic plants and animals in water bodies and possible scars on the landscape, damages to nearby caves, heritage site, and archaeological sites possible land form changes visual and aesthetic impacts.	No Archaeological site near the project area, no proposal for the disposal of mine pit water in the nearby water bodies.
18	The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.	Plastic waste management plan has been suggested in Chapter:7.
19	The project proponent shall study on impact of mining on Reserve forests free ranging wildlife.	Noted and agreed

20	D-4-11-1-4-4-1-111	N-4-44
20	Detailed study shall be carried out in regard to impact	Noted and agreed
	of mining around the proposed mine lease area	
	covering the entire mine lease period as per precise	
	area communication order issued from reputed	
	research institutions on the following	
	a) Soil health & bio-diversity.	
	b) Climate change leading to Droughts, Floods etc.	
	c) Pollution leading to release of Greenhouse gases	
	(GHG), rise in Temperature, & Livelihood of the local	
	people.	
	d) Possibilities of water contamination and impact on	
	aquatic ecosystem health.	
	e) Agriculture, Forestry & Traditional practice	
	f) Hydrothermal/Geothermal effect due to destruction	
	in the Environment.	
	g) Bio-geochemical processes and its foot prints	
	including environmental stress.	
	h) Sediment geochemistry in the surface streams.	
21	Hydro-geological study considering the contour map	It is explained in chapter- 3
	of the water table detailing the number of ground	
	water pumping & open wells, and surface water	
	bodies such as rivers, tanks, canals, ponds etc. within	
	1 km (radius) so as to assess the impacts on the nearby	
	water bodies due to mining activity. Based on actual	
	monitored data, it may clearly be shown whether	
	working will intersect groundwater. Necessary data	
	and documentation in this regard may be provided,	
	covering the entire mine lease period.	
22	To furnish disaster management plan and disaster	It is explained in chapter- 7
	mitigation measures in regard to all aspects to	
	avoid/reduce vulnerability to hazards & to cope with	
	disaster/untoward accidents in & around the proposed	
	mine lease area due to the proposed method of mining	
	activity & its related activities covering the entire	
	mine lease period as per precise area communication	
	order issued.	
22	T C '1 '1	L
23	To furnish risk assessment and management plan	It is explained in chapter- 7
	including anticipated vulnerabilities during	
2.4	operational and post operational phases of Mining.	
24	Detailed Mine Closure Plan covering the entire mine	It is explained in chapter- 2
	lease period as per precise area communication order	
2.5	issued.	h' - 1' 1' 1 4 40
25	Detailed Environment Management Plan along with	It is explained in chapter- 10
	adaptation, mitigation & remedial strategies covering	
	the entire mine lease period as per precise area	
	communication order issued. STANDARD TERMS	OF REFERENCE
1	Year-wise production details since 1994 should be	Not applicable.
1	given, clearly stating the highest production	This is Not a violation category project.
	achieved in any one year prior to 1994. It may also	This proposal falls under B1 Category (Cluster
	be categorically informed whether there had been	Condition).
	any increase in production after the EIA Notification	
	1994 came into force, w.r.t. the highest production	
	achieved prior to 1994.	
2	A copy of the document in support of the fact that the	The applied land for quarrying is a Patta Land.
	Proponent is the rightful lessee of the mine should be	Document is enclosed along with Approved Mining
	given.	Plan as Annexure Volume 1.
3	All documents including approved mine plan, EIA	Noted & agreed.
	and Public Hearing should be compatible with one	
	another in terms of the mine lease area, production	
	levels, waste generation and its management, mining	
	, Sometiment and its management, milling	

	technology etc. and should be in the name of the	
	lessee.	
4	All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagery/toposheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	Map showing — Project area is superimposed on Satellite imagery is enclosed in Figure No. 2.7 Project area boundary coordinates superimposed on Toposheet — Figure No. 1.3, Surface Features around the project area covering 10km radius — Figure No. 2.8, Geology map of the project area covering 10km radius — Figure No. 2.11 Geomorphology Map of the Study Area covering 10 km radius — Figure No. 2.12,
5	Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.	Map showing – Geology map of the project area covering 10km radius - Figure No. 2.11, Geomorphology Map of the Study Area covering 10 km radius – Figure No. 2.12,
6	Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.	The applied area was inspected by the officers of Department of Geology along with revenue officials and found that the land is fit for quarrying under the policy of State Government.
7	It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of noncompliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.	The proponent has framed their Environmental Policy and the same is discussed in the Chapter No 10.
8	Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.	It is an opencast quarrying operation proposed to operate in Mechanized method. The rough stone formation is a hard, compact and homogeneous body. The height and width of the bench will be maintained as 5m with 90° bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance.
9	The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc., should be for the life of the mine / lease period.	Noted & agreed. The study area considered for this study is 10 km radius and all data contained in the EIA report such as waste generation etc., is for the Life of the Mine / lease period.
10	Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.	Land use and land cover of the study area is discussed in Chapter No. 3. Land use plan of the project area showing preoperational, operational and post-operational phases are discussed in Chapter No. 2.

—		
11	Details of the land for any Over Burden Dumps	Not Applicable.
	outside the mine lease, such as extent of land area,	There is no waste anticipated during this quarry
	distance from mine lease, its land use, R&R issues,	operation. The entire quarried out rough stone will be
	if any, should be given	transported to the needy customers.
		No Dumps is proposed outside the lease area.
12	Certificate from the Competent Authority in the	Not Applicable.
	State Forest Department should be provided,	There is no Forest Land involved in the proposed
	confirming the involvement of forest land, if any, in	project area. The proposed project area is a patta land.
	the project area. In the event of any contrary claim	Approved Mining Plan is enclosed as Annexure
	by the Project Proponent regarding the status of	Volume 1.
	forests, the site may be inspected by the State Forest	
	Department along with the Regional Office of the	
	Ministry to ascertain the status of forests, based on	
	which, the Certificate in this regard as mentioned	
	above be issued. In all such cases, it would be	
	desirable for representative of the State Forest	
	Department to assist the Expert Appraisal	
	Committees.	
13	Status of forestry clearance for the broken-up area	Not Applicable.
	and virgin forestland involved in the Project	The proposed project area does not involve any Forest
	including deposition of net present value (NPV) and	Land.
	compensatory afforestation (CA) should be	
	indicated. A copy of the forestry clearance should	
	also be furnished.	
14	Implementation status of reasonition of forest -:-1-t-	Not Applicable
14	Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional	Not Applicable.
		The project doesn't attract Recognition of Forest Rights Act, 2006.
	Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.	Act, 2006.
15	The vegetation in the RF / PF areas in the study area,	Velamundi R.F – 4.0km North.
13	with necessary details, should be given.	Velaniunui K.1 – 4.0kiii Norui.
16	A study shall be got done to ascertain the impact of	Not Applicable.
10	the Mining Project on wildlife of the study area and	There are No National Parks, Biosphere Reserves,
	details furnished. Impact of the project on the	Wildlife Corridors, and Tiger/Elephant Reserves within
	wildlife in the surrounding and any other protected	10 km Radius from the periphery of the project area.
	area and accordingly, detailed mitigative measures	
	required, should be worked out with cost	
	implications and submitted.	
17	Location of National Parks, Sanctuaries, Biosphere	Not Applicable.
	Reserves, Wildlife Corridors, Ramsar site Tiger/	There are No National Parks, Biosphere Reserves,
	Elephant Reserves/(existing as well as proposed), if	Wildlife Corridors, and Tiger/Elephant Reserves within
	any, within 10 KM of the mine lease should be	10 km Radius from the periphery of the project area.
	clearly indicated, supported by a location map duly	
	authenticated by Chief Wildlife Warden. Necessary	
	clearance, as may be applicable to such projects due	
	to proximity of the ecologically sensitive areas as	
	mentioned above, should be obtained from the	
	Standing Committee of National Board of Wildlife	
	and copy furnished	
18	A detailed biological study of the study area [core	Detailed biological study of the study area [core zone
	zone and buffer zone (10 KM radius of the periphery	and buffer zone (10 km radius of the periphery of the
	of the mine lease)] shall be carried out. Details of	mine lease)] was carried out and discussed under
	flora and fauna, endangered, endemic and RET	Chapter No. 3,
	Species duly authenticated, separately for core and	There is no schedule I species of animals observed
	buffer zone should be furnished based on such	within study area as per Wildlife Protection Act 1972
	primary field survey, clearly indicating the Schedule	as well as no species is in vulnerable, endangered or
	of the fauna present. In case of any scheduled-I fauna	threatened category as per IUCN. There is no
	found in the study area, the necessary plan along with	endangered red list species found in the study area.
	budgetary provisions for their conservation should	
	be prepared in consultation with State Forest and	
	Wildlife Department and details furnished.	
	Necessary allocation of funds for implementing the	
-	same should be made as part of the project cost.	
		•

19 Pro	eximity to Areas declared as 'Critically Polluted'	Not Applicable.
or t	the Project areas likely to come under the 'Aravalli	Project area / Study area is not declared in 'Critically
Rai	nge', (attracting court restrictions for mining	Polluted' Area and does not come under 'Aravalli
ope	erations), should also be indicated and where so	Range.
req	uired, clearance certifications from the prescribed	
	thorities, such as the SPCB or State Mining	
De	partment should be secured and furnished to the	
	ect that the proposed mining activities could be	
	nsidered.	
20 Sin	nilarly, for coastal Projects, A CRZ map duly	Not Applicable.
	henticated by one of the authorized agencies	The project doesn't attract The C. R. Z. Notification,
	narcating LTL. HTL, CRZ area, location of the	2018.
	ne lease w.r.t CRZ, coastal features such as	
	ngroves, if any, should be furnished. (Note: The	
	ning Projects falling under CRZ would also need	
	obtain approval of the concerned Coastal Zone	
	nagement Authority).	
	R Plan/compensation details for the Project	Not Applicable.
	fected People (PAP) should be furnished. While	There are no approved habitations within a radius of
	paring the R&R Plan, the relevant State/National	300 meters.
	habilitation & Resettlement Policy should be kept	Therefore, R&R Plan / Compensation details for the
	view. In respect of SCs /STs and other weaker	Project Affected People (PAP) is not anticipated and
	tions of the society in the study area, a need-based	Not Applicable for this project.
	apple survey, family-wise, should be undertaken to	
	ess their requirements, and action programmes	
	pared and submitted accordingly, integrating the	
	toral programmes of line departments of the State	
	vernment. It may be clearly brought out whether	
	village(s) located in the mine lease area will be	
	fted or not. The issues relating to shifting of	
	age(s) including their R&R and socio-economic	
	sects should be discussed in the Report.	
	e season (non-monsoon) [i.e. March-May	Baseline Data were collected for One Season (Pre-
	immer Season); October-December (post	Monsoon) March 2021 – May 2021 as per CPCB
	nsoon season); December-February (winter	Notification and MoEF & CC Guidelines.
	son)] primary baseline data on ambient air quality	Details in Chapter No. 3.
ası		1
	CB Notification of 2009, water quality, noise	
	el, soil and flora and fauna shall be collected and	
	AAQ and other data so compiled presented date-	
	se in the EIA and EMP Report. Site-specific	
	teorological data should also be collected. The	
	· ·	
	ation of the monitoring stations should be such as	
	ation of the monitoring stations should be such as represent whole of the study area and justified	
	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind	
1 1 = 110	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There	
l m o	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500	
	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind	
dire	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10,	
dire par	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given.	Air Quality Modelling for prediction of incremental
dire par 23 Air	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given.	Air Quality Modelling for prediction of incremental GLC's of pollutant was carried out using AERMOD
dire par 23 Air pre	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. — quality modelling should be carried out for diction of impact of the project on the air quality	GLC's of pollutant was carried out using AERMOD
23 Air pre of	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. - quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. It quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of	GLC's of pollutant was carried out using AERMOD
23 Air pre of imp min	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. To quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp min par	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. To quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input mameters used for modelling should be provided.	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp min par The	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There ould be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. To quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input ameters used for modelling should be provided. The air quality contours may be shown on a location	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp mii par The ma	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There and be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. To quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input ameters used for modelling should be provided, are air quality contours may be shown on a location proclearly indicating the location of the site,	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp mii par Tho	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There and be at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. The quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input ameters used for modelling should be provided, are air quality contours may be shown on a location p clearly indicating the location of the site, ation of sensitive receptors, if any, and the	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp min par Thomas loc hab	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There have been at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. The quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the exact of movement of vehicles for transportation of the eral. The details of the model used and input ameters used for modelling should be provided, are air quality contours may be shown on a location per clearly indicating the location of the site, ation of sensitive receptors, if any, and the pitation. The wind roses showing pre-dominant	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.
23 Air pre of imp min par The ma loc hab	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There have been at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. The quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the pact of movement of vehicles for transportation of meral. The details of the model used and input ameters used for modelling should be provided, are air quality contours may be shown on a location peclearly indicating the location of the site, ation of sensitive receptors, if any, and the potation. The wind roses showing pre-dominant and direction may also be indicated on the map.	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model. Details in Chapter No. 4,
23 Air pre of imp min par The ma loc hab	ation of the monitoring stations should be such as represent whole of the study area and justified eping in view the pre-dominant downwind ection and location of sensitive receptors. There have been at least one monitoring station within 500 of the mine lease in the pre-dominant downwind ection. The mineralogical composition of PM10, ticularly for free silica, should be given. The quality modelling should be carried out for diction of impact of the project on the air quality the area. It should also take into account the exact of movement of vehicles for transportation of the eral. The details of the model used and input ameters used for modelling should be provided, are air quality contours may be shown on a location per clearly indicating the location of the site, ation of sensitive receptors, if any, and the pitation. The wind roses showing pre-dominant	GLC's of pollutant was carried out using AERMOD view 9.6.1 Model.

	balance should also be provided. Fresh water	
	requirement for the Project should be indicated.	N
25	Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.	Not Applicable. Water for dust suppression, greenbelt development and domestic use will be sourced from accumulated rainwater/seepage water in mine pits and purchased from local water vendors through water tankers on daily requirement basis. Drinking water will be sourced from the approved water vendors.
26	Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.	Part of the working pit will be allowed to collect rain water during the spell of rain will be used for greenbelt development and dust suppression. The Mine Closure Plan is prepared for converting the excavated pit into rain water harvesting structure and serve as water reservoir for the project village during draught season.
27	Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.	Impact Studies and Mitigation Measures of Water Environment including Surface Water and Ground Water are discussed in Chapter 4,
28	Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.	Not Applicable. The ground water table inferred 65-70m below ground level. The ultimate depth of quarry is 44m. This proposal of 44m will not intersect the ground water table, which is inferred from the hydrogeological studies carried out at the project site. Discussed under Chapter 3
29	Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.	Not Applicable. There is no stream, seasonal or other water bodies passing within the project area. Therefore, no modification/ diversion of water bodies is anticipated.
30	Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and Bgl. A schematic diagram may also be provided for the same.	Highest elevation of the project area is 320m AMSL. Ultimate depth of the mine is 44m BGL Water level of the area is 65-70m BGL
31	A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.	Greenbelt Development Plan is discussed under Chapter 4,
32	Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if	Traffic density survey was carried out to analyse the impact of Transportation in the study area as per IRC guidelines 1961 and it is inferred that there is no significant impact due to the proposed transportation from the project area. Details in Chapter 2,

—		
	contemplated (including action to be taken by other	
	agencies such as State Government) should be	
	covered. Project Proponent shall conduct Impact of	
	Transportation study as per Indian Road Congress	
	Guidelines.	
33	Details of the onsite shelter and facilities to be	Infrastructure & other facilities will be provided to the
	provided to the mine workers should be included in	Mine Workers after the grant of quarry lease and the
	the EIA Report.	same has been discussed in the Chapter No. 2.
34	Conceptual post mining land use and Reclamation	Discussed under Chapter 2, Mine Closure Plan is a part
34	and Restoration of mined out areas (with plans and	of Approved Mining Plan enclosed as Annexure
	with adequate number of sections) should be given	Volume – 1.
	in the EIA report.	Volume – 1.
2.5		O
35	Occupational Health impacts of the Project should be	Occupational Health Impacts of the project and
	anticipated and the proposed preventive measures	preventive measures are detailed under Chapter 4,
	spelt out in detail. Details of pre-placement medical	
	examination and periodical medical examination	
	schedules should be incorporated in the EMP. The	
	project specific occupational health mitigation	
	measures with required facilities proposed in the	
	mining area may be detailed.	
36	Public health implications of the Project and related	No Public Health Implications anticipated due to this
	activities for the population in the impact zone	project.
	should be systematically evaluated and the proposed	Details of CER and CSR are discussed under Chapter
	remedial measures should be detailed along with	8,
	budgetary allocations.	
37	Measures of socio-economic significance and	No Negative Impact on Socio Economic Environment
	influence to the local community proposed to be	on the Study Area is anticipated and this project shall
	provided by the Project Proponent should be	benefit the Socio-Economic Environment by ways of
	indicated. As far as possible, quantitative dimensions	employment for 15 people directly and 10 people
	may be given with time frames for implementation.	indirectly. Details in Chapter 4,
38	Detailed environmental management plan (EMP) to	Detailed Environment Management Plan for the project
	mitigate the environmental impacts which, should	to mitigate the anticipated impacts described under
	inter-alia include the impacts of change of land use,	Chapter 4 is discussed under Chapter 10,
	loss of agricultural and grazing land, if any,	
	occupational health impacts besides other impacts	
	specific to the proposed Project.	
39	Public Hearing points raised and commitment of the	The outcome of public hearing will be updated in the
	Project Proponent on the same along with time	final EIA/AMP report
	bound Action Plan with budgetary provisions to	
	implement the same should be provided and also	
	incorporated in the final EIA/EMP Report of the	
	Project.	
40	Details of litigation pending against the project, if	No litigation is pending in any court against this
-10	any, with direction /order passed by any Court of	project.
	Law against the Project should be given.	project.
41	The cost of the Project (capital cost and recurring	Noted and agreed
71	cost) as well as the cost towards implementation of	Troica and agreed
	EMP should be clearly spelt out.	
42		Details in Chanter 7
42	A Disaster management Plan shall be prepared and	Details in Chapter 7.
42	included in the EIA/EMP Report.	Details in Chanton 9
43	Benefits of the Project if the Project is implemented	Details in Chapter 8.
	should be spelt out. The benefits of the Project shall	
	clearly indicate environmental, social, economic,	
	employment potential, etc.	
44	Besides the above, the below mentioned general point	
a	Executive Summary of the EIA/EMP Report	Enclosed as separate booklet.
b	All documents to be properly referenced with index	All the documents are properly referenced with index
	and continuous page numbering.	and continuous page numbering.
c	Where data are presented in the Report especially in	List of Tables and source of the data collected are
	Tables, the period in which the data were collected	indicated.
	and the sources should be indicated.	
d	Project Proponent shall enclose all the	Baseline monitoring reports are enclosed with This
	analysis/testing reports of water, air, soil, noise etc.	report in Chapter 3.

	using the MoEE & CC/NADI asserting to deliberate wine	Original Pagalina manitarina namanta will be autoritated
	using the MoEF&CC/NABL accredited laboratories.	Original Baseline monitoring reports will be submitted
	All the original analysis/testing reports should be	in the final EIA report during appraisal.
	available during appraisal of the Project	NT / A - 1' - 1.1
e	Where the documents provided are in a language	Not Applicable.
	other than English, an English translation should be	
	provided.	
f	The Questionnaire for environmental appraisal of	Will be enclosed along with Final EIA EMP Report.
	mining projects as devised earlier by the Ministry	
	shall also be filled and submitted.	
g	While preparing the EIA report, the instructions for	Noted & agreed.
	the Proponents and instructions for the Consultants	Instructions issued by MoEF & CC O.M. No. J-
	issued by MoEF&CC vide O.M. No. J-	11013/41/2006-IA.II (I) Dated: 4th August, 2009 are
	11013/41/2006-IA.II(I) Dated: 4th August, 2009,	followed.
	which are available on the website of this Ministry,	
	should be followed.	
h	Changes, if any made in the basic scope and project	Noted & agreed.
	parameters (as submitted in Form-I and the PFR for	
	securing the TOR) should be brought to the attention	
	of MoEF&CC with reasons for such changes and	
	permission should be sought, as the TOR may also	
	have to be altered. Post Public Hearing changes in	
	structure and content of the draft EIA/EMP (other	
	than modifications arising out of the P.H. process)	
	will entail conducting the PH again with the revised	
	documentation	
i	As per the circular no. J-11011/618/2010-IA.II(I)	Not Applicable.
	Dated: 30.5.2012, certified report of the status of	**
	compliance of the conditions stipulated in the	
	environment clearance for the existing operations of	
	the project, should be obtained from the Regional	
	Office of Ministry of Environment, Forest and	
	Climate Change, as may be applicable.	
j	The EIA report should also include (i) surface plan	Surface Plan – Figure No. 2.2
'	of the area indicating contours of main topographic	Working Plan – Figure No 2.10
	features, drainage and mining area, (ii) geological	Closure Plan – Figure No.2.11
	maps and sections and (iii) sections of the mine pit	
	and external dumps, if any, clearly showing the land	
	features of the adjoining area.	
	reatures of the aujoining area.	

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.0	PREAMBLE	1
	1.1	PURPOSE OF THE REPORT	1
	1.2	IDENTIFICATION OF PROJECT AND PROJECT PROPONENT	3
	1.3	BRIEF DESCRIPTION OF THE PROJECT	3
	1.4	ENVIRONMENTAL CLEARANCE	7
	1.5	TERMS OF REFERENCE (ToR)	7
	1.6	POST ENVIRONMENT CLEARANCE MONITORING	7
	1.7	GENERIC STRUCTURE OF EIA DOCUMENT	8
2.	1.8 PRC	THE SCOPE OF THE STUDY	
	2.0	GENERAL	9
	2.1	DESCRIPTION OF THE PROJECT	9
	2.2	LOCATION OF THE PROJECT	9
	2.4	RESOURCES AND RESERVES	25
	2.5	28	
	METH	OD OF MINING	28
	2.6	GENERAL FEATURES	28
	2.7	PROJECT REQUIREMENT	30
	2.8	EMPLOYMENT REQUIREMENT:	31
3.	2.9 DES	PROJECT IMPLEMENTATION SCHEDULE	
	3.0	GENERAL	32
	3.1	LAND ENVIRONMENT	34
	3.2	WATER ENVIRONMENT	41
	3.3	AIR ENVIRONMENT	58
	3.4	NOISE ENVIRONMENT	76
	3.5	ECOLOGICAL ENVIRONMENT	81
4.	<i>3.6</i> ANTIC	SOCIO ECONOMIC ENVIRONMENT	
	4.0	GENERAL	105
	4.1	LAND ENVIRONMENT:	105
	4.2	WATER ENVIRONMENT	107
	4.3	AIR ENVIRONMENT	108

4.4 NOISE ENVIRONMENT			
4.6 SOCIO ECONOMIC 12 4.7 OCCUPATIONAL HEALTH AND SAFETY 12 4.8 MINE WASTE MANAGEMENT 12 4.9 MINE CLOSURE 12 5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 12 5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASS	4.4	NOISE ENVIRONMENT	115
4.7 OCCUPATIONAL HEALTH AND SAFETY 12 4.8 MINE WASTE MANAGEMENT 12 4.9 MINE CLOSURE 12 5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 12 5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14	4.5	ECOLOGY AND BIODIVERSITY	118
4.8 MINE WASTE MANAGEMENT 12 4.9 MINE CLOSURE 12 5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 12 5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.5 PLASTIC WASTE	4.6	SOCIO ECONOMIC	122
4.9 MINE CLOSURE 12 5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 12 5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8.0 GENER	4.7	OCCUPATIONAL HEALTH AND SAFETY	122
5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 12 5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14	4.8	MINE WASTE MANAGEMENT	123
5.1 INTRODUCTION 12 5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT IN PHYSICAL INFRASTRUCTURE <td>4.9</td> <td>MINE CLOSURE</td> <td>123</td>	4.9	MINE CLOSURE	123
5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE 12 5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY. 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY. 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM. 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES. 12 6.3 MONITORING SCHEDULE AND FREQUENCY. 12 6.4 BUDGETARY PROVISION FOR EMP. 12 6.5 REPORTING SCHEDULES OF MONITORED DATA. 12 7. ADDITIONAL STUDIES. 13 7.0 GENERAL. 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL	5. A	ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)	125
5.3 ANALYSIS OF ALTERNATIVE SITE 12 5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY. 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY. 12 6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM. 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES. 12 6.3 MONITORING SCHEDULE AND FREQUENCY. 12 6.4 BUDGETARY PROVISION FOR EMP. 12 6.5 REPORTING SCHEDULES OF MONITORED DATA. 12 7. ADDITIONAL STUDIES. 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED	5.1	INTRODUCTION	125
5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY. 12 5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY. 12 6. ENVIRONMENTAL MONITORING PROGRAMME. 12 6.0 GENERAL. 12 6.1 METHODOLOGY OF MONITORING MECHANISM. 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES. 12 6.3 MONITORING SCHEDULE AND FREQUENCY. 12 6.4 BUDGETARY PROVISION FOR EMP. 12 6.5 REPORTING SCHEDULES OF MONITORED DATA. 12 7. ADDITIONAL STUDIES. 13 7.0 GENERAL. 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT. 13 7.3 DISASTER MANAGEMENT PLAN. 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN. 14 8. PROJECT BENEFITS. 14 8.0 GENERAL. 14 8.1 EMPLOYMENT POTENTIAL. 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL	5.2	FACTORS BEHIND THE SELECTION OF PROJECT SITE	125
5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY	5.3	ANALYSIS OF ALTERNATIVE SITE	125
6. ENVIRONMENTAL MONITORING PROGRAMME 12 6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	5.4	FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY	125
6.0 GENERAL 12 6.1 METHODOLOGY OF MONITORING MECHANISM 12 6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES 12 6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	5.5	ANALYSIS OF ALTERNATIVE TECHNOLOGY	125
6.1 METHODOLOGY OF MONITORING MECHANISM	6. E	NVIRONMENTAL MONITORING PROGRAMME	126
6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES	6.0	GENERAL	126
6.3 MONITORING SCHEDULE AND FREQUENCY 12 6.4 BUDGETARY PROVISION FOR EMP 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	6.1	METHODOLOGY OF MONITORING MECHANISM	126
6.4 BUDGETARY PROVISION FOR EMP. 12 6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES. 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	6.2	IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES	127
6.5 REPORTING SCHEDULES OF MONITORED DATA 12 7. ADDITIONAL STUDIES 13 7.0 GENERAL 13 7.1 PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	6.3	MONITORING SCHEDULE AND FREQUENCY	128
7. ADDITIONAL STUDIES	6.4	BUDGETARY PROVISION FOR EMP	128
7.0 GENERAL 13 7.1. PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14			
7.1. PUBLIC CONSULTATION 13 7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	7. A	ADDITIONAL STUDIES	130
7.2 RISK ASSESSMENT 13 7.3 DISASTER MANAGEMENT PLAN 13 7.4 CUMULATIVE IMPACT STUDY 13 7.5 PLASTIC WASTE MANAGEMENT PLAN 14 8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	7.0	GENERAL	130
7.3 DISASTER MANAGEMENT PLAN	7.1.	PUBLIC CONSULTATION	130
7.4 CUMULATIVE IMPACT STUDY	7.2	RISK ASSESSMENT	130
7.5 PLASTIC WASTE MANAGEMENT PLAN	7.3	DISASTER MANAGEMENT PLAN	132
8. PROJECT BENEFITS 14 8.0 GENERAL 14 8.1 EMPLOYMENT POTENTIAL 14 8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED 14 8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE 14 8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE 14 8.5 OTHER TANGIBLE BENEFITS 14 9. ENVIRONMENTAL COST BENEFIT ANALYSIS 14	7.4	CUMULATIVE IMPACT STUDY	135
8.0 GENERAL	7.5	PLASTIC WASTE MANAGEMENT PLAN	141
8.1 EMPLOYMENT POTENTIAL	8.	PROJECT BENEFITS	142
8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED	8.0	GENERAL	142
8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE	8.1	EMPLOYMENT POTENTIAL	142
8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE	8.2	SOCIO-ECONOMIC WELFARE MEASURES PROPOSED	142
8.5 OTHER TANGIBLE BENEFITS	8.3	IMPROVEMENT IN PHYSICAL INFRASTRUCTURE	142
9. ENVIRONMENTAL COST BENEFIT ANALYSIS	8.4	IMPROVEMENT IN SOCIAL INFRASTRUCTURE	142
	8.5	OTHER TANGIBLE BENEFITS	142
10. LINVINONIVILINIALIVIANAULIVILINI I LAIN	<i>9.</i> 10.	ENVIRONMENTAL COST BENEFIT ANALYSIS	

		10.0
145	0.1 ENVIRONMENTAL POLICY	10.1
146	0.2 LAND ENVIRONMENT MANAGEMENT	10.2
146	0.3 SOIL MANAGEMENT	10.3
146	0.4 WATER MANAGEMENT	10.4
147	0.5 AIR QUALITY MANAGEMENT	10.5
147	0.6 NOISE POLLUTION CONTROL	10.6
148	0.7 GROUND VIBRATION AND FLY ROCK CONTROL	10.7
148	0.8 BIOLOGICAL ENVIRONMENT MANAGEMENT	10.8
149	0.9 OCCUPATIONAL SAFETY & HEALTH MANAGEMENT	10.9
	0.10 CONCLUSION –	
156	SUMMARY AND CONCLUSION	11. S
157	P. DISCLOSURE OF CONSULTANT	12.

LIST OF TABLES

TABLE 1.1: SALIENT FEATURES OF THE PROPOSED PROJECT	3
TABLE 1.2: DETAILS OF PROJECT PROPONENT	3
TABLE 1.3: BRIEF DESCRIPTION OF THE PROJECT	3
TABLE 1.4: ENVIRONMENT ATTRIBUTES	8
TABLE 2.1: SITE CONNECTIVITY	9
TABLE 2.2: BOUNDARY CO-ORDINATES OF PROJECT AREA	9
TABLE 2.3: LAND USE PATTERN	17
TABLE 2.4: OPERATIONAL DETAILS FOR PROPOSED PROJECT	17
TABLE 2.5: RANGE OF AQUIFER PARAMETERS	19
TABLE 2.6: GROUND WATER LEVEL VARIATIONS OF COIMBATORE DISTRICT	20
TABLE 2.7: AVAILABLE GEOLOGICAL RESOURCES OF PROPOSED PROJECT	25
TABLE 2.8: YEAR-WISE PRODUCTION PLAN	25
TABLE 2.9: ULTIMATE PIT DIMENSION	25
TABLE 2.10: MINE CLOSURE BUDGET	27
TABLE 2.11 PROPOSED MACHINERY DEPLOYMENT	28
TABLE.2.12: TRAFFIC SURVEY LOCATIONS	29
TABLE 2.13: EXISTING TRAFFIC VOLUME	29
TABLE 2.14: ROUGH STONE & GRAVEL HOURLY TRANSPORTATION REQUIREMENT	29
TABLE 2.15: SUMMARY OF TRAFFIC VOLUME	30
TABLE 2.16: WATER REQUIREMENT	30
TABLE 2.17: PROJECT COST OF PROPOSED PROJECT	31
TABLE 2.18: PROPOSED MANPOWER DEPLOYMENT	31
TABLE 2.19: EXPECTED TIME SCHEDULE	31
TABLE 3.1: MONITORING ATTRIBUTES AND FREQUENCY OF MONITORING	33
TABLE 3.2: LAND USE / LAND COVER TABLE 10 KM RADIUS	34
TABLE 3.3: DETAILS OF ENVIRONMENT SENSITIVITY AROUND THE CLUSTER	36
TABLE 3.4: NEARBY WATER BODIES FROM THE PROPOSED PROJECT SITE	37
TABLE 3.5: SOIL SAMPLING LOCATIONS	37
TABLE 3.6: METHODOLOGY OF SAMPLING COLLECTION	
TABLE 3.7: SOIL QUALITY OF THE STUDY AREA	40

TABLE 3.8: WATER SAMPLING LOCATIONS	41
TABLE 3.9: GROUND WATER SAMPLING RESULTS	43
TABLE 3.10: SURFACE WATER SAMPLING RESULTS	44
TABLE 3.11: PRE-MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS	48
TABLE 3.12: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS	52
TABLE 3.13: RAINFALL DATA	58
TABLE 3.14: METEOROLOGICAL DATA RECORDED AT SITE	59
TABLE 3.15: METHODOLOGY AND INSTRUMENT USED FOR AAQ MONITORING	60
TABLE 3.16: NATIONAL AMBIENT AIR QUALITY STANDARDS	60
TABLE 3.17: AMBIENT AIR QUALITY (AAQ) MONITORING LOCATIONS	61
TABLE 3.18: AMBIENT AIR QUALITY DATA LOCATION AAQ1	63
TABLE 3.19: AMBIENT AIR QUALITY DATA LOCATION AAQ2	64
TABLE 3.20: AMBIENT AIR QUALITY DATA LOCATION AAQ3	65
TABLE 3.21: AMBIENT AIR QUALITY DATA LOCATION AAQ4	66
TABLE 3.22: AMBIENT AIR QUALITY DATA LOCATION AAQ5	67
TABLE 3.23: AMBIENT AIR QUALITY DATA LOCATION AAQ6	68
TABLE 3.24: AMBIENT AIR QUALITY DATA LOCATION AAQ7	69
TABLE 3.25: AMBIENT AIR QUALITY DATA LOCATION AAQ8	70
TABLE 3.26: SUMMARY OF AAQ – 1 to AAQ – 8	71
TABLE 3.27: ABSTRACT OF AMBIENT AIR QUALITY DATA	72
TABLE 3.28: AVERAGE FUGITIVE DUST SAMPLE VALUES	75
TABLE 3.29: FUGITIVE DUST SAMPLE VALUES IN μg/m³	75
TABLE 3.30: DETAILS OF SURFACE NOISE MONITORING LOCATIONS	76
TABLE 3.31: AMBIENT NOISE QUALITY RESULT	79
TABLE 3.32: FLORA IN CORE ZONE	84
TABLE 3.33: FLORA IN BUFFER ZONE	
TABLE 3.34: AQUATIC FLORA	88
TABLE 3.35: FAUNA IN CORE ZONE	90
TABLE 3.36: FAUNA IN BUFFER ZONE	91
TABLE 3.37: MOODUTHURAI VILLAGE POPULATION FACTS	95
TABLE 3.38: DEMOGRAPHICS POPULATION OF VILLAGE MOODUTHURAI	95
TABLE 3.39: MOODUTHURAI VILLAGE CENSUS DATA	96

TABLE 3.40: MOODUTHURAI WORKING POPULATION	96
TABLE 3.41: POPULATION DATA OF STUDY AREA	97
TABLE 3.42: WORKERS PROFILE OF STUDY AREA	98
TABLE 3.43: COMMUNICATION & TRANSPORT FACILITIES IN THE STUDY AREA	99
TABLE 3.44: WATER & DRAINAGE FACILITIES IN THE STUDY AREA	100
TABLE 3.45: OTHER FACILITIES IN THE STUDY AREA	101
TABLE 3.46: EDUCATIONAL FACILITIES IN THE STUDY AREA	102
TABLE 3.47: MEDICAL FACILITIES IN THE STUDY AREA	103
TABLE 4.1: WATER REQUIREMENTS	107
TABLE 4.2: ESTIMATED EMISSION RATE FOR PM ₁₀	109
TABLE 4.3: ESTIMATED EMISSION RATE FOR SO ₂	109
TABLE 4.4: ESTIMATED EMISSION RATE FOR NO _X	109
TABLE 4.5: INCREMENTAL & RESULTANT GLC OF PM ₁₀	111
TABLE 4.6: INCREMENTAL & RESULTANT GLC OF PM _{2.5}	112
TABLE 4.7: INCREMENTAL & RESULTANT GLC OF SO ₂	112
TABLE 4.8: INCREMENTAL & RESULTANT GLC OF NO _X	113
TABLE 4.9: INCREMENTAL & RESULTANT GLC OF FUGITIVE DUST	113
TABLE 4.10: ACTIVITY AND NOISE LEVEL PRODUCED BY MACHINERY	115
TABLE 4.11: PREDICTED NOISE INCREMENTAL VALUES	116
TABLE 4.12: PREDICTED PPV VALUES DUE TO BLASTING	117
TABLE 4.13: RECOMMENDED SPECIES FOR GREENBELT DEVELOPMENT PLAN	119
TABLE 4.14: GREENBELT DEVELOPMENT PLAN	119
TABLE 4.15: BUDGET FOR GREENBELT DEVELOPMENT PLAN	119
TABLE 4.16: ECOLOGICAL IMPACT ASSESSMENTS	121
TABLE 4.17: ANTICIPATED IMPACT OF ECOLOGY AND BIODIVERSITY	121
TABLE 6.1 IMPLEMENTATION SCHEDULE FOR PROPOSED PROJECT	127
TABLE 6.2: PROPOSED MONITORING SCHEDULE POST EC	128
TABLE 6.3 ENVIRONMENT MONITORING BUDGET	129
TABLE 7.1 RISK ASSESSMENT& CONTROL MEASURES	130
TABLE 7.2: PROPOSED TEAMS TO DEAL WITH EMERGENCY SITUATION	133
TABLE 7.3: PROPOSED FIRE EXTINGUISHERS AT DIFFERENT LOCATIONS	134
TABLE 7.4: LIST OF QUARRIES WITHIN 500 METER RADIUS	135

TABLE 7.5: SALIENT FEATURES OF PROPOSAL	136
TABLE 7.6: SALIENT FEATURES OF EXISTING QUARRY "E1"	137
TABLE 7.7: CUMULATIVE PRODUCTION LOAD OF ROUGH STONE	
TABLE 7.8: CUMULATIVE PRODUCTION LOAD OF GRAVEL	137
TABLE 7.9: CUMULATIVE PRODUCTION LOAD OF WEATHERED ROCK	137
TABLE 7.10: EMISSION ESTIMATION FROM QUARRIES WITHIN 500 METER RADIUS	138
TABLE 7.11: INCREMENTAL & RESULTANT GLC WITHIN CLUSTER	139
TABLE 7.12: PREDICTED NOISE INCREMENTAL VALUES FROM CLUSTER	139
TABLE 7.13: NEAREST HABITATION FROM EACH MINE	140
TABLE 7.14: GROUND VIBRATIONS FROM CLUSTER QUARRIES	140
TABLE 7.15: SOCIO ECONOMIC BENEFITS FROM CLUSTER QUARRIES	140
TABLE 7.16: EMPLOYMENT BENEFITS FROM CLUSTER QUARRIES	141
TABLE 7.17: GREENBELT DEVELOPMENT BENEFITS FROM 2 MINES	141
TABLE 7.18: ACTION PLAN TO MANAGE PLASTIC WASTE	141
TABLE 8.1: CER – ACTION PLAN	143
TABLE 10.1: PROPOSED CONTROLS FOR LAND ENVIRONMENT	146
TABLE 10.2: PROPOSED CONTROLS FOR SOIL MANAGEMENT	146
TABLE 10.3: PROPOSED CONTROLS FOR WATER ENVIRONMENT	147
TABLE 10.4: PROPOSED CONTROLS FOR AIR ENVIRONMENT	147
TABLE 10.5: PROPOSED CONTROLS FOR NOISE ENVIRONMENT	147
TABLE 10.6: PROPOSED CONTROLS FOR GROUND VIBRATIONS & FLY ROCK	148
TABLE 10.7 PROPOSED GREENBELT ACTIVITIES FOR 5 YEAR PLAN PERIOD	149
TABLE 10.8: RECOMMENDED SPECIES TO PLANT IN THE GREENBELT	149
TABLE 10.9: MEDICAL EXAMINATION SCHEDULE	150
TABLE 10.10: LIST OF PERIODICAL TRAININGS PROPOSED FOR EMPLOYEES	152
TABLE 10.11: EMP BUDGET FOR PROPOSED PROJECT	153

LIST OF FIGURES

FIGURE1.1: SATELLITE IMAGERY CLUSTER QUARRIES	2
FIGURE 1.2: KEY MAP SHOWING THE LOCATION OF THE CLUSTER SITE	5
FIGURE 1.3: TOPOSHEET MAP OF THE STUDY AREA 10 KM RADIUS	6
FIGURE 2.1(A): GOOGLE IMAGE OF THE PROJECT AREA	11
FIGURE 2.2: QUARRY LEASE PLAN & SURFACE PLAN	12
FIGURE 2.3: VILLAGE MAP SUPERIMPOSED ON GOOGLE EARTH IMAGE	13
FIGURE 2.4: IMAGE SHOWING SURFACE FEATURES AROUND 10 KM RADIUS	14
FIGURE 2.5: IMAGE SHOWING SURFACE FEATURES AROUND 5KM RADIUS	15
FIGURE 2.6: IMAGE SHOWING SURFACE FEATURES AROUND 1 KM RADIUS	16
FIGURE 2.7: GROUND WATER LEVEL VARIATIONS OF COIMBATORE DISTRICT	20
FIGURE 2.8: REGIONAL GEOLOGY MAP	21
FIGURE 2.9: GEOMORPHOLOGY MAP	22
FIGURE 2.10: TOPOGRAPHY, GEOLOGICAL, YEAR-WISE DEVELOPMENT PRODUCTION PLAI SECTIONS	
FIGURE 2.11: CLOSURE PLAN AND SECTIONS	24
FIGURE.2.12: MINERAL TRANSPORTATION ROUTE MAP	30
FIGURE 3.1: PIE DIAGRAM OF LAND USE AND LAND IN STUDY AREA	34
FIGURE 3.2: LAND USE LAND COVER MAP 10KM RADIUS	35
FIGURE 3.3: SOIL SAMPLING LOCATIONS AROUND 10 KM RADIUS	38
FIGURE 3.4: SOIL MAP	39
FIGURE 3.5: WATER SAMPLING LOCATIONS AROUND 10 KM RADIUS	42
FIGURE 3.6: DRAINAGE MAP AROUND 10 KM RADIUS FROM PROJECT SITE	46
FIGURE 3.7: GROUND WATER PROSPECT MAP	47
FIGURE 3.8: BAR CHART OF PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM	48
FIGURE 3.9: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – MAR 2021	49
FIGURE 3.10: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – APR 2021	50
FIGURE 3.11: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – MAY 2021	51
FIGURE 3.12: BAR CHART OF PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM	52
FIGURE 3.13: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – MAR 2021	53
FIGURE 3.14: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – APR 2021	54
FIGURE 3.15: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – MAY 2021	55

ENGLINE A 17 MININD COLD I LA CD L M	
FIGURE 3.16: WINDROSE DIAGRAM	59
FIGURE 3.17: AMBIENT AIR QUALITY LOCATIONS AROUND 10 KM RADIUS	62
FIGURE 3.18: BAR DIAGRAM OF SUMMARY OF AAQ 1 – AAQ 8	72
FIGURE 3.19: BAR DIAGRAM OF PARTICULATE MATTER PM _{2.5}	73
FIGURE 3.20: BAR DIAGRAM OF PARTICULATE MATTER PM ₁₀	73
FIGURE 3.21: BAR DIAGRAM OF GASEOUS POLLUTANT SO ₂	74
FIGURE 3.22: BAR DIAGRAM OF GASEOUS POLLUTANT NO _x	74
FIGURE 3.23: LINE DIAGRAM OF AVERAGE SPM VALUES	75
FIGURE 3.24: BAR DIAGRAM OF SPM VALUES	76
FIGURE 3.25: NOISE MONITORING STATIONS AROUND 10 KM RADIUS	78
FIGURE 3.26: DAY TIME NOISE LEVELS IN CORE AND BUFFER ZONE	79
FIGURE 3.27: NIGHT TIME NOISE LEVELS IN CORE AND BUFFER ZONE	80
FIGURE 3.28: A SCHEMATIC DIAGRAM FOR FLORAL RANDOM SAMPLING	82
FIGURE 3.29: FLORAL DIVERSITY IN CORE ZONE	93
FIGURE 3.30: FLORAL DIVERSITY IN BUFFER ZONE	93
FIGURE 3.31: FAUNA DIVERSITY IN CORE ZONE	93
FIGURE 3.32: FAUNA DIVERSITY IN BUFFER ZONE	94
FIGURE 4.1: AERMOD TERRAIN MAP	110
FIGURE 4.2: PREDICTED INCREMENTAL CONCENTRATION OF PM ₁₀	110
FIGURE 4.3: PREDICTED INCREMENTAL CONCENTRATION OF SO ₂	110
FIGURE 4.4: PREDICTED INCREMENTAL CONCENTRATION OF NO _X	111
FIGURE 4.5: PREDICTED INCREMENTAL CONCENTRATION OF FUGITIVE DUST	111
FIGURE 4.6: GROUND VIBRATION PREDICTION	117
FIGURE 6.1: PROPOSED ENVIRONMENTAL MONITORING CELL	127
FIGURE 7.1: DISASTER MANAGEMENT TEAM LAYOUT	132
FIGURE 10.1: PERSONAL PROTECTIVE EQUIPMENT TO THE MINE WORKERS	151

1. INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) is the management tool to ensure the sustainable development and it is a process, used to identify the environmental, social and economic impacts of a project prior to decision-making. It is a decision-making tool, which guides the decision makers in taking appropriate decisions for any project. EIA systematically examines both beneficial and adverse consequences of the project and ensures that these impacts are taken into account during the project designing. It also reduces conflicts by promoting community participation, information, decision makers, and helps in developing the base for environmentally sound project.

Rough Stone & Gravel is the major requirements for construction industry. This EIA report is prepared by considering Cumulative load of proposed & existing quarries of Mooduthurai Rough Stone & Gravel Quarry consisting of Three Proposed and one Existing Quarry with total extent of Cluster of 9.28.5 ha in Mooduthurai Village, Mettupalayam Taluk, Coimbatore District and Tamil Nadu State, cluster area calculated as per MoEF & CC Notification S.O. 2269(E) Dated 1st July 2016.

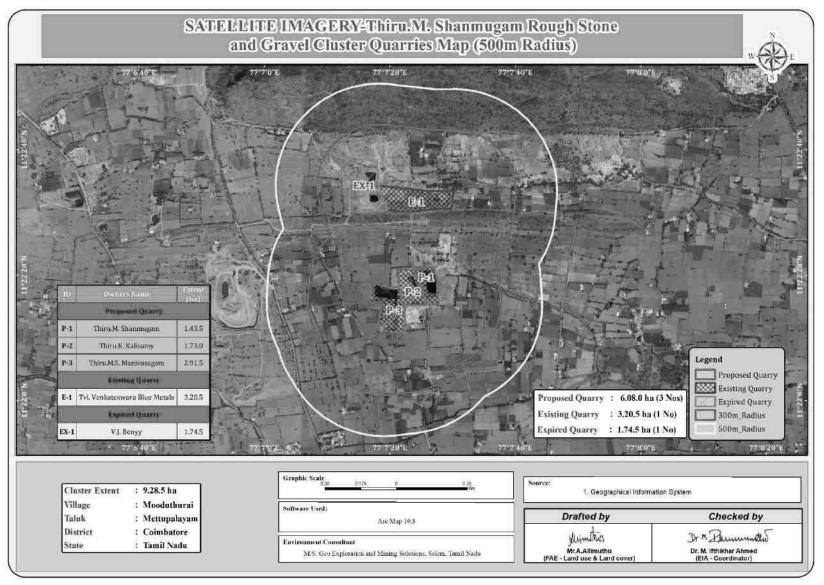
This EIA Report is prepared in compliance with ToR obtained vide Letter No. SEIAA-TN/F.No.9033/SEAC/ToR-1155/2022 Dated: 06.06.2022.

The Baseline Monitoring study has been carried out during the period of March to May 2021 and this EIA and EMP report is prepared for considering cumulative impacts arising out of this project, the Cumulative Environmental Impact Assessment study is undertaken, which is followed by preparation of a detailed Environmental Management Plan (EMP) individually to minimize those adverse impacts.

The total Mineable reserves is 95,546m³ of Rough Stone, 1,736m³ of weathered rock and 2,294m³ of Gravel upto the depth of 44m (2m Gravel + 2m Weathered rock + 40m Rough stone)

During the Appraisal by the State Level Environmental Appraisal committee (SEAC) granted the depth upto 44m bgl by considering hydrological regime of the area the same has been accepted and the report is prepared for quarrying Rough stone and Gravel upto the depth of 44m bgl (2m Gravel + 2m Weathered rock + 40m Rough stone) based on the ToR the quantity of Rough stone is 95,546m³, quantity of Gravel is 2,294 and Weathered rock is 1,736m³ since the EIA and EMP report is prepared for the quantity and depth as per the ToR.

1.1 PURPOSE OF THE REPORT


The Ministry of Environment and Forests, Govt. of India, through its EIA notification S.O. 1533(E) of 14^{th} September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14^{th} August 2018, Mining Projects are classified under two categories i.e., A (> 100 Ha) and B (\leq 100 Ha), and Schematic Presentation of Requirements on Environmental Clearance of Minor Minerals including cluster situation in Appendix–XI.

Now, as per Order Dated: 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018 clarified the requirement for EIA, EMP and therefore, Public Consultation for all areas from 5 to 25 ha falling in Category B- 1 and appraised by SEAC/ SEIAA as well as for cluster situation.

The proposed project is categorized under category "B1" Activity 1(a) (mining lease area in cluster situation) and will be considered at SEIAA – TN after conducting Public Hearing and Submission of EIA/EMP Report for Grant of Environmental Clearance.

"Draft EIA report prepared on the basis of ToR Issued and Standard Deemed ToR for carrying out public hearing for the grant of Environmental Clearance from SEIAA, Tamil Nadu"

FIGURE1.1: SATELLITE IMAGERY CLUSTER QUARRIES

1.2 IDENTIFICATION OF PROJECT AND PROJECT PROPONENT

1.2.1 Identification of Project

- The proposal for Quarrying Rough stone in opencast Mechanized method
- Thiru. M. Shanmugam applied for Rough Stone and Gravel quarry lease dated 11.08.2021.
- The application was processed by the District Collector, Coimbatore and issued Precise Area Communication Letter vide letter Rc.No. 978/Kanimam/2021 Dated: 03.01.2022.
- The Mining Plan was prepared under the provision of amendment rule 41 and 42 of Tamil Nadu Minor Mineral Concession Rules, 1959 and submitted for approval to Department of Geology and Mining, Coimbatore District.
- The Mining Plan was approved by Assistant Director, Department of Geology and Mining, Coimbatore District Letter Rc.No. 978/Mines/2021 Dated: 25.01.2022.
- There are three proposed and one Existing quarries located within the radius of 500m as certified by Joint Director/ Assistant Director (i/c), Department of Geology, Department of Geology and Mining, Coimbatore District vide Letter Rc. No 978/Mines/2021 Dated: 21.10.2022.

TABLE 1.1: SALIENT FEATURES OF THE PROPOSED PROJECT

Name of the Project	Thiru. M. Shanmugam Rough Stone & Gravel Quarry Project
S.F. No.	410/1A & 410/1B
Extent	1.43.5 ha
Land Type	Patta Land
Village, Taluk and District	Mooduthurai Village, Mettupalayam Taluk, Coimbatore District

Source: Approved Mining Plan.

1.2.2 Identification of Project Proponent

TABLE 1.2: DETAILS OF PROJECT PROPONENT

Name of the Company	Thiru. M. Shanmugam	
	S/o. Muthusamy Gounder,	
A 11	No.36, Kaithemillath Street, Mathampalayam Road,	
Address	Punjai Puliampatti Post, Sathiyamangalam Taluk,	
	Erode District, Tamil Nadu State – 638 459.	
Mobile	+91 98427 75573	
Status	Proprietor	

Source: Approved Mining Plan

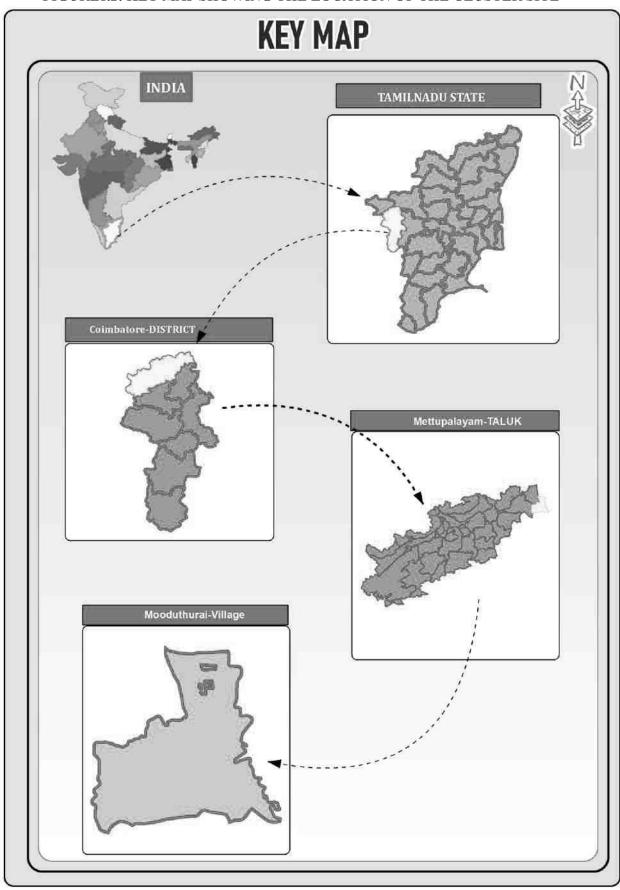
1.3 BRIEF DESCRIPTION OF THE PROJECT

1.3.1 Nature and Size of the Project

The quarrying operation is proposed to be carried out by Opencast Mechanized Mining Method by deploying Heavy Earth Moving Machineries without deep hole drilling and blasting by Jack Hammer Drilling & Slurry Explosive during blasting by forming 5.0 m bench height and 5.0 m bench width. Excavator and tippers are proposed for Loading and transportation. Rock Breakers are proposed to be deployed to avoid secondary blasting.

TABLE 1.3: BRIEF DESCRIPTION OF THE PROJECT

Name of the Quarry	Thiru. M. Shanmugam Rough Stone & Gravel Quarry		
Toposheet No	58 – E/03		
Latitude between	11°22'15.20"N to 11°22'21.24"N		
Longitude between	7	7°07'23.77"E to 77°07'27.7	77"E
Highest Elevation	320 m AMSL		
Depth restricted in the ToR	44 m bgl		
Geological Resources	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³
Geological Resources	4,09,432	8,068	8,068
Mineable Reserves	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³
Willieable Reserves	95,546	1,736	2,294
Proposed quantity of reserves for	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³
production in m ³	95,546	1,736	2,294
Existing Pit Dimension	Pit I - 62m (L) x 75m (W) x 17m (D)		
Existing Fit Difficusion	Pit II - 74m (L) x 62m (W) x 22m (D)		
Ultimate Pit Dimension	168m (L) x 75m (W) x 44m		
Water Level in the surrounds area	65 - 70 m bgl		


Method of Mining	Opencast Mechanized Mining Method involving drilling and blasting		
	The lease applied area is flat Terrain. The area has gentle sloping		
	towards Southeast side. The altitude of the area is 320 m above mean		
	sea level. The area is covered by 2m thickness of Gravel with 2m		
Topography	weathered Rock and followed by Massive Charnockite is found after 4m		
	(Gravel + Weathered Formation) which is clearly inferred from the		
	existing quarrying pit.		
	Jack Hammer	2 Nos	
Machinery proposed	Compressor	1 No	
Machinery proposed	Hydraulic Excavator	1 No	
	Tippers	2 Nos	
	Controlled Blasting Method by shot hole drilling and small dia of 25mm		
Blasting Method	slurry explosive are proposed to be used for shattering and heaving		
Blasting Wethod	effect for removal and winning of Rough Stone. No deep hole drilling is		
	proposed.		
Proposed Manpower Deployment	15 Nos		
Project Cost	Rs.27,75,000/-		
CER Cost @ 2% of Project Cost	Rs 56,000/-		
Total Project Cost	Rs.28,31,000/-		
	Lake	1.4km SW	
	Parusapalayam Lake	2.7km NE	
Nearby Water Bodies	Nallur Lake	4.6km NE	
	Sungai Lake	6.2km NE	
	Bhavanisagar Reservoir	6.8km NW	
Greenbelt Development Plan	Proposed to plant 200 trees in 1500 Sq.m area in the 7.5 m Safety Zone		
Proposed Water Requirement	2.0 KLD		
Nearest Habitation	330m South		

Source: Approved Mining Plan

1.3.2 Location of the Project

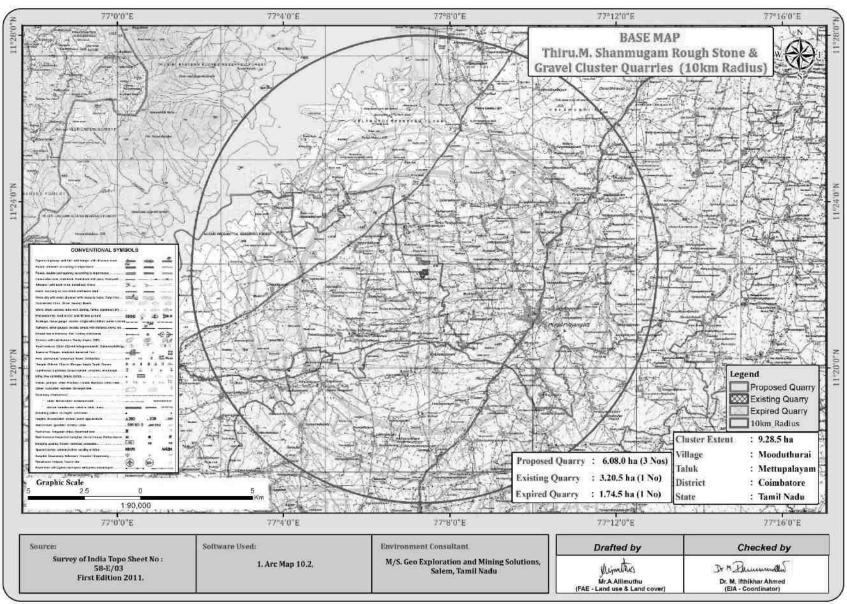

- The proposed quarry project falls in Mooduthurai Village, Mettupalayam Taluk and Coimbatore District.
- Thiru. M. Shanmugam cluster is located about 3.0 km Northwest side of Mooduthurai Village
- The Mooduthurai Village is located about 24 km Northeast of Mettupalayam Taluk.
- The area is marked in the Survey of India, Toposheet No. 58 E/03. The area lies between the Latitudes of 11°22'15.20"N to 11°22'21.24"N and Longitudes of 77°07'23.77"E to 77°07'27.77"E.

FIGURE 1.2: KEY MAP SHOWING THE LOCATION OF THE CLUSTER SITE

Source: Survey of India Toposheet 58 – E/03

FIGURE 1.3: TOPOSHEET MAP OF THE STUDY AREA 10 KM RADIUS

1.4 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages in sequential order are given below:-

- 1. Screening,
- 2. Scoping
- 3. Public consultation &
- 4. Appraisal

SCREENING

- The proponent applied for Rough Stone and Gravel Quarry Lease Dated: 11.08.2021.
- Precise Area Communication Letter was issued by the District Collector, Coimbatore R.C. 978/Mines/2021
 Dated: 03.01.2022.
- The Mining Plan was prepared by Recognized Qualified Person and approved by Assistant Director, Geology and Mining, Coimbatore District, Vide R.C.No. 978/Mines/2021 Dated:25.01.2022.
- The proposed project falls under "B1" Category as per Order Dated: 04.09.2018 & 13.09.2018 passed by Hon'ble National Green tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.
- Proponent applied for ToR for Environmental Clearance vide online Proposal No. SIA/TN/MIN/72419/2022, Dated: 21.02.2022.

SCOPING

- The proposal was placed in 273th SEAC meeting held on 14/05/2022 and the committee recommended for issue of ToR.
- The proposal was considered in 518th SEIAA meeting held on 06/06/2022 and issued ToR vide Letter No SEIAA-TN/F.No. 9033/SEAC/ToR-1155/2022 Dated 06.06.2022.

PUBLIC CONSULTATION -

Application to The Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA/ EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

APPRAISAL -

Appraisal is the detailed scrutiny by the State Expert Appraisal Committee (SEAC) of the application and other documents like the final EIA & EMP Report, outcome of the Public Consultations including Public Hearing Proceedings, submitted by the proponent to the regulatory authority concerned for grant of environmental clearance. The report has been prepared using the following references:

- Guidance Manual of Environmental Impact Assessment for Mining of Minerals, Ministry of Environment and Forests, February, 2010
- EIA Notification, 14thSeptember, 2006
- Lr No. SEIAA-TN/F.No. 9033/SEAC/ToR-1155/2022 Dated 06.06.2022.
- Approved Mining Plan of Proposed Project.

1.5 TERMS OF REFERENCE (ToR)

Compliance to ToR issued vide –

■ ToR Lr No. SEIAA-TN/F.No. 9033/SEAC/ToR-1155/2022 Dated 06.06.2022.

Area detailed in Page No. I - IX.

1.6 POST ENVIRONMENT CLEARANCE MONITORING

The project proponent shall submit a half-yearly compliance report in respect of stipulated Environmental Clearance terms and conditions to MoEF & CC Regional Office & SEIAA after grant of EC on 1st June and 1st December of each calendar year as per MoEF & CC Notification S.O. 5845 (E) Dated: 26.11.2018.

1.7 GENERIC STRUCTURE OF EIA DOCUMENT

The overall contents of the EIA report follow the list of contents prescribed in the EIA Notification 2006 and the "Environmental Impact Assessment Guidance Manual for Mining of Minerals" published by MoEF & CC.

1.8 THE SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact in the study area due to cluster quarries and formulate the effective mitigation measures for each individual leases. A detailed account of the emission sources, emissions control equipment, background Air quality levels, Meteorological measurements, Dispersion model and all other aspects of pollution like effluent discharge, Dust generation etc., have been discussed in this report. The baseline monitoring study has been carried out during the summer season (March – May 2021) for various environmental components so as to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project.

TABLE 1.4: ENVIRONMENT ATTRIBUTES

Sl.No.	Attributes	Parameters	Source and Frequency
1	Ambient Air Quality	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂	Continuous 24-hourly samples twice a week for three months at 8 locations (1 Core & 7 Buffer)
2	Meteorology	Wind speed and direction, temperature, relative humidity and rainfall	Near project site continuous for three months with hourly recording and from secondary sources of IMD station
3	Water quality	Physical, Chemical and Bacteriological parameters	Grab samples were collected at 6 locations – 5 ground water and 1 surface water samples; once during study period.
4	Ecology	Existing terrestrial and aquatic flora and fauna within 10 km radius circle.	Limited primary survey and secondary data was collected from the Forest department.
5	Noise levels	Noise levels in dB(A)	8 locations – data monitored once for 24 hours during EIA study
6	Soil Characteristics	Physical and Chemical Parameters	Once at 6 locations during study period
7	Land use	Existing land use for different categories	Based on Survey of India topographical sheet and satellite imagery and primary survey.
8	Socio-Economic Aspects	Socio-economic and demographic characteristics, worker characteristics	Based on primary survey and secondary sources data like census of India 2011.
9	Hydrology	Drainage pattern of the area, nature of streams, aquifer characteristics, recharge and discharge areas	Based on data collected from secondary sources as well as hydro-geology study report prepared.
10	Risk assessment and Disaster Management Plan	Identify areas where disaster can occur by fires and explosions and release of toxic substances	Based on the findings of Risk analysis done for the risk associated with mining.

Source: Onsite Monitoring Data/Sampling by Enviro – Tech Services, Ghaziabad (U.P)

The data has been collected as per the requirement of the ToR issued by SEIAA – TN.

1.8.1 Regulatory Compliance & Applicable Laws/Regulations

- Application for Quarrying Lease as per Tamil Nadu Minor Mineral Concession Rules, 1959
- Obtained Precise Area Communication Letter as per Tamil Nadu Minor Mineral Concession Rules, 1959 for Preparation of Mining Plan and obtaining Environmental Clearance
- The Mining Plan has been approved under Rule 41 & 42 as amended of Tamil Nadu Minor Mineral Concession Rules, 1959
- ToR Lr No. SEIAA-TN/F.No. 9033/SEAC/ToR-1155/2022 Dated 06.06.2022.

2. PROJECT DESCRIPTION

2.0 GENERAL

The Proposed Rough Stone and Gravel Quarry requires Environmental Clearance. There is Three proposed and one existing quarry forming a cluster; calculated as per MoEF & CC Notification S.O. 2269(E) Dated 1st July 2016 and the total extent of cluster is 9.28.5 ha

As the extent of cluster are more than 5 ha, the proposal falls under B1 Category as per the Order Dated: 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018, and requirement for EIA, EMP and Public Consultation for obtaining Environmental Clearance.

2.1 DESCRIPTION OF THE PROJECT

The proposed project is site specific and there is no additional area required for this project. There is no effluent generation/discharge from the proposed quarries.

Rough Stone is proposed to be excavated by opencast mechanized method involving splitting of rock mass of considerable volume from the parent rock mass by jackhammer drilling and blasting, hydraulic excavators are used for loading the Rough Stone from pithead to the needy crushers and rock breakers to avoid secondary blasting.

2.2 LOCATION OF THE PROJECT

- The proposed quarry project falls in Mooduthurai Village, Mettupalayam Taluk and Coimbatore District.
- Thiru. M. Shanmugam cluster is located about 3.0 km Northwest side of Mooduthurai Village
- The Mooduthurai Village is located about 24 km Northeast of Mettupalayam Taluk.
- The area is marked in the Survey of India, Toposheet No. 58 E/03. The area lies between the Latitudes of 11°22'15.20"N to 11°22'21.24"N and Longitudes of 77°07'23.77"E to 77°07'27.77"E.

The project does not fall within 10 km radius of any Eco – sensitive zone, National Park, Tiger Reserve, Elephant Corridor and Biosphere Reserves.

TABLE 2.1: SITE CONNECTIVITY

Nearest Roadway	NH 948 – Coimbatore – Bengaluru – 5.0Km-SE SH 15– Sathiyamanagalam – Mettupalayam – 3.0Km-NW	
Nearest Village	Mooduthurai –3.0Km - SE	
Nearest Town	Puliyampatti – 5.0Km- SE	
Nearest Railway	Mettupalayam Railway Station - 22.0Km -SW	
Nearest Airport	Coimbatore Airport - 45.0 Km- SW	
Seaport	Kochi- 185 km – SW	

Source: Survey of India Toposheet

TABLE 2.2: BOUNDARY CO-ORDINATES OF PROJECT AREA

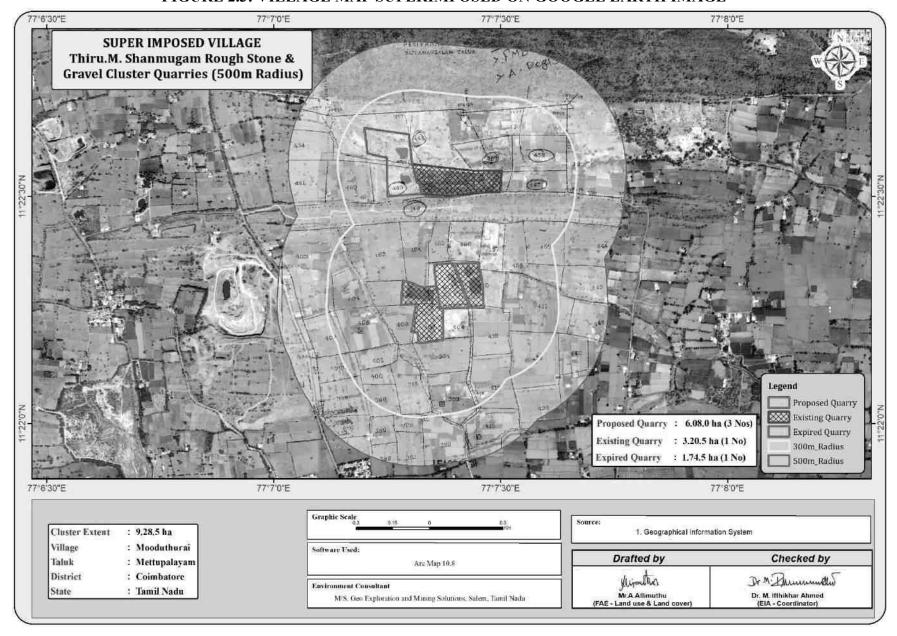
Boundary Pillar No.	Latitude	Longitude
1	11° 22' 15.34"N	77° 07' 26.09"E
2	11° 22' 21.02"N	77° 07' 23.77"E
3	11° 22' 21.24"N	77° 07' 27.12"E
4	11° 22' 20.19"N	77° 07' 27.12"E
5	11° 22' 20.17"N	77° 07' 27.31"E
6	11° 22' 18.78"N	77° 07' 27.56"E
7	11° 22' 15.20"N	77° 07' 27.77"E

Source: Approved Mining Plan

FIGURE 2.1: PROJECT SITE PHOTOGRAPHS

FIGURE 2.1A: FENCING PHOTOGRAPHS

FIGURE 2.1(A): GOOGLE IMAGE OF THE PROJECT AREA


Source: Superimposed on Google Earth Imagery

BOUNDARY CO-ORDINATES 1305 A LATITUDE LONGITUDE 1*22 15.34N 771 07 26.0919 1* 22* 21 (02*N 77/07/23/775 INDEX 1º 27 21-24 N 77 07 27 12 E 1527-2019"H Q.L. APPLIED AREA BOUNDARY 1°27 20.17 N 77° 07' 27.31'E 11" 22" 18.78"N 77" 07' 27.56'E 122 IS 201N DATUM: UTM-WGS84, ZONE 43 NORTH 466 RL320m 410/2 467 TTTTT QUARRY PIT # # SHRUBS 1200 N 7200 N QUARRY HAUL ROAD Pit-I = = APPROACH ROAD RL303m DIDEE CART TRACK BARBED WIRE FENCING 410/1A APPLICANT: Thiru. M. SHANMUGAM, S/o, Thiru. MUTHUSAMY GOUNDER, No.36, KAITHEMILLATH STREET, 410/1C 410/1B MATHAMPALAYAM ROAD. PUNJA PULIAMPATTI POST, SATHIYAMANGALAM TALUK ERODE DISTRICT - 638 459. Pit-II LOCATION OF Q.L.A AREA: S.F.NO's : 410/ 1A & 410/ 1B. 410/3 EXTENT 1.43.5 Ha. VILLAGE : MOODUTHURAL METTUPALAYAM. TALUK DISTRICT COMBATORE. : TAMILNADU. STATE PLATE NO - II DATE OF SURVEY: 05.01.2022 QUARRY LEASE PLAN & 1050 N SURFACE PLAN SCALE. 1:1000 PREPARED BY: 414 Existing Pit Dimension (max) Pit-I = 62mX75mX17(d) Pit-II = 74mX62mX22m(d) 412 THIS IS TO CERTIFY THAT THE INFORMATION IN FLATE IS TRUE AND CORRECT TO THE BEST OF KNOWLEDGE SASED UPON THE LEASE MAP AUTHENTICATED BY STATE GOVERNMENT

FIGURE 2.2: QUARRY LEASE PLAN & SURFACE PLAN

Source: Approved Mining Plan

FIGURE 2.3: VILLAGE MAP SUPERIMPOSED ON GOOGLE EARTH IMAGE

FIGURE 2.4: IMAGE SHOWING SURFACE FEATURES AROUND 10 KM RADIUS

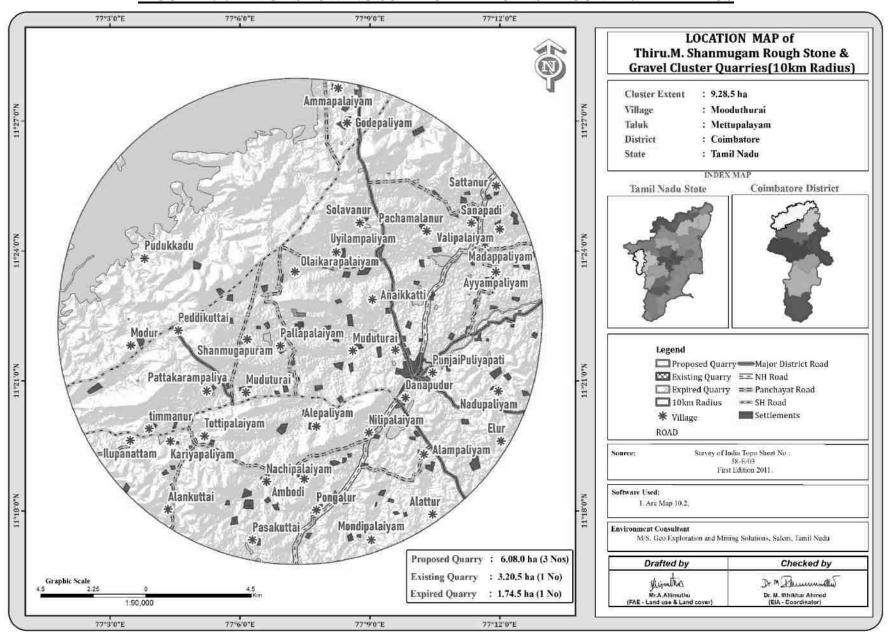
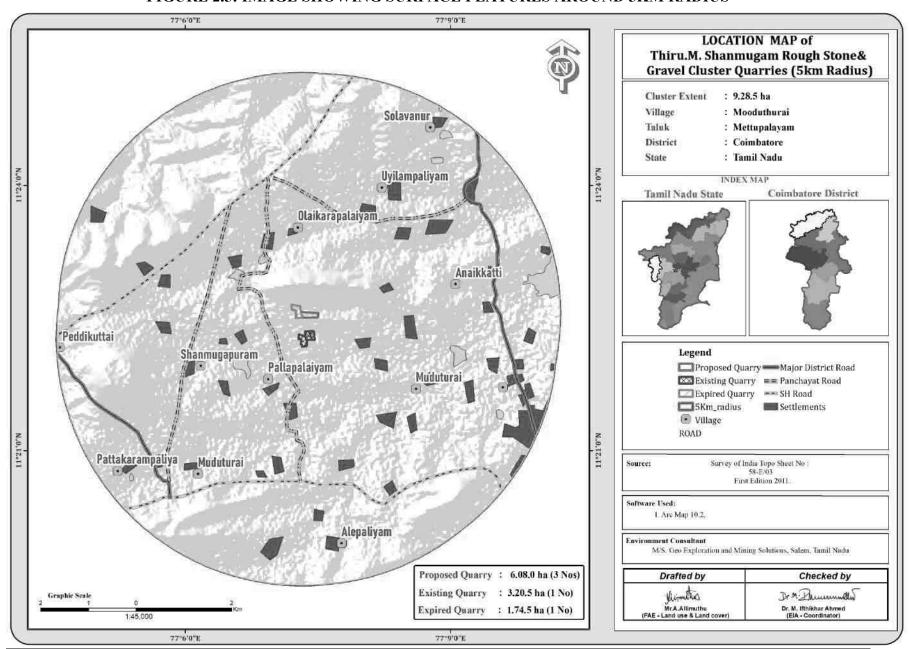
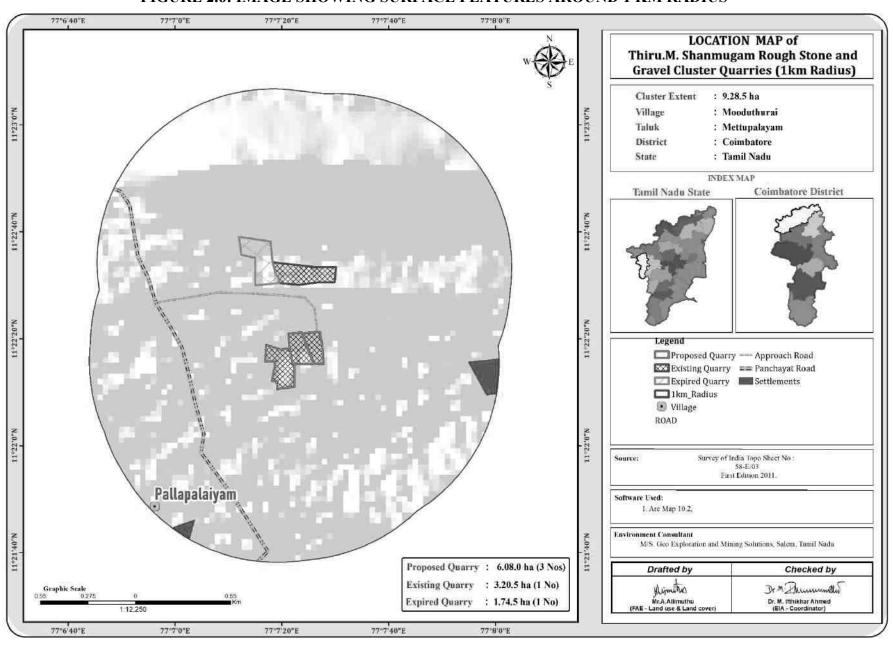




FIGURE 2.5: IMAGE SHOWING SURFACE FEATURES AROUND 5KM RADIUS

FIGURE 2.6: IMAGE SHOWING SURFACE FEATURES AROUND 1 KM RADIUS

2.2.1 Project Area

- Proposed Project is site specific
- There is No beneficiation or processing proposed inside the project area.
- There is no forest land involved in the proposed project and is devoid of major vegetation and trees.

TABLE 2.3: LAND USE PATTERN

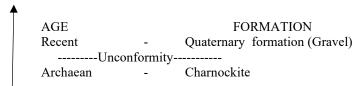
Description	Present area in (ha)	Area at the end of life of quarry (ha)
Area under quarry	0.88.0	1.01.0
Infrastructure	Nil	0.01.0
Roads	0.02.0	0.02.0
Green Belt	Nil	0.15.0
Un – utilized area	0.53.5	0.24.5
TOTAL 1.43.5		1.43.5

Source: Approved Mining Plan

2.2.2 Size or Magnitude of Operation

TABLE 2.4: OPERATIONAL DETAILS FOR PROPOSED PROJECT

		DETAILS		
PARTICULARS	Rough Stone (5Year Plan period)	Weathered Rock (3 Years Plan period	Gravel (3 Years Plan period)	
Geological Resources in m ³	4,09,432	8,068	8,068	
Mineable Reserves in m ³	95,546	1,736	2,294	
Production in m ³ as recommended in ToR	95,546	1,736	2,294	
Mining Plan Period		5 Years		
Number of Working Days		300 Days		
Production per day in m ³	64	2	3	
No of Lorry loads (6m³ per load)	11	1	1	
Total Depth of Mining	44 m bgl (2m Gravel + 2m Weathered rock + 40m Rough Stone)			


Source: Approved Mining Plan

2.3 GEOLOGY

2.3.1 Regional Geology

Peninsular gneiss forms the oldest rock formations, in which the massive formation of Charnockite lies over with rich accumulation of recent quaternary formation. On regional scale the Charnockite body N45°E to S45°W with dipping SE60°.

Stratigraphy of the area -

Peninsular Gneiss complex

Geologically, the district is covered by rocks belonging to Archean age comprising the khondalite group, Charnockite Group, migmatite group, Sathayamangalam group, Bhavani Group and Alkali complex of Proterozoic age and Recent to Late Plestocene rocks of Cainozoic age.

The Charnockite Group of rocks consisting of Charnockite, pyroxene granulites and associated magnetite quartzite, the Knodalite Group comprising gametiferous – sillimanite gneiss, calc-granulite, crystalline limestone, sillimanite quartzites and associated migmatitic gneisses. The rocks are restricted to the central and southern portions of the district, especially around Sulur, Madukkarai and Pollachi taluks.

The fissile homblende gneisses (Peninsular gneiss – younger phase) of Bhavani Group with enclaves of schistose, micaceous and amphibolitic rocks, fuchsitge – kyanite quartzites, ferruginous quartzite (Satyamangalam Group) intruded by a number of ultramafic and basic rocks and granites are seen in the Northern portions of the district especially around Mettupalayam and Northern areas of Coimbatore. The granites are Proterozoic age and occupy the Western end and Eastern Part of the District as separate bodies and are recognized as Maruthamalai Granite and Punjapuliyampatti Granites respectively. The quaternary alluvium is seen in the Western areas of Coimbatore town. The alluvium is more than 30m thick in the Chinnathadagam valley northwest of Coimbatore and in the Siruvani valley west of Coimbatore. Source: District Survey Report for Minor Minerals Coimbatore District – May 2019

https://www.tnmines.tn.gov.in/pdf/dsr/9.pdf

2.3.2 Local Geology:-

The study area follows the regional trend and mainly comprises of Hard Rock Formation as a homogeneous formation / Batholith formation of Charnockite. The project area is plain terrain, all the project areas is covered with Gravel 2m and Weathered rock 2m of thickness; Massive Charnockite formation is found after 4 m of gravel and weathered rock which is clearly inferred from the existing quarry pit.

2.3.3 Hydrogeology

Coimbatore District is underlain by crystalline metamorphic complex in the western parts of district and sedimentary tract in eastern side. An area of 4551 Sq.km is covered by crystalline rocks (63%) and 2671 Sq.km is covered by sediments (37%). The general geological sequence of formation is given below:

Quaternary - Laterites, Sands and Clays

Tertiary - Sandstone, Gravels and Clays

Cretaceous - Limestone, Calcareous Sandstone and Clay unconformity.

Archaean - Charnockites, Gneisses, Granites, Dolerites and Pegmatite

- The major part of the area is covered by metamorphic crystalline rocks of charnockite, granitic gneiss of Archaean age intruded by dolerite dykes and pegmatite veins. These rocks are highly metamorphosed and have been subjected to very severe folding, crushing and faulting.
- Ground Water occurs under the phreatic condition and wherever there are deep seated fractures, it occurs under semi-confined to confined conditions.
- Occurrence of Ground Water in hard rock depends upon the intensity and depth of weathering, fractures and fissures present in the rocks.
- Granites and gneisses yield moderately compared to the yield in Charnockites.
- Depth of well in hard rock generally ranges between 8 and 15m below ground level.
- Generally yield in open wells ranges from 30 to 250m³ /day and in bore well between 260 and 430 m³ /day. The weathered thickness varies from 2.5 m to 42m in general there are 3 to 5 fracture zones within 100 m and 1 to 4 fracture zones between 100 and 200 m.

Aquifer Systems:

Occurrence and storage of groundwater depend upon three factors viz., Geology, Topography and rainfall in the form of precipitation. Apart from Geology, wide variation in topographic profile and intensity of rainfall constitutes the prime factors of groundwater recharge. Aquifers are part of the more complex hydro geological system and the behaviour of the entire system cannot be interpreted easily. In hard rock terrain the occurrence of Ground Water is limited to top weathered, fissured and fractured zone which extends to maximum 30 m on an average it is about 10-15 m in Coimbatore District.

In Sedimentary formations, the presence of primary inter granular porosity enhances the transmitting capacity of groundwater where the yield will be appreciable. The sedimentary area which occupies the eastern part of the District along the coastal tract is more favourable for groundwater recharge. Ground Water occurs both in semi confined and confined conditions. A brief description of occurrence of groundwater in each formation is furnished below.

Alluvial Formations

In the river alluvium groundwater occurs under water table condition. The maximum thickness is 37 m and the average thickness of the aquifer is approximately 12 m. These formations are porous and permeable which have good water bearing zones.

Aquifer Parameters

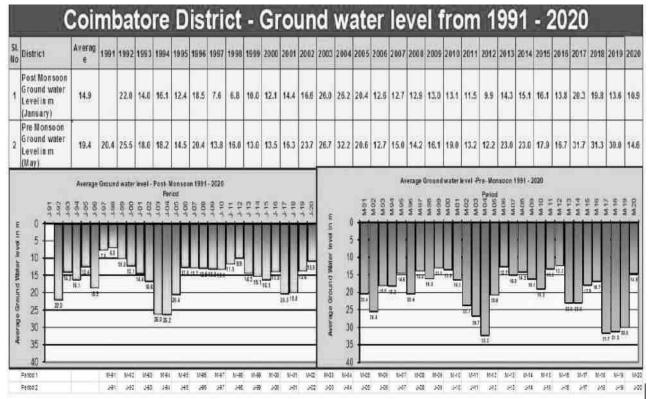

The thickness of aquifer in this district is highly erratic and varies between 15 m to 40 m below ground level. The inter granular Porosity is essentially dependent on the intensity and degree of weathering and fracture development in the bed rock. As discussed earlier deep weathering has developed in Gneissic formations and moderate weathering in charnockite formations. The range of aquifer parameters in hard rock and sedimentary formations are given below:

TABLE 2.5: RANGE OF AQUIFER PARAMETERS

Parameters	Range
Well yield in LPM	50-300 lpm
Transmissivity (T) m2 /day	1.49-164.18 m2 /day
Permeability (K) m/day	0.25-26.75 m/day

Source: http://nwm.gov.in/sites/default/files/Notes%20on%20Coimbatore%20District.pdf

FIGURE 2.7: GROUND WATER LEVEL VARIATIONS OF COIMBATORE DISTRICT

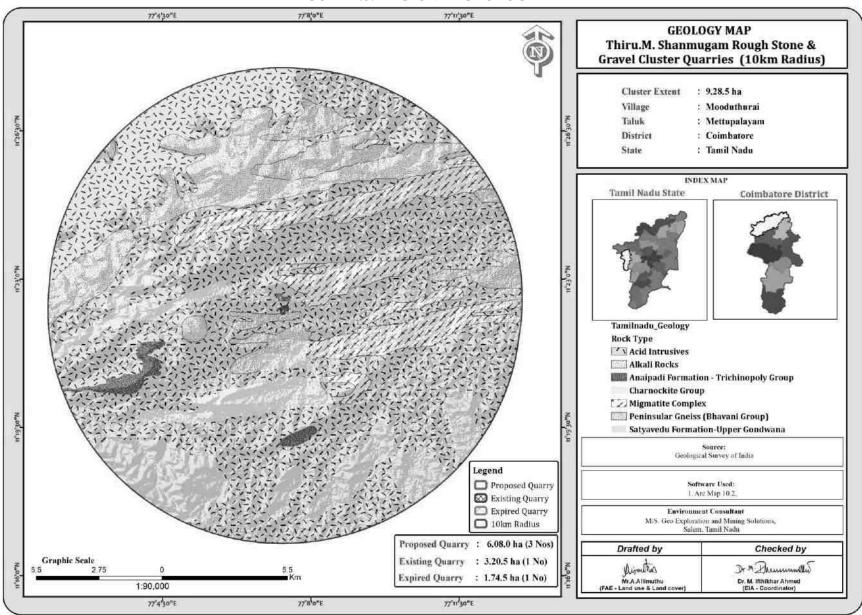

Source: https://www.twadboard.tn.gov.in/content/coimbatore

TABLE 2.6: GROUND WATER LEVEL VARIATIONS OF COIMBATORE DISTRICT

Jan 2013	May 2013	Jan 2014	May 2014	Jan 2015	May 2015	Jan 2016	May 2016	Jan 2017	May 2017	Jan 2018	May 2018	Jan 2019	May 2019	5 Years Pre Monsoon Average	5Years Post Monsoon Average
14.3	16.7	15.1	23.0	16.11	16.0	13.79	16.7	20.36	29.7	19.8	22.3	13.6	17.6	16.1	20.3

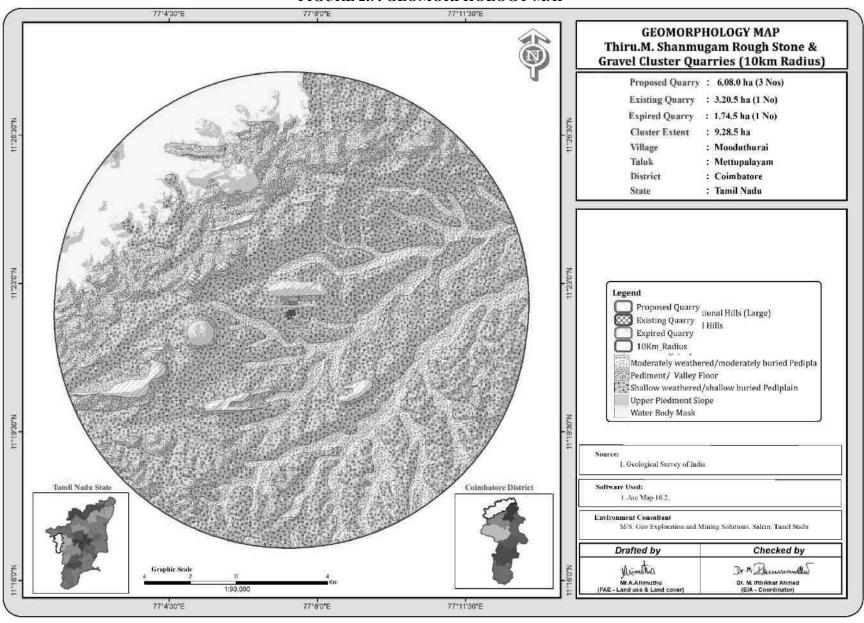
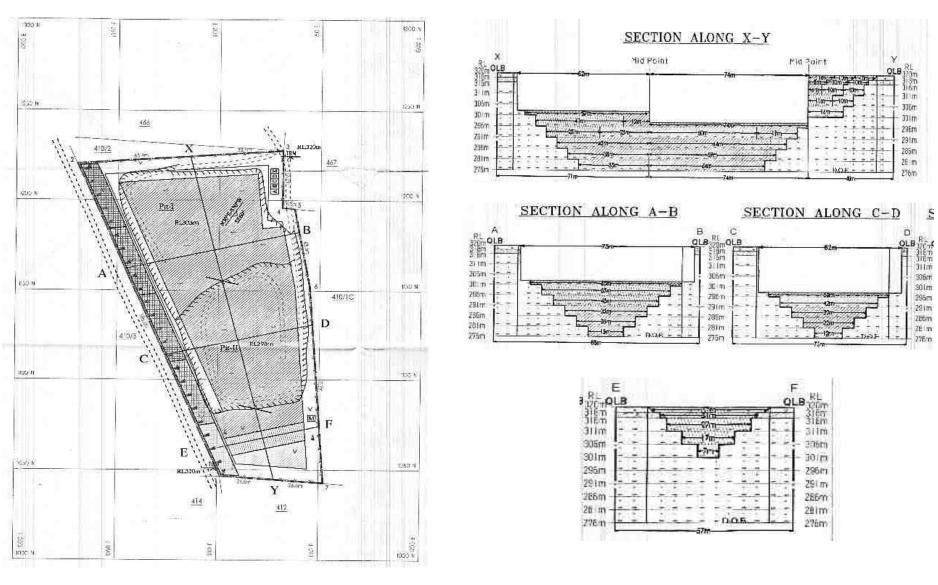

Source: https://www.twadboard.tn.gov.in/content/coimbatore

FIGURE 2.8: REGIONAL GEOLOGY MAP



From the above map it is inferred that the cluster quarries falls in the hard rock terrain (Peninsular Gneiss)

FIGURE 2.9: GEOMORPHOLOGY MAP

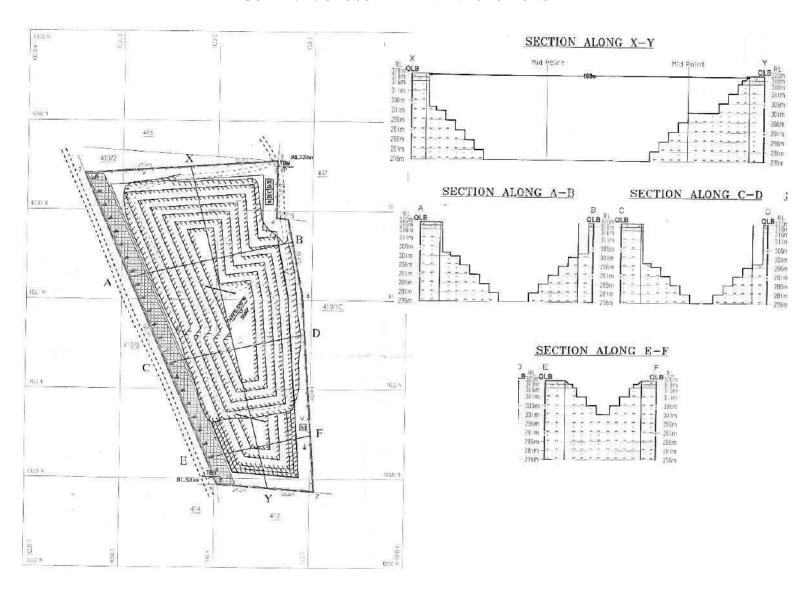


FIGURE 2.10: TOPOGRAPHY, GEOLOGICAL, YEAR-WISE DEVELOPMENT PRODUCTION PLAN AND SECTIONS

Source: Approved Mining Plan

FIGURE 2.11: CLOSURE PLAN AND SECTIONS

Source: Approved Mining Plan

2.4 RESOURCES AND RESERVES

The Resources and Reserves of Rough Stone and Gravel were calculated based on Cross-Section Method by plotting sections to cover the maximum lease area for the proposed project.

Based on the availability of Geological Resources the Mineable Reserves are calculated by considering excavation system of bench formation and leaving essential safety distance of 7.5 m (Safety Barrier all around the applied area) and safety distance as per precise area communication letter and deducting the locked up reserves during bench formation (Also called as Bench Loss) and the Mineable Reserves is calculated considering there is no waste / overburden / side burden (100% Recovery Anticipated) for the proposed project.

TABLE 2.7: AVAILABLE GEOLOGICAL RESOURCES OF PROPOSED PROJECT

Description	Rough Stone	Weathered Rock	Gravel
Geological Resource in m ³	4,09,432	8,068	8,068
Mineable Resource in m ³	95,546	1,736	2,294

Source: Approved Mining Plan

TABLE 2.8: YEAR-WISE PRODUCTION PLAN

Year	Average year wise production of rough stone (m ³)	Weathered rock (m ³)	Gravel (m ³)
I	19,216	496	814
II	19,185	620	740
III	18,435	620	740
IV	20,720	-	-
V*	17,990	-	-
TOTAL	95,546	1,736	2,294

Source: Approved Mining Plan

Disposal of Waste

There is no waste anticipated in these Rough Stone quarrying operation. The entire quarried out materials will be utilized (100%). Top layer of Gravel formation will be removed and sold to needy customers directly.

Conceptual Mining Plan/ Final Mine Closure Plan

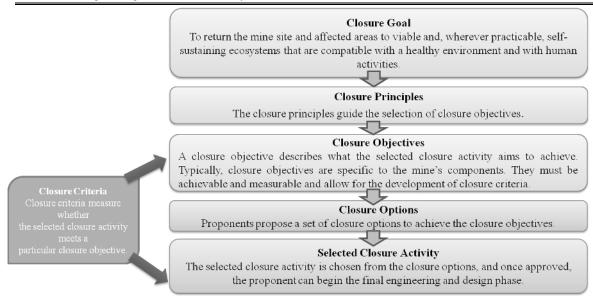
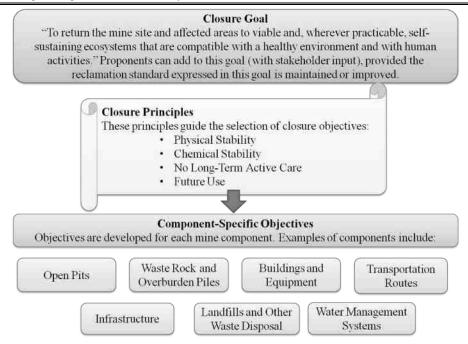

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc.

TABLE 2.9: ULTIMATE PIT DIMENSION

	PROPOSAL – P1							
Pit	Pit Length (Max) (m) Width (Max) (m) Depth (Max)							
I	168	75	44m bgl					

Source: Approved Mining Plan

- At the end of life of mine, the excavated mine pit / void will act as artificial reservoir for collecting rain water and helps to meet out the demand or crises during drought season.
- After mine closure the greenbelt developed along the safety barrier and top benches and temporary water reservoir will enhance the ecosystem
- Mine Closure is a process of returning a disturbed site to its natural state or which prepares it for other productive uses that prevents or minimizes any adverse effects on the environment or threats to human health and safety.
- The principal closure objectives are for rehabilitated mines to be physically safe to humans and animals, geotechnically stable, geo-chemically non-polluting/ non-contaminating, and capable of sustaining an agreed postmining land use.



Closure Objectives -

- Access to be limited, for the safety of humans and wildlife.
- The open pit mine workings and pit boundary are physically and geo-technically stable.
- Water quality in flooded pits is safe for humans, aquatic life, and wildlife.
- Discharge of contaminated drainage has been minimized and controlled.
- Original or desired new surface drainage patterns have been established.
- For flooded pits, in-pit aquatic habitat has been established where practical and feasible.
- Emergency access and escape routes from flooded pits for humans and wildlife are in place.
- Dust levels are safe for people, vegetation, aquatic life, and wildlife.

Closure Planning & Options Considerations in Mine Design –

- The closure of mine is well planned at the initial stage of planning & design consideration by the internal and external stake holders
- Construction of 2m height bund all along the mine pit boundary and ensure its stability all time & construction
 of garland drain along the natural slope to avoid sliding and collection of soil to the pit & surface runoff during
 rainfall
- After complete exploitation of mineral, the lowest bench foot wall side will be maintained as plain surface without any sump pits to avoid any accidents
- All the sharp edges will be dressed to smoother face before the closure of mine and ensure no loose debris on hanging wall side
- There is a river on southern side of the project area. The river will not be hindered by any of mine closure activities
- The project proponent as a part of social responsibilities assures to supply the stored mine pit water to the nearby villages after effective treatment process as per the standards of TNPCB & TWAD
- Native species will be planted in 3 row patterns on the boundary barriers and 1st bench, a full-time sentry will be appointed at the gate to prevent inherent entry of public & cattle.
- The access road to the quarry will be cut-off immediately after the closure
- The layout design shall be prepared and get approved from Department of Geology and Mining.
- The proponent is instructed to construct as per the layout approved
- Physical and chemical stability of structures left in place at the site, the natural rehabilitation of a biologically
 diverse, stable environment, the ultimate land use is optimized and is compatible with the surrounding area and
 the requirements of the local community, and taking the needs of the local community into account and
 minimizing the socio-economic impact of closure
- There will be a positive change in the environmental and ecology due to the mine closure

Post-Closure Monitoring –

The purpose of post-closure monitoring with respect to open pit mine workings is to ensure the attainment of closure objectives.

- Monitor physical and geotechnical stability of remnant pit walls.
- Monitor the ground regime in pit walls to confirm achievement of design objectives.
- Monitor water level in pit to confirm closure objectives regarding fish, fish habitat, and wildlife safety are being achieved.
- Sample water quality and quantity at controlled pit discharge points.
- Identify and test unanticipated areas where water management is an issue.
- Inspect integrity of barriers such as berms & fences.
- Monitor wildlife interactions with barriers to determine effectiveness.
- Inspect aquatic habitat in flooded pits where applicable.
- Monitor dust levels.

TABLE 2.10: MINE CLOSURE BUDGET

A ativity			Year			Cost	Total Cost	
Activity	I	II	III	IV	V	Cost	1 otal Cost	
Plantation in Nos	40	40	40	40	40		Rs 20,000	
Plantation cost	4,000	4,000	4,000	4,000	4,000		KS 20,000	
Plantation in quarried out						@ 100 Rs/ Saplings		
top benches and approach	60	60	60	60	60	including maintenance	Rs 30,000	
road (in nos)							KS 50,000	
Plantation Cost	6,000	6,000	6,000	6,000	6,000			
Wire Fencing (In Mtrs) 500	1,50,000	-	-	-	-	@ 300Rs per meter	Rs 1,50,000	
Garland drain (in mts) 200mts	60,000	-	-	-	-	@ 300Rs per meter	Rs. 60,000	
TOTAL							Rs 2,60,000	

Source: Proposed by FAE's and EC

2.5 METHOD OF MINING

The method of mining is Opencast Mechanized Mining Method is being proposed by formation of 5.0-meter height bench with a bench width not less than the bench height. However, as far as the quarrying of Rough Stone is concerned, observance of the provisions of Regulation 106 (2) (b) as above is seldom possible due to various inherent petro genetic factors coupled with mining difficulties. Hence it is proposed to obtain relaxation to the provisions of the above regulation from the Director of Mines Safety for which necessary provision is available with the Regulation 106 (2) (b) of MMR-1961, under Mine Act – 1952.

The Rough Stone is a batholith formation and the splitting of rock mass of considerable volume from the parent rock mass will be carried out by deploying jackhammer drilling and Slurry Explosives will be used for blasting. Hydraulic Excavators attached with Rock Breakers unit will be deployed for breaking large boulders to required fragmented sizes to avoid secondary blasting and hydraulic excavators attached with bucket unit will be deployed for loading the Rough Stone into the tippers and then the stone is transported from pithead to the nearby crushers.

2.5.1 Drilling & Blasting Parameters

Drilling & Blasting will be carried out as per parameters given below: -

 Spacing
 1.2m

 Burden
 1.0 m

 Depth of hole
 1.5 m

 Charge per hole
 0.50 - 0.75kg

 Powder factor
 6.0 tonnes/kg

 Diameter of hole
 32 mm

Type of Explosives to be used –

Slurry explosives (An explosive material containing substantial portions of a liquid, oxidizers, and fuel, plus a thickener), NONEL / Electric Detonator & Detonating Fuse

Storage of Explosives -

No proposal for storage of explosives within the project area, the project proponent have made agreement with authorized explosives agencies for carrying out blasting activities and competent person as per DGMS guidelines will be employed for safety and supervision of overall quarrying activities.

The explosives will be sourced from the blasting agency on daily basis and the blasting will be carried out under the supervision of competent qualified Blaster and it will be ensured that there shall be no balance of explosive stock; any balance stock will be taken back by the supplier.

2.5.2 Extent of Mechanization

TABLE 2.11 PROPOSED MACHINERY DEPLOYMENT

	PROPOSAL								
S.NO.	TYPE	NOS	SIZE/CAPACITY	MOTIVE POWER					
1	Jack hammers	2	1.2m to 2.0m	Compressed air					
2	Compressor	1	400psi	Diesel Drive					
3	Excavator with Bucket / Rock Breaker	1	300 HP	Diesel Drive					
4	Tippers / Dumpers	2	20 Tonnes	Diesel Drive					

Source: Approved Mining Plans

2.6 GENERAL FEATURES

2.6.1 Existing Infrastructures

Infrastructures like Mine office, Temporary Rest shelters for workers, Latrine and Urinal Facilities will be constructed as per the Mine Rule after the grant of quarry lease.

2.6.2 Drainage Pattern

Drainage pattern are created by stream erosion over time that reveals characteristics of the kind of rocks and geological structures in a landscape region drained by streams.

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin. They are governed by the topography of the land, whether a particular region is dominated by hard or soft rocks, and the gradient of the land. Dendritic patterns, which are by far the most common, develop in areas where the rock (or unconsolidated material) beneath the stream has no particular fabric or structure and can be eroded equally easily in all directions.

There are no streams, canals or water bodies crossing within the project area. The drainage pattern of the area is dendritic – sub dendritic.

2.6.3 Traffic Density

1. The traffic survey conducted based on the transportation route of material, the Rough Stone is proposed to be transported mainly through Puliyampatti to Mettupalayam State highway

Traffic density measurements were performed at two locations

- 2. Chinnakallipatti Palliyur Village road
- 3. Mettupalayam to Sathyamangalam State Highway 15

Traffic density measurement were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station during each shift-one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

TABLE.2.12: TRAFFIC SURVEY LOCATIONS

Station Code	Road Name	Distance and Direction	Type of Road
TS1	Chinnakallipatti - Palliyur	800m west	Village road
TS2	Mettupalayam - Sathyamangalam	3.5km North East	State Highway - 15

Source: On-site monitoring by GEMS FAE & TM

TABLE 2.13: EXISTING TRAFFIC VOLUME

Station code	HMV		L	LMV		heelers	Total PCU	
Station code	No	PCU	No	PCU	No	PCU	Total PCU	
TS1	55	165	180	180	178	89	434	
TS2	75	225	210	210	210	105	540	

Source: On-site monitoring by GEMS FAE & TM

TABLE 2.14: ROUGH STONE & GRAVEL HOURLY TRANSPORTATION REQUIREMENT

Transportation of Rough Stone & Gravel per day						
Capacity of trucks No. of Trips per day Cumulatively Volume in PCU						
10/20 tonnes	71	71				
	(56 trips of Rough stone, 10 trips of					
	Gravel & 5 trips of Weathered rock)					

Source: Data analysed from Approved Mining Plan

^{*} PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3 Wheelers = 0.5

TIRANSPORTATION MAP WAllyampatti Chinnakallipatti Baligamapalayam TS-1 Fullampatti Logoud Logoud Logoud Logoud Logoud Logoud Apprach Road Palleyur TS-1 T

FIGURE.2.12: MINERAL TRANSPORTATION ROUTE MAP

TABLE 2.15: SUMMARY OF TRAFFIC VOLUME

Route	Eviationa Traffia	Incremental	Total	Hourly Capacity in PCU
	Existing Traffic volume in PCU	traffic due to the	traffic	as per IRC –
	volume in PCU	project	volume	1960guidelines
Sirumugai Road	434	71	505	1200
Mettupalayam-Bhavanisagar Road	540	71	611	1200

Source: On-site monitoring analysis summary by GEMS FAE & TM

- Due to these projects the existing traffic volume will not exceed
- As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour hence there will not be any conjunction due to this proposed transportation.

2.6.4 Mineral Beneficiation and Processing

There is no proposal for the mineral processing or ore beneficiation in any of the proposed project

2.7 PROJECT REQUIREMENT

2.7.1 Water Source & Requirement

Detail of water requirements in KLD as given below:

TABLE 2.16: WATER REQUIREMENT

*Purpose	Quantity	Source
Dust Suppression	1.1 KLD	From Existing bore wells from nearby area/ Rain water harvesting pits
Green Belt development	0.6 KLD	From Existing bore wells from nearby area / Rain water harvesting pits
Domestic purpose	0.3 KLD	From Existing, bore wells and drinking water will be sourced from
		Approved Water vendors.
Total	2.0 KLD	

Source: Prefeasibility report, * Drinking water will be sourced from Approved Water Vendors

2.7.2 Power and Other Infrastructure Requirement

No proposed project require power supply for the mining operations. The quarrying activity is proposed during day time only (General Shift 8 AM -5 PM, Lunch Break 1 PM -2 PM). Electricity for use in office and other internal infrastructure will be obtained from TNEB by project proponent.

No workshops are proposed inside the project area hence there will not be any process effluent generation from the project area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. There is no toxic effluent expected to generate in the form of solid, liquid or gaseous form hence there is no requirement of waste treatment plant.

2.7.3 Fuel Requirement

High speed Diesel (HSD) will be used for mining machineries. Diesel will be brought from nearby Fuel Stations.

Average diesel consumption is around = 500 Liters of HSD / day per proposed project.

2.7.4 Project Cost

TABLE 2.17: PROJECT COST OF PROPOSED PROJECT

Project Cost	Rs.27,75,000/-

Source: Approved Mining Plan & Prefeasibility Report

2.8 EMPLOYMENT REQUIREMENT:

The following manpower's are proposed in the mining plan to carry out the day-to-day quarrying activities, the same employment is maintaining aimed at the proposed production target and also to comply with the statutory provisions of The Metalliferous mine's regulations, 1961 for the proposed project.

TABLE 2.18: PROPOSED MANPOWER DEPLOYMENT

PROPOSAL						
Mines manager/Mines Foreman	1					
Mate/Blaster	1					
Jack hammer operator	4					
Excavator Operator	1					
Tipper Driver	2					
Helper	2					
Cleaner & Co-Operator	3					
Security	1					
Total	15					

Source: Approved Mining Plan

2.9 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the Environmental Clearance will be compiled before the start of mining operation.

TABLE 2.19: EXPECTED TIME SCHEDULE

CLNa	Dantianlana	Time Schedule (In Month)				ıth)	Domanla if ann
Sl.No.	Particulars	1 st	2 nd	3 rd	4 th	5 th	Remarks if any
1	Environmental Clearance						
2 Consent to Operate							Production Start Period
Time line	Time line may vary: subjected to rules and regulations /& other unforeseen circumstances						

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines

3. DESCRIPTION OF ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as Land, Water, Air, Noise, Biological and Socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering March, April & May 2021 with CPCB guidelines. Environmental data has been collected with reference to cluster quarries by Enviro – Tech Services, Ghaziabad (U.P) Certified & MoEF Notified Laboratory, for the below attributes –

- o Land
- o Water
- o Air
- o Noise
- Biological
- o Socio-economic status

Study Area

An area of 10 km radius (aerial distance) from the periphery of the cluster is considered for EIA study. The data collection has been used to understand the existing environment scenario around the cluster against which the potential impacts of the project can be assessed. The study area has been divided into two zones viz **core zone** and **buffer zone** where core zone is considered as cluster and buffer zone taken as 10km radius from the periphery of the Cluster. Both Core zone and Buffer zone is taken as the study area.

Study Period

The baseline study was conducted during the Pre-monsoon season i.e. March to May 2021.

Study Methodology

- The project area was surveyed in detail with the help of Total Station and the boundary pillars were picked up with the help of GPS. The boundary coordinates were superimposed on the satellite imagery to understand the relief of the area, besides Land use pattern of the area was studied through the Bhuvan (ISRO)
- Soil samples were collected and analysed for relevant physio-chemical characteristics, exchangeable Cations, nutrients & micro nutrients etc., in order to assess the impact due to mining activities and to recommend saplings for Greenbelt development
- Ground water samples were collected during the study period from the existing bore wells, while surface water was collected from ponds in the buffer zone. The samples were analysed for parameters necessary to determine water quality (based on IS: 10500:2012 criteria) and those which are relevant from the point of view of environmental impact of the proposed mines
- An onsite meteorological station was setup in cluster area, to collect data about wind speed, wind direction, temperature, relative humidity, rainfall and general weather conditions were recorded throughout the study period
- In order to assess the Ambient Air Quality (AAQ), samples of ambient air were collected by installation of Respiratory Dust Samplers (RDS) for Fugitive dust, PM₁₀ and SO₂, NO_X with gaseous attachments & Fine Dust Samplers (FDS) for PM_{2.5} and other parameters as per NAAQ norms and analysed for primary air pollutants to work out the existing status of air quality.
- The Noise level measurements were also made at various locations in different intervals of time with the help of sound level meter to establish the baseline noise levels in the impact zone.
- Baseline biological studies were carried out to assess the ecology of the study area to study the existing flora and fauna pattern of the area.
- Socio-Economic survey was conducted at village and household level in the study area to understand the present socio-economic conditions and assess the extent of impact due to the proposed mining project.

The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of samples analysis, etc., are given below Table 3.1.

TABLE 3.1: MONITORING ATTRIBUTES AND FREQUENCY OF MONITORING

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
Land-use Land cover	Land-use Pattern within 10 km radius of the study area	Data from census handbook 2011 and from the satellite imagery	Study Area	Satellite Imagery Primary Survey
*Soil	Physio-Chemical Characteristics	Once during the study period	6 (1 core & 5 buffer zone)	IS 2720 Agriculture Handbook - Indian Council of Agriculture Research, New Delhi
*Water Quality	Physical, Chemical and Bacteriological Parameters	Once during the study period	6 (1 surface water & 5 ground water)	IS 10500& CPCB Standards
Meteorology	Wind Speed Wind Direction Temperature Cloud cover Dry bulb temperature Rainfall	1 Hourly Continuous Mechanical/Automatic Weather Station	1	Site specific primary data& Secondary Data from IMD Station
*Ambient Air Quality	PM_{10} $PM_{2.5}$ SO_2 NO_X Fugitive Dust	24 hourly twice a week (March – May 2021)	8 (2 core & 6 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient Noise	Hourly observation for 24 Hours per location	8 (1 core & 7 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing Flora and Fauna	Through field visit during the study period	Study Area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio–Economic Characteristics, Population Statistics and Existing Infrastructure in the study area	Site Visit & Census Handbook, 2011	Study Area	Primary Survey, census handbook & need based assessments.

Source: On-site monitoring/sampling by Enviro – Tech Services, Ghaziabad (U.P)

^{*} All monitoring and testing has been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

The main objective of this section is to provide a baseline status of the study area covering 10km radius around the proposed mine site so that temporal changes due to the mining activities on the surroundings can be assessed in future.

3.1.1 Land Use/ Land Cover

A visual interpretation technique has been adopted for land use classification based on the keys suggested in the chapter – V of the guidelines issued by NNRMS Bangalore & Level III classification with 1:50,000 scale for the preparation of land use mapping. Land use pattern of the area was studied through LISS III imagery of Bhuvan (ISRO). The 10 km radius map of study area was taken for analysis of Land use cover.

Classification S.no Area ha Area % **Built-up** 1 **URBAN** 349.62 1.05 2 **RURAL** 475.61 1.42 3 MINING 207.32 0.62 Agricultural land 4 Crop Land 13995.96 41.87 886.72 2.65 Plantation Fallow Land 4250.36 6 12.71 **Forest** 7 Deciduous 1019.06 3.05 7.92 8 Forest Plantation 2646.20 9 Scrub Forest 3239.04 9.69 Barren/Waste Lands 10 Scrub Land 2691.40 8.05 Wetlands/ Water Bodies 11 Water Bodies/Lake/River 10.97 3667.66

TABLE 3.2: LAND USE / LAND COVER TABLE 10 KM RADIUS

Source: Survey of India Toposheet and Landsat Satellite Imagery

Total

FIGURE 3.1: PIE DIAGRAM OF LAND USE AND LAND IN STUDY AREA

33428.94

100.00

Source: Table 3.2

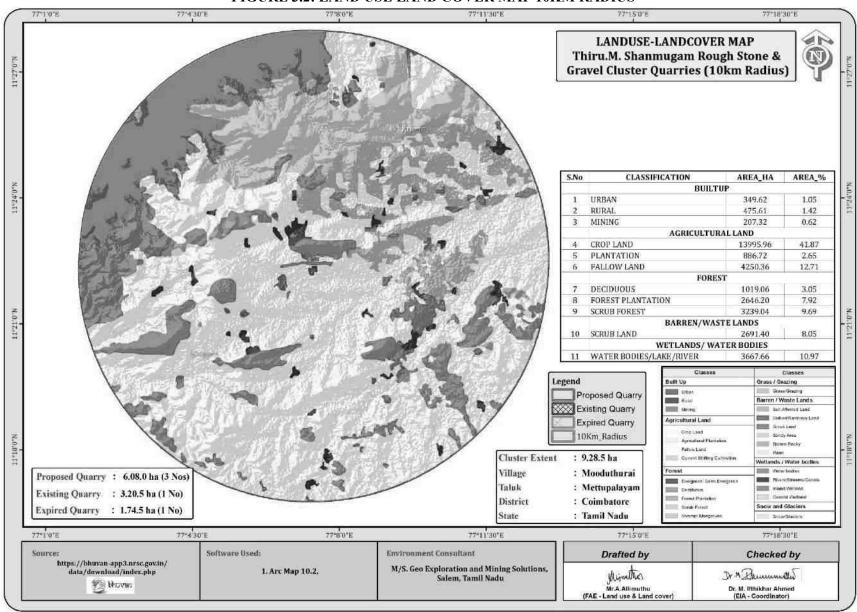


FIGURE 3.2: LAND USE LAND COVER MAP 10KM RADIUS

From the above table, pie diagram and land use map it is inferred that the majority of the land in the study area is Agriculture land (includes crop land & fallow land) 57.23% followed by Built-up Lands (includes Urban & Rural) 3.09%, Barren Land 8.05%; Water bodies 10.97% and Mining – 0.62%.

The total mining area within the study area is 207.32 ha i.e., 0.62%. The cluster area of 9.28.5 ha contributes about 4.5% of the total mining area within the study area. This small percentage of Mining Activities shall not have any significant impact on the environment.

3.1.2 Topography

The proposed project area is flat terrain, covered with 4m overburden (gravel formation of 2m + 2m Weathered Rock) and followed by Massive Charnockite which is clearly inferred from the existing quarry pits.

3.1.3 Drainage Pattern of the Area

Drainage pattern are created by stream erosion over time that reveals characteristics of the kind of rocks and geological structures in a landscape region drained by streams.

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin. They are governed by the topography of the land, whether a particular region is dominated by hard or soft rocks, and the gradient of the land.

Dendritic patterns, which are by far the most common, develop in areas where the rock (or unconsolidated material) beneath the stream has no particular fabric or structure and can be eroded equally easily in all directions.

There are no streams, canals or water bodies crossing within the project area. The drainage pattern of the area is dendritic – sub dendritic.

3.1.4 Seismic Sensitivity

The proposed project site falls in the seismic Zone II, low damage risk zone as per BMTPC, Vulnerability Atlas of Seismic zone of India IS: 1893 – 2002. The project area falls in the hard rock terrain on the peninsular shield of south India which is highly stable.

(Source: https://moes.gov.in/writereaddata/files/LS EN 20032020 385.pdf)

3.1.5 Environmental Features in the Study Area

There is no Wildlife Sanctuaries, National Park and Archaeological monuments within project area. No Protected and Reserved Forest area is involved in the project area. Therefore, there will be no need to acquisition/diversion of forest land. The details related to the environment sensitivity around the proposed mine lease area i.e. 10 km radius, are given in the below Table 3.3.

TABLE 3.3: DETAILS OF ENVIRONMENT SENSITIVITY AROUND THE CLUSTER

Sl.No	Sensitive Ecological Features	Name	Arial Distance in km from Cluster
1	National Park /Wild life Sanctuaries	None	Nil within 10km Radius
2	Reserve Forest	Velamundi RF	4.0km North
3	Tiger Reserve/ Elephant Reserve/ Biosphere Reserve	None	Nil within 10KM Radius
4	Critically Polluted Areas	None	Nil within 10km Radius
5	Mangroves	None	Nil within 10km Radius
6	Mountains/Hills	None	Nil within 10km Radius
7	Notified Archaeological Sites	None	Nil within 10km Radius
8	Industries/Thermal Power Plants	None	Nil within 10km Radius
9	Defence Installation	None	Nil within 10km Radius

Source: Survey of India Toposheet

TABLE 3.4: NEARBY WATER BODIES FROM THE PROPOSED PROJECT SITE

Sl.No	NAME	DISTANCE & DIRECTION
1	Tank Near Neelipalayam	6km SE
2	Bhavanisagar Reservoir	5.8kmNW
3	Tank Near pungampalli	5.7km NE
4	Nallur Lake	4.3km NE
5	Tank Near Mooduthurai	3km SE
6	Odai Near Puliampatti	6km SW
7	Tank near Shanmugapuram	1km SW
8	Tank Near Periyakallipatti	1.2km NW

Source: Village Cadastral Map and Field Survey

3.1.6 Soil Environment

Soil quality of the study area is one of the important components of the land environment. The composite soil samples were collected from the study area and analysed for different parameters. The locations of the monitoring sites are detailed in Table 3.6 and Figure 3.3.

The objective of the soil sampling is -

To determine the baseline soil characteristics of the study area; study the impact of proposed activity on soil characteristics and study the impact on soil more importantly agriculture production point of view.

TABLE 3.5: SOIL SAMPLING LOCATIONS

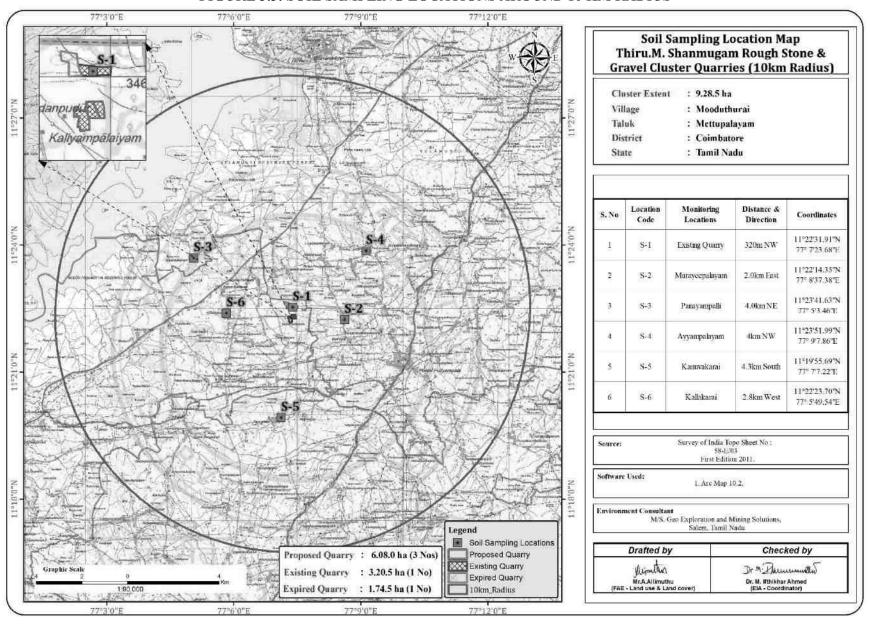
S. No	Location Code	Monitoring Locations	Distance & Direction	Coordinates
1	S-1	Existing Quarry	320m NW	11°22'31.91"N 77° 7'23.68"E
2	S-2	Marayeepalayam	2.0km East	11°22'14.35"N 77° 8'37.38"E
3	S-3	Panayampalli	4.0km NE	11°23'41.63"N 77° 5'3.46"E
4	S-4	Ayyampalayam	4km NW	11°23'51.99"N 77° 9'7.86"E
5	S-5	Kanuvakarai	4.3km South	11°19'55.69"N 77° 7'7.22"E
6	S-6	Kallakarai	2.8km West	11°22'23.70"N 77° 5'49.54"E

Source: On-site monitoring/sampling by Enviro – Tech Services, Ghaziabad (U.P)

Methodology -

For studying soil quality, sampling locations were selected to assess the existing soil conditions in and around the project site representing various land use conditions. The samples were collected by auger boring into the soil up to 90-cm depth. Six (6) locations were selected for soil sampling on the basis of soil types, vegetative cover, industrial & residential activities including infrastructure facilities, which would accord an overall idea of the soil characteristics. The samples were analysed for physical and chemical characteristics. The samples were sent to laboratory for analysis. The samples were filled in Polythene bags, coded and sent to laboratory for analysis and the details of methodology in respect are given in below Table 3.5.

TABLE 3.6: METHODOLOGY OF SAMPLING COLLECTION


Particulars	Details
Frequency	One grab sample from each station-once during the study period
Methodology	Composite grab samples of the topsoil were collected from 3 depths, and mixed to provide a representative sample for analysis. They were stored in airtight Polythene bags and analysed at the laboratory.

Source: On-site monitoring/sampling by Enviro – Tech Services, Ghaziabad (U.P)

Soil Testing Result -

The samples were analysed as per the standard methods prescribed in "Soil Chemical Analysis (M.L. Jackson, 1967) & Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India". The important properties analysed for soil are bulk density, porosity, infiltration rate, pH and Organic matter, kjeldahi Nitrogen, Phosphorous and Potassium. The standard classifications of soil and physico-chemical characteristics of the soils are presented below in Table 3.6 & Test Results in Table 3.7.

FIGURE 3.3: SOIL SAMPLING LOCATIONS AROUND 10 KM RADIUS

FIGURE 3.4: SOIL MAP

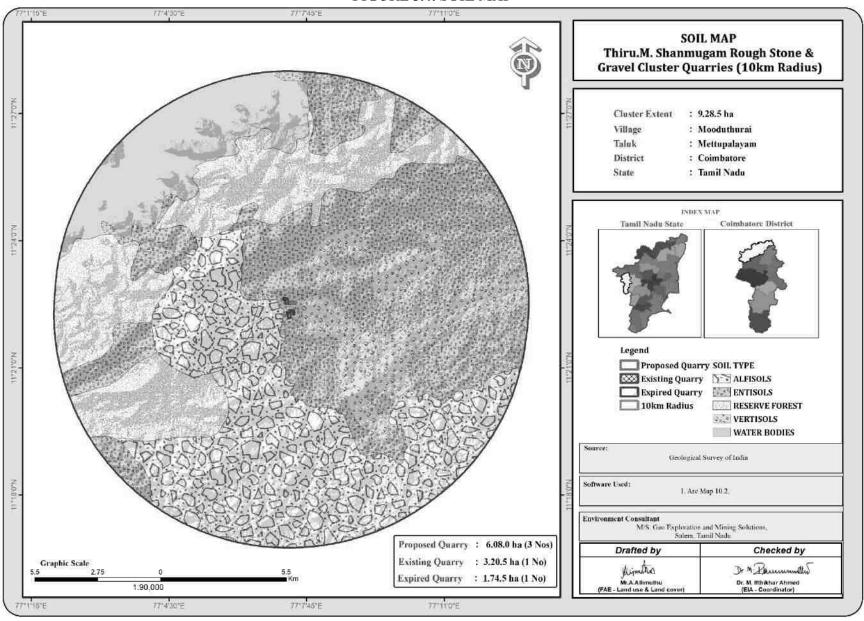


TABLE 3.7: SOIL QUALITY OF THE STUDY AREA

	D	TT '	S-1	S-2	S-3	S-4	S-5	S-6
	Parameter	Unit	Core Zone	Marayeepalayam	Ayyampalayam	Ayyampalayam	Kanuvakarai	Kallakarai
1	pHat27°C	-	8.36	7.25	8.16	8.53	8.76	7.26
2	ElectricalConductivityat25C	μs/cm	423	347	592	723	854	342
3	Texture	-	Sandy Clay Loam	Sandy Loam	Sandy Clay Loam	Sandy Clay	Clay	Sandy Loam
4	Sand	%	53.7	73	47.3	53.9	36.4	65.7
5	Slit	%	21.2	7.5	21.4	3.2	11.7	18
6	Clay	%	25.1	19.5	31.3	42.9	51.9	16.3
7	Water Holding Capacity	%	41.3	37.5	40.9	43.7	48.2	36.2
8	Bulk Density	g/cc	1.07	0.79	1.02	1.14	1.22	0.71
9	Porosity	%	25.3	32.8	26.4	27.1	36.1	29.8
10	Exchangeable Calcium(asCa)	mg/Kg	174	152	161	169	175	132
11	Exchangeable Magnesium(asMg)	mg/Kg	31.5	24.3	29.3	30.7	34.5	21.6
12	Exchangeable Manganese(asMn)	mg/Kg	29.5	25.1	30.6	31.2	36.7	20.3
13	Exchangeable Zinc as Zn	mg/Kg	0.63	0.49	0.92	1.01	1.23	0.56
14	Available Boron (as B)	mg/Kg	0.76	0.52	0.71	0.63	0.95	0.37
15	Soluble Chloride(as Cl)	mg/Kg	132	129	136	141	163	124
16	Soluble Sulphate(as S04)	mg/Kg	131	119	127	138	157	119
17	Available Potassium(as K)	mg/Kg	41.3	33.7	36.4	47.2	55.9	28.3
18	Available Phosphorous(as P)	Kg/hec	0.93	0.77	0.87	1.06	1.24	0.67
19	Available Nitrogen(as N)	Kg/hec	132	117	139	153	186	142
20	Cadmium (as Cd)	mg/Kg	BDL(DL:0.003)	BDL (DL:0.003)	BDL (DL:0.003)	BDL (DL:0.003)	BDL (DL:0.003)	BDL(DL:0.003)
21	Chromium (asCr)	mg/Kg	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)
22	Copper(asCu)	mg/Kg	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)	BDL (DL:0.05)
23	Lead (asPb)	mg/Kg	0.93	0.57	0.78	1.01	1.27	0.46
24	Total Iron	mg/Kg	1.69	1.36	1.82	2.07	2.52	1.02
25	Organic Matter	%	1.51	1.31	2.29	2.03	2.67	1.07
26	Organic Carbon	%	0.88	0.76	1.33	1.18	1.55	0.62
27	CEC	meq/l00g	39.5	31.7	40.2	42.3	44.6	31.5

Source: Sampling Results by Enviro - Tech Services, Ghaziabad (U.P)

Interpretation & Conclusion

Physical Characteristics –

The physical properties of the soil samples were examined for texture, bulk density, porosity and water holding capacity. The soil texture found in the study area is Clay Loam Soil and Bulk Density of Soils in the study area varied between 0.79 - 1.22 g/cc. The Water Holding Capacity and Porosity of the soil samples is found to be medium i.e. ranging from 37.5 - 48.2%.

Chemical Characteristics –

- The nature of soil is slightly alkaline to strongly alkaline with pH range 7.25 to 8.76
- The available Nitrogen content range between 117 to 186 kg/ha
- The available Phosphorus content range between 0.77 to 1.24 kg/ha
- The available Potassium range between 28.3 to 55.9 mg/kg

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the water quality characteristics for critical parameters and evaluate the impacts on agricultural productivity, domestic community usage, recreational resources and aesthetics in the vicinity. The water samples were collected and transported as per the norms in pre-treated sampling cans to laboratory for analysis.

3.2.1 Surface Water Resources:

There is no major surface water body in the study area and the rainfall over the area is moderate, the rainwater storage in open wells and trenches are in practice over the area and the stored water acts as source of drinking water for few months after rainy season.

3.2.2 Ground Water Resources:

Groundwater occurs in all the crystalline formations of oldest Achaeans and Recent Alluvium. The occurrence and behaviour of groundwater are controlled by rainfall, topography, geomorphology, geology, structures etc.

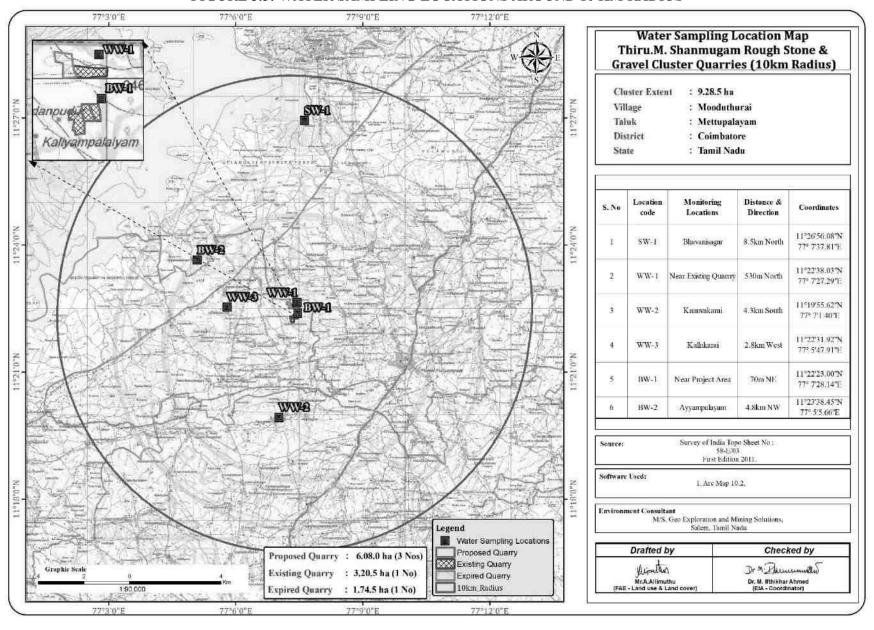
Ground water is occurring in pheratic conditions in weathered and fractured gneiss rock formation. The weathering is controlled by the intensity of weathering and fracturing. Dug wells as wells as bore wells are more common ground water abstraction structures in the area. The diameter of the dug well is in the range of 7 to 10 m and depth of dug wells range from 8 to 11 m bgl. The dug wells yield up to 1 lps in summer months and few wells remains dry. The yield is adequate for irrigation for one or two crops in monsoon period.

3.2.3 Methodology

Reconnaissance survey was undertaken and monitoring locations were finalized based on;

- Drainage pattern;
- Location of Residential areas representing different activities/likely impact areas; and
- Likely areas, which can represent baseline conditions

One (1) surface water and Five (5) ground water samples were collected from the study area and were analysed for physio-chemical, heavy metals and bacteriological parameters in order to assess the effect of mining and other activities on surface and ground water. The samples were analysed as per the procedures specified by CPCB, IS-10500:2012 and 'Standard methods for the Examination of Water and Wastewater' published by American Public Health Association (APHA). The water sampling locations are given in Table 3.9 and shown as Figure 3.6.


TABLE 3.8: WATER SAMPLING LOCATIONS

Manitoring Locations Distance & Direction

S. No	Location code	Monitoring Locations	Distance & Direction	Coordinates
1	SW-1	Bhavanisagar	8.5km North	11°26'56.08"N 77° 7'37.81"E
2	WW-1	Near Existing Quarrry	530m North	11°22'38.03"N 77° 7'27.29"E
3	WW-2	Kanuvakarai	4.3km South	11°19'55.62"N 77° 7'1.40"E
4	WW-3	Kallakarai	2.8km West	11°22'31.92"N 77° 5'47.91"E
5	BW-1	Near Project Area	70m NE	11°22'23.00"N 77° 7'28.14"E
6	BW-2	Ayyampalayam	4.8km NW	11°23'38.45"N 77° 5'5.66"E

Source: On-site monitoring/sampling by The Enviro – Tech services association with GEMS

FIGURE 3.5: WATER SAMPLING LOCATIONS AROUND 10 KM RADIUS

TABLE 3.9: GROUND WATER SAMPLING RESULTS

S.No	Parameters	Units	RESULTS					Standards as Per IS 10500: 2012		
			WW2	WW3	WW4	BW5	BW6	Acceptable limit	Permissible limit	
1	Color	Hazen	< 5	< 5	< 5	< 5	< 5	5	5	
2	Odour	-	Agreeable		Agreeable	Agreeable				
3	рН@ 25°С	_	7.17	7.23	7.21	7.54	7.51	6.5-8.5	6.5-8.5	
4	Electrical Conductivity @ 25°C	μs/cm	611	580	649	713	644	Not specified	Not specified	
5	Turbidity	NTU	< 1	< 1	< 1	< 1	< 1	1	1	
6	TDS	mg /l	360	342	382	420	379	500	500	
7	Total Hardness	mg/l	208.3	137.1	247	230	199.5	200	200	
8	Calcium as Ca	mg/l	37.2	29.1	43.5	40.6	35.5	75	75	
9	Magnesium as Mg	mg/l	28.1	15.7	33.7	31.3	27	30	30	
10	Total Alkalinity	mg/l	157	132	154	169	155	200	200	
11	Chloride as Cl-	_	69.8	86.3	62	90.6	80.1	250	250	
12		mg/l	25.1	28.4	23.5	29.3	25			
	Sulphate as SO4-	mg/l	23.1	28.4		29.3	23	200	200	
13	Iron as Fe	mg/l	BDL(DL:0.1)			0.29	0.21			
14 15	Free Residual Cl	mg/l	0.14	0.19	BDL(DL: 2.0) 0.34	0.29	0.2	BDL(DL: 2.0)	BDL(DL: 2.0)	
_	Fluoride as F	mg/l					-	1.0	1.0	
16	Nitrates as NO3	mg/l	8.6	9.3	12.6	10.5	12	45	45	
17	Copper as Cu	mg/l	BDL (DL:0.2)			BDL (DL:0.2)	BDL (DL:0.2)			
18	Manganese as Mn	mg/l	BDL (DL:0.05)				BDL (DL:0.05)	BDL (DL:0.05)		
19	Mercury as Hg	mg/l	(BDL (DL: 0.0005)				(BDL (DL: 0.0005)	(BDL (DL: 0.0005)		
20	Cadmium as Cd	mg/l	BDL (DL:0.01)				BDL (DL:0.01)	BDL (DL:0.01)		
21	Selenium as Se	mg/l	BDL (DL: 0.05)				BDL (DL: 0.05)	BDL (DL: 0.05)		
22	Aluminium as Al	mg/l	BDL (DL: 0.03)				BDL (DL: 0.03)	BDL (DL: 0.03)		
23	Lead as Pb	mg/l	BDL (DL:0.01)				BDL (DL:0.01)	BDL (DL:0.01)		
24	Zinc as Zn	mg/l	BDL (DL:0.02)			BDL (DL:0.02)	BDL (DL:0.02)			
25	Total Chromium	mg/l	BDL (DL: 0.05)			BDL (DL: 0.05)	BDL (DL: 0.05)			
26	Boron as B	mg/l	BDL (DL:0.1)			BDL (DL:0.1)	BDL (DL:0.1)			
27	Mineral Oil	mg/l	BDL (DL:1.0)			BDL (DL:1.0)	BDL (DL:1.0)			
28	Phenolic Compounds	mg/l	Absent			Absent	Absent			
29	Anionic Detergents	mg/l	BDL (DL:0.1)			BDL (DL:0.1)	BDL (DL:0.1)			
30	Cyanide as CN	mg/l	Absent			Absent	Absent			
31	Total Coliform	MPN/ 100ml	<2			< 2 < 2	< 2 < 2			
32	E-Coli		<2				_			
33	Barium as Ba	mg/l	BDL (DL:0.5)			BDL (DL:0.5)	BDL (DL:0.5)			
34	Ammonia	mg/l	BDL (DL:0.1)			BDL (DL:0.1)	BDL (DL:0.1)			
35	Sulphide as H ₂ S	mg/l	BDL (DL:0.05)			BDL (DL:0.05)	BDL (DL:0.05)			
36	Molybdenum	mg/l	BDL (DL:0.5)			BDL (DL:0.5)	BDL (DL:0.5)			
37	Total Arsenic	mg/l			BDL (DL:0.01)			BDL (DL:0.01)	BDL (DL:0.01)	
38	Total Suspended Solids	Mg/l			BDL(DL:2)			BDL(DL:2)	BDL(DL:2)	

^{*} IS: 10500:2012-Drinking Water Standards; # within the permissible limit as per the WHO Standard. The water can be used for drinking purpose in the absence of alternate sources. Note: SW- Surface water, GW – Ground water

TABLE 3.10: SURFACE WATER SAMPLING RESULTS

			CPCB Designated Best Use			
Sl. No.	Parameter	Unit	SW1 Bhavanisagar	Standard		
1	Color	Hazen	5	300		
2	Odour	-	Agreeable	Not specified		
3	рН@ 25°С	-	7.16	6.5 - 8.5		
4	Electrical Conductivity @ 25°C	μs/cm	629			
5	Turbidity	NTU	5.2	Not specified		
6	Total Dissolved Solids	mg /l	371	1500		
7	Total Hardness as CaCO ₃	mg/l	195.1	Not specified		
8	Calcium as Ca	mg/l	34.7	Not specified		
9	Magnesium as Mg	mg/l	26.4	Not specified		
10	Total Alkalinity as CaCO ₃	mg/l	147	Not specified		
11	Chloride as Cl	mg/l	79.5	600		
12	Sulphate as SO ₄ -	mg/l	27	400		
13	Iron as Fe	mg/l	0.23	50		
14	Free Residual Chlorine	mg/l	BDL(DL: 2.0)	400		
15	Fluoride as F	mg/l	0.25	1.5		
16	Nitrates as NO ₃	mg/l	14.9	50		
17	Copper as Cu	mg/l	BDL (DL:0.2)	1.5		
18	Manganese as Mn	mg/l	BDL (DL:0.05)	Not specified		
19	Mercury as Hg	mg/l	(BDL (DL: 0.0005)	Not specified		
20	Cadmium as Cd	mg/l	BDL (DL:0.01)	0.01		
21	Selenium as Se	mg/l	BDL (DL: 0.05)	Not specified		
22	Aluminium as Al	mg/l	BDL (DL: 0.03)	Not specified		
23	Lead as Pb	mg/l	BDL (DL:0.01)	0.1		
24	Zinc as Zn	mg/l	BDL (DL:0.02)	15		
25	Total Chromium	mg/l	BDL (DL: 0.05)	0.05		
26	Boron as B	mg/l	BDL (DL:0.1)	Not specified		
27	Mineral Oil	mg/l	BDL (DL:1.0)	Not specified		
28	Phenolic Compounds as C ₆ H ₅ OH	mg/l	Absent	0.005		
29	Anionic Detergents as MBAS	mg/l	BDL (DL:0.1)	Not specified		
30	Cyanide as CN	mg/l	Absent	0.05		
31	Biological Oxygen Demand, 3 days @ 27°C	mg/l	5.3	3		
32	Chemical Oxygen Demand	mg/l	22.6	Not specified		
33	Dissolved Oxygen	mg/l	4.3	4		
34	Total Coliform		present	5000		
35	E-Coli	MPN/ 100ml	present	Not specified		
36	Barium as Ba	mg/l	BDL (DL:0.5)	300		
37	Ammonia (as Total Ammonia-N)	mg/l	2.7	Not specified		
38	Sulphide as H ₂ S	mg/l	BDL (DL:0.05)	Not specified		
39	Molybdenum as Mo	mg/l	BDL (DL:0.5)	Not specified		
40	Total Arsenic as As	mg/l	BDL (DL:0.01)	0.2		
41	Total Suspended Solids	mg/l	9.1	-		

3.2.4 Interpretation& Conclusion

Surface Water

Ph:

The pH is 7.16 while turbidity found within the standards (Optimal pH range for sustainable aquatic life is 6.5 to 8.5 pH).

Total Dissolved Solids:

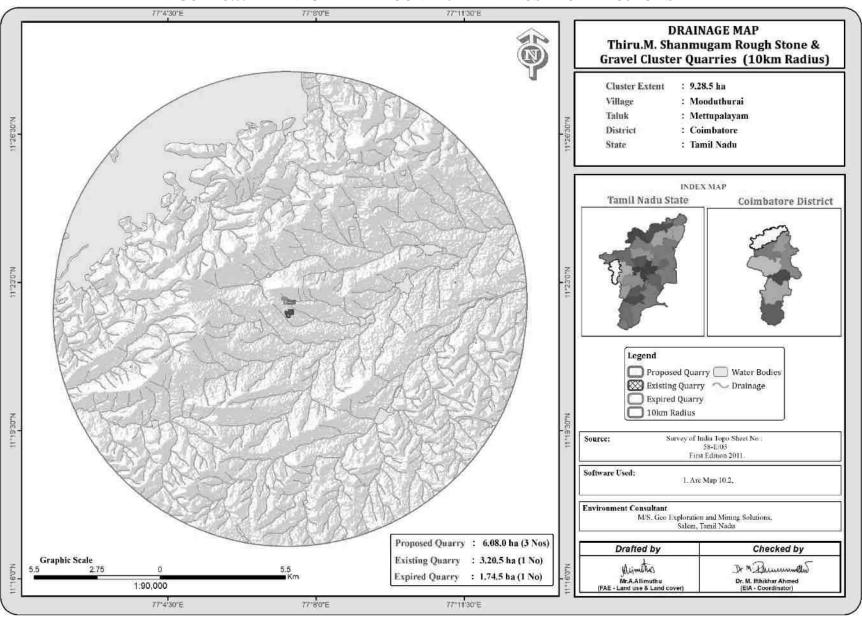
Total Dissolved Solids 371 mg/l, the TDS mainly composed of carbonates, bicarbonates, Chlorides, phosphates and nitrates of calcium, magnesium, sodium and other organic matter.

Other parameters:

Chloride content is 79.5 mg/l. Nitrates varied of 14.9 mg/l, while sulphates varied of 27 mg/l.

Ground Water

The pH of the water samples collected ranged from 7.17 to 7.54 and within the acceptable limit of 6.5 to 8.5. pH, Sulphates and Chlorides of water samples from all the sources are within the limits as per the Standard. On Turbidity, the water samples meet the requirement. The Total Dissolved Solids were found in the range of 342 - 420 mg/l in all samples. The Total hardness varied between 137.1 - 247 mg/l for all samples.


On Microbiological parameters, the water samples from all the locations meet the requirement. The parameters thus analysed were compared with IS 10500:2012 and are well within the prescribed limits.

3.2.5 Hydrology and Hydrogeological studies

The district is underlain by hard rock formation fissured and fractured crystalline rocks constitute the important aquifer systems in the district. Geophysical prospecting was carried out in that area by SSRMP-AT Instrument by qualified Geo physicist with the help of IGIS software and it was inferred that the low resistance encountered at the depth between 65-70m. The maximum depth proposed out of proposed projects is 44m BGL. Hence there is no possibilities of water table intersection during the entire mine life period besides it is also inferred topographically that there are no major water bodies intersecting the project area. There is no necessity of stream, channel diversion due to these proposed projects.

During the rainy season there is a possibility of collection of seepage water from the subsurface levels which will be collected and stored in the mine sump pits and will be used for dust suppression and greenbelt development and during the end of the life of the mine this collected water will act as a temporary reservoir.

FIGURE 3.6: DRAINAGE MAP AROUND 10 KM RADIUS FROM PROJECT SITE

FIGURE 3.7: GROUND WATER PROSPECT MAP

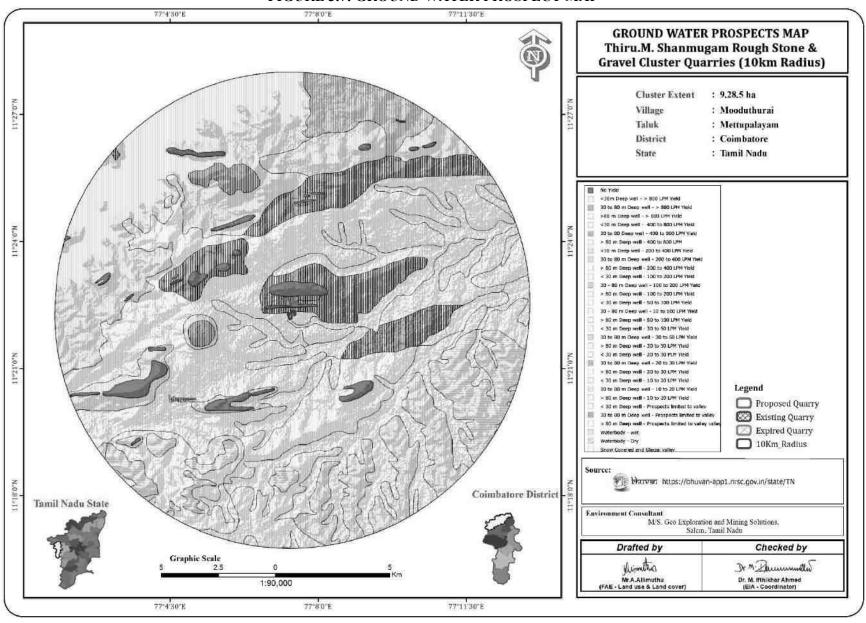
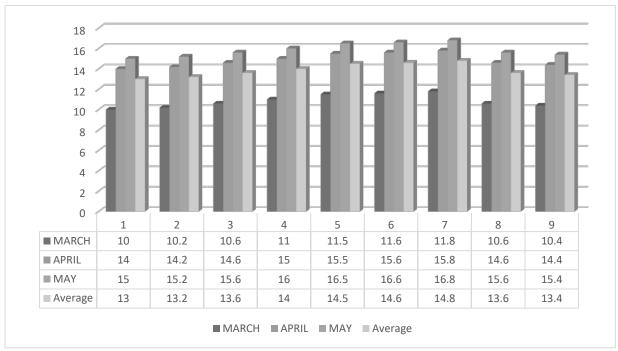



TABLE 3.11: PRE-MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS

C N.	LADEL	LATITUDE	LONGITUDE	DEP	AVC			
S.No	LABEL	LATITUDE	LONGITUDE	MAR-2021	APR-2021	MAY-2021	AVG	
1	OW1	11° 22' 38.0461" N	77° 07' 27.3176" E	10	14	15	13	
2	OW2	11° 22' 33.2315" N	77° 07' 09.1455" E	10.2	14.2	15.2	13.2	
3	OW3	11° 22' 42.6581" N	77° 07' 05.8847" E	10.6	14.6	15.6	13.6	
4	OW4	11° 22' 09.4398" N	77° 07' 50.7153" E	11	15	16	14	
5	OW5	11° 22' 08.9381" N	77° 07' 39.1045" E	11.5	15.5	16.5	14.5	
6	OW6	11° 21' 53.3079" N	77° 07' 22.7983" E	11.6	15.6	16.6	14.6	
7	OW7	11° 21' 59.7205" N	77° 07' 13.3822" E	11.8	15.8	16.8	14.8	
8	OW8	11° 22' 02.4235" N	77° 07' 22.0745" E	10.6	14.6	15.6	13.6	
9	OW9	11° 22' 14.9899" N	77° 07' 12.0443" E	10.4	14.4	15.4	13.4	

Source: Onsite monitoring data

FIGURE 3.8: BAR CHART OF PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM

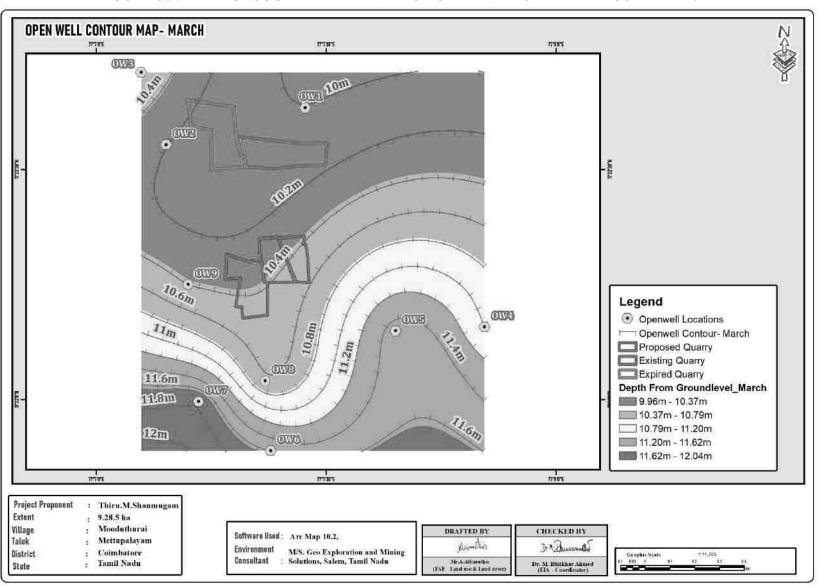
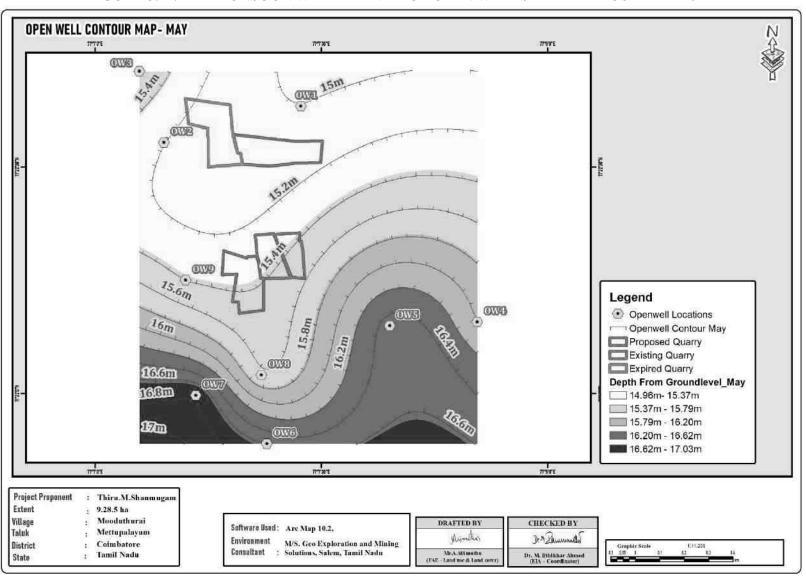


FIGURE 3.9: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – MAR 2021

OPEN WELL CONTOUR MAP- APRIL THEF 14.6m Legend OWS OW5 Openwell Locations 15m 14.8m Openwell Contour -April 15:2m Proposed Quarry Existing Quarry OMB Expired Quarry 15.6m Depth From Groundlevel_April 15.8m 13.96m - 14.37m 14.37m - 14.79m 14.79m - 15.20m 16m (OW6) 15.20m - 15.62m 15.62m- 16.04m 7770E 77730°E 77'8'0'E Project Proponent : Thiru.M.Shanmugam Extent : 9.28.5 ha Village Mooduthurai DRAFTED BY CHECKED BY Software Used : Arc Map 10.2, Mettupalayam Taluk ywinter Dr M Dimoundly Coimbatore M/S. Geo Exploration and Mining District Graphic Scale (1) 125 1 Consultant : Solutions, Salem, Tamil Nadu Mr.A. Alliantica (FAE - Limit use & Land of : Tamil Nadu Dr. M. Hibikhur Ahmed (EA - Coordinator) State

FIGURE 3.10: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – APR 2021



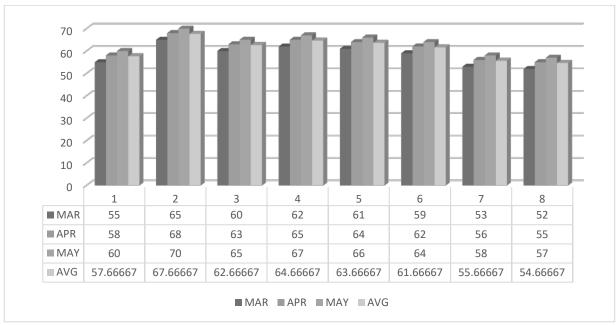

FIGURE 3.11: PRE MONSOON WATER LEVEL OF OPEN WELLS 1 KM RADIUS – MAY 2021

TABLE 3.12: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS

S.No	NAME	LATITUDE	LONGITUDE	De	pth in meter	S	AVG
5.110	NAME	LATITUDE	LONGITUDE	MAR-2021	APR-2021	MAY-2021	
1	BW1	11° 22' 38.8903" N	77° 07' 27.5547" E	55	58	60	57.66667
2	BW2	11° 22' 24.0884" N	77° 07' 09.1768" E	65	68	70	67.66667
3	BW3	11° 22' 08.8571" N	77° 07' 05.2061" E	60	63	65	62.66667
4	BW4	11° 22' 04.2374" N	77° 07' 23.2090" E	62	65	67	64.66667
5	BW5	11° 22' 05.2305" N	77° 07' 38.8792" E	61	64	66	63.66667
6	BW6	11° 22' 12.2988" N	77° 07' 42.2950" E	59	62	64	61.66667
7	BW7	11° 22' 23.0490" N	77° 07' 53.9820" E	53	56	58	55.66667
8	BW8	11° 22' 33.4016" N	77° 07' 39.6819" E	52	55	57	54.66667

Source: Onsite monitoring data

FIGURE 3.12: BAR CHART OF PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM

Source: Table 3.18

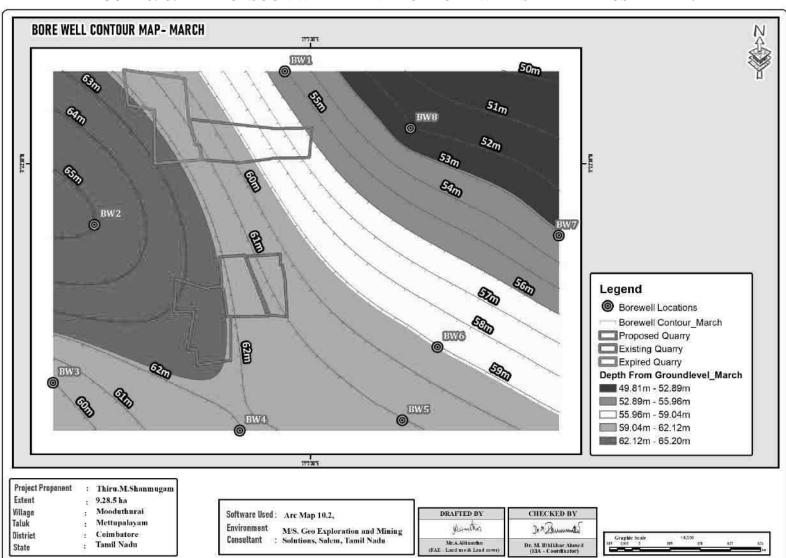


FIGURE 3.13: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – MAR 2021

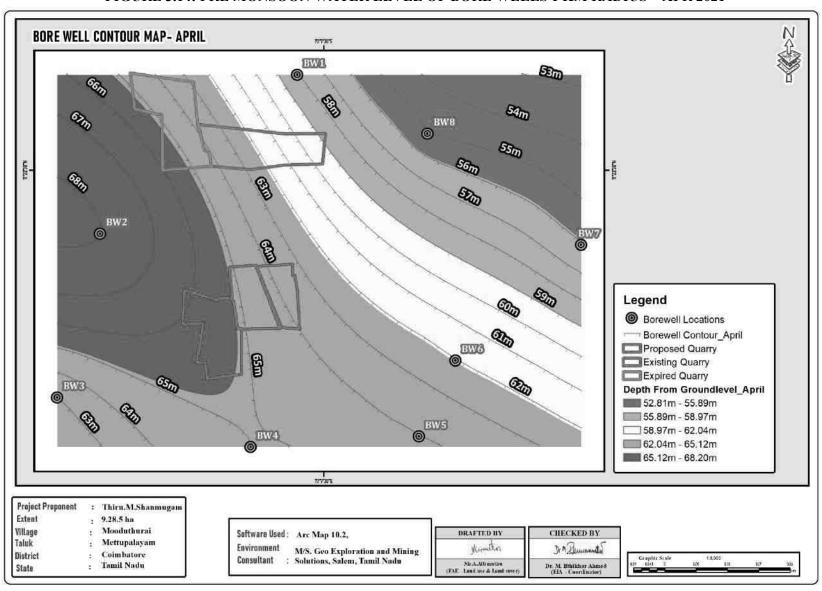


FIGURE 3.14: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – APR 2021

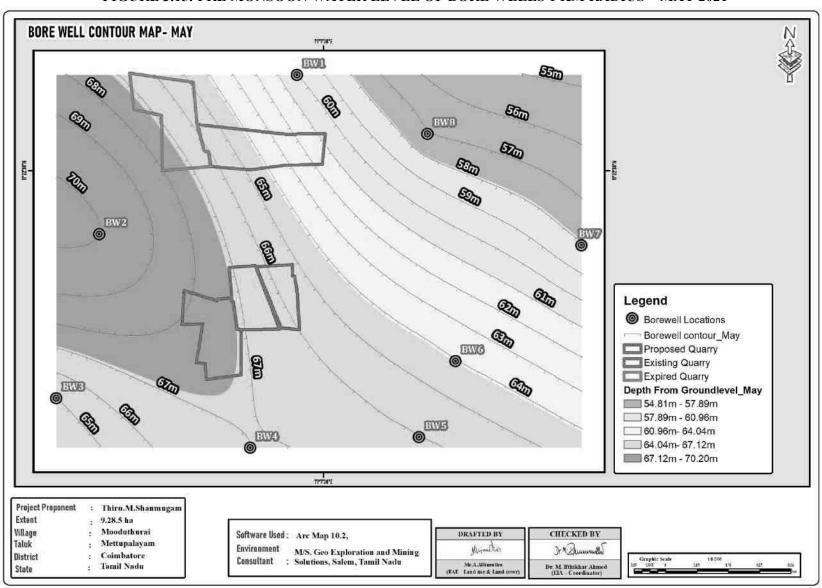


FIGURE 3.15: PRE MONSOON WATER LEVEL OF BORE WELLS 1 KM RADIUS – MAY 2021

3.2.5.1 Methodology and Data Acquisition

Electric Resistivity Method is well established for delineating lateral as well vertical discontinuities in the resistive structure of the Earth's subsurface. The present study makes use of vertical electric sounding (VES) to delineate the Vertical Resistivity structure at depth. Schlumberger electrode set up was employed for making sounding measurements. Since it is least influenced by lateral in homogeneities and is capable of providing higher depth of investigation. This is four electrodes collinear set up where in the outer electrodes send current into the ground and the inner electrodes measure the potential difference.

The present study utilizes maximum current electrode separation AB/2. The data from this survey are commonly arranged and contoured in the farm of Pseudo-section that gives an approximate of the subsurface resistivity. This technique is used for the inversion of Schlumberger VES data to predict the layer parameter namely layer resistivity and Geo electric layer thickness. The main goal of the present study is to search the vertical in homogeneities that is consistent with the measured data.

For a Schlumberger among the Apparent resistivity can be calculated as follows

$$\rho_a = G\Delta V$$
I

 ΔV = potential difference between receiving electrodes

G = Geometric Factor.

Rocks show wide variation in resistivity ranging from 10-8 more than 10+14 ohmmeter. On a broad classification, one can group the rocks falling in the range of 10-8 to 1 ohmmeter as good conductors. 1 to 106 ohmmeter as intermediate conductors and 106 to 1012 ohmmeter as more as poor conductor. The resistivity of rocks and subsurface lithology, which is mostly dependent on its porosity and the pore fluid resistivity is defined by Archie's Law,

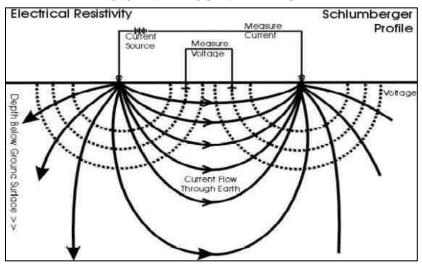
```
\rho_r = F \rho_w = a \mathcal{O}^m \rho_w
```

ρr = Resistivity of Rocks

ρw = Resistivity of water in pores of rock

F = Formation Factor

Ø = Fractional pore volume


A = Constants with values ranging from 0.5 to 2.5

3.2.5.2 Survey Layout

The layout for a resistivity survey depends on the choice of the current and potential electrode arrangement, which is called electrode array. Here the present study is considered with Schlumberger array. In which the distance may be used for current electrode separation while potential electrode separation is kept on third to one fifth of the same. One interesting aspect in VES is the principle of reciprocity, which permits interchange of the potential and current electrode without any effect on the measured apparent resistivity.

The field equipment deployed for the study is in a deep resistivity meter with a model of SSR – MP – AT. This Signal stacking Resistivity meter is a high-quality data acquisition system incorporating several innovation features for Earth resistivity. In the presence of random earth Noises the signal to nose ration can be enhanced by \sqrt{N} where N is the number of stacked readings. This SSR meter in which running averages of measurements $[1, (1+2)/2, (1+2+3)/3 \dots (1+2\dots+16/16)]$ up to the chosen stacks are displayed and the final average is stored automatically, in memory utilizing the principles of stacking to achieve the benefit of high signals to noise ratio. Based on these above significations the signal stacking resistivity meter was used for (VES) Vertical Electric Resistivity Sounding.

RESISTIVITY SURVEY PROFILE

Measurements of ground Resistivity is essentially done by sending a current through two electrodes called current electrodes (C_1 & C_2) and measuring the resulting potential by two other electrodes called potential electrode (P_1 & P_2). The amount of current required to be sent into the ground depends on the contact resistance at the current electrode, the ground resistivity and the depth of interest.

3.2.5.3 Geophysical Data Interpretation

The geophysical data's was obtained to study the lateral variations, vertical in homogeneities in the sub – surface with respect to the availability of groundwater. From the interpreted data, it has inferred that the area has moderate groundwater potential in the investigated area. This small quarrying operation will not have any significant impact on the natural water bodies.

3.3 AIR ENVIRONMENT

The existing ambient air quality of the area is important for evaluating the impact of mining activities on the ambient air quality.

The baseline studies on air environment include identification of specific air pollution parameters and their existing levels in ambient air. The ambient air quality with respect to the study zone of 10 km radius around the cluster forms the baseline information. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities. The prime objective of the baseline air quality study was to establish the existing ambient air quality of the study area. These will also be useful for assessing the conformity to standards of the ambient air quality during the operation of proposed project in cluster.

This section describes the identification of sampling locations, methodology adopted during the monitoring period and sampling frequency.

3.3.1 Meteorology & Climate

Meteorology is the key to understand the Air quality. The essential relationship between meteorological condition and atmospheric dispersion involves the wind in the broadest sense. Wind fluctuations over a very wide range of time, accomplish dispersion and strongly influence other processes associated with them.

A temporary meteorological station was installed at project site by covering cluster quarries. The station was installed at a height of 3 m above the ground level in such a way that there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature are recorded on hourly basis.

Climate

The Coimbatore lies on 421m above sea level the climate here is considered to be a local steppe climate. There is not much rainfall in Madurai all year long. This location is classified as BSh by Köppen and Geiger. In Coimbatore –

- ➤ The average annual temperature in Coimbatore is 25.4 °C | 77.8 °F. The annual rainfall is 952 mm | 37.5 inch.
- ➤ Precipitation is the lowest in January, with an average of 13 mm | 0.5 inch. Most of the precipitation here falls in October, averaging 181 mm | 7.1 inch.
- ➤ At an average temperature of 28.9 °C | 84.1 °F, April is the hottest month of the year. December is the coldest month, with temperatures averaging 23.2 °C | 73.7 °F.
- ➤ Between the driest and wettest months, the difference in precipitation is 168 mm | 7 inch. Throughout the year, temperatures vary by 5.8 °C | 42.4 °F.

Source: https://en.climate-data.org/asia/india/tamil-nadu/coimbatore-2788/

Rainfall

TABLE 3.13: RAINFALL DATA

	Ac	tual Rainfall in		Normal Rainfall in mm		
2013	2014	2015	2016	2017	2018	Normai Kamian in inin
901.0	1221.7	992.9	505.5	873.4	1302.0	689.3

Source: https://www.twadboard.tn.gov.in/content/coimbatore

TABLE 3.14: METEOROLOGICAL DATA RECORDED AT SITE

S.No	Parameters		Mar-2021	April– 2021	May- 2021
		Max	31.4	30.4	32.0
1	Temperature (⁰ C)	Min	26.3	24.9	24.4
		Avg	28.8	27.6	28.2
2	Relative Humidity (%)	Avg	51	66	63
		Max	6.139	4.125	7.750
3	Wind Speed (m/s)	Min	1.208	1.278	0.653
		Avg	3.673	2.701	4.201
4	Cloud Cover (OKTAS)		0-8	0-8	0-8
5	Wind Direction		N,NNE	SSE,ESE	SSW,SSE

Source: On-site monitoring/sampling by Enviro - Tech Services, Ghaziabad (U.P) in association with GEMS

Correlation between Secondary and Primary Data

The meteorological data collected at the site is almost similar to that of secondary data collected from IMD Coimbatore_Agro. A comparison of site data generated during the three months with that of IMD, Coimbatore_Agro reveals the following:

- The average maximum and minimum temperatures of IMD, Coimbatore_Agro showed a higher in respect of
 on-site data i.e. in Mooduthurai village.
- The relative humidity levels were lesser at site as compared to IMD, Coimbatore Agro.
- The wind speed and direction at site shows similar trend that of IMD, Coimbatore_Agro.

 Wind rose diagram of the study site is depicted in Figure. 3.8. Predominant downwind direction of the area during study season is North-East to South West.

Modufational Rough stone and Grazal Quarry

STATE

FIGURE 3.16: WINDROSE DIAGRAM

Source: Wind Rose plot view, Lake Environmental Software

In the abstract of collected data wind rose were drawn on presented in figure No.3.15 during the monitoring period in the study area

- 1. Predominant winds were from NE-SW & SE
- 2. Wind velocity readings were recorded between 5.70 8.80 m/s
- 3. Calm conditions were recorded as 0.00% of the monitoring period
- 4. Temperature readings ranging from 24.4 32.0 °C
- 5. Relative humidity ranging from 51 66 %
- 6. The monitoring was carried out continuously for three months

3.3.2 Methodology and Objective

The prime objective of the ambient air quality study is to assess the existing air quality of study area and its conformity to NAAQS. The observed sources of air pollution in the study area are industrial, traffic and domestic activities. The baseline status of the ambient air quality has been established through a scientifically designed ambient air quality monitoring network considering the followings:

- Meteorological condition on synoptic scale;
- Topography of the study area;
- Representatives of regional background air quality for obtaining baseline status;
- Location of residential areas representing different activities;
- Accessibility and power availability; etc.,

3.3.3 Sampling and Analytical Techniques

TABLE 3.15: METHODOLOGY AND INSTRUMENT USED FOR AAQ MONITORING

Parameter	Method	Instrument
PM _{2.5}	Gravimetric Method	Fine Particulate Sampler
1 1412.3	Beta attenuation Method	Make – Thermo Environmental Instruments – TEI 121
PM_{10}	Gravimetric Method	Respirable Dust Sampler
1 14110	Beta attenuation Method	Make – Thermo Environmental Instruments – TEI 108
SO ₂	IS-5182 Part II	Description Dust Samuelan with assessed attachment
302	(Improved West & Gaeke method)	Respirable Dust Sampler with gaseous attachment
NO _x	IS-5182 Part II	Bassinahla Duat Camulan with access attachment
INO _X	(Jacob & Hochheiser modified method)	Respirable Dust Sampler with gaseous attachment
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Source: Sampling Methodology followed by Enviro - Tech Services, Ghaziabad (U.P) & CPCB Notification

TABLE 3.16: NATIONAL AMBIENT AIR QUALITY STANDARDS

Sl.	Pollutant	Time Weighted	Concentration in ambient air						
No.		Average	Industrial, Residential,	Ecologically Sensitive area					
			Rural & other areas	(Notified by Central Govt.)					
1	Sulphur Dioxide (µg/m³)	Annual Avg.*	50.0	20.0					
		24 hours**	80.0	80.0					
2	Nitrogen Dioxide (μg/m³)	Annual Avg.	40.0	30.0					
		24 hours	80.0	80.0					
3	Particulate matter (size less	Annual Avg.	60.0	60.0					
	than $10\mu m) PM_{10} (\mu g/m^3)$	24 hours	100.0	100.0					
4	Particulate matter (size less	Annual Avg.	40.0	40.0					
	than 2.5 μ m PM _{2.5} (μ g/m ³)	24 hours	60.0	60.0					

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

3.3.4 Frequency & Parameters for Sampling

Ambient air quality monitoring has been carried out with a frequency of two samples per week at eight (8) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period March – May 2021. The baseline data of ambient air has been generated for PM₁₀, PM_{2.5}, Sulphur Dioxide (SO₂) & Nitrogen Dioxide (NO₂) Monitoring has been carried out as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least $3 \pm 0.5m$ above the ground level at each monitoring station, for negating the effects of wind-blown ground dust. The equipment was placed at open space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results.

^{*}Annual Arithmetic mean of minimum 104 measurements in a year taken twice a Week 24 hourly at uniform interval

^{** 24} hourly / 8 hourly or 1 hourly monitored values as applicable shall be complied with 98 % of the time in a year. However, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

3.3.5 Ambient Air Quality Monitoring Stations

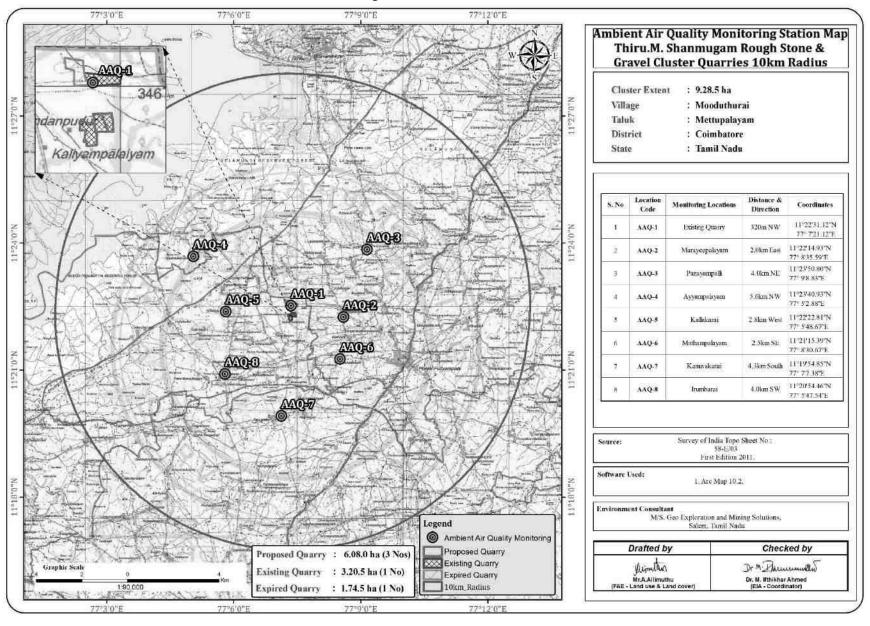

Eight (8) monitoring stations were set up in the study area as depicted in Figure 3.6.1 for assessment of the existing ambient air quality. Details of the sampling locations are as per given below.

TABLE 3.17: AMBIENT AIR QUALITY (AAQ) MONITORING LOCATIONS

S. No	Location Code	Monitoring Locations	Distance & Direction	Coordinates
1	AAQ-1	Existing Quarry	320m NW	11°22'31.12"N 77° 7'21.12"E
2	AAQ-2	Marayeepalayam	2.0km East	11°22'14.93"N 77° 8'35.59"E
3	AAQ-3	Panayampalli	4.0km NE	11°23'50.80"N 77° 9'8.83"E
4	AAQ-4	Ayyampalayam	5.0km NW	11°23'40.93"N 77° 5'2.88"E
5	AAQ-5	Kallakarai	2.8km West	11°22'22.81"N 77° 5'48.67"E
6	AAQ-6	Mathampalayam	2.5km SE	11°21'15.39"N 77° 8'30.67"E
7	AAQ-7	Kanuvakarai	4.3km South	11°19'54.85"N 77° 7'7.38"E
8	AAQ-8	Irumbarai	4.0km SW	11°20'54.46"N 77° 5'47.54"E

Source: On-site monitoring/sampling by Enviro - Tech Services, Ghaziabad (U.P) in association with GEMS

FIGURE 3.17: AMBIENT AIR QUALITY LOCATIONS AROUND 10 KM RADIUS

TABLE 3.18: AMBIENT AIR QUALITY DATA LOCATION AAQ1

Period: March – May-2021 Location: AAQ1- Existing Quarry Sampling Time: 24-hourly

Mon	itoring	Par	ticulates, μg/n	n ³			ous Pollut	ants, μg/m ³	Sampin	Other Pollutants (Particulate Phase), µg/m³					
Date	Period, hrs.	SPM	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³	
NAAQ	Norms*	(24 hrs)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)	
01.03.2021	07.00-07.00	62.3	25.4	41.4	10.2	24.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
02.03.2021	07.15-07.15	62.4	23.6	41.3	9.5	27.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
08.03.2021	07.00-07.00	62.5	24.9	43.7	9.7	28.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
09.03.2021	07.15-07.15	62.8	23.6	44.7	9.3	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
15.03.2021	07.00-07.00	62.1	25.8	45.7	9.1	28.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
16.03.2021	07.15-07.15	62.8	23.7	46.3	9.2	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
22.03.2021	07.00-07.00	62.7	21.4	45.8	9.8	27.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
23.03.2021	07.15-07.15	63.1	23.6	42.9	9.4	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
29.03.2021	07.00-07.00	63.8	26.2	43.2	9.7	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
30.03.2021	07.15-07.15	63.5	24.7	44.9	9.5	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
05.04.2021	07.00-07.00	62.1	23.2	43.9	8.6	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
06.04.2021	07.15-07.15	62.6	26.9	42.8	8.7	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
12.04.2021	07.00-07.00	63.1	22.8	43.7	8.3	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
13.04.2021	07.15-07.15	63.4	24.3	44.2	8.9	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
19.04.2021	07.00-07.00	63.5	23.8	43.6	9.2	28.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
20.04.2021	07.15-07.15	63.8	23.6	44.2	9.5	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
26.04.2021	07.00-07.00	63.7	24.5	45.4	9.7	26.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
27.04.2021	07.15-07.15	62.1	24.1	46.5	9.5	25.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
03.05.2021	07.00-07.00	62.5	23.7	44.8	9.4	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
04.05.2021	07.15-07.15	63.3	22.9	43.6	9.8	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
10.05.2021	07.00-07.00	63.7	23.6	44.1	9.5	28.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
11.05.2021	07.15-07.15	63.8	21.3	42.3	9.2	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
17.05.2021	07.00-07.00	63.1	23.7	43.7	9.9	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
18.05.2021	07.15-07.15	63.5	22.1	42.5	9.5	25.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
24.05.2021	07.00-07.00	62.9	22.5	43.5	9.6	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
25.05.2021	07.15-07.15	62.7	22.7	43.1	9.0	27.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	

TABLE 3.19: AMBIENT AIR QUALITY DATA LOCATION AAQ2

Period: March – May-2021 Location: AAQ2- Marayeepalayam Sampling Time: 24-hourly

Moni		m ³				ayeepalayan ants, µg/m³	i Sampini	Other Pollutants (Particulate Phase), µg/m ³						
Date	Period, hrs.	SPM	rticulates, μg/ PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ	Norms*	(24 hrs)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
01.03.2021	07.15-07.15	64.8	25.4	41.3	9.6	27.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02.03.2021	07.30-07:30	64.2	23.3	44.9	9.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08.03.2021	07.15-07.15	64.7	24.8	42.7	8.6	28.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09.03.2021	07.30-07:30	64.2	23.6	43.6	8.7	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15.03.2021	07.15-07.15	64.1	24.7	45.4	8.5	24.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16.03.2021	07.30-07:30	64.8	23.1	44.9	8.1	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22.03.2021	07.15-07.15	64.1	21.9	45.7	9.9	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23.03.2021	07.30-07:30	63.2	22.5	42.6	9.5	25.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
29.03.2021	07.15-07.15	63.7	23.7	45.8	9.7	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
30.03.2021	07.30-07:30	63.2	21.2	45.2	9.2	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
05.04.2021	07.15-07.15	63.8	23.8	44.3	9.3	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
06.04.2021	07.30-07:30	63.1	25.5	43.7	9.5	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
12.04.2021	07.15-07.15	62.7	26.9	43.6	9.8	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13.04.2021	07.15-07.15	62.8	25.7	45.7	8.5	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
19.04.2021	07.00-07.00	62.9	23.1	42.3	8.7	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20.04.2021	07.15-07.15	62.1	25.8	44.8	8.1	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
26.04.2021	07.00-07.00	62.5	24.3	42.9	8.3	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27.04.2021	07.15-07.15	62.7	23.2	43.6	8.5	27.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03.05.2021	07.00-07.00	62.8	21.9	42.2	8.6	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04.05.2021	07.15-07.15	62.7	25.4	44.1	8.1	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10.05.2021	07.00-07.00	62.3	23.7	42.6	8.9	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11.05.2021	07.15-07.15	62.5	22.9	44.2	9.0	26.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17.05.2021	07.00-07.00	63.7	24.2	42.7	9.5	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18.05.2021	07.15-07.15	63.8	24.5	43.3	9.8	26.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24.05.2021	07.00-07.00	64.1	24.6	44.2	9.3	26.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25.05.2021	07.15-07.15	64.4	24.8	44.5	9.1	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

TABLE 3.20: AMBIENT AIR QUALITY DATA LOCATION AAQ3

Period: March – May-2021 : AAQ3- Panayampalli Sampling Time: 24-hourly

Period: March -	- May-2021			: AAQ3- I	Panayampal	l1		g Time: 24-hourly							
Moni	toring	Pa	rticulates, µ	g/m ³		Gased	us Polluta	nts, μg/m ³		Other Pollutants (Particulate Phase) , µg/m³					
Date	Period, hrs.	SPM	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³	
NAAQ	Norms*	(24 hrs.)	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)	
01.03.2021	07.15-07.15	60.2	21.9	41.7	8.5	23.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
02.03.2021	07.30-07:30	60.5	22.7	43.2	8.1	24.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
08.03.2021	07.15-07.15	60.8	23.5	42.6	8.7	23.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
09.03.2021	07.30-07:30	60.7	24.6	42.8	8.6	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
15.03.2021	07.15-07.15	60.9	23.8	42.9	9.3	22.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
16.03.2021	07.30-07:30	60.4	24.1	43.3	9.7	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
22.03.2021	07.15-07.15	61.2	22.6	41.3	9.2	24.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
23.03.2021	07.30-07:30	61.4	25.7	43.7	8.3	23.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
29.03.2021	07.15-07.15	61.5	23.9	44.6	8.4	22.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
30.03.2021	07.30-07:30	61.3	24.8	41.8	8.6	24.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
05.04.2021	07.15-07.15	62.7	25.5	43.6	8.5	23.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
06.04.2021	07.30-07:30	62.9	24.3	41.2	8.7	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
12.04.2021	07.15-07.15	60.2	23.4	44.7	9.2	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
13.04.2021	07.15-07.15	60.7	25.4	41.2	9.5	23.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
19.04.2021	07.00-07.00	60.5	25.6	42.6	9.1	22.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
20.04.2021	07.15-07.15	60.3	24.8	43.3	9.3	23.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
26.04.2021	07.00-07.00	60.8	24.7	41.8	9.1	24.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
27.04.2021	07.15-07.15	61.2	24.2	41.2	9.8	23.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
03.05.2021	07.00-07.00	61.8	24.3	44.9	8.8	24.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
04.05.2021	07.15-07.15	61.7	25.9	43.6	8.4	23.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
10.05.2021	07.00-07.00	61.9	22.3	46.3	8.1	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
11.05.2021	07.15-07.15	61.5	24.1	44.6	8.5	23.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
17.05.2021	07.00-07.00	61.8	23.9	41.9	8.2	23.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
18.05.2021	07.15-07.15	62.7	22.3	42.4	8.6	22.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
24.05.2021	07.00-07.00	62.5	21.5	10.6	8.3	23.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
25.05.2021	07.15-07.15	62.9	21.8	40.7	8.4	23.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0	

TABLE 3.21: AMBIENT AIR QUALITY DATA LOCATION AAQ4

Period: March – May-2021 Location: AAQ4 Ayyampalayam Sampling Time: 24-hourly

	Monitoring Particulates, μg/m ³								yampalayam	Sampling Time: 24-hourly Other Pollutants (Particulate Phase), µg/m³					
Moni	toring	Pai	rticulates, μg/	m ³		Gased	ous Pollut	ants, μg/m ³	1	Other I	Pollutants	(Particula	te Phase), μg/m ³	
Date	Period, hrs.	SPM	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³	
NAAQ	Norms*	(24 hrs.)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)	
01.03.2021	07.00-07.00	59.3	21.7	40.3	7.3	23.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
02.03.2021	07.15-07:15	59.1	22.5	40.7	7.5	21.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
08.03.2021	07.00-07.00	59.2	23.6	41.9	7.6	23.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
09.03.2021	07.15-07:15	59.7	21.9	40.2	7.1	22.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
15.03.2021	07.00-07.00	59.2	23.5	41.1	7.2	22.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
16.03.2021	07.15-07:15	60.0	23.4	40.2	7.8	24.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
22.03.2021	07.00-07.00	60.2	22.5	40.6	7.9	23.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
23.03.2021	07.15-07:15	60.8	21.8	41.3	8.2	21.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
29.03.2021	07.00-07.00	60.1	20.4	40.2	7.4	23.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
30.03.2021	07.15-07:15	60.8	21.6	40.9	7.6	22.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
05.04.2021	07.00-07.00	60.3	23.3	41.3	7.1	24.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
06.04.2021	07.15-07:15	60.4	22.7	41.7	7.8	21.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
12.04.2021	07.00-07.00	61.8	20.5	41.9	8.2	23.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
13.04.2021	07.15-07.15	61.2	21.4	40.2	8.5	22.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
19.04.2021	07.00-07.00	61.7	20.3	41.7	8.6	23.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
20.04.2021	07.15-07.15	61.5	20.6	40.2	8.4	24.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
26.04.2021	07.00-07.00	61.8	21.8	41.8	7.6	23.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
27.04.2021	07.15-07.15	61.3	22.7	40.2	7.9	23.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
03.05.2021	07.00-07.00	59.7	20.9	41.7	7.2	22.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
04.05.2021	07.15-07.15	59.6	22.4	40.9	7.5	24.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
10.05.2021	07.00-07.00	59.2	20.4	40.2	7.8	22.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
11.05.2021	07.15-07.15	59.4	20.3	41.1	8.2	24.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
17.05.2021	07.00-07.00	59.6	21.6	40.8	7.8	21.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
18.05.2021	07.15-07.15	59.1	20.9	41.3	8.6	22.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
24.05.2021	07.00-07.00	59.2	20.1	40.0	8.9	24.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
25.05.2021	07.15-07.15	59.4	20.5	40.3	8.1	24.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	

TABLE 3.22: AMBIENT AIR QUALITY DATA LOCATION AAQ5

Period: March – May-2021 : AAQ5- Kallakari Sampling Time: 24-hourly

Moni	toring	Pai	ticulates, μg/	m ³		Gased	ous Pollut	ants, μg/m³		Other Pollutants (Particulate Phase) , µg/m³					
Date	Period, hrs.	SPM	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³	
NAAQ	Norms*	(24 hrs.)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)	
01.03.2021	07:30-07:30	58.6	17.3	39.5	7.3	25.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
02.03.2021	07:45-07:45	58.7	19.8	40.2	7.5	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
08.03.2021	07:30-07:30	58.1	19.4	40.5	7.6	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
09.03.2021	07:45-07:45	58.3	19.9	39.8	7.8	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
15.03.2021	07:30-07:30	58.6	18.3	38.6	7.2	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
16.03.2021	07:45-07:45	58.2	20.7	38.7	7.1	25.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
22.03.2021	07:30-07:30	58.1	19.7	37.6	6.5	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
23.03.2021	07:45-07:45	60.2	18.2	37.8	6.8	25.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
29.03.2021	07:30-07:30	60.7	19.8	38.6	8.2	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
30.03.2021	07:45-07:45	60.1	21.3	38.1	8.4	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
05.04.2021	07:30-07:30	61.3	19.3	38.5	8.3	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
06.04.2021	07:45-07:45	61.8	17.1	38.4	8.2	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
12.04.2021	07:30-07:30	61.7	19.2	40.2	7.6	26.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
13.04.2021	07.15-07.15	61.8	19.4	40.3	7.1	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
19.04.2021	07.00-07.00	62.2	19.9	40.2	7.2	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
20.04.2021	07.15-07.15	61.4	19.3	40.6	7.8	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
26.04.2021	07.00-07.00	61.5	16.5	40.7	8.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
27.04.2021	07.15-07.15	61.3	18.7	41.2	8.3	27.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
03.05.2021	07.00-07.00	61.7	16.4	41.8	8.1	25.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
04.05.2021	07.15-07.15	61.8	18.5	39.5	7.3	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
10.05.2021	07.00-07.00	62.3	19.3	39.6	7.2	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
11.05.2021	07.15-07.15	62.7	16.7	39.7	7.1	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
17.05.2021	07.00-07.00	62.3	20.2	39.2	7.8	25.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
18.05.2021	07.15-07.15	62.4	18.3	40.3	7.0	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
24.05.2021	07.00-07.00	62.9	19.6	40.8	7.5	24.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
25.05.2021	07.15-07.15	62.7	19.8	41.6	7.8	24.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	

TABLE 3.23: AMBIENT AIR QUALITY DATA LOCATION AAQ6

Period: March – May-2021 Location: AAQ6 – Mathampalayam Sampling Time: 24-hourly

renou. March			Locuiton. A			•	Other Pollutants (Particulate Phase), µg/m ³							
Moni	toring	Pai	rticulates, μg/	m³		Gased	ous Pollut	ants, μg/m ³	T	Other I	Pollutants	(Particula	ite Phase	, μg/m ³
Date	Period, hrs.	SP/m	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m³	ng/m ^o	BaP, ng/m ³
NAAQ	Norms*	(24 hrs.)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
01.03.2021	08:00-08:00	57.6	21.2	38.5	5.6	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02.03.2021	08:15-08:15	57.9	22.7	38.6	5.6	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08.03.2021	08:00-08:00	57.2	23.9	39.2	5.7	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09.03.2021	08:15-08:15	57.1	22.5	39.7	5.9	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15.03.2021	08:00-08:00	58.6	25.3	39.2	6.3	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16.03.2021	08:15-08:15	58.2	24.1	39.1	6.1	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22.03.2021	08:00-08:00	58.3	23.6	39.5	6.8	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23.03.2021	08:15-08:15	57.6	23.7	39.8	6.7	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
29.03.2021	08:00-08:00	57.9	24.4	40.1	6.8	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
30.03.2021	08:15-08:15	59.2	23.9	40.8	6.2	24.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
05.04.2021	08:00-08:00	59.6	21.3	40.6	6.1	24.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
06.04.2021	08:15-08:15	59.4	22.5	40.9	5.8	25.0	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
12.04.2021	08:00-08:00	59.2	23.4	39.2	5.4	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13.04.2021	07.15-07.15	59.6	22.9	39.7	5.2	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
19.04.2021	07.00-07.00	58.2	21.2	41.3	5.7	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20.04.2021	07.15-07.15	58.3	24.7	41.5	5.3	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
26.04.2021	07.00-07.00	57.6	23.3	39.2	5.0	25.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27.04.2021	07.15-07.15	58.3	21.9	39.1	5.8	25.0	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03.05.2021	07.00-07.00	59.4	22.5	39.8	6.4	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04.05.2021	07.15-07.15	59.7	21.3	39.6	6.8	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10.05.2021	07.00-07.00	59.2	24.8	39.5	6.0	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11.05.2021	07.15-07.15	59.3	21.3	39.1	6.7	26.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17.05.2021	07.00-07.00	59.4	23.5	38.5	6.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18.05.2021	07.15-07.15	59.1	22.9	38.7	6.8	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24.05.2021	07.00-07.00	58.7	21.3	38.1	5.6	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25.05.2021	07.15-07.15	58.2	21.5	38.5	5.7	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

TABLE 3.24: AMBIENT AIR QUALITY DATA LOCATION AAQ7

Period: March – May-2021 Location: AAQ7– Kanuvakarai Sampling Time: 24-hourly

Moni	toring	Pai	ticulates, μg/		Locuiton. 1			ants, μg/m³	Sampling Th	1	-	(Particula	te Phase)	$\mu g/m^3$
Date	Period, hrs.	SPM	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m³	C ₆ H ₆ , ng/m ³	BaP, ng/m³
NAAQ	Norms*	(24 hrs.)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
01.03.2021	08:00-08:00	61.2	24.5	41.7	6.2	24.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02.03.2021	08:15-08:15	61.7	23.9	43.3	6.5	24.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08.03.2021	08:00-08:00	61.5	21.5	42.7	6.7	24.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09.03.2021	08:15-08:15	61.8	22.6	41.9	6.8	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15.03.2021	08:00-08:00	61.9	25.4	44.3	7.1	24.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16.03.2021	08:15-08:15	61.5	25.3	42.5	7.5	24.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22.03.2021	08:00-08:00	61.2	24.9	44.7	7.4	24.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23.03.2021	08:15-08:15	60.2	23.3	41.6	7.8	24.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
29.03.2021	08:00-08:00	60.7	21.7	43.3	7.9	25.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
30.03.2021	08:15-08:15	60.3	22.6	42.9	8.2	25.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
05.04.2021	08:00-08:00	62.5	22.9	42.8	8.5	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
06.04.2021	08:15-08:15	61.8	24.4	41.3	8.1	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
12.04.2021	08:00-08:00	61.4	25.3	44.7	8.6	25.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13.04.2021	07.15-07.15	64.3	25.9	41.3	8.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
19.04.2021	07.00-07.00	61.7	23.1	42.6	8.4	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20.04.2021	07.15-07.15	61.8	22.6	43.4	8.7	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
26.04.2021	07.00-07.00	61.9	23.8	42.4	6.8	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27.04.2021	07.15-07.15	60.7	22.4	41.6	7.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03.05.2021	07.00-07.00	60.4	21.6	42.9	7.5	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04.05.2021	07.15-07.15	62.7	23.3	43.3	7.3	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10.05.2021	07.00-07.00	62.3	22.8	44.7	7.8	25.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11.05.2021	07.15-07.15	62.8	21.6	41.3	7.4	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17.05.2021	07.00-07.00	62.1	22.8	42.9	8.6	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18.05.2021	07.15-07.15	62.8	21.3	44.5	8.1	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24.05.2021	07.00-07.00	62.9	21.5	42.5	8.4	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25.05.2021	07.15-07.15	61.0	21.6	42.7	8.3	26.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

TABLE 3.25: AMBIENT AIR QUALITY DATA LOCATION AAQ8

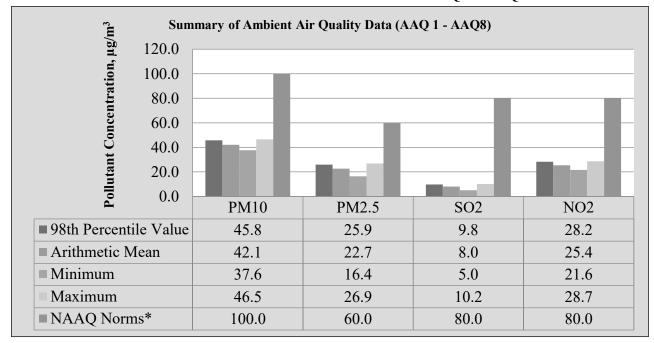
Period: March – May-2021 Location: AAQ8– Irumbarai Sampling Time: 24-hourly

Manie		Da			Gaseous Pollutants, µg/m ³				Other Bell, to the (Best Lett Blees)			3		
Moni	oring	Pai	rticulates, μg/	m~		Gased	ous Pollut		ı	Other Pollutants (Particulate Phase), µg/r			, μg/m ³	
Date	Period, hrs.	SPM	PM2.5	PM10	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ	Norms*	(24 hrs.)	60(24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
01.03.2021	08:00-08:00	62.5	22.4	43.7	8.6	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02.03.2021	08:15-08:15	62.4	21.9	41.9	8.4	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08.03.2021	08:00-08:00	62.7	23.3	44.3	8.3	26.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09.03.2021	08:15-08:15	61.2	21.5	42.7	8.7	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15.03.2021	08:00-08:00	61.3	22.7	43.3	8.6	25.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16.03.2021	08:15-08:15	61.5	21.6	41.7	8.2	25.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22.03.2021	08:00-08:00	61.8	23.3	43.2	7.6	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23.03.2021	08:15-08:15	61.4	22.4	42.6	7.5	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
29.03.2021	08:00-08:00	61.7	21.8	44.5	7.8	26.0	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
30.03.2021	08:15-08:15	60.3	22.5	41.3	7.1	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
05.04.2021	08:00-08:00	60.7	23.9	41.7	7.8	26.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
06.04.2021	08:15-08:15	60.9	21.3	43.3	8.3	25.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
12.04.2021	08:00-08:00	61.5	24.9	41.3	8.4	25.0	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13.04.2021	07.15-07.15	61.4	23.1	43.7	8.7	25.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
19.04.2021	07.00-07.00	61.7	22.5	42.9	8.9	25.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20.04.2021	07.15-07.15	60.5	24.9	41.6	8.8	25.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
26.04.2021	07.00-07.00	60.3	23.3	43.5	8.3	25.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27.04.2021	07.15-07.15	60.7	24.6	42.3	8.2	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03.05.2021	07.00-07.00	61.3	22.8	41.9	8.9	26.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04.05.2021	07.15-07.15	61.7	21.8	43.3	7.5	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10.05.2021	07.00-07.00	61.9	25.3	42.5	7.6	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11.05.2021	07.15-07.15	62.4	23.9	44.7	7.1	26.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17.05.2021	07.00-07.00	629	23.4	43.6	7.8	26.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18.05.2021	07.15-07.15	63.1	21.6	42.8	7.7	26.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24.05.2021	07.00-07.00	63.9	23.5	44.3	7.1	26.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25.05.2021	07.15-07.15	63.7	23.7	44.8	7.5	26.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Legend: PM2.5-Particulate Matter size less than 2.5 μm; PM10-Respirable Particulate Matter size less than 10 μm; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen; NH₃-Ammonia; O₃-Ozone; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-Benzene &BaP-Benzo (a) pyrene inparticulate phase NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Area.

TABLE 3.26: SUMMARY OF AAQ - 1 to AAQ - 8

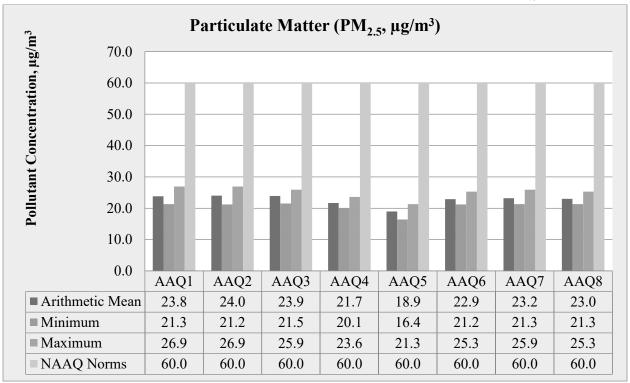
		Particulate m	natter PM-2.5						
Station ID	Max	Min	Mean	98 Percentile Value	STDEV				
AAQ-1	26.9	21.3	23.8	25.6	1.34				
AAQ-2	26.9	21.2	24.0	25.6	1.36				
AAQ-3	25.9	21.5	23.9	25.55	1.28				
AAQ-4	23.6	20.1	21.7	23.35	1.12				
AAQ-5	21.3	16.4	18.9	20.05	1.29				
AAQ-6	25.3	21.2	22.9	24.55	1.26				
AAQ-7	25.9	21.3	23.2	25.3	1.40				
AAQ-8	25.3	21.3	23.0	24.75	1.14				
Particulate matter PM-10									
Station ID	Max	Min	Mean	98 Percentile Value	STDEV				
AAQ-1	46.5	41.3	43.9	45.8	1.35				
AAQ-2	45.8	41.3	43.9	45.6	1.23				
AAQ-3	46.3	10.6	41.6	44.7	6.48				
AAQ-4	41.9	40	40.9	41.8	0.64				
AAQ-5	41.8	37.6	39.7	41.0	1.15				
AAQ-6	41.5	38.1	39.5	40.9	0.89				
AAQ-7	44.7	41.3	42.8	44.6	1.08				
AAQ-8	44.8	41.3	43.0	44.4	1.06				
		Sulphur Di-c	oxide as SO ₂						
Station ID	Max	Min	Mean	98 Percentile Value	STDEV				
AAQ-1	10.2	8.3	9.4	9.8	0.43				
AAQ-2	9.9	8.1	9.0	9.8	0.57				
AAQ-3	9.8	8.1	8.8	9.4	0.49				
AAQ-4	7.9	7.1	10.6	8.6	13.87				
AAQ-5	8.4	6.5	7.6	8.3	0.52				
AAQ-6	6.8	5	6.0	6.8	0.54				
AAQ-7	8.7	6.2	7.7	8.6	0.72				
AAQ-8	8.9	7.1	8.1	8.8	0.57				
		Oxide of Nitr	ogen as NO ₂						
Station ID	Max	Min	Mean	98 Percentile Value	STDEV				
AAQ-1	28.7	24.3	26.5	28.4	1.17				
AAQ-2	28.3	24.4	26.2	27.4	0.87				
AAQ-3	25.8	22.1	23.9	25.3	0.99				
AAQ-4	24.9	21.6	23.2	24.7	1.03				
AAQ-5	27.9	24.1	25.8	26.8	0.80				
AAQ-6	26.9	24.5	26.0	26.9	0.73				
AAQ-7	26.9	24.1	25.6	26.8	0.94				
AAQ-8	26.8	25	26.1	26.7	0.54				


TABLE 3.27: ABSTRACT OF AMBIENT AIR QUALITY DATA

Sl.	Parameter		Pollutant Concentration, μg/m ³						
No.		PM _{2.5}	PM ₁₀	SO ₂	NO ₂				
1	No. of Observations	208	208	208	208				
2	10th Percentile Value	19.87	39.20	6.47	23.30				
3	20th Percentile Value	21.30	40.20	7.10	24.30				
4	30th Percentile Value	21.80	40.90	7.50	24.90				
5	40th Percentile Value	22.50	41.48	7.80	25.38				
6	50th Percentile Value	22.90	41.90	8.20	25.70				
7	60th Percentile Value	23.40	42.70	8.40	25.90				
8	70th Percentile Value	23.79	43.30	8.60	26.30				
9	80th Percentile Value	24.36	43.70	9.10	26.50				
10	90th Percentile Value	25.02	44.70	9.50	26.80				
11	95th Percentile Value	25.50	45.10	9.70	27.49				
12	98th Percentile Value	25.89	45.79	9.80	28.30				
13	Arithmetic Mean	23.30	42.63	8.38	25.90				
14	Geometric Mean	23.23	42.59	8.31	25.86				
15	Standard Deviation	1.86	2.11	1.10	1.42				
16	NAAQ Norms*	60	100	80	80				
17	% Values exceeding	0	0	0	0				

Legend: PM_{2.5}-Particulate Matter size less than 2.5 μm; PM₁₀-Respirable Particulate Matter size less than 10 μm; SO₂-Sulphur dioxide; NO_x-Oxides of Nitrogen; CO-Carbon monoxide; O₃-Ozone; NH₃-Ammonia;

Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-Benzene &BaP- Benzo (a) pyrene in particulate phase levels were monitored below their respective detectable limits


FIGURE 3.18: BAR DIAGRAM OF SUMMARY OF AAQ 1 – AAQ 8

Source: Table 3.17 to 3.27

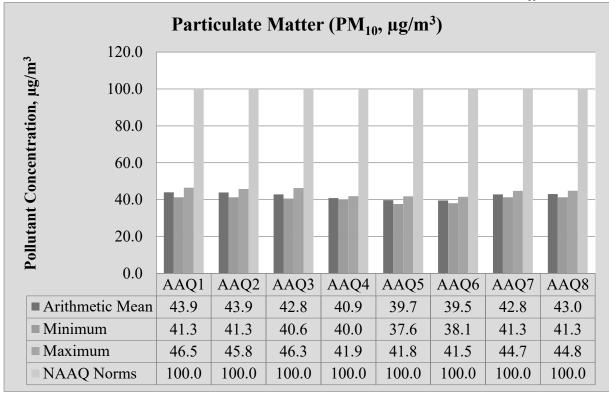

^{*} NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

FIGURE 3.19: BAR DIAGRAM OF PARTICULATE MATTER PM_{2.5}

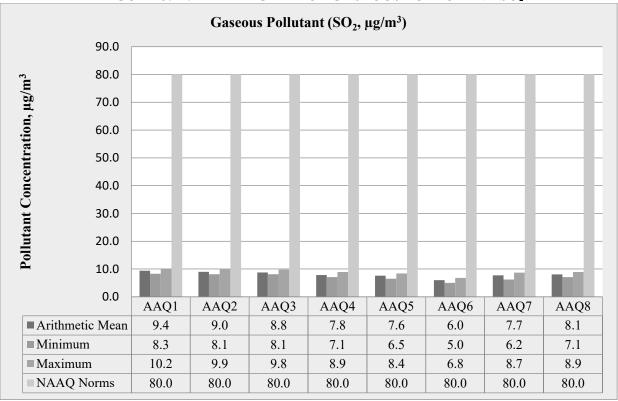

Source: Table 3.17 to 3.27

FIGURE 3.20: BAR DIAGRAM OF PARTICULATE MATTER PM₁₀

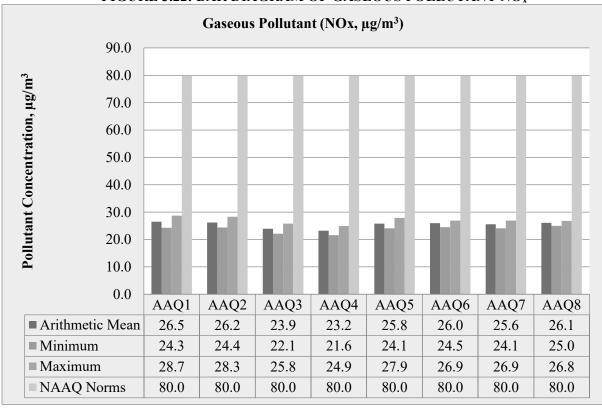

Source: Table 3.17 to 3.27

FIGURE 3.21: BAR DIAGRAM OF GASEOUS POLLUTANT SO2

Source: Table 3.17 to 3.27

FIGURE 3.22: BAR DIAGRAM OF GASEOUS POLLUTANT NO_x

Source: Table 3.17 to 3.27

3.3.6 Interpretations & Conclusion

As per monitoring data, PM_{10} ranges from 37.6 $\mu g/m^3$ to 46.5 $\mu g/m^3$, $PM_{2.5}$ data ranges from 16.4 $\mu g/m^3$ to 26.9 $\mu g/m^3$, SO_2 ranges from 5.0 $\mu g/m^3$ to 10.2 $\mu g/m^3$ and NO_2 data ranges from 21.6 $\mu g/m^3$ to 28.7 $\mu g/m^3$. The concentration levels of the above criteria pollutants were observed to be well within the limits of NAAQS prescribed by CPCB.

3.3.7 FUGITIVE DUST EMISSION

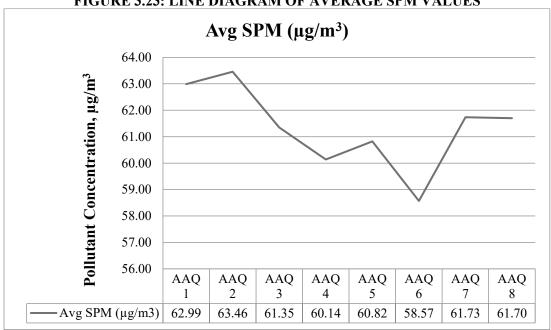

Fugitive dust was recorded at 8 AAQ monitoring stations for 30 days average during the study period.

TABLE 3.28: AVERAGE FUGITIVE DUST SAMPLE VALUES

AAQ Locations	Avg SPM (μg/m³)
AAQ 1	68.22
AAQ 2	67.70
AAQ 3	65.66
AAQ 4	62.72
AAQ 5	65.43
AAQ 6	60.44
AAQ 7	58.68
AAQ 8	61.79

Source: Onsite monitoring/sampling by Enviro - Tech Services, Ghaziabad (U.P)

FIGURE 3.23: LINE DIAGRAM OF AVERAGE SPM VALUES

Source: Table 3.28

TABLE 3.29: FUGITIVE DUST SAMPLE VALUES IN μg/m³

SPM (µg/m3)	AAQ1	AAQ2	AAQ3	AAQ4	AAQ5	AAQ6	AAQ7	AAQ8
Average	62.99	63.46	61.35	60.14	60.82	58.57	61.73	61.70
Min	62.10	62.10	60.20	59.10	58.10	57.10	60.20	0.00
Max	64.80	64.80	62.90	61.80	62.90	59.70	64.30	63.90

Source: Calculations from Lab Analysis Reports

SPM ($\mu g/m^3$) ■ Average ■ Min ■ Max 64.80 64.80 62.90 64.30 61.80 62.90 59.70 62.10 62.10 63.90 60.20 60.20 59.10 58.10 57.10 0.00 62.99 63.46 61.35 61.70 60.1460.82 61.73 58.57 AAQ1 AAQ2 AAQ3 AAQ4 AAQ5 AAQ6 AAQ7 AAQ8

FIGURE 3.24: BAR DIAGRAM OF SPM VALUES

Source: Table 3.29

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in study area, the environmental assessment of noise from the mining activity and vehicular traffic can be undertaken by taking into consideration various factors like potential damage to hearing, physiological responses, and annoyance and general community responses.

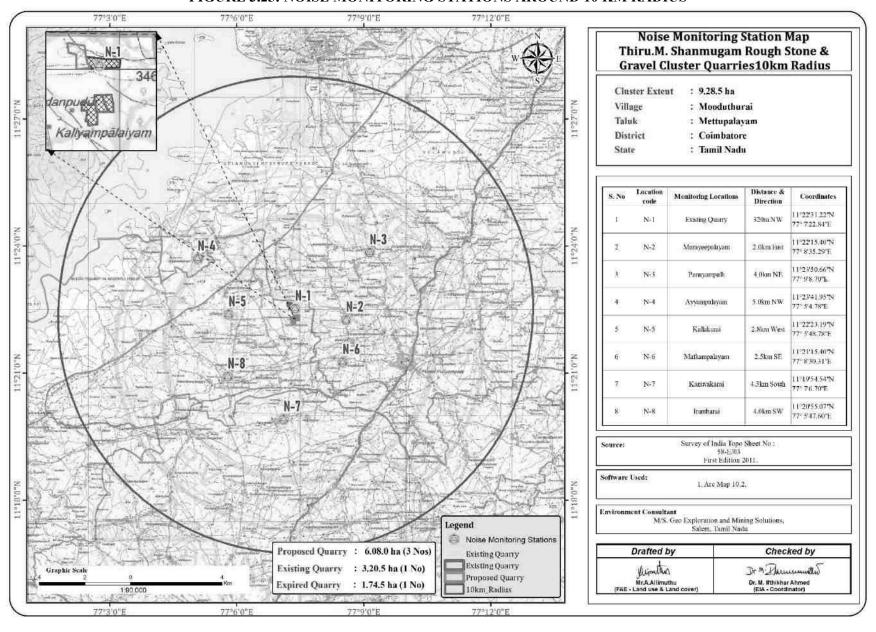
The main objective of noise monitoring in the study area is to establish the baseline noise level and assess the impact of the total noise expected to be generated during the project operations around the project site.

3.4.1 Identification of Sampling Locations

In order to assess the ambient noise levels within the study area, noise monitoring was carried out at Eight (8) locations. The noise level monitoring locations were carried out by covering commercial, residential, rural areas within the radius of 10km. A noise monitoring methodology was chosen such that it best suited the purpose and objectives of the study.

	TABLE 3.30: D	ETAILS OF SURFACE N	NOISE MONITORING LO	OCATIONS
0	Location code	Monitoring Locations	Distance & Direction	Coor

S. No	Location code	Monitoring Locations	Distance & Direction	Coordinates
1	N-1	Existing Quarry	320m NW	11°22'31.22"N 77° 7'22.84"E
2	N-2	Marayeepalayam	2.0km East	11°22'15.40"N 77° 8'35.29"E
3	N-3	Panayampalli	4.0km NE	11°23'50.66"N 77° 9'8.70"E
4	N-4	Ayyampalayam	5.0km NW	11°23'41.95"N 77° 5'4.78"E
5	N-5	Kallakarai	2.8km West	11°22'23.19"N 77° 5'48.78"E
6	N-6	Mathampalayam	2.5km SE	11°21'15.40"N 77° 8'30.31"E
7	N-7	Kanuvakarai	4.3km South	11°19'54.54"N 77° 7'6.70"E
8	N-8	Irumbarai	4.0km SW	11°20'55.07"N 77° 5'47.60"E


3.4.2 Method of Monitoring

Digital Sound Level Meter was used for the study. All reading was taken on the 'A-Weighting' frequency network, at a height of 1.5 meters from ground level. The sound level meter does not give a steady and consistent reading and it is quite difficult to assess the actual sound level over the entire monitoring period. To mitigate this shortcoming, the Continuous Equivalent Sound level, indicated by Leq, is used. Equivalent sound level, 'Leq', can be obtained from variable sound pressure level, 'L', over a time period by using following equation. The equivalent noise level is defined mathematically as

Measured noise levels, displayed as a function of time, is useful for describing the acoustical climate of the community. Noise levels recorded at each station with a time interval of about 60 minutes are computed for equivalent noise levels. Equivalent noise level is a single number descriptor for describing time varying noise levels.

Leq = $10 \text{ Log } L / T \sum (10 \text{Ln}/10)$ Where L = Sound pressure level at function of time dB (A) T = Time interval of observation

FIGURE 3.25: NOISE MONITORING STATIONS AROUND 10 KM RADIUS

3.4.3 Analysis of Ambient Noise Level in the Study Area

The Digital Sound pressure level has been measured by a sound level meter (Model: HTC SL-1352)

An analysis of the different Leq data obtained during the study period has been made. Variation was noted

during the day-time as well as night-time. The results are presented in below Table 3.31

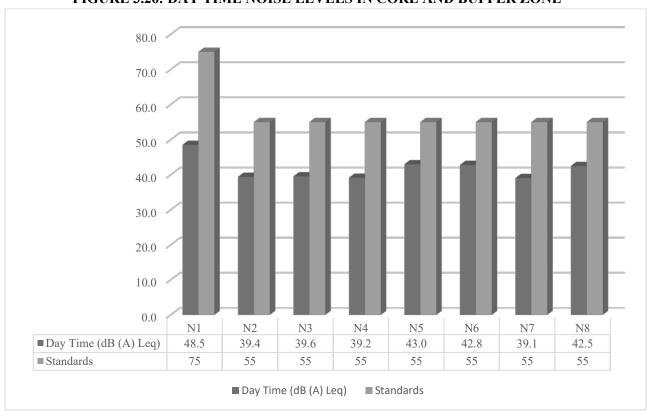

Day time: 6:00 hours to 22.00 hours. Night time: 22:00 hours to 6.00 hours.

TABLE 3.31: AMBIENT NOISE QUALITY RESULT

C No	Locations	Noise level ((dB (A) Leq)	Ambient Noise
S. No	Locations	Day Time	Night Time	Standards
1	Core Zone	48.5	37.0	Industrial Day Time- 75 dB (A) Night Time- 70 dB (A)
2	Marayeepalayam	39.4	38.2	
3	Panayampalli	39.6	35.3	
4	Ayyampalayam	39.2	37.8	Residential
5	Kallakarai	43.0	37.5	Day Time- 55 dB (A)
6	Mathampalayam	42.8	38.6	Night Time- 45 dB (A)
7	Kanuvakarai	39.1	35.6	
8	Irumbarai	42.5	38.0	

Source: On-site monitoring/sampling by Enviro - Tech Services, Ghaziabad (U.P) in association with GEMS

FIGURE 3.26: DAY TIME NOISE LEVELS IN CORE AND BUFFER ZONE

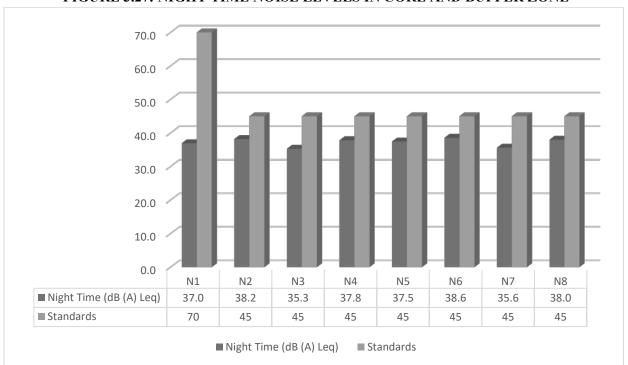


FIGURE 3.27: NIGHT TIME NOISE LEVELS IN CORE AND BUFFER ZONE

3.4.4 Interpretation & Conclusion:

Ambient noise levels were measured at 8 (Eight) locations around the proposed project area. Noise levels recorded in core zone during day time were from 48.5 dB (A) Leq and during night time were from 37.0 dB (A) Leq. Noise levels recorded in buffer zone during day time were from 39.1 - 43.0 dB (A) Leq and during night time were from 35.3 to 38.6 dB (A) Leq.

Thus, the noise level for Industrial and Residential area meets the requirements of CPCB.

3.5 ECOLOGICAL ENVIRONMENT

Ecology is a branch of science which dealing the relations and interactions between organisms and their environment. An ecological survey of the study area was conducted, particularly with reference to listing of species and assessment of the existing baseline ecological conditions in the study area. The main objective of biological study is to collect the baseline data regarding flora and fauna in the study area. Data has been collected through extensive survey of the area with reference to flora and fauna. Information is also collected from different sources i.e. government departments such as District Forest Office, Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

3.5.1 Scope of Work

Scope of work for this study includes identification of ecologically sensitive receptors, based on literature survey, field investigations and their mitigation with conservation action plan. The study was carried out in the core as well as buffer zone of the Proposed Rough stone and gravel quarry. The study was carried out systematically and scientifically using primary and secondary data in order to bring out factual information on the ecological conditions of the mine site and 10 km radius study area.

The study involved assessment of general habitat type, vegetation pattern, preparation of inventory of flora and fauna of terrestrial ecosystem within 10 km radius from the boundary of Proposed Mine site. Biological assessment of the site was done to identify ecologically sensitive areas and whether there are any rare, endangered, endemic or threatened (REET) species of flora & fauna in the core area as well its buffer zone to be impacted. The study also designed to suggest suitable mitigation measures if necessary for protection of wildlife habitats and conservation of REET species if any.

3.5.2. Study area Ecology

In this project, the total area of Cluster with in 10km radius from the periphery of this quarry is reported as 9.28.5 Ha with 4 Nos of quarries. In such Cluster situation a common Ecology and Biodiversity study for the entire cluster of quarries is enough to capture all the possible externalities. The common EIA/EMP data can be used for all quarries fall under this cluster. The Core mining area is less vegetation and small hill cover on the Northern side, whereas in buffer zone agricultural land is dominated. The following methods were applied during the baseline study of flora, fauna and diversity assessment.

3.5.3 Objectives of Biological Studies

The present study was undertaken with the following objectives:

- 1. To study the likely impact of the proposed mining project on the local biodiversity and to suggest mitigation measure, if required, for vulnerable biota.
- 2. To assess the nature and distribution of vegetation (Terrestrial and Aquatic) in and around the mining activity.
- 3. Detail of flora and fauna, Endemic, Rare, Endangered and Threatened (RET Species) separately for core and buffer area based on such primary field survey and clearly indicating the Schedule of fauna present. In case of any schedule- I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished.
- 4. Devise management & conservation measures for biodiversity.

3.5.4 Methodology of Sampling

The present study was carried out in given steps

1. Field survey was conducted by visual encounter survey for flora present within the 10 km radius study area of all the proposed mine site.

- 2. After surveying the core and buffer areas, a detailed floral inventory has been compiled. List of all plants of the study area was prepared and their habitats were recorded.
- 3. Verification of Rare, Endangered and Threatened Flora species from IUCN Red Data Book.

Site selection criteria: The core study area is located at Village: Mooduthurai, Taluk: Mettupalayam, District: Coimbatore, Tamil Nadu. The buffer study area comprises of 10 km radius from the proposed Rough stone and Gravel quarry area.

Selection of sampling locations was made with reference to topography, land use, vegetation pattern, etc. The observations were taken on natural vegetation, roadside plantation and non-forest area (agricultural field, in plain areas, village wasteland, etc.) for quantitative representation of different species.

A methodology of Sampling Flora and fauna studies were carried out during the summer season. During surveys, our team continuously searched for plant species and identified them to prepare a checklist of plants in the respective study area. Core and part of buffer area of the project site, o damage is created to flora and fauna during the sampling.

In order to provide representative ecological status for the study area, the 10-km buffer zone has been divided into four quartiles for biodiversity sampling, i.e., NE (Quartile-1), NW (Quartile-2) SW (Quartile-3) and SE (Quartile-4). Each of the quartiles have been examined for representative flora on randomly sampled quadrats for trees (20x20-m), shrubs (10x10-m) and herbs (2x2-m) depending upon prevailing geographical conditions and biodiversity aspects of study area.

(2x2m)
(3x2m)
(3

FIGURE 3.28: A SCHEMATIC DIAGRAM FOR FLORAL RANDOM SAMPLING

Phyto-sociological Survey method

Phyto-sociological parameters, viz., Abundance, Density, Frequency (%) were measured. A total of 10 quadrats were laid down randomly within core area and 40 quadrats were laid down within four quartiles randomly (10/quartile) in buffer area. In core area 10 quadrats were laid randomly to enumerated trees, shrubs, and herbs as per the Following formulae used for calculating the frequency (%), abundance and density of the floral species encountered in the 10 quadrats studied.

Quadrats method

Quadrats of 20×20 -m were laid down randomly within core and 5-km buffer area; each quadrat was laid to assess the trees (>5 cm GBH) and one, 10×10 -m sub-quadrat nested within the quadrat for shrubs. The quadrats were laid randomly to cover the area to maximize the sampling efforts and minimize the species homogeneity, such as small stream area, trees in agricultural bunds, tank bunds, farm forestry plantations, wildlife areas, natural forest area, avenue plantations, house backyards, etc. In each quadrat individuals belonging to tree (20×20 -m) and shrub (10×10 -m) were recorded separately and have been identified on the field.

FLORA IN CORE ZONE

Taxonomically a total of 14 species belonging to 12 families have been recorded from the core mining lease area. It is exhibit flat terrain topography. Based on habitat classification of the enumerated plants the majority of species were Trees 4 (28%) followed by Herb 4 (29%), Shrub 4 (29%) and Climbers 2 (14%). Details of flora with the scientific name were mentioned in Table No. 3.1. The result of core zone of flora studies shows that Fabaceae is the dominating species in the core zone area it mentioned in Table No.3.1 and the details of diversity of flora family's pattern are given in Fig No.3.5. No species found as threatened category.

FLORA IN BUFFER ZONE

Similar type of environment also in buffer area but with more flora diversity compare than core zone area, because of nearby agriculture land was found to be dominate mostly in southeast and Southwest directions and small hill covers on the north side. Majority of the flat landscape around project unit is occupied by agriculture fields. It contains a total of 98 species belonging to 42 families have been recorded from the buffer zone. The floral (98) varieties among them Forty Trees 40 (41%) eighteen Shrubs 18 (18%) and Twenty Herbs 20 (21%) and Climbers eleven 11 (11%), Five Creeper 5 (5%), Three Grass 3 (3%), one Cactus (1%) were identified. The result of buffer zone of flora studies shows that Fabaceae and Poaceae, Euphorbiaceae are the main dominating species in the study area it mentioned in Table No.3.2.

There is no Rare, Endangered and Threatened Flora species in mining area and their surrounding area. Details of flora with the scientific name were mentioned in Table No.3.2. The diversity of flora families is given in Fig No.3.6.

TABLE 3.32: FLORA IN CORE ZONE

SI. No	English Name	Vernacular Name	Scientific Name	Family Name					
		TR	EES						
1	Acacia Nilotica	Karuvelam maram	Vachellia nilotica	Fabaceae					
2	Noni	Nuna maram	Morinda citrifolia	Rubiaceae					
3	Millettia pinnata	Pongam oiltree	Pongamia pinnata	Fabaceae					
4	Neem	Vembu	Azadirachta indica	Meliaceae					
SHRUBS									
5	Indian mallow	Thuththi	Abutilon indicum	Malvaceae					
6	Avaram	Avarai	Senna auriculata	Fabaceae					
7	Touch-me-not	Thottalchinungi	Mimosa pudica	Mimosaceae					
8	Milk Weed	Erukku	Calotropis gigantea	Apocynaceae					
		HE	RBS						
9	Common leucas	Thumbai	Leucas aspera	Lamiaceae					
10	Yellow-fruit Nightshade	Kantang kathrikai	Solanum virginianum	Solanaceae					
11	Devil's thorn	Nerunji	Tribulus terrestris	Zygophyllales					
12	Indian doab	Arugampul	Cynodon dactylon	Poaceae					
	•	CLIM	1BER						
13	Stemmed vine	Perandai	Cissus quadrangularis	Vitaceae					
14	Wild bitter	Pavarkai	Momordica charantia	Cucurbitaceae					

TABLE 3.33: FLORA IN BUFFER ZONE

SI.No	English Name	Vernacular Name	Scientific Name	Family Name	Resource use type *(E,M,EM)
	•	TREES		•	
1	Neem or Indian lilac	Vembu	Azadirachta indica	Meliaceae	M
2	Millettia pinnata	Pongam oiltree	Pongamia pinnata	Fabaceae	Е
3	Gum arabic tree	Karuvelam	Acacia nilotica	Mimosaceae	NE
4	Bitter Albizia	Arappu	Albizia amara	Fabaceae	M
5	Black plum	Navalmaram	Sygygium cumini	Myrtaceae	EM
6	Madras Thorn	Kuduka puli	Pithecellobium dulce	Mimosaceae	EM
7	Mango	Manga	Mangifera indica	Anacardiaceae	Е
8	Coconut	Thennai maram	Cocos nucifera	Arecaceae	EM
9	Tamarind	Puliyamaram	Tamarindus indica	Legumes	EM
10	Creamy Peacock Flower	Vadanarayani	Delonix elata	Fabaceae	M
11	Beauty leaf	Punnai	Calophyllu inophyllum	Calophyllaceae	M
12	Indian fig tree	Athi	Ficus recemosa	Moraceae	EM
13	Banyan tree	Alamaram	Ficus benghalensis	Moraceae	Е
14	Indian fir tree	Nettilinkam	Polylathia longifolia	Annonaceae	Е
15	Chebulic myrobalan	Kadukkai	Terminalia chebula	Combretaceae	M
16	Asian Palmyra plam	Panai maram	Borassus flabellifer	Arecaceae	Е
17	Castor oil plant	Amanakku	Ricinus communis	Euphorbiaceae	M
18	Manilkara zapota	Sapota	Manilkara zapota	Sapotaceae	Е
19	Giant thorny bamboo	Perumungil	Bambusa bambos	Poaceae	M
20	Lemon	Ezhumuchaipalam	Citrus lemon	Rutaceae	EM
21	Indian gooseberry	Nelli	Emblica officinalis	Phyllanthaceae	EM
22	Banana tree	Vazhaimaram	Musa	Musaceae	EM
23	Gooseberry	Arai nelli	Phyllanthus acidus	Euphorbiaceae	EM
24	Teak	Thekku	Tectona grandis	Verbenaceae	Е
25	Sesban	Chitthakathi	Sesbania sesban	Fabaceae	M
26	Eucalyptus	Eucalyptus	Eucalyptus globules	Myrtaceae	EM
27	Jack fruit	Palamaram	Artocarpus heterophyllus	Moraceae	Е
28	Henna	Marudaani	Lawsonia inermis	Lythraceae	EM
29	Five leaf chastera	Nochi	Vitex negundo	Lamiaceae	M
30	Papaya	Pappali maram	Carica papaya L	Caricaceae	EM
31	Acacia Nilotica	Karuvelam maram	Vachellia nilotica	Fabaceae	M
32	Peepal	Arasanmaram	Ficus religiosa	Moraceae	M
33	Indian bael	Vilvam	Aegle marmelos	Rutaceae	EM
34	Chinese chaste tree	Nochi	Vitex negundo	Verbenaceae	Е

35	Peepal	Arasanmaram	Ficus religiosa	Moraceae	M
36	Noni	Nuna maram	Morinda citrifolia	Rubiaceae	M
37	Guava	Koyya	Psidium guajava	Myrtaceae	EM
38	Custard apple	Seethapazham	Annona reticulata	Annonaceae	Е
39	Curry tree	Velipparuthi	Murraya koenigii	Asclepiadaceae	EM
40	Bamboo	Moonghil	Bambusa bambo	Poaceae	Е
		SHRUE	BS	•	
41	Avaram	Avarai	Senna auriculata	Fabaceae	M
42	Triangular spruge	Chaturakalli	Euphorbia antiquorum	Euphorbiaceae	NE
43	Indian Oleander	Arali	Nerium indicum	Apocynaceae	M
44	Rosy Periwinkle	Nithyakalyani	Cathranthus roseus	Apocynaceae	M
45	Thorn apple	Oomathai	Datura stramonium	Solanaceae	E
46	Ceylon Date Palm	Icham	Phoenix pusilla	Arecaceae	EM
47	Puriging nut	Kattamanakku	Jatropha curcas	Euphorbiaceae	EM
48	Columnar Cactus	Sappathikalli	Cereus pterogonus	Cactaceae	M
49	Night shade plan	Sundaika	Solanum torvum	Solanaceae	EM
50	Indian mallow	Thuthi	Abutilon indicum	Meliaceae	M
51	Flame of the Woods	Idlipoo	xoracoc cinea	Rubiaceae	M
52	Shoe flower	Chemparuthi	Hibiscu rosa-sinensis	Malvaceae	EM
53	Rosary pea	Kundumani	Abrus precatorius	Fabaceae	M
54	Hygrophila spinosa	Neermulli	Hydrophila auriculata	Acanthaceae	M
55	Datura metel	Uumaththai	Datura metel	Solanaceae	NE
56	Milk Weed	Erukku	Calotropis gigantea	Apocynaceae	M
57	Ceylon Date Palm	Icham	Phoenix pusilla	Arecaceae	EM
58	Touch-me-not	Thottalchinungi	Mimosa pudica	Mimosaceae	M
	T	HERB			
59	Prickly chaff flower	Nayuruv	Achyranthes aspera	Amaranthaceae	M
60	Tridax daisy	Veetukaayapoondu	Tridax procumbens	Asteraceae	M
61	Peanuts	Mallatai	Arachis hypogaea	Fabaceae	EM
62	Hibiscus hispidissimus	Kaattu piral	Hibiscus hispidissimus	Malvaceae	M
63	Holy basil	Thulasi	Ocimum tenuiflorum	Lamiaceae	M
64	Indian Copperleaf	Kuppaimeni	Acalypha indica	Euphorbiaceae	M
65	False daisy	Karisilanganni	Eclipta prostata	Asteraceae	EM
66	European black nightshade	Manathakkali	Solanumnigrum	Solanaceae	EM
67	Node Flower	Kumattikkirai	Allmania nodiflora	Amaranthaceae	M
68	Poor land flatsedg	Kunnakora	Cyperus compressus	Cyperaceae	NE
69	Gale of the wind	Keelaneeli	Phyllanthus niruri	Phyllanthaceae	EM
70	Benghal dayflower	Kanamvazha	Commelina benghalensis	Commelinaceae	M

71	Common nut sedge	Korai	Cyperus rotundus	Cyperaceae	NE
72	Carrot grass	Parttiniyam	Parthenium hysterophorus	Asteraceae	NE
73	Turmeric's	Manjal	Curcuma longa	Zingiberaceae	EM
74	Black Mustard Seed	Kaduku	Brassica juncea	Brassaceae	EM
75	Red Hogweed	Mukurattai	Boerhavia diffusa	Nyctaginaceae	M
76	Common leucas	Thumbai	Leucas aspera	Lamiaceae	M
77	Digeria muricata	Thoiya keerai	Digeria muricata	Amarantheceae	EM
78	Indian doab	Arugampul	Cynodon dactylon	Poaceae	Е
	•		CLIMBER		
79	Ivy gourd	Kovai	Coccinia grandis	Cucurbitaceae	M
80	Stemmed vine	Perandai	Cissus quadrangularis	Vitaceae	M
81	Balloon vine	Mudakkotan	Cardiospermum helicacabum	Sapindaceae	M
82	Butterfly pea	Karkakartum	Clitoria ternatea	Fabaceae	M
83	Wild bitter	Pavarkai	Momordica charantia	Cucurbitaceae	EM
84	Purple fruited pea eggplant	Thuthuvelai	Solanum trilobatum	Solanaceae	EM
85	Indian sarsparilla	Nannari	Hemidesmus indicus	Asclepiadaceae	M
86	Pointed gourd	Kovakkai	Trichosanthes dioica	Cucurbitaceae	EM
87	Butterfly-pea	Sangupoo	Clitoriaternatia	Fabaceae	M
88	Wild jasmine	Malli	Jasminum augustifolium	Oleaceae	EM
89	Bottle Guard	Sorakkai	Lagenaria siceraria	Cucurbitaceae	EM
			CREEPER		
90	Water spinach	Vallikeerai	Ipomoea aquatica	Convolvulaceae	EM
91	Grona triflora	Siru puladi	Desmodium triflorum	Fabaceae	EM
92	Ground Spurge	Sithrapaalavi	Euphorbia prostrata	Euphorbiaceae	EM
93	Nut grass	Korai	Cyperus rotandus	Poaceae	M
94	Creeping-oxeye	Malai mookuthi poondu		Asteraceae	M
			GRASS	_	
95	Jungle rice	Kuthirai vaalKattu arusi		Poaceae	NE
96	Windmill grass	Chevvarakupul	Chloris barbata	Amaranthaceae	NE
97	Eragrostis	Pullu	Eragrostis ferruginea	Poaceae	Е
			CACTUS		
98	Prickly pear	Nagathali	Opuntia dillenii	Cactaceae	M

^{*}E- Economical, M- Medicinal, EM- Both Economical and Medicinal, NE- Not evaluated

TABLE 3.34: AQUATIC FLORA

Latin name	Family	Status
Alternanthera philoxeroides	Solanaceae	Predominant occasionally
Aponogeton natans	Aponogetonaceae	Common
Carex cruciata	Cyperaceae	Occasional
Chrysopogon aciculatus	Poaceae	Occasional
Cynodon dactylon	Poaceae	Extensive and widespread
Cyperus arenarius	Cyperaceae	Locally abundant
Cyperus exaltatus	Cyperaceae	Locally abundant
Echinochloa colona	Poaceae	Occasional
Eichhornia crassipes	Pontederiaceae	Extensive and widespread
Hydrilla verticillata	Hydrocharitaceae	Prevalent
Ipomoea aquatica	Convolvulaceae	Extensive and widespread
Marsilia quadrifoliata	Marsiliaceae	Very common Pteridophyte
Nelumbo nucifera	Nelumbiaceae	Very common
Nymphaea nauchali	Nympheaceae	Widely scattered
Nymphaea stellata	Nympheaceae	Widely scattered
Paspalidium geminatum	Poaceae	Common
Pistia stratoides	Araceae	Widespread
Typha angustata	Typhaceae	Extensive and widespread

^{*}LC- Least Concern, NA-Not yet assessed

AQUATIC FLORA

There are no water bodies or wetlands in the core area. Bavanisagar reservoir is located about 7.5km on the North side of the buffer zone. A list of aquatic and semi aquatic macrophytes found in the area of study is given in Table 3.3. Almost all aquatic species of plants noted from the study area with help of local people and secondary data.

FAUNA

The faunal survey has been carried out as per the methodology cited and listed out Mammals, birds, Reptiles, Amphibians and Butterflies. All the listed species were compared with Red Data Book and Indian Wildlife Protection Act, 1972. There are no rare, endangered, threatened (RET) and endemic species present in core area..

FAUNA METHODOLOGY

The study of fauna takes substantial amount of time to understand the specific faunal characteristics of the area. The assessment of fauna has been done on the bases of primary data collected from the lease sites. The presence was also confirmed from the local inhabitants depending on the animal sightings and the frequency of their visits in the project area. In addition officials, local peoples were another source of information for studying the fauna of the area. Field activities are physical/active search, covering rocks, burrows, hollow inspection and location of nesting sites and habitat assessment etc. Taxonomical identification was done by the field guide book and wildlife envis data base (wiienvis.nic.in/Database/Schedule Species Database) and Zoological Survey of India (ZSI). Detailed faunas methodology is mentioned in the Table No. 3.5.

Survey and Monitoring of Mammals

Intensive survey has been done by line transect methods (Walking and in vehicle) for all major habitats for surveying of mammals by direct and indirect evidence. Indirect methods such as faecal matter (i.e., scat) and pug mark by establishing 10×100 -m linear transects depending on the habitat (i.e., existing wildlife game routes/forest trails used).

Direct observation technique has been used for surveying large and medium sized mammals. But this technique is perfectly suitable for surveying of diurnal mammals; however, good photographs were also taken for species identification.

Survey and Monitoring of Birds

Birds are sampled by using point count methods, and opportunistic bird sightings. By this bird vocal sounds and photographs, the species were identified in consultation with village local people.

Point count: in this method, the observer will stand in a randomly chosen point and birds seen or heard in 50m radius are recorded for 5-min. this observation is repeated in another point at least 30m from the first point. We have enumerated 20 point – counts in each quartile, which constitute a total of 80 points-count (20 x 4) within 10 km radius area.

Opportunistic bird sightings: while traveling in study area, many bird species will be detected in survey time. Such species are recoded by their appearance or by their call.

Survey and Monitoring of reptiles

Several survey techniques such as standard walk transect visual encounter survey methods were used to sampling reptiles in each and every habitat of the study area. While doing this survey, photographs were taken for identification of species. Species identification was done by using standard field guides in consultation with village people expert.

The butterfly was enumerated by 2 linear transects of 10×100 m were laid within each quartile at minimum interval of 1 km. Further, amphibians and fishes documented in existing literature and secondary information in consultation with local people and wildlife experts.

FAUNA IN CORE ZONE

A total of 22 varieties of species observed in the Core zone of Mooduthurai Village, Rough stone and gravel quarry (Table No.3.5) among them numbers of Insects 6 (27%), Reptiles 6 (27%), Mammals 2 (9%) and Avian 8 (37%). A total of 22 species belonging to 18 families have been recorded from the core mining lease area. None of these species are threatened or endemic in the study area and surroundings. There is no Schedule I species and seven species are under schedule IV according to Indian wild life Act 1972. A total eight species of bird were sighted in the mining lease area.

There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table No. 3.5.

TABLE 3.35: FAUNA IN CORE ZONE

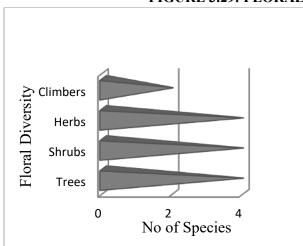
SI. No	Common name/English Name	Family Name	Scientific Name	Schedule list wildlife Protection act 1972	IUCN Red List data								
			INSECTS		•								
1	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC								
2	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC								
3	Mottled emigrant	Peridae	Catopsilia pyranthe	NL	LC								
4	Praying mantis	Mantidae	mantis religiosa	NL	NL								
5	Red-veined darter	Libellulidae	Sympetrum fonscolombii	NL	LC								
6	Stick insect	Lonchodidae	carausius morosus	NL	LC								
	REPTILES												
7	Garden lizard	Agamidae	Calotes versicolor	NL	LC								
8	Brahminy skink	Scincidae	Eutropis carinata	NL	LC								
9	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part II)	LC								
10	Common skink	Scincidae	Mabuya carinatus	NL	LC								
11	Common house gecko	Gekkonidae	Hemidactylus frenatus	NL	LC								
12	Fan-Throated Lizard	Agamidae	Sitanaponticeriana	NL	LC								
			MAMMALS										
13	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	NL								
14	Common rat	Muridae	Rattus rattus	Schedule IV	LC								
			AVES										
15	Asian green bee-eater	Meropidae	Meropsorientalis	NL	LC								
16	Two-tailed Sparrow	Dicruridae	Dicrurus macrocercus	Schedule IV	LC								
17	Common quail	Phasianidae	Coturnix coturnix	Schedule IV	LC								
18	Common myna	Sturnidae	Acridotheres tristis	NL	LC								
19	House crow	Corvidae	Corvussplendens	NL	LC								
20	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC								
21	Koel	Cucalidae	Eudynamys	Schedule IV	LC								
22	Indian pond heron	Ardeidae	Ardeola grayii	Schedule IV	LC								

^{*}NE- Not evaluated; LC- Least Concern, NT –Near Threatened, T-Threatened

FAUNA IN BUFFER ZONE

Taxonomically a total of 47 species belonging to 35 families have been recorded from the buffer zone area. Based on habitat classification the majority of species were Birds 17 (36%), followed by Insects 14 (30%), Reptiles 9 (19%), Mammals 3 (6%) and amphibians 4 (9%). There are five Schedule II species and twenty five species are under schedule IV according to Indian wild life Act 1972. A total seventeen species of bird were sighted in the study area. There are no critically endangered, endangered, vulnerable and endemic species were observed.

The result of core & Buffer zone of fauna studies shows that Nymphalidae and Scincidae, Agamidae are the main dominating species in the study area; it is mentioned in Table No.3.5. Dominant species are mostly birds and insects and four amphibians were observed during the extensive field visit (Hoplobatrachus tigerinus), (Rana hexadactyla), (Bufo melonosticatus), (Sphaerotheca breviceps). There is no schedule I Species in study area. A detail of fauna diversity of family's pattern is given in Fig No.3.8. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of faunal diversity in buffer zone are given in Table No.3.6.


TABLE 3.36: FAUNA IN BUFFER ZONE

SI.No	Common name/English Name	Family Name	Scientific Name	Schedule list wildlife Protection act 1972	IUCN Red List data
		·	INSECTS		
1	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
2	Blue tiger	Nymphalidae	Tirumala limniace	Schedule IV	LC
3	Praying mantis	Mantidae	mantis religiosa	NL	NL
4	Tawny coster	Nymphalidae	Danaus chrysippus	Schedule IV	LC
5	Dragonfly	Gomphidae	Ceratogomphus pictus	Schedule IV	
6	Common Indian crow	Nymphalidae	Euploea core	Schedule IV	LC
7	Red-veined darter	Libellulidae	Sympetrum fonscolombii	NL	LC
8	Ant	Formicidae	Camponotus Vicinus	NL	NL
9	Jewel beetle	Buprestidae	Eurythyrea austriaca	Schedule IV	NA
10	Milkweed butterfly	Nymphalidae	Danainae	NL	LC
11	Indian honey bee	Apidae	Apis cerana	Schedule IV	LC
12	Common Tiger	Nymphalidae	Danaus genutia	Schedule IV	LC
13	Lesser grass blue	Lycaenidae	Zizina Otis indica	Schedule IV	LC
14	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC
			REPTILES		
15	Garden lizard	Agamidae	Calotes versicolor	NL	LC
16	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part II)	LC
17	Olive keelback water snake	Natricidae	Atretium schistosum	Sch II (Part II)	
18	Brahminy skink	Scincidae	Eutropis carinata	NL	LC
19	Common house gecko	Gekkonidae	Hemidactylus frenatus	NL	LC
20	Fan-Throated Lizard	Agamidae	Sitanaponticeriana	NL	LC

21	Common skink	Scincidae	Mabuya carinatus	NL	LC
22	Russell's viper	Viperidae	Vipera russseli	Sch II (Part II)	LC
23	Saw scaled viper	Elapidae	Echis carinatus	Sch II (Part II)	LC
			MAMMALS		
24	Indian palm squirrel	Sciuridae	Funambulus palmarum	Schedule IV	LC
25	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	LC
26	Asian Small Mongoose	Herpestidae	Herpestes javanicus	Schedule (Part II)	LC
			AVES		
27	Indian pond heron	Ardeidae	Ardeola grayii	Schedule IV	LC
28	Common Quail	Phasianidae	Coturnix coturnix	Schedule IV	LC
29	Rose-ringed parkeet	Psittaculidae	Psittacula krameri	NL	LC
30	Common myna	Sturnidae	Acridotheres tristis	NL	LC
31	Shikra	Accipitridae	Accipiter badius	NL	LC
32	Koel	Cucalidae	Eudynamys	Schedule IV	LC
33	Two-tailed Sparrow	Dicruridae	Dicrurus macrocercus	Schedule IV	LC
34	Red-vented Bulbul	Pycnonotidae	Pycnonotuscafer	Schedule IV	LC
35	Indian golden oriole	Oriolidae	Oriolus kundoo	Schedule IV	LC
36	Asian green bee-eater	Meropidae	Meropsorientalis	NL	LC
37	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC
38	Common quail	Phasianidae	Coturnix coturnix	Schedule IV	LC
39	Black drongo	Dicruridae	Dicrurus macrocercus	Schedule IV	LC
40	Grey Francolin	Phasianidae	Francolinus pondicerianus	Schedule IV	LC
41	White-breasted waterhen	Rallidae	Amaurornis phoenicurus	NL	LC
42	Common Coot	Rallidae	Fulica atra	Schedule IV	LC
43	House crow	Corvidae	Corvussplendens	NL	LC
			AMPHIBIANS		
44	Indian Burrowing frog	Dicroglossidae	Sphaerotheca breviceps	Schedule IV	LC
45	Green Pond Frog	Ranidae	Rana hexadactyla	Schedule IV	LC
46	Tiger Frog	Chordata	Hoplobatrachus tigerinus (Rana tigerina)	Schedule IV	LC
47	Tree Frog	Dicroglossidae	Sphaerotheca breviceps	Schedule IV	LC

^{*}NL- Not listed, LC- Least concern, NT- Near threatened

FIGURE 3.29: FLORAL DIVERSITY IN CORE ZONE

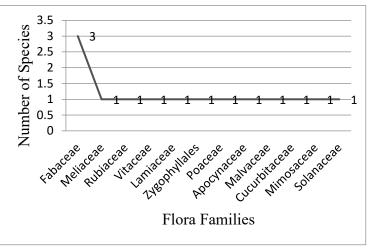
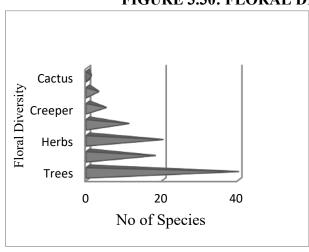
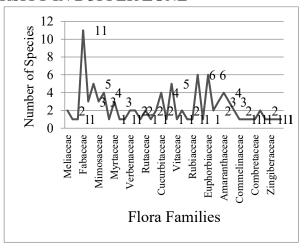
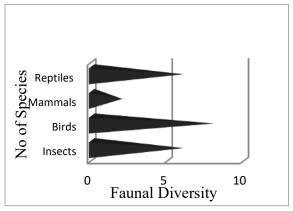
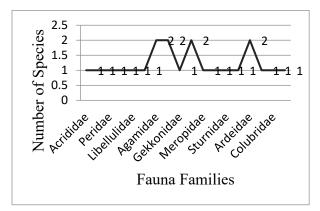
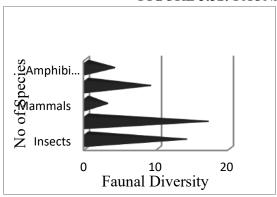



FIGURE 3.30: FLORAL DIVERSITY IN BUFFER ZONE

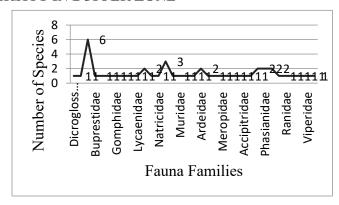

FIGURE 3.31: FAUNA DIVERSITY IN CORE ZONE

FIGURE 3.32: FAUNA DIVERSITY IN BUFFER ZONE

3.5.4 Interpretation&

Conclusion:

There is no schedule I species of animals observed within study area as per Wildlife Protection Act 1972 as well as no species is in vulnerable, endangered or threatened category as per IUCN. There is no endangered red list species found in the study area. Hence this small operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO ECONOMIC ENVIRONMENT

Socio-economic study is an essential part of environmental study. It includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature like temples, historical monuments etc., at the baseline level. This will help in visualizing and predicting the possible impact depending upon the nature and magnitude of the project.

It is expected that the Socio-Economic Status of the area will substantially improve because of this proposed project. As the proposed project will provide direct and indirect employment and improve the infrastructural facilities in that area and, thus, improve their standard of living.

3.6.1 Objectives of the Study

The objectives of the socio-economic study are as follows:

- To study the socio-economic status of the people living in the study area of the proposed mining project.
- To assess the impact of the project on Quality of life of the people in the study area.
- To recommend Community Development measures needs to be taken up in the study Area.

3.6.2 Scope of Work

- To study the Socio-economic Environment of the area from the secondary sources;
- Data Collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 District Profile

Coimbatore district is divided into 12 taluks. The taluks are further divided into 18 blocks, which further divided into 860 villages. In 2011, Coimbatore had population of 2,464,875 of which male and female were 1,235,889 and 1,228,986 respectively. In 2001 census, Coimbatore had a population of 2,186,125 of which males were 1,095,859 and remaining 1,090,266 were females. Coimbatore District population constituted 3.42 percent of total Maharashtra population. In 2001 census, this figure for Coimbatore District was at 3.50 percent of Maharashtra population.

There was change of 12.75 percent in the population compared to population as per 2001. In the previous census of India 2001, Coimbatore District recorded increase of 7.01 percent to its population compared to 1991.

3.6.4 Study area:

MOODUTHURAI VILLAGE

Mooduthurai is a large village located in Mettupalayam Taluka of Coimbatore district, Tamil Nadu with total 1254 families residing. The Mooduthurai village has population of 4394 of which 2233 are males while 2161 are females as per Population Census 2011..

In Mooduthurai village population of children with age 0-6 is 350 which makes up 7.97 % of total population of village. Average Sex Ratio of Mooduthurai village is 968 which is lower than Tamil Nadu state average of 996. Child Sex Ratio for the Mooduthurai as per census is 934, lower than Tamil Nadu average of 943.

Mooduthurai village has lower literacy rate compared to Tamil Nadu. In 2011, literacy rate of Mooduthurai village was 61.00% compared to 80.09% of Tamil Nadu. In Mooduthurai Male literacy stands at 69.15% while female literacy rate was 52.61%

As per constitution of India and Panchyati Raaj Act, Mooduthurai village is administrated by Sarpanch (Head of Village) who is elected representative of village. Our website, don't have information about schools and hospital in Mooduthurai village.

According to Census 2011 information the location code or village code of Mooduthurai village is 644341. Mooduthurai village is located in Mettupalayam Tehsil of Coimbatore district in Tamil Nadu, India. It is situated 26km away from sub-district headquarter Mettupalayam and 44km away from district headquarter Coimbatore. As per 2009 stats, Mooduthurai is the gram panchayat of Mooduthurai village.

The total geographical area of village is 1084.47 hectares. Mooduthurai has a total population of 4,394 peoples. There are about 1,254 houses in Mooduthurai village. Puliampatti is nearest town to Mooduthurai.

TABLE 3.37: MOODUTHURAI VILLAGE POPULATION FACTS

Number of Households	1254
Population	4394
Male Population	2233
Female Population	2161
Children Population	350
Sex-ratio	968
Literacy	2467
Male Literacy	1419
Female Literacy	1048
Scheduled Tribes (ST) %	0
Scheduled Caste (SC) %	2005

Source: https://www.census2011.co.in/data/village/644341-Mooduthurai-tamil-nadu.html

TABLE 3.38: DEMOGRAPHICS POPULATION OF VILLAGE MOODUTHURAI

		Female Population					
4394	2233	2161					

Source: https://etrace.in/census/village/Mooduthurai-mettupalayam-district-coimbatore-tamil-nadu-644341/

Sex Ratio of Mooduthurai Village -Census 2011

As per the Census Data 2011 there are 968 Femals per 1000 males out of 4394 total population of village. There are 934 girls per 1000 boys under 6 years of age in the village.

Literacy of Mooduthurai Village

Out of total poplation total 2467 people in Mooduthurai Village are literate, among them 1419 are male and 1048 are female in the village. Total literacy rate of Mooduthurai is 61%, for male literacy is 69.15% and for female literacy rate is 52.61%.

Workers profile of Mooduthurai Village

Total working population of Mooduthurai is 2390 which are either main or marginal workers. Total workers in the village are 2390 out of which 1437 are male and 953 are female. Total main workers are 2232 out of which female main workers are 1385 and male main workers are 847. Total marginal workers of village are 158.

TABLE 3.39: MOODUTHURAI VILLAGE CENSUS DATA

Description	Census 2011 Data
Village Name	Mooduthurai
Teshil Name	Mettupalayam
District Name	Coimbatore
State Name	Tamil Nadu
Total Population	4394
Total Area	1084 (Hectares)
Total No of House Holds	1254
Total Male Population	2233
Total Female Population	2161
0-6 Age group Total Population	350
0-6 Age group Male Population	181
0-6 Age group Female Population	169
Total Person Literates	2467
Total Male Literates	1419
Total Male Literates	1048
Total Person Illiterates	1927
Total Male Illiterates	814
Total Male Illiterates	1113
Scheduled Cast Persons	2005
Scheduled Cast Males	1036
Scheduled Cast Females	969
Scheduled Tribe Persons	0
Scheduled Tribe Males	0

 $Source: \underline{https://etrace.in/census/village/Mooduthurai-mettupalayam-district-coimbatore-tamil-nadu-644341/2000. A substitution of the property of the proper$

TABLE 3.40: MOODUTHURAI WORKING POPULATION

	Total	Male	Female
Total Workers	2390	1437	953
Main Workers	2232	1385	847
Main Workers Cultivators	449	281	168
Agriculture Labourer	929	555	374
Household Industries	26	17	9
Other Workers	828	532	296
Marginal Workers	158	52	106
Non Working Persons	2004	796	1208

 $Source: \underline{https://etrace.in/census/village/Mooduthurai-mettupalayam-district-coimbatore-tamil-nadu-644341/2000. A trace in the following of the following and the following of the following of$

TABLE 3.41: POPULATION DATA OF STUDY AREA

SI.No.	Village Name	No of House Holds	Total Population	Male	Female	Total Literate Population	Male Literate	Female Literate	Total Illiterate Population	Male Illiterate	Female Illiterate
1	Akkaraisengapalli	1058	3787	1875	1912	2294	1263	1031	1493	612	881
2	Alathur	1343	4545	2246	2299	2600	1477	1123	1945	769	1176
3	Ambodi	979	3531	1784	1747	2073	1172	901	1458	612	846
4	Annur Mettupalayam	1034	3902	1987	1915	2379	1352	1027	1523	635	888
5	Ayyampalayam	511	1757	885	872	812	471	341	945	414	531
6	Chinnakallipatti	1098	3858	1958	1900	2226	1280	946	1632	678	954
7	Illuppanatham	2665	9255	4569	4686	6225	3387	2838	3030	1182	1848
8	Irumborai	2295	8001	3974	4027	4860	2686	2174	3141	1288	1853
9	Kanuvakkarai	736	2646	1331	1315	1460	847	613	1186	484	702
10	Karapadi	1019	3352	1699	1653	1936	1123	813	1416	576	840
11	Karidoddampalayam	558	1868	953	915	987	574	413	881	379	502
12	Kavilipalayam	1424	4612	2303	2309	2764	1576	1188	1848	727	1121
13	Kuppanur	1225	4130	2113	2017	2477	1406	1071	1653	707	946
14	Kurumbapalayam	441	1521	777	744	839	488	351	682	289	393
15	Kuttagam	842	2893	1418	1475	1783	1020	763	1110	398	712
16	Madampalayam	1415	4841	2430	2411	2844	1584	1260	1997	846	1151
17	Mangarasavalayapalayam	1035	3805	1879	1926	2176	1218	958	1629	661	968
18	Marayeepalayam	486	1699	867	832	973	570	403	726	297	429
19	Mooduthurai	1254	4394	2233	2161	2467	1419	1048	1927	814	1113
20	Nallur	2586	8714	4393	4321	5743	3221	2522	2971	1172	1799
21	Panayampalli	1618	5291	2642	2649	3022	1714	1308	2269	928	1341
22	Pasur	888	3219	1575	1644	2000	1117	883	1219	458	761
23	Periyakallipatti	499	1595	783	812	919	533	386	676	250	426
24	Pongalur	3348	11688	5868	5820	8367	4497	3870	3321	1371	1950
25	Pungampalli	678	2251	1145	1106	1260	730	530	991	415	576
26	Punjaipuliampatti	531	1793	929	864	1016	579	437	777	350	427
27	Sellapampalayam	385	1271	656	615	768	436	332	503	220	283
28	Shenbagapudur	1398	4801	2432	2369	2641	1525	1116	2160	907	1253
29	Sunkakaranpalayam	533	1778	919	859	905	546	359	873	373	500
30	Thatchaperumapalayam	349	1175	603	572	583	362	221	592	241	351
31	Thoppampalayam	1275	4351	2195	2156	2382	1344	1038	1969	851	1118
32	Vadakkalur	1567	5640	2784	2856	3703	2092	1611	1937	692	1245
33	Vinnappalli	1079	3550	1773	1777	2096	1225	871	1454	548	906

Source: www.censusindia.gov.in - Tamilnadu Census of India – 2011

TABLE 3.42: WORKERS PROFILE OF STUDY AREA

SI.No.	Village Name	Total Workers Population	Male Workers	Female Workers	Total Main Workers	Main Workers Male	Main Workers Female	Main Cultivation Workers	Main Agriculture Workers	Main Other Workers	Non- Worker Population
1	Akkaraisengapalli	2168	1317	851	1953	1233	720	634	769	514	1619
2	Alathur	2579	1557	1022	2526	1542	984	412	1218	857	1966
3	Ambodi	1977	1198	779	1919	1166	753	478	553	804	1554
4	Annur Mettupalayam	2212	1274	938	1976	1155	821	321	728	874	1690
5	Ayyampalayam	993	604	389	866	551	315	265	486	99	764
6	Chinnakallipatti	2044	1291	753	1928	1234	694	516	840	554	1814
7	Illuppanatham	4474	2958	1516	3279	2385	894	571	400	1834	4781
8	Irumborai	4686	2697	1989	4363	2562	1801	1189	1532	1450	3315
9	Kanuvakkarai	1559	915	644	1521	905	616	272	985	262	1087
10	Karapadi	1834	1105	729	1616	1013	603	415	504	642	1518
11	Karidoddampalayam	1167	631	536	1090	608	482	70	709	305	701
12	Kavilipalayam	2730	1600	1130	2412	1517	895	764	467	1107	1882
13	Kuppanur	2657	1496	1161	2385	1383	1002	674	773	871	1473
14	Kurumbapalayam	954	511	443	822	449	373	422	80	300	567
15	Kuttagam	1798	997	801	1755	975	780	723	435	562	1095
16	Madampalayam	2700	1595	1105	2523	1502	1021	395	812	1278	2141
17	Mangarasavalayapalayam	2150	1286	864	1872	1132	740	315	816	721	1655
18	Marayeepalayam	990	578	412	966	564	402	305	392	242	709
19	Mooduthurai	2390	1437	953	2232	1385	847	449	929	828	2004
20	Nallur	4332	2784	1548	4007	2641	1366	385	833	2674	4382
21	Panayampalli	3008	1762	1246	2761	1715	1046	873	905	836	2283
22	Pasur	1669	1064	605	1603	1034	569	299	381	909	1550
23	Periyakallipatti	868	563	305	808	536	272	142	367	263	727
24	Pongalur	5545	3579	1966	5308	3464	1844	490	1544	3169	6143
25	Pungampalli	1150	714	436	924	589	335	119	330	455	1101
26	Punjaipuliampatti	1047	608	439	1036	608	428	316	413	287	746
27	Sellapampalayam	684	411	273	679	408	271	113	211	346	587
28	Shenbagapudur	2735	1627	1108	2216	1353	863	550	1143	507	2066
29	Sunkakaranpalayam	1033	617	416	884	550	334	347	155	377	745
30	Thatchaperumapalayam	823	438	385	754	396	358	305	252	193	352
31	Thoppampalayam	2654	1459	1195	1911	1114	797	462	792	604	1697
32	Vadakkalur	3234	1932	1302	3047	1840	1207	524	655	1296	2406
33	Vinnappalli	2270	1245	1025	906	545	361	195	169	530	1280

Source: www.censusindia.gov.in - Tamilnadu Census of India – 2011

	TAB	LE 3.	43: CC	MMU	NIC	ATIO	1 & T	RANSPOR	T FAC	ILIT	TES I	HT I	E STU	J DY A	AREA				
Sl	Village Name	PO	SPO	PTO	T	PCO	MP	IC / CSC	PCF	BS	PBS	RS	NH	SH	MDR	BTR	GR	NWR	FP
1	Akkaraisengapalli	2	1	2	1	1	1	2	2	1	1	2	2	2	2	1	1	2	1
2	Alathur	2	1	2	1	1	1	2	2	1	1	2	1	1	1	1	1	2	1
3	Ambodi	2	1	2	1	1	1	2	2	1	1	2	1	2	1	1	1	2	1
4	Annur Mettupalayam	2	1	2	1	1	1	2	2	1	2	2	1	2	2	1	1	2	1
5	Ayyampalayam	2	2	2	1	2	1	2	2	1	2	2	2	2	2	1	1	2	1
6	Chinnakallipatti	2	2	2	1	2	1	2	2	1	1	2	2	1	1	1	1	2	1
7	Illuppanatham	2	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
8	Irumborai	2	1	2	1	2	1	2	2	1	1	2	2	2	2	1	1	2	1
9	Kanuvakkarai	2	1	2	1	1	1	2	2	1	1	2	2	2	1	1	1	2	1
10	Karapadi	2	1	2	1	1	1	2	2	1	1	2	2	2	1	1	1	2	1
11	Karidoddampalayam	2	2	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
12	Kavilipalayam	2	1	2	1	1	1	2	2	1	1	2	2	2	1	1	1	2	1
13	Kuppanur	2	1	2	1	1	1	2	2	1	1	2	2	2	2	1	1	2	1
14	Kurumbapalayam	2	2	2	1	1	1	2	1	1	1	2	2	2	1	1	1	2	1
15	Kuttagam	2	1	2	1	1	1	2	2	1	1	2	2	2	1	1	1	2	1
16	Madampalayam	2	1	2	1	2	1	2	2	2	2	2	2	2	2	1	1	2	1
17	Mangarasavalayapalayam	2	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
18	Marayeepalayam	2	2	2	1	1	1	2	2	2	1	2	2	1	1	1	1	2	1
19	Mooduthurai	1	1	1	1	2	1	2	2	1	1	2	2	1	1	1	1	2	1
20	Nallur	2	1	2	1	2	1	2	2	2	2	2	1	2	2	1	1	2	1
21	Panayampalli	2	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
22	Pasur	2	1	2	1	1	1	2	2	1	1	2	1	2	2	1	1	2	1
23	Periyakallipatti	2	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
24	Pongalur	2	1	2	1	2	1	2	2	1	1	2	1	1	1	1	1	2	1
25	Pungampalli	1	2	1	1	2	1	2	2	1	1	2	1	1	2	1	1	2	1
26	Punjaipuliampatti	2	1	2	1	2	1	2	2	1	1	2	2	1	1	1	1	2	1
27	Sellapampalayam	2	1	2	1	1	1	2	2	1	1	2	2	2	1	1	1	2	1
28	Shenbagapudur	2	1	2	1	1	1	2	2	1	1	2	1	2	1	1	1	2	1
29	Sunkakaranpalayam	2	2	2	1	2	1	2	2	2	2	2	2	2	2	1	1	2	1
30	Thatchaperumapalayam	2	2	2	1	2	1	2	2	2	2	2	2	2	2	1	1	2	1
31	Thoppampalayam	2	1	2	1	1	1	2	2	1	1	2	2	1	1	1	1	2	1
32	Vadakkalur	2	1	2	1	1	1	2	2	1	1	2	2	2	2	1	1	2	1
33	Vinnappalli	2	1	2	1	1	1	2	1	1	1	2	1	1	1	1	1	2	1

Abbreviations: PO - Post Office; MP - Mobile Phone Coverage; RS - Railway Station; GR - Gravel Roads; SPO - Sub Post Office; IC / CSC - Internet Cafe/Common Service Centre; NH - National Highways; NWR - Navigate waterways River; PTO - Post & Telegraph office; PCF - Private Courier Facility; SH - State Highways; FP - Foot path; T- Telephone (Landline); BS - Public Bus Service; MDR - Major District Road; PCO - Public call office / Mobile; PBS - Private Bus Service; BTR - Black Topped (Pucca Roads). Note: 1 - Available within the village 2 - Not available

TABLE 3.44: WATER & DRAINAGE FACILITIES IN THE STUDY AREA

Sl	Village Name	TP	CW	UCW	HP	TW/BH	S	R/C	T/P/L	CD	OD	CT
1	Akkaraisengapalli	1	1	1	2	1	2	2	2	1	1	2
2	Alathur	1	1	1	1	1	2	2	2	1	1	2
3	Ambodi	1	1	1	1	1	1	2	2	1	1	2
4	Annur Mettupalayam	1	1	1	2	1	2	2	2	1	1	2
5	Ayyampalayam	1	2	1	2	1	2	1	2	1	1	2
6	Chinnakallipatti	1	1	1	1	1	2	1	2	1	1	2
7	Illuppanatham	1	1	1	1	1	2	2	2	1	1	2
8	Irumborai	1	1	1	1	1	2	2	2	1	1	2
9	Kanuvakkarai	1	1	1	2	1	2	2	2	1	1	2
10	Karapadi	1	1	1	1	1	2	2	2	1	1	2
11	Karidoddampalayam	1	2	1	2	2	2	2	1	1	1	2
12	Kavilipalayam	1	1	1	2	1	2	2	2	1	1	1
13	Kuppanur	1	1	1	2	1	1	2	2	1	1	2
14	Kurumbapalayam	1	1	1	2	1	2	2	2	1	1	2
15	Kuttagam	1	1	1	2	1	2	2	2	1	1	1
16	Madampalayam	1	1	1	1	1	2	2	2	1	1	1
17	Mangarasavalayapalayam	1	1	1	1	1	2	2	1	1	1	2
18	Marayeepalayam	1	2	1	2	1	2	2	2	1	1	1
19	Mooduthurai	1	1	1	1	1	2	1	1	1	1	2
20	Nallur	1	1	1	2	1	1	2	2	1	1	1
21	Panayampalli	1	2	1	1	1	2	2	2	1	1	2
22	Pasur	1	1	1	2	1	2	2	2	1	1	2
23	Periyakallipatti	1	1	1	1	1	2	2	2	1	1	2
24	Pongalur	1	1	1	1	1	2	2	2	1	1	1
25	Pungampalli	1	1	1	2	1	2	2	2	1	1	2
26	Punjaipuliampatti	1	2	2	2	2	2	2	2	1	1	1
27	Sellapampalayam	1	1	1	2	2	2	2	2	1	1	2
28	Shenbagapudur	1	1	1	1	1	1	2	2	1	1	1
29	Sunkakaranpalayam	1	1	1	2	1	2	2	2	1	1	2
30	Thatchaperumapalayam	1	1	2	2	1	2	2	2	1	1	2
31	Thoppampalayam	1	1	1	1	1	2	1	1	1	1	2
32	Vadakkalur	1	1	1	1	1	1	2	2	1	1	1
33	Vinnappalli	1	1	1	1	1	2	2	2	1	1	2

Abbreviations: T - Tap Water; R / C - River / Canal; CW - Covered Well; T/P/L - Tank / Pond / Lake; UCW - Uncovered Well; CD - Covered Drainage; HP - Hand Pump; OD - Open Drainage; TW/BH - Tube / Bore Well; CT - Community Toilet Complex for General public; S - Spring

Note -1 - Available within the village; 2 - Not available

	TABLE 5.45. OTHER FACILITIES IN THE STODY AREA																	
Sl	Village Name	ATM	CB	COB	ACS	SHG	PDS	RM	AMS	NC	NC-AC	CC	SF	PL	NPS	APS	BDRO	PS
1	Akkaraisengapalli	2	2	2	1	1	1	1	2	1	1	2	1	1	1	1	1	1
2	Alathur	2	1	2	1	1	1	2	2	1	1	1	1	1	1	1	1	1
3	Ambodi	2	2	2	1	1	1	1	2	1	1	1	1	1	1	1	1	1
4	Annur Mettupalayam	2	2	2	2	1	1	2	2	1	1	2	1	1	1	1	1	1
5	Ayyampalayam	2	2	2	2	1	1	2	2	1	1	2	2	2	1	1	1	1
6	Chinnakallipatti	2	2	2	1	1	1	2	2	1	1	2	2	1	1	1	1	1
7	Illuppanatham	2	2	1	1	1	1	2	2	1	1	1	1	2	1	1	1	1
8	Irumborai	2	1	1	1	1	1	2	2	1	1	1	2	1	1	1	1	1
9	Kanuvakkarai	2	2	2	1	1	1	2	2	1	1	2	1	1	1	1	1	1
10	Karapadi	2	2	2	1	1	2	2	2	1	1	2	2	1	1	1	1	1
11	Karidoddampalayam	2	2	2	2	1	1	2	2	1	1	1	2	2	1	2	2	1
12	Kavilipalayam	2	2	2	1	1	1	2	2	1	1	1	1	1	1	1	1	1
13	Kuppanur	2	2	1	1	1	1	2	2	1	1	2	2	1	1	1	1	1
14	Kurumbapalayam	2	2	2	2	1	1	2	2	1	1	2	2	2	2	1	2	1
15	Kuttagam	2	2	2	1	1	1	2	2	1	1	2	1	1	1	1	1	1
16	Madampalayam	2	2	2	1	1	1	2	2	1	1	2	1	1	1	1	1	1
17	Mangarasavalayapalayam	2	2	2	1	1	1	2	2	1	1	2	1	2	1	1	1	1
18	Marayeepalayam	2	2	2	2	1	1	2	2	1	1	1	2	1	1	1	1	1
19	Mooduthurai	2	2	1	1	1	1	2	2	1	1	2	1	1	1	1	1	1
20	Nallur	2	2	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1
21	Panayampalli	2	2	2	2	1	1	2	2	1	1	2	2	1	1	1	1	1
22	Pasur	2	1	1	1	1	1	2	2	1	1	1	1	1	1	1	1	1
23	Periyakallipatti	2	2	2	2	1	1	2	2	1	1	2	2	2	1	1	1	1
24	Pongalur	2	2	1	1	1	1	2	2	1	1	1	1	1	1	2	1	1
25	Pungampalli	2	2	2	2	1	1	2	2	1	1	1	1	1	1	1	1	1
26	Punjaipuliampatti	2	2	1	1	1	1	2	2	1	1	2	2	1	1	1	1	1
27	Sellapampalayam	2	2	2	1	1	1	2	2	1	1	2	2	1	1	2	1	1
28	Shenbagapudur	2	2	2	1	1	1	2	2	1	1	1	1	2	1	1	1	1
29	Sunkakaranpalayam	2	2	2	2	1	1	2	2	1	1	2	2	1	1	1	2	1
30	Thatchaperumapalayam	2	2	2	2	1	1	2	2	1	1	2	2	2	1	1	2	1
31	Thoppampalayam	2	2	2	2	1	1	2	2	1	1	1	2	1	1	1	1	1
32	Vadakkalur	2	1	2	1	1	1	1	2	1	1	2	2	1	1	1	1	1
33	Vinnappalli	2	2	2	1	1	1	2	2	1	1	1	1	1	1	1	1	1

Abbreviations: ATM - Automatic Teller Machine; PDS - Public Distribution System (Shop); CB - Commercial Bank; RM - Regular Market; COB - Co-operative Bank; AMS - Agricultural Market Society; ACS - Agricultural Credit Societies; NC - Nutritional Centres; SHG - Self Help Group; NC-AC - Nutritional Centres - Anganwadi Centre; DBRO - Birth & Death Registration Office; PS - Power Supply Note - 1 - Available within the village; 2 - Not available

	TABLE 3.46: EDUCATIONAL FACILITIES IN THE STUDY AREA																								
		PI	PS	P	S	M	S	S	S	SS	SS	D	C	E	C	M	IC	N	II	P'	T	V	ΓS	SS	D
Sl	Village Name	G	P	G	P	G	P	G	P	G	P	G	P	G	P	G	P	G	P	G	P	G	P	G	P
1	Akkaraisengapalli	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	Alathur	1	1	1	1	1	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	1	2	2
3	Ambodi	1	1	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
4	Annur Mettupalayam	1	2	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5	Ayyampalayam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
6	Chinnakallipatti	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
7	Illuppanatham	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
8	Irumborai	1	2	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	Kanuvakkarai	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
10	Karapadi	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
11	Karidoddampalayam	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
12	Kavilipalayam	1	2	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
13	Kuppanur	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
14	Kurumbapalayam	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
15	Kuttagam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
16	Madampalayam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	2
17	Mangarasavalayapalayam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
18	Marayeepalayam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
19	Mooduthurai	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
20	Nallur	1	2	1	1	1	2	1	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
21	Panayampalli	1	2	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
22	Pasur	1	1	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
23	Periyakallipatti	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
24	Pongalur	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
25	Pungampalli	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
26	Punjaipuliampatti	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
27	Sellapampalayam	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
28	Shenbagapudur	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
29	Sunkakaranpalayam	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
30	Thatchaperumapalayam	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
31	Thoppampalayam	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
32	Vadakkalur	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
33	Vinnappalli	1	2	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2

Abbreviations: PPS-Pre Primary School; SSS-Senior Secondary School; DC-Degree School; PT-Polytechnic; PS-Primary School; G-Government; EC-Engineering College; VTS-Vocational School /ITI; MS-Middle School; P-Private; MC-Medical College; SSD-Special School For Disabled; SS-Secondary School; MI-Management College/Institute;

Note – 1 - Available within the village; 2 - Not available

		TABI	E 3.47: N	MEDICAI	FACILI	TIES IN	THE S	TUDY AI	REA				
Sl. No.	Village Name	CHC	PHC	PHSC	MCW	TBC	HA	HAM	D	VH	MHC	FWC	NGM-I/O
1	Akkaraisengapalli	0	0	1	0	0	0	0	0	1	0	0	С
2	Alathur	0	0	1	1	0	0	0	0	0	0	0	ь
3	Ambodi	0	0	1	0	0	0	0	0	1	0	0	c
4	Annur Mettupalayam	0	0	1	1	0	0	0	0	0	0	0	b
5	Ayyampalayam	0	0	0	0	0	0	0	0	0	0	0	c
6	Chinnakallipatti	0	1	1	1	1	0	0	1	0	0	1	
7	Illuppanatham	0	0	1	0	0	0	0	0	0	0	0	b
8	Irumborai	0	1	1	1	1	0	0	1	1	0	1	
9	Kanuvakkarai	0	0	1	1	0	0	0	0	0	0	0	С
10	Karapadi	0	0	1	0	0	0	0	0	0	0	0	ь
11	Karidoddampalayam	0	0	0	0	0	0	0	0	0	0	0	c
12	Kavilipalayam	0	0	1	0	0	0	0	0	1	0	0	a
13	Kuppanur	0	0	1	0	0	0	0	0	0	0	0	b
14	Kurumbapalayam	0	0	1	0	0	0	0	0	0	0	0	a
15	Kuttagam	0	0	1	0	0	0	0	0	0	0	0	b
16	Madampalayam	0	0	1	0	0	0	0	0	0	0	0	a
17	Mangarasavalayapalayam	0	0	1	1	0	0	0	0	0	0	0	ь
18	Marayeepalayam	0	0	0	0	0	0	0	0	0	0	0	a
19	Mooduthurai	0	1	1	1	1	0	0	1	0	0	1	
20	Nallur	0	0	1	0	0	0	0	0	0	0	0	a
21	Panayampalli	0	0	1	0	0	0	0	0	1	0	0	ь
22	Pasur	0	0	1	1	0	0	0	0	0	0	0	ь
23	Periyakallipatti	0	0	1	0	0	0	0	0	0	0	0	ь
24	Pongalur	0	0	1	0	1	0	0	0	1	0	0	ь
25	Pungampalli	0	0	1	0	0	0	0	0	1	0	0	ь
26	Punjaipuliampatti	0	0	1	0	0	0	0	0	0	0	0	ь
27	Sellapampalayam	0	0	1	0	0	0	0	0	0	0	0	ь
28	Shenbagapudur	0	0	1	0	0	0	0	0	0	0	0	ь
29	Sunkakaranpalayam	0	0	0	0	0	0	0	0	0	0	0	ь
30	Thatchaperumapalayam	0	0	0	0	0	0	0	0	0	0	0	ь
31	Thoppampalayam	0	0	1	0	0	0	0	0	0	0	0	ь
32	Vadakkalur	0	0	1	1	0	0	0	0	0	0	0	ь

Abbreviations: CHC-Community Health Centre; TBC-TB Clinic; VH- Veternity Hospital; PHC-Primary Health Centre; HA-Aallopathic Hospital; FWC-Family Welfare Centre; PHSC-Primary Health Sub Centre; HAM-Alternative Medicine Hospital; MH-Mobile Health Clinic; MCW-Maternity and Child Welfare Centre; D-Dispensary; NGM-I/O-Non Government Medical Facilities In & Out Patient

Note – 1 - Available within the village; 2 - Not available

a-facility available at <5kms

b-facility available at>10kms

Source: www.censusindia.gov.in - Tamilnadu Census of India – 2011

Vinnappalli

3.6.6 Recommendation and Suggestion

- Awareness program to be conducted to make the population aware to get education and a better livelihood.
- Vocational training programme can be organized to make the people self employed, particularly for women and unemployed youth.
- On the basis of qualification and skills local community may be preferred. Long term and short-term employments can be generated.
- Health care centre and ambulance facility can be provided to the population to get easy access to medical facilities. Maternity facility should be made available at the place to avoid going to distant places for treatment which involves risks. Apart from that as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the
 marginalized and vulnerable groups. So that special attention can be given to these groups with special
 provisions while making action plans.

3.6.7 Summary & Conclusion

The socio-economic study of surveyed villages gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis.

The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn the social standards will improve.

4. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

4.0 GENERAL

Environmental impacts both direct and indirect on various environmental attributes due to proposed mining activity will be created in the surrounding environment, during the operational and post–operational phases. The occurrence of mineral deposits, being site specific, their exploitation, often, does not allow for any choice except adoption of eco-friendly operation. The methods are required to be selected in such a manner, so as to maintain environmental equilibrium ensuring sustainable development.

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction.

Several scientific techniques and methodologies are available to predict impacts of physical environment. Mathematical models are the best tools to quantitatively describe the cause-and-effect relationships between sources of pollution and different components of environment. In cases where it is not possible to identify and validate a model for a particular situation, predictions have been arrived at based on logical reasoning / consultation / extrapolation.

The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail

- Land environment
- Soil environment
- Water Environment
- Air Environment
- Noise Environment
- Socio economic environment
- Biological Environment

Based on the baseline environmental status at the project site, the environmental factors that are likely to be affected (Impacts) are identified, quantified and assessed.

4.1 LAND ENVIRONMENT:

4.1.2 Anticipated Impact

- Permanent or temporary change on land use and land cover.
- Change in Topography: Topography of the ML area will change at the end of the life of the mine.
- Movement of heavy vehicles sometimes cause problems to agricultural land, human habitations due to dust, noise and it also causes traffic hazards.
- Due to degradation of land by pitting the aesthetic environment of the core zone may be affected.
- Earthworks during the rainy season increase the potential for soil erosion and sediment laden water entering the water ways.
- If no due care is taken wash off from the exposed working area may choke the water course & can also causes the siltation of water course

4.1.2 Mitigation Measures

- The mining activity will be gradual confined in blocks and excavation will be undertaken progressively along with other mitigative measures like phase wise development of greenbelt etc.
- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area
- Green belt development along the boundary within safety zone. The small quantity of water stored in the minedout pit will be used for greenbelt
- Thick plantation will be carried out on unutilized area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimise dust emissions.
- Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle

4.1.3 Soil Environment

The proposed project area is covered by thin layer of gravel and weathered rock formation and the average thickness is about 4m (2m Gravel + 2m Weathered rock), the excavated gravel will be dumped sold to needy customers in open market.

4.1.4 Impact on Soil Environment

• Erosion and Sedimentation (Removal of protective vegetation cover; Exposure of underlying soil horizons that may be less pervious, or more erodible than the surface layers; Reduced capacity of soils to absorb rainfall; Increased energy in storm-water runoff due to concentration and velocity; and Exposure of subsurface materials which are unsuitable for vegetation establishment).

4.1.5 Mitigation Measures

- Run-off diversion Garland drains will be constructed all around the project boundary to prevent surface
 flows from entering the quarry works areas. And will be discharged into vegetated natural drainage lines, or
 as distributed flow across an area stabilised against erosion.
- Sedimentation ponds Run-off from working areas will be routed towards sedimentation ponds. These trap sediment and reduce suspended sediment loads before runoff is discharged from the quarry site. Sedimentation ponds should be designed based on runoff, retention times, and soil characteristics. There may be a need to provide a series of sedimentation ponds to achieve the desired outcome.
- Retain vegetation Retain existing or re-plant the vegetation at the site wherever possible.
- Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season

4.1.6 Waste Dump Management

There is no waste anticipated in this Rough Stone quarrying operation. The entire quarried out materials will be utilized (100%).

4.2 WATER ENVIRONMENT

4.2.1 Anticipated Impact

- The major sources of water pollution normally associated due to mining and allied operations are:
 - o Generation of waste water from vehicle washing.
 - o Washouts from surface exposure or working areas
 - o Domestic sewage
 - o Disturbance to drainage course in the project area
 - Mine Pit water discharge
- Increase in sediment load during monsoon in downstream of lease area
- This being a mining project, there will be no process effluent. Waste from washing of machinery may result in discharge of Oil & grease, suspended solids.
- The sewage from soak pit may percolate to the ground water table and contaminate it.
- Surface drainage may be affected due to Mining
- Abstraction of water may lead to depletion of water table

Detail of water requirements in KLD as given below:

TABLE 4.1: WATER REQUIREMENTS

*Purpose	Quantity	Source
Dust Suppression	1.1KLD	From Existing bore wells from nearby area / Rain water harvesting pits
Green Belt development	0.6 KLD	From Existing bore wells from nearby area / Rain water harvesting pits
Domestic purpose	0.3KLD	From Existing, bore wells and drinking water will be sourced from Approved Water vendors.
Total	2.0 KLD	

^{*} Water for drinking purpose will be brought from approved water vendors

Source: Approved Mining Plan Pre-Feasibility Report

4.2.2 Mitigation Measures

- Garland drain, settling tank will be constructed along the proposed mining lease area. The Garland drain will
 be connected to settling tank and sediments will be trapped in the settling traps and only clear water will be
 discharged out to the natural drainage
- Rainwater will be collected in sump in the mining pits and will be allowed to store and pumped out to surface setting tank of 15 m x 10m x 3m to remove suspended solids if any. This collected water will be judiciously used for dust suppression and such sites where dust likely to be generated and for developing green belt. The proponent will collect and judicially utilize the rainwater as part of rainwater harvesting system.
- Providing benches with inner slopes and through a system of drains and channels, allowing rain water to
 descent into surrounding drains, so as to minimize the effects of erosion & water logging arising out of
 uncontrolled descent of water.
- Reuse the water collected during storm for dust suppression and greenbelt development within the mines
- Installing interceptor traps/oil separators to remove oils and greases. Water from the tipper wash-down facility and machinery maintenance yard will pass through interceptor traps/oil separators prior to its reuse;
- Using flocculating or coagulating agents to assist in the settling of suspended solids during monsoon seasons;
- Periodic (every 6 month once) analysis of quarry pit water and ground water quality in nearby villages
- Domestic sewage from site office & urinals/latrines provided in ML is discharged in septic tank followed by soak pits
- Waste water discharge from mine will be treated in settling tanks before using for dust suppression and tree plantation purposes
- De-silting will be carried out before and immediately after the monsoon season
- Regular monitoring (every 6 month once) and analysing the quality of water in open well, bore wells and surface water

4.3 AIR ENVIRONMENT

4.3.1. Anticipated Impact

- During mining, at various stages activities such as excavation, drilling, blasting, and transportation of
 materials, particular matter (PM), gases such as Sulphur dioxide, oxides of Nitrogen from vehicular exhaust
 are the main air pollutants.
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air.
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust.
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area.

4.3.1.1. Modelling of Incremental Concentration

Wind erosion of the exposed areas and the air borne particulate matter generated by quarrying operation, and transportation are mainly PM_{10} & $PM_{2.5}$ and emissions of Sulphur dioxide (SO₂) & Oxides of Nitrogen (NOx) due to excavation/loading equipment and vehicles plying on haul roads are the cause of air pollution in the project area.

Similarly, loading - unloading and transportation of Rough Stone, wind erosion of the exposed area and movement of light vehicles causes of pollution. This leads to an impact on the ambient air environment around the project area.

Anticipated incremental concentration due to this quarrying activity and net increase in emissions due to quarrying activities within 500 meters around the project area is predicted by Open Pit Source modelling using AERMOD Software.

The impact on Air Environment is due to the mining and allied activities during Land Development phase, Mining process and Transportation. The emissions of Sulphur dioxide (SO₂), Oxides of Nitrogen (NOx) due to excavation/loading equipment and vehicles plying on haul roads are marginal. Loading - unloading and transportation of Rough Stone, wind erosion of the exposed area and movement of light vehicles will be the main polluting source in the mining activities releasing Particulate Matter (PM₁₀) affecting Ambient Air of the area. Prediction of impacts on air environment has been carried out taking into consideration cumulative production three proposed quarries. Air environment and net increase in emissions by Open pit source modelling in AERMOD Software.

4.3.2.1 Emission Estimation

An emissions factor is a representative value that attempts to relate the quantity of a pollutant released to the atmosphere with an activity associated with the release of that pollutant.

The general equation for emissions estimation is:

 $E = A \times EF \times (1-ER/100)$

Where:

E = emissions;

A = activity rate;

EF = emission factor, and

ER =overall emission reduction efficiency, %

The proposed mining activity includes various activities like ground preparation, excavation, handling and transport of Rough Stone. These activities have been analysed systematically basing on USEPA-Emission Estimation Technique Manual, for Mining AP-42, to arrive at possible emissions to the atmosphere and estimated emissions are given in Table 4-2.

TABLE 4.2: ESTIMATED EMISSION RATE FOR PM₁₀

Activity	Source type	Value	Unit
Drilling	Point Source	0.096857688	g/s
Blasting	Point Source	0.002061982	g/s
Mineral Loading	Point Source	0.044260055	g/s
Haul Road	Line Source	0.002497247	g/s
Overall Mine	Area Source	0.064166719	g/s

TABLE 4.3: ESTIMATED EMISSION RATE FOR SO2

Activity	Source type	Value	Unit
Overall Mine	Area Source	0.001051607	g/s

TABLE 4.4: ESTIMATED EMISSION RATE FOR NOX

Activity	Source type	Value	Unit
Overall Mine	Area Source	0.000074080	g/s

4.3.2 Frame work of Computation & Model details

By using the above-mentioned inputs, ground level concentrations due to the quarrying activities have been estimated to know the incremental concentration in ambient air quality and impact in the study area. The effect of air pollutants upon receptors are influenced by concentration of pollutants and their dispersion in the atmosphere. Air quality modelling is an important tool for prediction, planning and evaluation of air pollution control activities besides identifying the requirements for emission control to meet the regulatory standards and to apply mitigation measures to reduce impact caused by quarrying activities. Suspended Particulate Matter (SPM) is the major pollutant occurred during quarrying activities. The prediction included the impact of Excavation, Drilling, Blasting (Occasionally), loading and movement of vehicles during transportation and meteorological parameters such as wind speed, wind direction, temperature, rainfall, humidity and Cloud cover.

Impact was predicted over the distance of 10 km around the source to assess the impact at each receptor separately at the various locations and maximum incremental GLC value at the project site. Maximum impact of PM_{10} was observed close to the source due to low to moderate wind speeds. Incremental value of PM_{10} was superimposed on the base line data monitored at the proposed site to predict total GLC of PM_{10} due to combined impacts.

FIGURE 4.1: AERMOD TERRAIN MAP

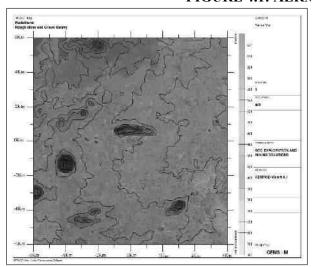
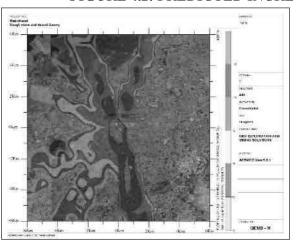



FIGURE 4.2: PREDICTED INCREMENTAL CONCENTRATION OF PM₁₀

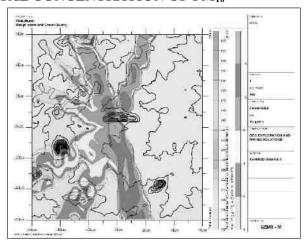
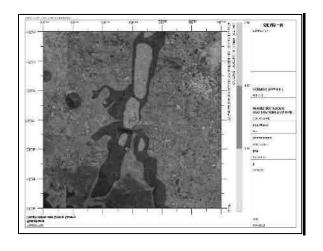



FIGURE 4.3: PREDICTED INCREMENTAL CONCENTRATION OF SO₂

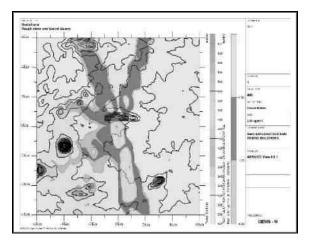
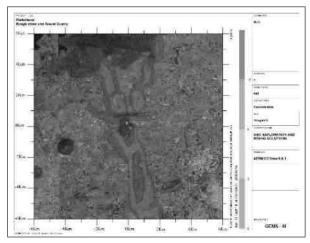



FIGURE 4.4: PREDICTED INCREMENTAL CONCENTRATION OF NO_X

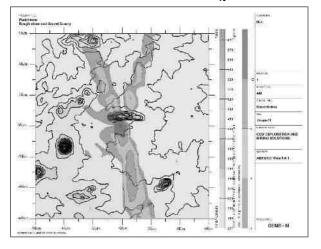
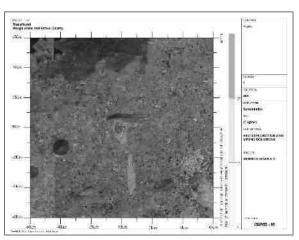
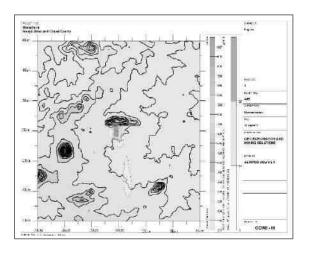




FIGURE 4.5: PREDICTED INCREMENTAL CONCENTRATION OF FUGITIVE DUST

4.3.2.1 Model Results

The post project Resultant Concentrations of PM_{10} , $PM_{2.5}$, SO_2 & NO_X (GLC) is given in Table below:

TABLE 4.5: INCREMENTAL & RESULTANT GLC OF PM₁₀

Station Code	Location	X Coordinate (m)	Y Coordinate (m)	Average Baseline PM ₁₀ (μg/m³)	Incremental value of PM ₁₀ due to mining (μg/m³)	Total PM ₁₀ (μg/m³) (5+6)
AAQ1	11°22'31.12"N 77° 7'21.12"E	-105	-34	43.9	15.84	59.74
AAQ2	11°22'20.77"N 77° 7'29.44"E	143	-357	43.9	15.19	59.09
AAQ3	11°19'39.97"N 77° 6'9.75"E	-2287	-5333	41.6	4.69	46.29
AAQ4	11°23'27.06"N 77° 7'12.70"E	-367	1690	40.9	10.96	51.86
AAQ5	11°21'45.96"N 77° 6'24.47"E	-1838	-1432	39.7	8.32	48.02
AAQ6	11°21'16.59"N 77° 9'28.52"E	3785	-2343	39.5	0	39.5
AAQ7	11°21'2.09"N 77° 7'51.39"E	816	-2792	42.8	13.88	56.68
AAQ8	11°23'40.93"N 77° 5'4.44"E	-4282	2121	43.0	1.72	44.72

TABLE 4.6: INCREMENTAL & RESULTANT GLC OF PM2.5

Station Code	Location	X Coordinate (m)	Y Coordinate (m)	Average Baseline PM _{2.5} (µg/m ³)	Incremental value of PM _{2.5} due to mining (µg/m³)	Total PM _{2.5} (μg/m³) (5+6)
AAQ1	11°22'31.12"N 77° 7'21.12"E	-105	-34	23.8	8.93	32.73
AAQ2	11°22'20.77"N 77° 7'29.44"E	143	-357	24.0	8.52	32.52
AAQ3	11°19'39.97"N 77° 6'9.75"E	-2287	-5333	23.9	3.61	27.51
AAQ4	11°23'27.06"N 77° 7'12.70"E	-367	1690	21.7	7.00	28.7
AAQ5	11°21'45.96"N 77° 6'24.47"E	-1838	-1432	18.9	5.44	24.34
AAQ6	11°21'16.59"N 77° 9'28.52"E	3785	-2343	22.9	0	22.9
AAQ7	11°21'2.09"N 77° 7'51.39"E	816	-2792	23.2	8.00	31.2
AAQ8	11°23'40.93"N 77° 5'4.44"E	-4282	2121	23.0	2.39	25.39

TABLE 4.7: INCREMENTAL & RESULTANT GLC OF SO₂

Station Code	Location	X Coordinate (m)	Y Coordinate (m)	Average Baseline So ₂ (µg/m³)	Incremental value of So ₂ due to mining (µg/m³)	Total So ₂ (μg/m ³) (5+6)
AAQ1	11°22'31.12"N 77° 7'21.12"E	-105	-34	9.4	2.59	11.99
AAQ2	11°22'20.77"N 77° 7'29.44"E	143	-357	9.0	2.54	11.54
AAQ3	11°19'39.97"N 77° 6'9.75"E	-2287	-5333	8.8	0	8.8
AAQ4	11°23'27.06"N 77° 7'12.70"E	-367	1690	10.6	1.71	12.31
AAQ5	11°21'45.96"N 77° 6'24.47"E	-1838	-1432	7.6	0.92	8.52
AAQ6	11°21'16.59"N 77° 9'28.52"E	3785	-2343	6.0	0	6
AAQ7	11°21'2.09"N 77° 7'51.39"E	816	-2792	7.7	2.50	10.2
AAQ8	11°23'40.93"N 77°05'4.44"E	-4282	2121	8.1	0	8.1

TABLE 4.8: INCREMENTAL & RESULTANT GLC OF NOX

Station Code	Location	X Coordinate (m)	Y Coordinate (m)	Average Baseline Nox (µg/m³)	Incremental value of Nox due to mining (µg/m³)	Total Nox (μg/m³) (5+6)
AAQ1	11°22'31.12"N 77° 7'21.12"E	-105	-34	26.5	10.49	36.99
AAQ2	11°22'20.77"N 77° 7'29.44"E	143	-357	26.2	8.73	34.93
AAQ3	11°19'39.97"N 77° 6'9.75"E	-2287	-5333	23.9	0	23.9
AAQ4	11°23'27.06"N 77° 7'12.70"E	-367	1690	23.2	5.19	28.39
AAQ5	11°21'45.96"N 77° 6'24.47"E	-1838	-1432	25.8	0	25.8
AAQ6	11°21'16.59"N 77° 9'28.52"E	3785	-2343	26.0	0	26
AAQ7	11°21'2.09"N 77° 7'51.39"E	816	-2792	25.6	6.58	32.18
AAQ8	11°23'40.93"N 77° 5'4.44"E	-4282	2121	26.1	0	26.1

TABLE 4.9: INCREMENTAL & RESULTANT GLC OF FUGITIVE DUST

Station Code	Location	X Coordinate (m)	Y Coordinate (m)	Average Baseline Fugitive (µg/m³)	Incremental value of Fugitive due to mining (µg/m³)	Total Fugitive (μg/m³) (5+6)
AAQ1	11°22'31.12"N 77° 7'21.12"E	-105	-34	62.99	27.10	90.09
AAQ2	11°22'20.77"N 77° 7'29.44"E	143	-357	63.46	17.06	80.52
AAQ3	11°19'39.97"N 77° 6'9.75"E	-2287	-5333	61.35	0	61.35
AAQ4	11°23'27.06"N 77° 7'12.70"E	-367	1690	60.14	0	60.14
AAQ5	11°21'45.96"N 77° 6'24.47"E	-1838	-1432	60.82	0	60.82
AAQ6	11°21'16.59"N 77° 9'28.52"E	3785	-2343	58.57	0	58.57
AAQ7	11°21'2.09"N 77° 7'51.39"E	816	-2792	61.73	6.66	68.39
AAQ8	11°23'40.93"N 77° 5'4.44"E	-4282	2121	61.70	0	61.7

From the resultant of cumulative concentration i.e., Background + Incremental Concentration of pollutant in all the receptor locations without effective mitigation measures are still within the prescribed NAAQ limits of 100, 80 & 80 μ g/m³ for PM₁₀, SO₂ & NO_X respectively. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be further being controlled.

4.3.4. Mitigation Measures

Drilling – To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar.

Advantages of Wet Drilling: -

- In this system dust gets suppressed close to its formation. Dust suppression become very effective and the work environment will be improved from the point of occupational comfort and health.
- Due to dust free atmosphere, the life of engine, compressor etc., will be increased.
- The life of drill bit will be increased.
- The rate of penetration of drill will be increased.
- Due to the dust free atmosphere visibility will be improved resulting in safer working conditions.

Blasting -

- Establish time of blasting to suit the local conditions and water sprinkling on blasting face
- Avoid blasting i.e., when temperature inversion is likely to occur and strong wind blows towards residential areas
- Controlled blasting includes Adoption of suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone and restricting blasting to a particular time of the day i.e. at the time lunch hours, controlled charge per hole as well as charge per round of hole
- Before loading of material water will be sprayed on blasted material
- Dust mask will be provided to the workers and their use will be strictly monitored

Haul Road & Transportation -

- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with taurpaulin
- The speed of tippers plying on the haul road will be limited below 20 km/hr to avoid generation of dust.
- Water sprinkling on haul roads & loading points will be carried out twice a day
- Main source of gaseous pollution will be from vehicle used for transportation of mineral; therefore, weekly maintenance of machines improves combustion process & makes reduction in the pollution.
- The un-metalled haul roads will be compacted weekly before being put into use.
- Over loading of tippers will be avoided to prevent spillage.
- It will be ensured that all transportation vehicles carry a valid PUC certificate
- Grading of haul roads and service roads to clear accumulation of loose materials

Green Belt -

- Planting of trees all along main mine haul roads and regular grading of haul roads will be practiced to prevent the generation of dust due to movement of dumpers/trucks
- Green belt of adequate width will be developed around the project areas

Occupational Health -

- Dust mask will be provided to the workers and their use will be strictly monitored
- Annual medical checkups, trainings and campaigns will be arranged to ensure awareness about importance of wearing dust masks among all mine workers & tipper drivers
- Ambient Air Quality Monitoring will be conducted six months once to assess effectiveness of mitigation measures proposed

4.4 NOISE ENVIRONMENT

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. These activities will not cause any problem to the inhabitants of this area because there is no human settlement in close proximity to the project area. Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities.

Predictions have been carried out to compute the noise level at various distances around the working pit due to these major noise-generating sources. Noise modelling has been carried out to assess the impact on surrounding ambient noise levels.

Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves, which are propagated outwards from the source through the air at a speed of 1,100 ft/sec, with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A).

For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using model based on first principle.

$$Lp_2 = Lp_1 - 20 log (r_2/r_1) - Ae_{1,2}$$

Where:

 $Lp_1\& Lp_2$ are sound levels at points located at distances $r_1\& r_2$ from the source.

 $Ae_{1,2}$ is the excess attenuation due to environmental conditions. Combined effect of all sources can be determined at various locations by logarithmic addition.

$$Lp_{total} = 10 log \{10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots \}$$

4.4.1 Anticipated Impact

Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are:

- Source data
- Receptor data
- Attenuation factor

Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4-8.

TABLE 4.10: ACTIVITY AND NOISE LEVEL PRODUCED BY MACHINERY

Sl.No.	Machinery / Activity	Impact on Environment?	Noise Produced in dB(A) at 50 ft from source*
1	Blasting	Yes	94
2	Jack Hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
	Total Noise	Produced	95.8

^{*50} feet from source = 15.24 meters

Source: U.S. Department of Transportation (Federal Highway Administration) - Construction Noise Handbook

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). Generally, most mining operations produce noise between 100-109 dB (A). We have considered equipment and operation noise levels (max) to be approx. 109 dB (A) for nose prediction modelling.

TABLE 4.11: PREDICTED NOISE INCREMENTAL VALUES

Location ID	N1	N2	N3	N4	N5	N6	N7	N8
Maximum Monitored Value (Day) dB(A)	56.1	44.8	46.1	47.1	48.9	51.2	44.5	49.7
Incremental Value dB(A)	60.1	33.0	28.0	27.9	30.9	30.2	26.5	27.8
Total Predicted Noise level dB(A)	61.6	45.1	46.2	47.2	49.0	51.2	44.6	49.7

The incremental noise level is found within the range of 60.1 dB (A) in Core Zone and 26.5 – 33.0 dB (A) in Buffer zone. The noise level at different receptors in buffer zone is lower due to the distance involved and other topographical features adding to the noise attenuation. The resultant Noise level due to monitored values and calculated values at the receptors are based on the mathematical formula considering attenuation due to Green Belt as 4.9 dB (A) the barrier effect. From the above table, it can be seen that the ambient noise levels at all the locations are within permissible limits of Industrial area (core zone) & Residential area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000 (The Principal Rules were published in the Gazette of India, vide S.O. 123(E), dated 14.2.2000 and subsequently amended vide S.O. 1046(E), dated 22.11.2000, S.O. 1088(E), dated 11.10.2002, S.O. 1569 (E), dated 19.09.2006 and S.O. 50 (E) dated 11.01.2010 under the Environment (Protection) Act, 1986.).

4.4.2 Mitigation Measures

The following noise mitigation measures are proposed for control of Noise

- Usage of sharp drill bits while drilling which will help in reducing noise;
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders;
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained;
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system;
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise;
- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise:
- Silencers / mufflers will be installed in all machineries;
- Green Belt/Plantation will be developed around the project area and along the haul roads. The plantation minimizes propagation of noise;
- Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness.
- Regular medical check-up and proper training to personnel to create awareness about adverse noise level effects

4.4.3 Ground Vibrations

Ground vibrations due to the proposed mining activities are anticipated due to operation of Mining Machines like Excavators, drilling and blasting, transportation vehicles, etc., However, the major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kuchha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. Nearest habitation from the proposed project areas are listed in below table. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation.

The empirical equation for assessment of peak particle velocity (PPV) is:

$V = K [R/O^{0.5}]^{-B}$

Where -

V = peak particle velocity (mm/s)

K = site and rock factor constant

O = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

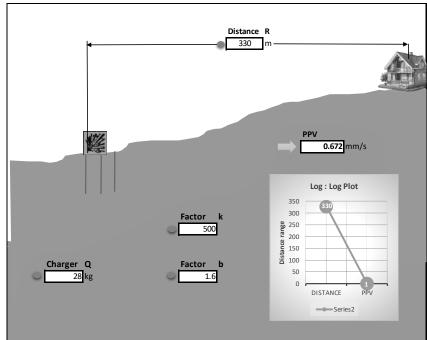

R = distance from charge (m)

TABLE 4.12: PREDICTED PPV VALUES DUE TO BLASTING

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s
Thiru. M. Shanmugam	28	330	0.672

FIGURE 4.6: GROUND VIBRATION PREDICTION

Distance R

From the above graph, the charge per blast of 28 kg is well below the Peak Particle Velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997. But the all the project proponents ensure that the charge per blast shall be less than 100 kg and carry out blasting twice or thrice a day based on the onsite conditions under the supervision of competent person employed. However, as per statutory requirement control measures will be adopted to avoid the impacts due to ground vibrations and fly rocks due to blasting.

4.4.3.1 Mitigation measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators, which reduces the ground vibrations;
- Proper quantity of explosive, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting;
- Adequate safe distance from blasting will be maintained as per DGMS guidelines;
- Blasting shelter will be provided as per DGMS guidelines;
- Blasting operations will be carried out only during day time;
- The charge per delay will be minimized and preferably more number of delays will be used per blasts;
- During blasting, other activities in the immediate vicinity will be temporarily stopped;
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast;

- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed.
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating
 procedures that will be followed to ensure that shot firing operations on site take place without endangering
 the workforce or public.
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire.
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used.
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects.
- Appropriate blasting techniques shall be adopted such that the predicted peak particle velocity shall not exceed 8 Hz.
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices

4.5 ECOLOGY AND BIODIVERSITY

4.5.1 Impact on Ecology and Biodiversity

The impact on biodiversity is difficult to quantify because of its diverse and dynamic characteristics, mining activities generally result in the deforestation, land degradation, water, air and noise pollution which directly or indirectly affect the faunal and floral status of the project area. However, occurrence and magnitude of these impacts are entirely dependent upon the project location, mode of operation and technology involved. Impact prediction is the main footstep in impact evaluation and identifies project actions that are likely to bring significant changes in the project environment. The present study was carried out to predict the likely impacts of the proposed project at Mooduthurai village and the surrounding environment with special reference to biological attributes covering habitats/ecosystems and associated biodiversity.

The proposed mining activities include removal of some scattered bushes and other thorny species. Although impacts on key habitat elements will occur on a local scale, but on a regional scale they would not be critical for the life cycle needs of the species observed or expected. Moreover, during conceptual stage, the mined-out areas on the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time. Existing roads will be used; new roads will not be constructed to reduce impact on flora.

Wild life is not commonly found in the project area and its immediate environs because of lack of vegetal cover and surface water. Except few domestic animals, reptiles, hares and some common birds are observed in the study area.

- I. None of the plants will be cut during operational phase of the mine.
- II. There shall be negligible air emissions or effluents from the project site. During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly.
- III. Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region

4.5.2 Mitigation measure

Keeping all this in mind the mitigations have been suggested under environmental management plan. With the understanding of the role of plant species as bio-filter to control air pollution, appropriate plant species (mainly tree species) have been suggested conceding the area/site requirements and needed performance of specific species. The details of year wise proposed plantation program are given in Table 4.13.

The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas

In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly in proposed areas falls in the cluster earmarked for plantation program as per Approved Mining Plan in different phases. This habitat improvement program would ensure the faunal species to re-colonize and improve the abundance status in the core zone.

The objectives of the green belt cover will cover the following:

- Noise abatement
- Ecological restoration
- Aesthetic, biological and visual improvement of area due to improved vegetative and plantations cover.

4.5.2.2.1. Species Recommendation for Plantation granted in the district

Following points have been considered while recommending the species for plantation:

- Natural growth of existing species and survival rate of various species.
- Suitability of a particular plant species for a particular type of area.
- Creating of biodiversity.
- Fast growing, thick canopy copy, perennial and evergreen large leaf area.
- Efficient in absorbing pollutants without major effects of natural growth.
- The following species may be considering primary for plantation best suited for the prevailing climate condition in the area.

TABLE 4.13: RECOMMENDED SPECIES FOR GREENBELT DEVELOPMENT PLAN

Sl.No	Name of the plant (Botanical)	Family Name	Common Name	Habit
1	Azadirachta indica	Meliaceae	Neem, Vembu	Tree
2	Albiziafalcatoria	Fabaceae	Tamarind, Puliyamaram	Tree
3	Polyalthialongifolia	Annonaceae	Kattumaram	Tree
4	Borassus Flabellifer	Arecaceae	Palmyra Palm	Tree

The 7.5m Safety distance along the boundary has been identified to be utilized for subsequent Afforestation. However, the afforestation should always be carried out in a systematic and scientific manner. Regional trees like Neem, Pongamia, Pinnata, and Casuarina will be planted along the Lease boundary and avenue plantation will be carried out in proposed projects. The rate of survival expected to be 80% in this area. Afforestation Plan is given in Table No.4.13 and budget of green belt development plan are given in Table No.4.14.

TABLE 4.14: GREENBELT DEVELOPMENT PLAN

Year	No.of trees proposed to be planted	Survival %	Area to be covered sq.m	Name of the species	No. of trees expected to be grown
I	750	80%	Along safety distance, panchayat road and approach road	Neem, Casuarina	600

TABLE 4.15: BUDGET FOR GREENBELT DEVELOPMENT PLAN

		Year v	vise details plantation for each ar	ea
S.No	Details of work	1st year	Total No. plants (5years)	Total Cost (Rs.)
1	Sapling of plant (Approximately cost @ INR 100 per sapling/ plant).	750	750	75,000.00
2	Maintenance (Rs.) (Manuring, Fertilizer, Insecticide application, watchman etc.)	Cost (Rs. 10000/	(-) per year for five year period	50,000.00
	,		Total	1,25,000.00

After complete extraction of mineral, the pit will be allowed to collect rain and seepage water to serve as a reservoir to charge the nearby wells. Fish culture will also be attempted. A bund will be constructed around the pits. In order to minimize the impact of mining on the vegetation outside the mine lease area, it is recommended that adequate protection measures must be implemented. As mining involves movement of vehicles and increased anthropogenic activities, some of the areas can be fenced by involving local people and educating them about increased benefits of such activities.

4.5.3. Anticipated Impact on Fauna

- There is no Wildlife Sanctuary and Biosphere Reserve within 10 km radius of the project site.
- No rare, endemic & endangered species are reported in the buffer zone. However, during the course of mining, the management will practice scientific method of mining with proper Environmental Management Plan including pollution control measures especially for air and noise, to avoid any adverse impact on the surrounding wildlife.
- Fencing around the mine lease area to restrict the entry of stray animals
- Green belt development will be carried out which will help in minimizing adverse impact on the flora found in the area.

4.5.3.1. Measures for protection and conservation of wildlife species

- Topsoil has a large number of seeds of native plant species in the mining area.
- Topsoil will be used for restoration and suitable surface for planted seedlings.
- Checks and controls on the movement of vehicles in and out of the mine.
- Undertaking mitigative measures for conducive environment to the flora and fauna in consultation with Forest Department.
- Dust suppression system will be installed within mine and periphery of mine.
- Plantation around mine area will help in creating habitats for small faunal species and to create better environment for various fauna. Creating and developing awareness for nature and wildlife in the adjoining villages.

4.5.3.2. Mitigation Measures

- Suitable plan for conservation of Schedule-I Species have prepared and necessary fund for implement for the same will be made.
- All the preventive measures will be taken for growth & development of fauna.
- Creating and development awareness for nature and wildlife in the adjoin villages.
- The workers shall be trained to not harm any wildlife, should it come near the project site. No work shall be carried out after 6.00 pm.

4.5.4. Impact on Aquatic Biodiversity

Mining activities will not disturb the existing aquatic ecology as there is no effluent discharge proposed from the Rough stone and Gravel quarry. There is no natural perennial surface water body within the mine lease area. Bavanisagar Reservoir is located about 7.5 km on the Northwest.

Parusapalayam Lake is located about 2.5km on the east side and followed by Nallur Lake -4.5km, Sungai Lake -6.5km. Aquatic biodiversity is observed in the water body

4.5.5. Impact Assessment on Biological Environment

This chapter highlights the various impacts on ecology and biodiversity due to mining activity. It addresses the baseline data and its affect on flora and wild life fauna especially threatened species (Critically Endangered, Endangered, and Vulnerable) in core mining lease area. A detail of impact and assessments was mentioned in Table No 4.16

TABLE 4.16: ECOLOGICAL IMPACT ASSESSMENTS

SI.No	Attributes	Assessment
1	Activities of the project affects the breeding/nesting sites of birds and animals	No breeding and nesting site was identified in mining lease site. The fauna sighted mostly migrated from buffer area.
2	Located near an area populated by rare or endangered species	No endangered, critically endangered, vulnerable species sighted in core mining lease area.
3	Proximity to national park/wildlife sanctuary/reserve forest /mangroves/ coastline/estuary/sea	No national park or eco-sensitive zone around 10km radius.
4	Proposed project restricts access to waterholes for wildlife	'NO'
5	Proposed mining project impact surface water quality that also provide water to wildlife	'NO 'scheduled or threatened wildlife animal sighted regularly core in core area.
6	Proposed mining project increase siltation that would affect nearby biodiversity area.	Surface runoff management such as drains is constructed properly so there will be no siltation affect in nearby mining area.
7	Risk of fall/slip or cause death to wild animals due to project activities	'NO'
8	The project release effluents into a water body that also supplies water to a wildlife	No water body near to core zone so chances of water become polluted is low.
9	Mining project effect the forest based livelihood/ any specific forest product on which local livelihood depended	'NO'
10	Project likely to affect migration routes	'NO' migration route observed during monitoring period.
11	Project likely to affect flora of an area, which have medicinal value	'NO'
12	Forestland is to be diverted, has carbon high sequestration	'NO' There was no forest land diverted.
13	The project likely to affect wetlands, Fish breeding grounds, marine ecology	'NO' Wetland was not present in near core Mining lease area. No breeding and nesting ground present in core mining area.

TABLE 4.17: ANTICIPATED IMPACT OF ECOLOGY AND BIODIVERSITY

Sl. No	Aspect Description	Likely Impacts on Ecology and Biodiversity (EB)	Impact Consequence - Probability Description / Justification	Significance	Mitigation Measures
		Pr	e-Mining Phase		
1	Uprooting of vegetation of lease area	Site specific loss of common floral diversity (Direct impact)	Site possesses common floral (not trees) species. Clearance of these species will not result in loss of flora	Less severe	No immediate action required. However, Greenbelt /plantation will be developed in project site and in periphery of the project
		Site specific loss of associated faunal diversity (Partial impact)	Site supports only common species, which use wide variety of habitats of the buffer zone		boundary, which will improve flora and fauna diversity of the project area.

		-Loss of Habitat (Direct impact)	reserve forest area. So, there is no threat of faunal diversity. Site does not form Unique / critical habitat structure for unique flora or		
			fauna. Mining phase		
2	Excavation of mineral using machine and labours, Transportation activities will generate noise.	Site-specific disturbance to normal faunal movements at the site due to noise. (Partial impact)	Site does not form unique / critical habitat structure for unique flora or fauna.	Less severe	Mining activity should not be operated after 5PM. Excavation of dump and transportation work should stop before 7PM.
3	Vehicular Movement for transportation of materials will result in generation of dust (SPM) due to haul roads and emission of SO2,NO2,CO etc.	Impact on surrounding agriculture and associated fauna due to deposition of dust and Emission of CO. (Indirect impact)	Impact is less as the agricultural land far from core area.	Less severe	All vehicles will be certified for appropriate Emission levels. More plantation has been suggested Upgrade the vehicles with alternative fuel such biodiesel, methanol and biofuel around the mining area.

4.6 SOCIO ECONOMIC

4.6.1 Anticipated Impact

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.6.2 Mitigation Measures

Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems

- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines
- Air pollution control measure will be taken to minimize the environmental impact within the core zone
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc., from this project directly and indirectly
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.7 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- Respiratory hazards
- Noise
- Physical hazards
- Explosive storage and handling

4.7.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- Cabins of excavators and tippers will be enclosed with AC and sound proof
- Use of personal dust masks will be made compulsory

4.7.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels

4.7.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- Work site assessment will be done by rock scaling of each surface exposed to workers to prevent accidental rock falling and / or landslide, especially after blasting activities;
- Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse gravel will be taken up

4.7.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests

- General physical tests
- Audiometric tests
- Full chest, X-ray, Lung function tests, Spiro metric tests
- Periodic medical examination yearly
- Lung function test yearly, those who are exposed to dust
- Eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment.

First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.8 MINE WASTE MANAGEMENT

No waste is anticipated from any of the proposed quarries.

4.9 MINE CLOSURE

Mine closure plan is the most important environmental requirement in mining projects. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While formulating the closure objectives for the site, it is important to consider the existing or the pre-mining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- To protect public health and safety of the surrounding habitation
- To minimize environmental damage
- To conserve valuable attributes and aesthetics
- To overcome adverse socio-economic impacts.

4.9.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.9.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.9.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharge likely to cause adverse impacts is predicted in advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.9.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc.,

A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For revegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g. for development of social forestry
- Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally e.g. planning for agriculture
- Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor e.g. development of green barriers

The Mine closure plan should be as per the approved mine plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

5. ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

5.1 INTRODUCTION

Consideration of alternatives to a project proposal is a requirement of EIA process. During the scoping process, alternatives to a proposal can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.2 FACTORS BEHIND THE SELECTION OF PROJECT SITE

Thiru. M. Shanmugam Rough Stone and Gravel Quarry Project at Mooduthurai Village is a mining project for excavation of Rough Stone, which is site specific. All the proposed mining lease areas have following advantages:

The mineral deposit occurs in a non-forest area.

- There is no habitation within the project area; hence no R & R issues exist.
- There is no river, stream, nallah and water bodies in the applied mine lease areas.
- Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- Study area falls in seismic zone III, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history

5.3 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as all the mine sites are mineral specific

5.4 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Mechanized open cast mining operation with drilling and blasting method will be used to extract Rough Stone in the area. All the applied mining lease areas have following advantages –

- As the mineral deposition is homogeneous and batholith formation, therefore opencast method of working is preferred over underground method
- The material will be loaded with the help of excavators into dumpers / trippers and transported to the needy customers
- Blasting and availability of drills along with controlled blasting technology gives desired fragmentation so
 that the mineral is handled safely and used without secondary blasting.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages

5.5 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for these projects. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

6. ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections.

The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by Project Proponent. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed projects; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the Mine Management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in all the proposed quarries.

The responsibilities of this cell will be:

- Implementation of pollution control measures
- Monitoring programme implementation
- Post-plantation care
- To check the efficiency of pollution control measures taken
- Any other activity as may be related to environment
- Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by each proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC).

HEAD OF ORGANIZATION

Project proponent
Thiru. M. Shanmugam

Mines Manager

Empanelled Consultant /
External Laboratory Approved
by NABL / MoEF

Mine Foreman

Mining Mate

Site Supervisor

AREA LEVEL

Environment Officer

Assistant

Gardner

Water Sprinkler Operator

FIGURE 6.1: PROPOSED ENVIRONMENTAL MONITORING CELL

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in Chapter-4 will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

TABLE 6.1 IMPLEMENTATION SCHEDULE FOR PROPOSED PROJECT

Sl No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

^{*} The Environmental Monitoring Cell will be formed in all the proposed projects

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- Air quality;
- Water and wastewater quality;
- Noise levels;
- · Soil Quality; and
- Greenbelt Development

The details of monitoring is detailed in Table 6.2

TABLE 6.2: PROPOSED MONITORING SCHEDULE POST EC

S. No.	Environment	Location	Monitoring		Parameters
271,07	Attributes	200000	Duration	Frequency	T WI WILLIAM
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in bgl
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting Operation	Peak Particle Velocity
7	Soil	2 Locations (1 Core & 1 Buffer)	-	Once in six months	Physical and Chemical Characteristics
8	Greenbelt	Within the Project Area	Daily	Monthly	Maintenance

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR EMP

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF.

The proposed capital cost for Environmental Monitoring Programme is Rs 3,80,000/- and the recurring cost is Rs 76,000/- per annum for the proposed project.

TABLE 6.3 ENVIRONMENT MONITORING BUDGET

Sl.No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality		
2	Meteorology		
3	Water Quality		
4	Hydrology	Rs. 3,80,000/-	Rs. 76,000/-
5	Soil Quality		
6	Noise Quality		
7	Vibration Study		
	Total	Rs 3,80,000/-	Rs 76,000/-

Source: Approved Mining Plan

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to: -

- MoEF & CC Half yearly status report
- TNPCB Half yearly status report
- Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of project will submit the periodical reports to –

- Director of mines safety,
- Labour enforcement officer,
- Controller of explosives as per the norms stipulated by the department.

7. ADDITIONAL STUDIES

7.0 GENERAL

The following Additional Studies were done as per items identified by project proponent and items identified by regulatory authority. And items identified by public and other stakeholders will be incorporated after Public Hearing.

- Public Consultation
- Risk Assessment
- Disaster Management Plan
- Cumulative Impact Study
- Plastic Waste Management

7.1. PUBLIC CONSULTATION

Application to The Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA / EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

7.2 RISK ASSESSMENT

The methodology for the risk assessment has been based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide Circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities.

The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project. Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in below Table 7.1.

TABLE 7.1 RISK ASSESSMENT& CONTROL MEASURES

S. No Risk factors Accidents due to explosives and heavy mining machineries
explosives and heavy mining machineries Act, 1952, Metalliferous Mines Regulation, 196 and Mines Rules, 1955 will be strictly follower during all mining operations; Workers will be sent to the Training in the nearby Group Vocational Training Centre Entry of unauthorized persons will be prohibited. Fire-fighting and first-aid provisions in the mining office complex and mining area; Provisions of all the safety appliances such a safety boot, helmets, goggles etc. will be mad available to the employees and regular check for their use. Working of quarry, as per approved plans and regularly updating the mine plans; Cleaning of mine faces on daily basis shall be daily done in order to avoid any overhang of
Handling of explosives, charging and firing shall be carried out by competent persons only under the supervision of a Mine Manager; Maintenance and testing of all mining equipment as per manufacturer 's guidelines.

2	Drilling	Improper and unsafe	Safe operating procedure established for drilling
2	Dinning	practices	(SOP) will be strictly followed.
		praetices	 Only trained operators will be deployed.
		Due to high pressure of	 No drilling shall be commenced in an area where
		compressed air, hoses may	shots have been fired until the blaster/blasting
		burst	foreman has made a thorough Examination of all
		ourst	places,
		Drill Rod may break	Drilling shall not be carried on simultaneously on
		Dilli Rod may bleak	the benches at places directly one above the other.
			Periodical preventive maintenance and replacement of worn-out accessories in the
			compressor and drill equipment as per operator
			manual.
			All drills unit shall be provided with wet drilling shall be maintained in afficient weaking in
			shall be maintained in efficient working in condition.
			Operator shall regularly use all the personal protective equipment.
4	D1 4	F1- 1 11 4	protective equipment. Restrict maximum charge per delay as per
4	Blasting	Fly rock, ground vibration, Noise and dust.	 Restrict maximum charge per delay as per regulations and by optimum blast hole pattern,
		Noise and dust.	vibrations will be controlled within the
		Towns a share in a	
		Improper charging,	permissible limit and blasting can be conducted
		stemming & Blasting/ fining of blast holes	safely.
		of blast notes	SOP for Charging, Stemming & Blasting/Firing
		37'1 4' 1- 4	of Blast Holes will be followed by blasting crew
		Vibration due to movement	during initial stage of operation
		of vehicles	Shots are fired during daytime only.
			All holes charged on any one day shall be fired on
			the same day.
			• The danger zone will be distinctly demarcated (by
5	T	Potential hazards and unsafe	means of red flags)
3	Transportation		Before commencing work, drivers personally
		workings contributing to	check the dumper/truck/tipper for oil(s), fuel and
		accident and injuries	water levels, tyre inflation, general cleanliness
		Olanding of material	and inspect the brakes, steering system, warning
		Overloading of material	devices including automatically operated audio-
		W/l-:11 @	visual reversing alarm, rear view mirrors, side
		While reversal & overtaking	indicator lights etc., are in good condition.
		of vehicle	Not allow any unauthorized person to ride on the
		Operator of tweets leaving 1:	vehicle nor allow any unauthorized person to
		Operator of truck leaving his	operate the vehicle.
		cabin when it is loaded.	Concave mirrors should be kept at all corners All visibles about the fitted with reverse horn.
			All vehicles should be fitted with reverse horn with one spetter at avery tipping point.
			with one spotter at every tipping point
			Loading according to the vehicle capacity
			Periodical maintenance of vehicles as per
6	Notural colomitics	Unavnacted homenings	operator manual
6	Natural calamities	Unexpected happenings	 Escape Routes will be provided to prevent inundation of storm water
			 Fire Extinguishers & Sand Buckets
7	Failure of Mine	Slone geometry Coological	
7		Slope geometry, Geological	e i i i i i i i i i i i i i i i i i i i
		structure	and each bench height shall be 5m height.
	Slope		

Source: Analysed and Proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea hence the disaster due to heavy floods and tsunamis are not anticipated

The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities.

The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations and the coordination among key personnel and their team has been shown in Fig 7.1.

FIRE-FIGHTING TEAM

EMERGENCY COORDINATOR
MINE MANAGER

SUPPORT TEAM

FIGURE 7.1: DISASTER MANAGEMENT TEAM LAYOUT

The emergency organization shall be headed by emergency coordinator who will be qualified competent mine manager. In his absence senior most people available at the mine shall be emergency coordinator till arrival of mine manager. There would be three teams for taking care of emergency situations – Fire-Fighting Team, Rescue Team and Support Team. The proposed composition of the teams is given in Table 7.2.

TABLE 7.2: PROPOSED TEAMS TO DEAL WITH EMERGENCY SITUATION

DESIGNATION	QUALIFICATION				
FIRE-FIGHTING TEAM					
Team Leader/ Emergency Coordinator (EC)	Mines Manager				
Team Member	Mines Foreman				
Team Member	Mining Mate				
RESCUE TEAM					
Team Leader/ Emergency Coordinator (EC)	Mines Manager				
Team Member/ Incident Controller (IC)	Environment Officer				
Team Member	Mining Foreman				
SUPPORT TEAM					
Team Leader/ Emergency Coordinator (EC)	Mines Manager				
Assistant Team Leader	Environment Officer				
Team Member	Mining Mate				
Security Team Leader/ Emergency Security Controller	Mines Foreman				

Once the mine becomes operational, the above table along with names of personnel will be prepared and made easily available to workers for proposed quarry. A mobile communication network and wireless shall connect Mine Emergency Control Room (MECR) to control various departments of the mine, fire station and neighbouring industrial units/mines.

Roles and responsibilities of emergency team -

(a) Emergency coordinator (EC)

The emergency coordinator shall assume absolute control of site and shall be located at MECR.

(b) Incident controller (IC)

Incident controller shall be a person who shall go to the scene of emergency and supervise the action plan to overcome or contain the emergency. Shift supervisor or Environmental Officer shall assume the charge of IC.

(c) Communication and advisory team

The advisory and communication team shall consist of heads of Mining Departments i.e., Mines Manager

(d) Roll call coordinator

The Mine Foreman shall be Roll Call Coordinator. The roll call coordinator will conduct the roll call and will evacuate the mine personnel to assembly point. His prime function shall be to account for all personnel on duty.

(e) Search and rescue team

There shall be a group of people trained and equipped to carryout rescue operation of trapped personnel. The people trained in first aid and fire-fighting shall be included in search and rescue team.

(f) Emergency security controller

Emergency Security Controller shall be senior most security person located at main gate office and directing the outside agencies e.g. fire brigade, police, doctor and media men etc.,

Emergency control procedure -

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- Emergency security controller will commence his role from main gate office
- Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
 - He will receive information continuously from incident controller and give decisions and directions to:
 - Incident controller
 - Mine control rooms
 - Emergency security controller

Proposed fire extinguishers at different locations -

The following type of fire extinguishers has been proposed at strategic locations within the mine.

TABLE 7.3: PROPOSED FIRE EXTINGUISHERS AT DIFFERENT LOCATIONS

LOCATION	TYPE OF FIRE EXTINGUISHERS
Electrical Equipment's	CO ₂ type, foam type, dry chemical powder type
Fuel Storage Area	CO ₂ type, foam type, dry chemical powder type, Sand bucket
Office Area	Dry chemical type, foam type

Alarm system to be followed during disaster -

On receiving the message of disaster from Site Controller, fire-fighting team, the mine control room attendant will sound siren wailing for 5 minutes. Incident controller will arrange to broadcast disaster message through public address system. On receiving the message of "Emergency Over" from Incident Controller the emergency control room attendant will give "All Clear Signal", by sounding alarm straight for 2 minutes.

The features of alarm system will be explained to one and all to avoid panic or misunderstanding during disaster. In order to prevent or take care of hazard / disasters if any the following control measures have been adopted.

- All safety precautions and provisions of Metalliferous Mines Regulations (MMR), 1961 is strictly followed during all mining operations.
- Observance of all safety precautions for blasting and storage of explosives as per MMR 1961.
- Entry of unauthorized persons into mine & allied areas is completely prohibited.
- Fire-fighting and first-aid provisions in the mines office complex and mining area are provided.
- Provisions of all the safety appliances such as safety boot, helmets, goggles, dust masks, ear plugs and ear
 muffs etc. are made available to the employees and the use of same is strictly adhered to through regular
 monitoring.
- Training and refresher courses for all the employees working in hazardous premises.
- Working of mine, as per approved plans and regularly updating the mine plans.
- Cleaning of mine faces is regularly done.
- Handling of explosives, charging and blasting are carried out only by qualified persons following SOP.
- Checking and regular maintenance of garland drains and earthen bunds to avoid any inflow of surface water in the mine pit.

- Provision of high-capacity standby pumps with generator sets with enough quantity of diesel for emergency pumping especially during monsoon.
- A blasting SIREN is used at the time of blasting for audio signal.
- Before blasting and after blasting, red and green flags are displayed as visual signals.
- Warning notice boards indicating the time of blasting and NOT TO TRESPASS are displayed at prominent places.
- Regular maintenance and testing of all mining equipment were carried out as per manufacturer's guidelines.

7.4 CUMULATIVE IMPACT STUDY

For easy representation of Proposed and Existing Quarries in the Cluster are given unique codes and identifies and studied in this EIA EMP Report.

TABLE 7.4: LIST OF QUARRIES WITHIN 500 METER RADIUS

	PROPOSED QUARRIES					
CODE	Name of the Owner	S.F. Nos	Extent	Status		
P1	Thiru.M. Shanmugam, S\o. Muthusamy Gounder, No.36, Kaidhey Millath Street, Madhampalayam Road, Punjai puliampatti, Sathyamangalam Taluk, Erode District	410/1A, 1B	1.43.5 ha	ToR Obtained vide Lr.No. SEIAA- TN/F.No.9033/SEAC/ToR- 1155/2022 Dated:06.06.2022		
P2	Thiru.K.Kalisamy No.5/113, Karappadi (Post), Punjai puliampatti via, Sathyamangalam Taluk, Erode District - 638459	409/1B2, 409/2 & 409/3	1.73.0	Application Processed		
Р3	Thiru.M.S.Manivasagam, S\o.N.M.Shanmugam, No.7/171, Nelipalayam, Alathur Village, Avinashi Taluk, Tiruppur District	407/1,2,3,4, 409/1A, 462/1A2 & 462/1B	2.91.5	Application Processed		
	TOTAL		6.08.0 ha			
		TING QUARRIES	1			
CODE	Name of the Owner	S.F. No	Extent	Lease Period		
E1	Tvl. Venkateswara Blue Metals Thiru.B.Nandakumar (Partner), No. 486/3B, Mangalakarai Pudur, Karamadai, Mettupalayam Taluk, Coimbatore District - 641 104	460/1(P) & 461	3.20.5 ha	24.03.2022 – 23.03.2027		
		3.20.5 ha				
	TOTAL CLUSTER EXTENT	9.28.5 ha				

Note: - Cluster area is calculated as per MoEF & CC Notification - S.O. 2269 (E) Dated: 01.07.2016

TABLE 7.5: SALIENT FEATURES OF PROPOSAL

Name of the Quarry	Thiru M Sl	Thiru. M. Shanmugam Rough Stone & Gravel Quarry			
Toposheet No	Timu. W. Si	58 – E/03			
Latitude between	11°22'15.20"N to 11°22'21.24"N				
Longitude between		77°07'23.77"E to 77°07'27.77"E			
Highest Elevation	,	320 m AMSL	/ <u>L</u>		
Proposed Depth of Mining		44 m bgl			
Troposed Depth of Willing	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³		
Geological Resources	4,09,432	8,068	8,068		
	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³		
Mineable Reserves	95,546	1,736	2,294		
Proposed quantity of reserves for	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³		
production in m ³ as per ToR	95,546	1,736	2,294		
		1,750 1 - 62m (L) x 75m (W) x 17			
Existing Pit Dimension		I - 74m (L) x 62m (W) x 22			
Ultimate Pit Dimension		168m (L) x 75m (W) x 44r			
Water Level in the surrounds area		65 - 70 m bgl			
Method of Mining	Opencast Mechaniz	ed Mining Method involvin	o drilling and blasting		
Treated of Mining					
	The lease applied area is flat Terrain. The area has gentle sloping towards Southeast side. The altitude of the area is 320 m above mean sea level.				
Topography	The area is covered by 2m thickness of Gravel with 2m weathered Rock and followed by Massive Charnockite is found after 4m (Gravel +				
		Weathered Formation) which is clearly inferred from the existing			
	quarrying pit.				
	Jack Hammer		2 Nos		
	Compressor		1 No		
Machinery proposed	Hydraulic Excavator		1 No		
	Tippers		2 Nos		
		lethod by shot hole drilling			
	Controlled Blasting Method by shot hole drilling and small dia of 25mm slurry explosive are proposed to be used for shattering and heaving effect				
Blasting Method	for removal and winning of Rough Stone. No deep hole drilling is				
	proposed.				
Proposed Manpower Deployment	proposed.	15 Nos			
Project Cost	Rs.27,75,000/-				
CER Cost @ 2% of Project Cost	Rs.27,73,000/- Rs 56,000/-				
CLR Cost (a) 270 of Froject Cost	Lake		1.4km SW		
	Parusapalayam Lake		2.7km NE		
Nearby Water Bodies	Nallur Lake		4.6km NE		
Tionby water bodies	Sungai Lake		6.2km NE		
	Bhavanisagar Reservo	i.	6.8km NW		
Greenbelt Development Plan		the 7.5 m Safety Zone			
Proposed Water Requirement	1 Toposcu to plant 20	2.0 KLD	uic 1.5 iii Salety Zulle		
Nearest Habitation					
inearest fladitation	330m South				

Source: Approved Mining Plan

TABLE 7.6: SALIENT FEATURES OF EXISTING QUARRY "E1"

Name of the Quarry	M/s. Venkateswara Blue Metals Rough Stone & Gravel Quarry			
Toposheet No	58 – E/03			
Latitude between	1	1°22'30.04"N to 11°22'34.	25"N	
Longitude between	7	7°07'18.32"E to 77°07'29.	14"E	
Proposed Depth of Mining	33 m bgl			
Geological Resources	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³	
Geological Resources	11,21,750	32,050	64,100	
Mineable Reserves	Rough Stone in m ³	Weathered Rock in m ³	Gravel m ³	
Willeadie Reserves	4,03,060	22,675	49,826	
Method of Mining	Opencast Mechanized Mining Method involving drilling and blasting			
	Jack Hammer	11 Nos		
Machinery proposed	Compressor		3 Nos	
Wachinery proposed	Hydraulic Excavator		3 Nos	
	Tippers	5 Nos		
	Controlled Blasting Method by shot hole drilling and small dia of 25mm			
Blasting Method	slurry explosive are proposed to be used for shattering and heaving effect			
Blasting Method	for removal and winning of Rough Stone. No deep hole drilling is			
	proposed.			
Proposed Manpower Deployment	nt 44 Nos			
Total Project Cost	Rs. 80,39,000/-			
CER Cost @ 2% of Project Cost				

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries (proposed and existing) within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting.

Air Environment –

Calculating the Cumulative Load of Mining within the cluster is as shown in table 7.17& 7.18.

TABLE 7.7: CUMULATIVE PRODUCTION LOAD OF ROUGH STONE

Code	PROPOSED PRODUCTION DETAILS			
Quarry	5 Years in m ³	Per Year in m ³	Per Day in m ³	Number of Lorry Load Per Day
P1	95,546	19,109	64	11
Total	95,546	19,109	64	11
E1	4,03,060	80,612	269	44
Total	4,03,060	80,612	269	44
Grand Total	4,98,606	99,721	333	55

TABLE 7.8: CUMULATIVE PRODUCTION LOAD OF GRAVEL

Code		PROPOS	ED PRODUCTION 1	DETAILS
Quarry	Years in m ³	Per Year in m ³	Per Day in m ³	Number of Lorry Load Per Day
P1(3 years)	2,294	765	3	1
Total	2,294	765	3	1
E1 (3 years)	49,826	16,608	55	10
Total	49,826	16,608	55	10
Grand Total	52,120	17,373	58	11

TABLE 7.9: CUMULATIVE PRODUCTION LOAD OF WEATHERED ROCK

Code	PROPOSED PRODUCTION DETAILS			
Quarry	Years in m ³	Per Year in m ³	Per Day in m ³	Number of Lorry Load Per Day
P1(3 years)	1,736	579	2	1
Total	1,736	579	2	1
E1 (3 years)	22,675	7,559	25	4
Total	22,675	7,559	25	4
Grand Total	24,411	8,138	27	5

On a cumulative basis considering the 2 quarries it can be seen that the overall production of Rough Stone is 333 m³ per day, weathered rock is 27 m³ and overall production of Gravel is 58 m³ per day with a capacity of 55 trips of Rough Stone per day, 5 trips of weathered gravel per day and 11 Trips per day of Gravel from the cluster.

Note: Per day production of Rough Stone is calculated for 5 Years Lease Period and for Gravel production with 1, 2 or 3 or 5 years of production period. And the load of existing quarries is covered under existing environment of the cluster.

Based on the above production quantities the emissions due to various activities in all the 2 mines includes various activities like ground preparation, excavation, handling and transport of ore. These activities have been analysed systematically basing on USEPA-Emission Estimation Technique Manual, for Mining AP-42, to arrive at possible emissions to the atmosphere and estimated emissions are given in Table 7.14.

TABLE 7.10: EMISSION ESTIMATION FROM QUARRIES WITHIN 500 METER RADIUS

EMISSION ESTIMATION FOR QUARRY "P1"					
	Activity	Source type	Value	Unit	
	Drilling	Point Source	0.096857688	g/s	
	Blasting	Point Source	0.002061982	g/s	
Estimated Emission Rate for PM ₁₀	Mineral Loading	Point Source	0.044260055	g/s	
	Haul Road	Line Source	0.002497247	g/s	
	Overall Mine	Area Source	0.064166719	g/s	
Estimated Emission Rate for SO ₂	Overall Mine	Area Source	0.001051607	g/s	
Estimated Emission Rate for NOx	Overall Mine	Area Source	0.000074080	g/s	
EMISSIO	N ESTIMATION FOR (QUARRY "E1"			
	Activity	Source type	Value	Uni	
	Drilling	Point Source	0.098154080	g/s	
	Blasting	Point Source	0.002203719	g/s	
Estimated Emission Rate for PM ₁₀	Mineral Loading	Point Source	0.044641491	g/s	
	Haul Road	Line Source	0.002498599	g/s	
	Overall Mine	Area Source	0.064458380	g/s	
Estimated Emission Rate for SO ₂	Overall Mine	Area Source	0.001134435	g/s	
Estimated Emission Rate for NOx	Overall Mine	Area Source	0.000080155	g/s	

Source: Emission Calculations

TABLE 7.11: INCREMENTAL & RESULTANT GLC WITHIN CLUSTER

PM ₁₀ in μg/m ³				
Location	Core			
Background	43.9			
Incremental	15.84			
Resultant	59.74			
NAAQ Norms	$100 \mu g/m^3$			
$PM_{2.5}$ in $\mu g/m^3$				
Location	Core			
Background	23.9			
Highest Incremental	8.93			
Resultant	32.83			
NAAQ Norms	$100 \mu g/m^3$			
SO ₂ in μg/m ³				
Location	Core			
Background	10.6			
Incremental	2.59			
Resultant	13.19			
NAAQ Norms	$80 \mu g/m^3$			
NO_x in $\mu g/m^3$				
Location	Core			
Background	26.5			
Incremental	10.49			
Resultant	36.99			
NAAQ Norms	80 μg/m ³			

Noise Environment -

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using model based on first principle.

$$Lp_2 = Lp_1 - 20 log (r_2/r_1) - Ae_{1,2}$$

Where:

Lp₁& Lp₂ are sound levels at points located at distances r_1 & r_2 from the source.

 $Ae_{1,2}$ is the excess attenuation due to environmental conditions. Combined effect of all sources can be determined at various locations by logarithmic addition.

$$Lp_{total} = 10 log \{10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots \}$$

Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are:

Source data has been computed taking into account of all the machinery and activities used in the mining process.

TABLE 7.12: PREDICTED NOISE INCREMENTAL VALUES FROM CLUSTER

Location ID	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	46.5	41.7	47.7	5.5
Habitation Near E1	50.1	38.5	50.4	33

Source: Lab Monitoring Data

The incremental noise level is found within the range of 47.7 – 50.4 dB (A) in Buffer zone. The noise level at different receptors in buffer zone is lower due to the distance involved and other topographical features adding to the noise attenuation. The resultant Noise level due to monitored values and calculated values at the receptors are based on the mathematical formula considering attenuation due to Green Belt as 4.9 dB (A)the barrier effect. From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000 (The Principal Rules were published in the Gazette of India, vide S.O.123(E), dated 14.2.2000 and subsequently amended vide S.O. 1046(E),dated 22.11.2000, S.O. 1088(E), dated 11.10.2002, S.O. 1569 (E), dated 19.09.2006 and S.O. 50 (E) dated 11.01.2010 under the Environment(Protection) Act, 1986.).

Ground Vibrations

Ground vibrations due to mining activities in the all the 2 Mines within cluster are anticipated due to operation of Mining Machines like Excavators, drilling and blasting, transportation vehicles, etc. However, the major source of ground vibration from the all the 2 mines is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kuchha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining areas and may cause injury to persons or damage to the structures.

Nearest Habitations from 4 mines respectively are as in below Table 7.17

TABLE 7.13: NEAREST HABITATION FROM EACH MINE

Location ID	Distance in Meters
Habitation Near P1	330
Habitation Near E1	780

The ground vibrations due to the blasting in all the mines are calculated using the empirical equation for assessment of peak particle velocity (PPV) is:

$V = K \left[R/Q^{0.5} \right]^{-B}$

Where -

V = peak particle velocity (mm/s)

K = site and rock factor constant

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

R = distance from charge (m)

TABLE 7.14: GROUND VIBRATIONS FROM CLUSTER QUARRIES

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in m/ms
P1	28	330	0.672
E1	117	780	0.532

Source: Blasting Calculations

From the above table, the charge per blast is considered as maximum in each mine and the resultant PPV is well below the Peak Particle Velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

Socio Economic Environment -

The 5 mines shall contribute towards CER and the community shall develop.

TABLE 7.15: SOCIO ECONOMIC BENEFITS FROM CLUSTER QUARRIES

Location ID	Project Cost	CER @ 2%
P1	Rs. 27,75,000	Rs 5,00,000 /-
Total	Rs. 27,75,000	Rs 5,00,000 /-
E1	Rs. 80,39,000	Rs 1,61,000 /-
Total	Rs. 80,39,000	Rs 1,61,000 /-
Grand Total	Rs. 1,08,14,000/-	Rs 6,61,000/-

As per para 6 (II) of the office memorandum, all the mines being a green field project & Capital Investment is ≤ 100 crores, they shall contribute 2% of Capital Investment towards CER as per directions of EAC/SEAC.

- Proposed project shall fund towards CER Rs 5,00,000 /-
- Existing projects shall fund towards CER Rs 1,61,000/-
- 2 Projects in Cluster shall fund towards CER Rs. 6,61,000/-

TABLE 7.16: EMPLOYMENT BENEFITS FROM CLUSTER QUARRIES

Location ID	Employment
P1	15
Total	15
E1	44
Total	44
Grand Total	59

A total of 15 people will get employment due to 1 proposed mine in cluster and 44 people are already employed at existing mine.

TABLE 7.17: GREENBELT DEVELOPMENT BENEFITS FROM 2 MINES

Code	No of Trees proposed to be planted	Survival %	Area Covered Sq.m	Name of the Species	No. of Trees expected to be grown		
P1	750	80%	D1 44' 4 1		600		
Total	750	80%	Plantation to be along safety area, approach road, village road etc.	along safety area, approach road,	along safety area, approach road,	Norm Domonnio	600
E1	270	80%				Neem, Pongamia	215
Total	270	80%				pinnata, etc.,	215
Grand Total	1,020	80%	village road etc.		815		

Based on the Proposed Mining Plans it's anticipated that there shall growth of native species of Neem, Pongamia pinnata etc in the Cluster at a rate of 750 Trees Planted over a period of 5 Years with Survival Rate of 80% and expected growth is around 600 Trees cumulative of proposed quarry and 270 Trees Planted over a period of 5 Years with Survival Rate of 80% and expected growth is around 215 Trees over cumulative of existing quarry.

7.5 PLASTIC WASTE MANAGEMENT PLAN

The Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986. **Objective** –

- To investigate the actual supply chain network of plastic waste.
- To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.

TABLE 7.18: ACTION PLAN TO MANAGE PLASTIC WASTE

Sl.No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the Rules, user fee to be	Mines Manager
	charged from waste generators for plastic waste management, penalties/fines for	
	littering, burning plastic waste or committing any other acts of public nuisance	
2	Enforcing waste generators to practice segregation of bio-degradable, recyclable and	Mines Manager
	domestic hazardous waste	
3	Collection of plastic waste	Mines Foreman
4	Setting up of Material Recovery Facilities	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at Material Recovery	Mines Foreman
	Facilities	
6	Channelization of Recyclable Plastic Waste to registered recyclers	Mines Foreman
7	Channelization of Non-Recyclable Plastic Waste for use either in Cement kilns, in	Mines Foreman
	Road Construction	
8	Creating awareness among all the stakeholders about their responsibility	Mines Manager
9	Surprise checking's of littering, open burning of plastic waste or committing any	Mine Owner
	other acts of public nuisance	

Source: Proposed by FAE's and EC

8. PROJECT BENEFITS

8.0 GENERAL

The Proposed Project for Quarrying Rough Stone at Thiru. M. Shanmugam aims to produce cumulatively 95,546 m³ Rough Stone over a period of 5 Years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits

- Increase in Employment Potential
- **♣** Improvement in Physical Infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 15 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be opportunity for indirect employment to many people in the form of contractual jobs, business opportunities, service facilities etc. the economic status of the local people will be enhanced due to mining project.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry is located in Mooduthurai Village, Mettupalayam Taluk and Coimbatore District of Tamil Nadu and the area have communications, roads and other facilities already well established. The following physical infrastructure facilities will further improve due to proposed mine.

- Road Transport facilities
- Communications
- Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below.

- Indirect employment opportunities to local people in contractual works like construction of infrastructural
 facilities, transportation, sanitation, for supply of goods and services to the mine and other community
 services.
- Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

CORPORATE SOCIAL RESPONSIBILITY

Project Proponent will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponent will take-up following programmes for social and economic development of villages within 10 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas –

- Health Services
- Social Development
- Infrastructure Development
- Education & Sports
- Self-Employment

CSR Cost Estimation

CSR activities will be taken up in the Mooduthurai village mainly contributing to education, health, training of women self-help groups and contribution to infrastructure etc., CSR budget is allocated as 2.0% of the profit.

CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III, Dated: 01.05.2018.

As per para 6 (II) of the office memorandum, being a green field project & Capital Investment is \leq 100 crores, All the proposed projects shall contribute 2% of Capital Investment towards CER as per directions of EAC/SEAC. Cumulative Capital cost is Rs 27,75,000/- and CER is Rs 5,00,000 /-

TABLE 8.1: CER - ACTION PLAN

Activity	Beneficiaries	Total
Renovation of Existing toilet		
Drinking water facilities to the school		
Providing benches and desks to the class rooms	Mooduthurai villagers	Rs.5,00,000/-
Carrying out plantation in around school compound 200 Nos &		
Providing Environmental related books to school library		
TOTAL		Rs.5,00,000/-

Source: Field survey conducted by FAE, consultation with project proponent

9. ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

10. ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of Environmental Management plan will ensure to keep all the environmental parameters of the project in respect of Ambient Air quality, Water quality, Socio – economic improvement standards.

Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects of ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The Project Proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance.

The Proponent Thiru. M. Shanmugam will -

- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities
- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities
- Allocate necessary resources to ensure the implementation of the environmental policy
- Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts
- Implement monitoring programmes to provide early warning of any deficiency or unanticipated performance in environmental safeguards
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement

Description of the Administration and Technical Setup –

The Environment Monitoring Cell discussed under Chapter 6 will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through Mine Management Level of each Proposed Quarry.

The said team will be responsible for:

- Monitoring of the water/ waste water quality, air quality and solid waste generated
- Analysis of the water and air samples collected through external laboratory
- Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.,
- Co-ordination of the environment related activities within the project as well as with outside agencies
- Collection of health statistics of the workers and population of the surrounding villages
- Green belt development
- Monitoring the progress of implementation of the environmental monitoring programme
- Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and
 Forests and the conditions of the environmental clearance as well as the consents to establish and consents
 to operate.

10.2 LAND ENVIRONMENT MANAGEMENT

Landscape of the area will be changed due to the quarrying operation, restoration of the land by converting the quarry pit into temporary reservoir and the remaining part of the area (un utilized areas, infrastructure, haul Roads) will be utilized for greenbelt development. Aesthetic of the Environment will not be affected. There is no major vegetation in the project area during the course of quarrying operation and after completion of the quarrying operation thick plantation will be developed under greenbelt development programme.

TABLE 10.1: PROPOSED CONTROLS FOR LAND ENVIRONMENT

CONTROL	RESPONSIBILITY
Design vehicle wash-down areas so that all runoff water is captured and passed through oil	Mines Manager
water separators and sediment catchment devices.	
Refueling to be undertaken in a safe location, away from vehicle movement pathways&100	Mine Foreman &
m away of any watercourse	Mining Mate
Refueling activity to be under visual observation at all times.	
Drainage of refueling areas to sumps with oil/water separation	
Soil and groundwater testing as required following up a particular incident of	Mines Manager
contamination.	
At conceptual stage, the mining pits will be converted into Rain Water Harvesting.	Mines Manager
Remaining area will be converted into greenbelt area	
No external dumping i.e., outside the project area	Mine Foreman
Garland drains with catch pits / settlement traps to be provided all around the project area	Mines Manager
to prevent run off affecting the surrounding lands.	
The periphery of Project area will be planted with thick plantation to arrest the fugitive	Mines Manager
dust, which will also act as acoustic barrier.	

Source: Proposed by FAE's & EIA Coordinator

10.3 SOIL MANAGEMENT

There is no overburden or waste anticipated from proposed project.

TABLE 10.2: PROPOSED CONTROLS FOR SOIL MANAGEMENT

CONTROL	RESPONSIBILITY
Surface run-off from the project boundary via garland drains will be diverted to the mine	Mine Foreman &
pits	Mining Mate
Design haul roads and other access roads with drainage systems to minimize concentration	Mines Manager
of flow and erosion risk	
Empty sediment from sediment traps	Mines Manager
Maintain, repair or upgrade garland drain system	
Test soils for pH, EC, chloride, size & water holding capacity	Manager Mines

Source: Proposed by FAE's & EIA Coordinator

10.4 WATER MANAGEMENT

In the proposed quarrying project, no process is involved for the effluent generation, only oil & grease from the machinery wash is anticipated and domestic sewage from mines office.

The quarrying operation is proposed upto a depth of 44 m BGL, the water table in the area is 65 m - 70 m below ground level, hence the proposed projects will not intersect the Ground water table during entire quarry period.

TABLE 10.3: PROPOSED CONTROLS FOR WATER ENVIRONMENT

CONTROL	RESPONSIBILITY
To maximize the reuse of pit water for water supply	Mines Foreman
Temporary and permanent garland drain will be constructed to contain the catchments of	Mines Manager
the mining area and to divert runoff from undisturbed areas through the mining areas	
Natural drains/nallahs/brooklets outside the project area should not be disturbed at any	Mines Manager
point of mining operations	
Ensure there is no process effluent generation or discharge from the project area into water	Mines Foreman
bodies	
Domestic sewage generated from the project area will be disposed in septic tank and soak	Mines Foreman
pit system	
Monthly or after rainfall, inspection for performance of water management structures and	Mines Manager
systems	
Conduct ground water and surface water monitoring for parameters specified by CPCB	Manager Mines

Source: Proposed by FAE's & EIA Coordinator

10.5 AIR QUALITY MANAGEMENT

The proposed quarrying activity would result in the increase of particulate matter concentrations due to fugitive dust. Daily water sprinkling on the haul roads, approach roads in the vicinity would be undertaken and will be continued as there is possibility for dust generation due to truck mobility. It will be ensured that vehicles are properly maintained to comply with exhaust emission requirements

TABLE 10.4: PROPOSED CONTROLS FOR AIR ENVIRONMENT

CONTROL	RESPONSIBILITY
Generation of dust during excavation is minimized by daily (twice) water sprinkling on working face and daily (twice) water sprinkling on haul road	Mines Manager
Wet drilling procedure /drills with dust extractor system to control dust generation during drilling at source itself is implemented	Mines Manager
Maintenance as per operator manual of the equipment and machinery in the mines to minimizing air pollution	Mines Manager
Ambient Air Quality Monitoring carried out in the project area and in surrounding villages to access the impact due to the mining activities and the efficacy of the adopted air pollution control measures	Mines Manager
Provision of Dust Mask to all workers	Mines Manager
Greenbelt development all along the periphery of the project area	Mines Manager

Source: Proposed by FAE's & EIA Coordinator

10.6 NOISE POLLUTION CONTROL

There will be intermittent noise levels due to vehicular movement, trucks loading, drilling and blasting and cutting activities. No mining activities are planned during night time.

TABLE 10.5: PROPOSED CONTROLS FOR NOISE ENVIRONMENT

CONTROL	RESPONSIBILITY
Development of thick greenbelt all along the Buffer Zone (7.5 Meters) of the project area	Mines Manager
to attenuate the noise and the same will be maintained	
Preventive maintenance of mining machinery and replacement of worn-out accessories to	Mines Foreman
control noise generation	
Deployment of mining equipment with an inbuilt mechanism to reduce noise	Mines Manager
Provision of earmuff / ear plugs to workers working in noise prone zones in the mines	Mining Mate
Provision of effective silencers for mining machinery and transport vehicles	Mines Manager
Provision of sound proof AC operator cabins to HEMM	Mines Manager

Sharp drill bits are used to minimize noise from drilling	Mines Foreman
Controlled blasting technologies are adopted by using delay detonators to minimize noise	Mines Manager
from blasting	
Annual ambient noise level monitoring shall be carried out in the project area and in surrounding villages to access the impact due to the mining activities and the efficacy of the adopted noise control measures. Additional noise control measures will be adopted if required as per the observations during monitoring	Mines Manager
Reduce maximum instantaneous charge using delays while blasting	Mining Mate
Change the burden and spacing by altering the drilling pattern and/or delay layout, or altering the hole inclination	Mines Manager
Undertake noise or vibration monitoring	Mines Manager

Source: Proposed by FAE's & EIA Coordinator

10.7 GROUND VIBRATION AND FLY ROCK CONTROL

The Rough stone quarry operation creates vibration due to the blasting and movement of Heavy Earth moving machineries, fly rocks due to the blasting.

TABLE 10.6: PROPOSED CONTROLS FOR GROUND VIBRATIONS & FLY ROCK

CONTROL	RESPONSIBILITY
Controlled blasting using delay detonators will be carried out to maintain the PPV value	Mines Manager
(below 8Hz) well within the prescribed standards of DGMS	
Drilling and blasting will be carried under the supervision of qualified persons	Mines Manager
Proper stemming of holes should be carried out with statutory competent qualified blaster	Mines Manager
under the supervision of statutory mines manager to avoid any anomalies during blasting	
Suitable spacing and burden will be maintained to avoid misfire / fly rocks	Manager Mines
Number of blast holes will be restricted to control ground vibrations	Manager Mines
Blasting will be carried out only during noon time	Mining Mate
Undertake noise or vibration monitoring	Mines Manager
ensure blast holes are adequately stemmed for the depth of the hole and stemmed with	Mines Foreman
suitable angular material	

Source: Proposed by FAE's & EIA Coordinator

10.8 BIOLOGICAL ENVIRONMENT MANAGEMENT

The proponent will take all necessary steps to avoid the impact on the ecology of the area by adopting suitable management measures in the planning and implementation stage. During mining, thick plantation will be carried out around the project periphery, on safety barrier zone, on top benches of quarried out area etc.,

Following control measures are proposed for its management and will be the responsibility of the Mines Manager.

- Greenbelt development all along the safety barrier of the project area
- It is also proposed to implement the greenbelt development programme and post plantation status will be regularly checked for every season.
- The main attributes that retard the survival of sapling is fugitive dust, this fugitive dust can be controlled by water sprinkling on the haul roads and installing a sprinkler unit near the newly planted area.
- Year wise greenbelt development will be recorded and monitored
 - Based on the area of plantation.
 - Period of plantation
 - Type of plantation
 - Spacing between the plants
 - Type of manuring and fertilizers and its periods
 - Lopping period, interval of watering
 - Survival rate
 - Density of plantation

The ultimate reclamation planned leaves a congenial environment for development of flora & immigration
of small fauna through green belt and water reservoir. The green belt and water reservoir developed within
the Project at the end of mine life will attract the birds and animals towards the project area in the post mining
period.

10.8.1 Green Belt Development Plan

About 750 nos. of saplings is proposed to be planted for the Mining plan period in safety barrier of applied mine lease area with survival rate 80%. The greenbelt development plan has been prepared keeping in view the land use changes that will occur due to mining operation in the area.

TABLE 10.7 PROPOSED GREENBELT ACTIVITIES FOR 5 YEAR PLAN PERIOD

Year	No. of tress proposed to be planted	Area to be covered	Name of the species	Survival rate expected in %	No. of trees expected to be grown
I	750	Plantation to be along safety area, approach road, village road etc.	Neem, Pongamia Pinnata, Casuarina etc.,	80	600

Source: Conceptual Plan of Approved Mining plan& proposed by FAE's & EIA Coordinator

The objectives of the greenbelt development plan are –

- Provide a green belt around the periphery of the quarry area to combat the dispersal of dust in the adjoining areas,
- Protect the erosion of the soil, Conserve moisture for increasing ground water recharging,
- Restore the ecology of the area, restore aesthetic beauty of the locality and meet the requirement of fodder, fuel and timber of the local community.

A well-planned Green Belt with multi rows (three tiers) preferably with long canopy leaves shall be developed with dense plantations around the boundary and haul roads to prevent air, dust noise propagation to undesired places and efforts will be taken for the enhancement of survival rate.

10.8.2 Species Recommended for Plantation

Following points have been considered while recommending the species for plantation:

- Creating of bio-diversity.
- Fast growing, thick canopy cover, perennial and evergreen large leaf area,
- Efficient in absorbing pollutants without major effects on natural growth

TABLE 10.8: RECOMMENDED SPECIES TO PLANT IN THE GREENBELT

S.No	Botanical Name	Local Name	Importance	
1.	Azadirachta indica	Neem, Vembu	Neem oil & neem products	
2.	Tamarindus indica	Tamarind	Edible & Medicinal and other Uses	
3.	Polyalthia longifolia	Nettilinkam	Tall and evergreen tree	
4.	Borassus Flabellifer	Palmyra Palm	Tall Wind breaker tree and its fruits are edible	

Source: Proposed by FAE's & EIA Coordinator

10.9 OCCUPATIONAL SAFETY & HEALTH MANAGEMENT

Occupational safety and health are very closely related to productivity and good employer-employee relationship. The main factors of occupational health impact in quarries are fugitive dust and noise. Safety of employees during quarrying operation and maintenance of mining equipment will be taken care as per Mines Act 1952 and Rule 29 of Mines Rules 1955. To avoid any adverse effect on the health of workers due to dust, noise and vibration sufficient measures have been provided.

10.9.1 Medical Surveillance and Examinations

- Identifying workers with conditions that may be aggravated by exposure to dust & noise and establishing baseline measures for determining changes in health.
- Evaluating the effect of noise on workers
- Enabling corrective actions to be taken when necessary
- Providing health education

The health status of workers in the mine shall be regularly monitored under an occupational surveillance program. Under this program, all the employees are subjected to a detail medical examination at the time of employment. The medical examination covers the following tests under mines act 1952.

- General Physical Examination and Blood Pressure
- X-ray Chest and ECG
- Sputum test
- Detailed Routine Blood and Urine examination

The medical histories of all employees will be maintained in a standard format annually. Thereafter, the employees will be subject to medical examination annually. The below tests keep upgrading the database of medical history of the employees.

TARLE 10	19. MEDICAL	EXAMINATIO	ON SCHEDULE
I A DI II IV	1.7. YEE 11 1 A. I.	TAAWII IA I II	7 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sl.No	Activities	1st Year	2 nd Year	3 rd Year	4th Year	5 th Year
1	Initial Medical Examination (Mine Workers)					
A	Physical Check-up					
В	Psychological Test					
С	Audiometric Test					
D	Respiratory Test					
2	Periodical Medical Examination (Mine Workers)					
A	Physical Check – up					
В	Audiometric Test					
С	Eye Check – up					
D	Respiratory Test					
3	Medical Camp (Mine Workers & Nearby Villagers)					
4	Training (Mine Workers)					

Medical Follow ups:- Work force will be divided into three targeted groups age wise as follows:-				
Age Group	PME as per Mines Rules 1955	Special Examination		
Less than 25 years	Once in a Three Years	In case of emergencies		
Between 25 to 40 Years	Once in a Three Years	In case of emergencies		
Above 40 Years Once in a Three Years In case of emergencies				
Medical help on top priority immediately after diagnosis/ accident is the essence of preventive aspects.				

10.9.2 Proposed Occupational Health and Safety Measures

- The mine site will have adequate drinking water supply so that workers do not get dehydrated.
- Lightweight and loose fitting clothes having light colours will be preferred to wear.
- Noise exposure measurements will be taken to determine the need for noise control strategies.
- The personal protective equipment will be provided for mine workers.
- Supervisor will be instructed for reporting any problems with hearing protectors or noise control equipment.
- At noisy working activity, exposure time will be minimized.
- Dust generating sources will be identified and proper control measure will be adopted.
- Periodic medical examinations will be provided for all workers.

- Strict observance of the provisions of DGMS Acts, Rules and Regulations in respect of safety both by management and the workers.
- The width of road will be maintained more than thrice the width of the vehicle. A code of traffic rules will be implemented.
- In respect of contract work, safety code for contractors and workers will be implemented. They will be allowed to work under strict supervision of statutory person/officials only after they will impart training at vocational training centres. All personal protective equipment's will be provided to them.
- A safety committee meeting every month will be organized to discuss the safety of the mines and the persons employed.
- Celebration of annual mines safety week and environmental week in order to develop safety awareness and harmony amongst employees and co quarry owners.

FIGURE 10.1: PERSONAL PROTECTIVE EQUIPMENT TO THE MINE WORKERS

10.9.3 Health and Safety Training Programme

The Proponents will provide special induction program along with machinery manufacturers for the operators and co-operators to run and maintain the machinery effectively and efficiently. The training program for the supervisors and office staffs will be arranged in the Group Vocational Training Centres in the State and engage Environmental Consultants to provide periodical training to all the employees to carry out the mining operation in and eco-friendly manner.

TABLE 10.10: LIST OF PERIODICAL TRAININGS PROPOSED FOR EMPLOYEES

Course	Personnel	Frequency	Duration	Instruction
New-Employee Training	All new employees exposed to mine hazards	Once	One week	Employee rights Supervisor responsibilities Self-rescue Respiratory devices Transportation controls Communication systems Escape and emergency evacuation Ground control hazards Occupational health hazards Electrical hazards First aid Explosives
Task Training Like Drilling, Blasting, Stemming, safety, Slope stability, Dewatering, Haul road maintenance,	Employees assigned to new work tasks	Before new Assignments	Variable	Task-specific health &safety procedures and SOP for various mining activity. Supervised practice in assigned work tasks.
Refresher Training	All employees who received new-hire training	Yearly	One week	Required health and safety standards Transportation controls Communication systems Escape ways, emergency evacuations Fire warning Ground control hazards First aid Electrical hazards Accident prevention Explosives Respirator devices
Hazard Training	All employees exposed to mine hazards	Once	Variable	Hazard recognition and avoidance Emergency evacuation procedures Health standards Safety rules Respiratory devices

Source: Proposed by FAE's & EIA Coordinator as per DGMS Norms

10.9.4 Budgetary Provision for Environmental Management -

Adequate budgetary provision has been made by the Company for execution of Environmental Management Plan. The Table 10.11 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

TABLE 10.11: EMP BUDGET FOR PROPOSED PROJECT

Activities	Mitigation Measure	Provision for Implementation	Capital	Recurring
	Compaction, gradation and drainage on both sides for Haulage Road	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare; and yearly maintenance @ Rs. 10,000/- per hectare	14350	14350
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed Sprinkler Installation and New Water Tanker Cost for Capital; and Water Sprinkling (thrice a day) Cost for recurring	800000	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000
Air	Wet drilling procedure / latest eco-friendly drill machine with separate dust extractor unit	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance - 2 Units	50000	5000
Environment	No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governers @ Rs. 5000/- per Tipper/Dumper deployed - 2 Units	10000	500
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes by Manual Labour	0	5000
	Regular sweeping and maintenance of approach roads for at least about 200 m from ML Area	Provision for 2 labours @ Rs.10,000/labour (Contractual) per Hectare	0	28700
	Installing wheel wash system near gate of quarry	Installation + Maintenance + Supervision	50000	20000
	Source of noise will be during operation of transportation vehicles, HEMM for this proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0
	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done	Provision made in Operating Cost	0	0
	Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0
Noise	It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0
Environment	Safety tools and implements that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of Portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 Tonnes of Blasted Material	0	252933

	TOTAL		1701450	1341553
	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1 st Class / 2 nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	780000
	Installation of CCTV cameras in the mines and mine entrance	Camera 4 Nos, DVR, Monitor with internet facility	30000	5000
DGMS Condition	No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for vehicles /HEMMs. Flaggers will be deployed for traffic management	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs. 10,000/- as maintenance cost	71750	10000
Implementation of EC, Mining Plan &	Barbed Wire Fencing to quarry area will be provisioned.	Per Hectare fencing Cost @ Rs. 2,00,000/- with Maintenance of Rs 10,000/- per annum	287000	10000
	Mine will have safety precaution signages, boards.	Provision for signages and boards made	10000	2000
	First aid facility will be provided	Provision of 2 Kits per Hectare @ Rs. 2000/-	0	2870
	Health check up for workers will be provisioned	IME & PME Health check up @ Rs. 1000/- per employee	0	15000
	Workers will be provided with Personal Protective Equipment's	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee) - 15 Employees	60000	15000
	Air, Water, Noise and Soil Quality Sampling every 6 Months for Compliance Report of EC Conditions as per CPCB norms		0	50000
	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed Display Board at the Quarry Entrance as permanent structure mentioning Environmental Conditions	10000	1000
	,	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	198000	19800
Green Belt Development	Green belt development - 500 trees per one hectare - Proposal for 840 Trees - (180 Inside Lease Area & 660 Outside Lease Area)	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring)	36000	5400
	Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	0	0
Waste Management		Installation of dust bins	5000	2000
	Waste management (Spent Oil, Grease etc.,) Provision for domestic waste collection and disposal through authorized agency		5000	20000
Water Environment	Water management	Provision for garland drain @ Rs. 10,000/- per Hectare with maintenance of Rs. 5,000/- per annum	14350	5000

Total Cost for the five years

Year	Total Cost
1 st	₹ 30,43,003/-
2 nd	₹ 14,08,631/-
3 rd	₹ 14,79,062/-
4 th	₹ 15,53,016/-
5 th	₹ 16,30,666/-
Total	₹ 91 Lakhs

In order to implement the environmental protection measures, an amount of Rs.9.8 lakhs as capital cost and recurring cost as Rs. 15.86 lakhs as recurring cost is proposed considering present market price considering present market scenario for the proposed project.

10.10 CONCLUSION -

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

11. SUMMARY AND CONCLUSION

Thiru. M.Shanmugam Rough Stone and Gravel Quarry (Extent – 1.43.5 ha) falls under "B" category as per MoEF & CC Notification (S.O. 3977 (E)).

Now, as per Order Dated: 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018 clarified the requirement for EIA, EMP and therefore, Public Consultation for all areas from 5 to 25 ha falling in Category B-1 and appraised by SEAC/ SEIAA as well as for cluster situation.

A detailed Draft EIA EMP Report is prepared for public and other stakeholders' suggestions and a Final EIA EMP Report will be prepared based on the outcome of Public Consultation.

Environmental monitoring and audit mechanism have been recommended before and after commencement of the project, where necessary, to verify the accuracy of the EIA predictions and the effectiveness of recommended mitigation measures.

The main scope of the EIA study is to quantify the cumulative impact in the study area due to cluster quarries and formulate the effective mitigation measures for each individual leases. A detailed account of the emission sources, emissions control equipment, background Air quality levels, Meteorological measurements, Dispersion model and all other aspects of pollution like effluent discharge, Dust generation etc., have been discussed in this report. The baseline monitoring study has been carried out during the months March to May 2021 for various environmental components so as to assess the anticipated impacts of the cluster quarry projects on the environment and suitable mitigation measures for likely adverse impacts due to the proposed project is suggested individually for the respective proposed project under Chapter 10.

The project proponent ensures to obtain necessary clearances and quarrying will be carried out as per rules and regulations. The Mining Activity will be carried out in a phased manner as per the approved mining plan after obtaining EC, CTO from TNPCB, execution of lease deed and obtaining DGMS Permission and working will be carried out under the supervision of Competent Persons employed.

Overall, the EIA report has predicted that the project will comply with all environment standards and legislation after commencement of the project and operational stage mitigation measures are implemented.

Mining operations has positive impact on environment and socio economy such as landscape improvement, water as by-product, economy development and better public services, providing and supply of Rough Stone as per market demand.

Sustainable and modern mining leads us to see positive impact of mining operation and providing consistent employment for nearly 15 people directly in the project and indirectly around 5–10 people.

As discussed, it is safe to say that the proposed quarry is not likely to cause any significant impact to the ecology of the area, as adequate preventive measures will be adopted to keep the various pollutants within the permissible limits. Green belt development around the area will also be taken up as an effective pollution mitigate technique, as well as to serve as biological indicators for the pollutants released from the Thiru. M.Shanmugam Rough Stone and Gravel Quarry (Extent -1.43.5 ha).

12. DISCLOSURE OF CONSULTANT

Thiru. M. Shanmugam have engaged M/s Geo Exploration and Mining Solutions, an Accredited Organization under Quality Council of India – National Accreditation Board for Education & Training, New Delhi, for carrying out the EIA Study as per the ToR Issued and Standard ToR Deemed Approved.

Name and address of the consultancy:

GEO EXPLORATION AND MINING SOLUTIONS

No 17, Advaitha Ashram Road, Alagapuram, Salem – 636 004

Tamil Nadu, India

Email: infogeoexploration@gmail.com

Web: <u>www.gemssalem.com</u> Phone: 0427 2431989.

The Accredited Experts and associated members who were engaged for this EIA study as given below -

Sl.No.	Name of the expert	In house/Empanelled	EIA Coordinator		FAE	
31.110.	Name of the expert	In house/ Empanelled	Sector	Category	Sector	Category
1	Dr. M. Ifthikhar Ahmed	In-house	1	A	WP GEO SC	B A A
2	Dr. P. Thangaraju	In-house	-	-	HG GEO	A A
3	Mr. A. Jagannathan	In-house	-	-	AP NV SHW	B A B
4	Mr. N. Senthilkumar	Empanelled	38 28	B B	AQ WP RH	B B A
5	Mrs. Jisha parameswaran In-house		-	-	SW	В
6	Mr. Govindasamy	In-house	-	-	WP	В
7	Mrs. K. Anitha	In-house	-	-	SE	A
8	Mrs. Amirtham	In-house	-	-	EB	В
9	Mr. Alagappa Moses	Empanelled	-	-	EB	A
10	Mr. A. Allimuthu	In-house	=.	-	LU	В
11	Mr. S. Pavel	Empanelled	=.	-	RH	В
12	Mr. J. R. Vikram Krishna	Empanelled	-	-	SHW RH	A A

	Abbreviations					
EC	EIA Coordinator	EB	Ecology and bio-diversity			
AEC	Associate EIA Coordinator	NV	Noise and vibration			
FAE	Functional Area Expert	SE	Socio economics			
FAA	Functional Area Associates	HG	Hydrology, ground water and water conservation			
TM	Team Member	SC	Soil conservation			
GEO	Geology	RH	Risk assessment and hazard management			
WP	Water pollution monitoring, prevention and control	SHW	Solid and hazardous wastes			
AP	Air pollution monitoring, prevention and control	MSW	Municipal Solid Wastes			
LU	Land Use	ISW	Industrial Solid Wastes			
AQ	Meteorology, air quality modeling, and prediction	HW	Hazardous Wastes			

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA/EMP

Declaration by experts contributing to the Cluster EIA/EMP for Thiru. M. Shanmugam Rough Stone & Gravel Quarry Project over a Cluster Extent of 9.28.5 ha in Mooduthurai Village of Mettupalayam Taluk, Coimbatore District of Tamil Nadu. It is also certified that information furnished in the above EIA study are true and correct to the best of our knowledge.

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA/EMP Report.

Name: Dr. M. Ifthikhar Ahmed

Designation: EIA Coordinator

Date & Signature: Dr. M. Zhummundh

Period of Involvement: January 2019 to till date

Associated Team Member with EIA Coordinator:

1. Mr. S. Nagamani

2. Mr. P.Viswanathan

3. Mr. Santhoshkumar

4. Mr. S. Ilavarasan

FUNCTIONAL AREA EXPERTS ENGAGED IN THE PROJECT

Sl. No.	Functional Area	Involvement	Name of the Expert/s	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity Prediction of air pollution and propose mitigation measures / control measures 	Mr. A. Jagannathan	t0,
		 Suggesting water treatment systems, drainage facilities 	Dr. M. Ifthikhar Ahmed	Dr N. Philimman
2	WP	 Evaluating probable impacts of effluent/waste water discharges into the receiving environment/water bodies and suggesting control measures. 	Mr. N. Senthilkumar	4
3	HG	 Interpretation of ground water table and predict impact and propose mitigation measures. Analysis and description of aquifer Characteristics 	Dr. P. Thangaraju	aty mm
4	GEO	 Field Survey for assessing the regional and localgeology of the area. Preparation of mineral and geological maps. 	Dr. M. Ifthikhar Ahmed	Dr. M. Zhammandh
		 Geology and Geo morphological analysis/description and Stratigraphy/Lithology. 	Dr. P. Thangaraju	otymmy
5	SE	 Revision in secondary data as per Census ofIndia, 2011. Impact Assessment & Preventive ManagementPlan Corporate Environment Responsibility. 	Mrs. K. Anitha	Su
6	EB	 Collection of Baseline data of Flora and Fauna. Identification of species labelled as Rare, Endangered and threatened as per IUCN list. 	Mrs. Amirtham	d. Donothan
U	ED	 Impact of the project on flora and fauna. Suggesting species for greenbelt development. 	Mr. Alagappa Moses	-Houly-

		RH Identification of hazards and hazardous substances Risks and consequences analysis Vulnerability assessment	Mr. N. Senthilkumar	4
7	RH		Mr. S. Pavel	M.S. Tons.
		Preparation of Emergency Preparedness PlanManagement plan for safety.	Mr. J. R. Vikram Krishna	June
8	LU	 Construction of Land use Map Impact of project on surrounding land use Suggesting post closure sustainable land use and mitigative measures. 	Mr. A. Allimuthu	allemultons
9	NV	 Identify impacts due to noise and vibrations Suggesting appropriate mitigation measures for EMP. 	Mr. A. Jagannathan	枫
10	AQ	 Identifying different source of emissions and propose predictions of incremental GLC using AERMOD. Recommending mitigations measures for EMP 	Mr. N. Senthilkumar	4
11	SC	 Assessing the impact on soil environment and proposed mitigation measures for soil conservation 	Dr. M. Ifthikhar Ahmed	Dr. M. Zhummandh
		 Identify source of generation of non-hazardous solid waste and hazardous waste. 	Mr. A. Jagannathan	极,工
12	SHW	 Suggesting measures for minimization of generation of waste and how it can be reused or recycled. 	Mr. J. R. Vikram Krishna	Sementen L

LIST OF TEAM MEMBERS ENGAGED IN THIS PROJECT

LIST OF TEAM MEMBERS ENGAGED IN THIS PROJECT				
Sl.No.	Name	Functional Area	Involvement	Signature
1	Mr. S. Nagamani	AP; GEO; AQ	 Site Visit with FAE Provide inputs & Assisting FAE with sources of Air Pollution, its impact and suggest control measures Provide inputs on Geological Aspects Analyse & provide inputs and assist FAE with meteorological data, emission estimation, AERMOD modelling and suggesting control measures 	s. 19L.
2	Mr. Viswathanan	AP; WP; LU	 Site Visit with FAE Provide inputs & Assisting FAE with sources of Air Pollution, its impact and suggest control measures Assisting FAE on sources of water pollution, its impacts and suggest control measures Assisting FAE in preparation of land use maps 	P. Cumley
3	Mr. Santhoshkumar	GEO; SC	 Site Visit with FAE Provide inputs on Geological Aspects Assist in Resources & Reserve Calculation and preparation of Production Plan & Conceptual Plan Provide inputs & Assisting FAE with soil conservation methods and identifying impacts 	M - Santille Kenney
4	Mr. Umamahesvaran	GEO	 Site Visit with FAE Provide inputs on Geological Aspects Assist in Resources & Reserve Calculation and preparation of Production Plan & Conceptual Plan 	S. Commenters may

5	Mr. A. Allimuthu	SE	 Site Visit with FAE Assist FAE with collection of data's Provide inputs by analysing primary and secondary data 	alemultors
6	Mr. S. Ilavarasan	LU; SC	 Site Visit with FAE Assisting FAE in preparation of land use maps Provide inputs & Assisting FAE with soil conservation methods and identifying impacts 	8.21-4
7	Mr. E. Vadivel	HG	 Site Visit with FAE Assist FAE & provide inputs on aquifer characteristics, ground water level/table Assist with methods of ground water recharge and conduct pump test, flow rate 	E. Vaclivel
8	Mr. D. Dinesh	NV	 Site Visit with FAE Assist FAE and provide inputs on impacts due to proposed mine activity and suggest mitigation measures Assist FAE with prediction modelling 	
9	Mr. Panneer Selvam	EB	 Site Visit with FAE Assist FAE with collection of baseline data Provide inputs and assist with labelling of Flora and Fauna 	P Pushy
10	Mrs. Nathiya	ЕВ	 Site Visit with FAE Assist FAE with collection of baseline data Provide inputs and assist with labelling of Flora and Fauna 	T. amp

DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT ORGANIZATION

I, Dr. M. Ifthikhar Ahmed, Managing Partner, Geo Exploration and Mining Solutions, hereby, confirm that the above-mentioned Functional Area Experts and Team Members prepared the Cluster EIA/EMP for Thiru. M. Shanmugam Rough Stone & Gravel Quarry Project over a Cluster Extent of 9.28.5 ha in Mooduthurai Village of Mettupalayam Taluk, Coimbatore District of Tamil Nadu. It is also certified that information furnished in the EIA study are true and correct to the best of our Knowledge.

Signature& Date:	7
6	Dr. M. Zhummundle

Name: **Dr. M. Ifhikhar Ahmed**

Designation: Managing Partner

Name of the EIA Consultant Organization: M/s. Geo Exploration and Mining Solutions

NABET Certificate No & Issue Date: NABET/EIA/1922/SA0139 Dated: 11.10.2021

Validity: Valid till 23.01.2023

Minutes of 317th Accreditation Committee Meeting for SA held on 16.07.2021.