

IREL (India) Limited

(A Govt. of India Undertaking – Department of Atomic Energy) Manavalakurichi, Kanniyakumari District, Tamil Nadu

Mining of Atomic Minerals (Monazite, Zircon, Ilmenite, Rutile, Sillimanite and Garnet) over an Extent of 1144.0618 Ha @ 1.50 MTPA ROM in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu

Environmental Clearance under EIA Notification, 2006 & CRZ Notification, 2011

SI. No. 1(a) - Category 'A' of EIA Notification, 2006 (NDS Project) Permissible Activities under Para 3 Clause (x) (a) and Para 4 Clause (ii)(g) of CRZ Notification, 2011

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

ToR awarded by MoEF&CC vide F. No. IA-Z-11013/10/2023-IA-I dated 22nd February 2023 Baseline Period: December 2022 to February 2023 – Winter Season 2022 - 23

July 2024 EIA Consultant

Duality Discout

www.abctechnolab.com

ABC Tower, #400, 13th Street, SIDCO Industrial Estate, North Phase, Ambattur, Chennal 600 030, Tamii Nada, India. Toli Treet: #91-94442 60000/#0195661 52777 ch ufflore #0004 [Numbat] Sablate [Catabatore] Hydrabad [Bazglare] Japar] Jonahati.

QCI/NABET Accreditation vide NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 SI. No. 4 of List dated 15.07.2024

Table of Contents

Projec	et Pr	oponent Declaration	. 9
EIA C	onsu	Iltant Undertaking	10
Certif	icate	of Piagiarism Check	11
Disclo	sure	of Experts	12
Award	fed 1	ferms of Reference	14
Comp	liand	e to awarded Terms of Reference	30
1.0 Int	rodu	iction	62
1.1	Pur	pose of the Report	62
1.2	Pro	ect Proponent	65
1.3	Exi	sting Mining Leases	66
1.4	Nee	d for the Project	66
1.5	Sta	lutory Approvals	67
1.8	Min	ing Lease Area	88
1.7	Are	a in CRZ	80
1.8	Min	ing Lease Area Surface Right	80
1.9	Em	ironmental Setting	83
5.10	Min	ing Profile	86
1.11	Pro	ient Cost	87
1.12	EIA	Study	87
2 0 Pr	Diec	Description	89
2.1	Tun	e of Project	80
22	Ter	hoology & Magnitude of Operation	80
23	Pro	iect Description	91
2		Geninav	01
2.5	22	Evolution	02
		Paramias & Paramias	02
2		Heavy Minerals & their Llees	08
22	Pm	neary winerals of their Osea	07
2.5	Vor	posed management & Production Plan	01
28	Mark	swise Development & richtbolion richt	17
2.0	IV:EI	Antopres	똟
3.0	Ees	Attas in the Mising Lease	10
2.0	Pro	areastics Miss Classes & Cancerbial Plans / and Lice Pattern)	10
2.10	100-	gressive wille closure a conceptual mails (callo ose natient)	10
2.10	Det		20
2.11	FOV	ver of rue Demend	20
212	1000	Dediction Manhaine	20
200	÷.	Redenion womening	24
3.0 De	scri	poor of environment	27
3	-10	ject Site and Shudy Area	21
3.2	Env	ironmental Components and Methodology	24
3.3	H-my	siography	20
3.4	Dra	insge Pattern	25
3.5	CR.	C Area	31
3.6	Sec	smicity	36
3.7	Reg	jional Hydrogeology	36
3.7		Hydrogeology 1	37
3.8	Lon	g term study of Land Use in study and surrounding area	37
3.8	3.1	Land Use in the Study area	38
3.8	Mel	eorology1	44
3.	3.1	Wind speed and direction1	44

3.	9.2	Temperature							14
3.	9.3	Relative humidity	111 1111		111 111	110			14
3.	9.4	Reinfall				10.0			14
3.10	Bas	eline data generation/establishmen	t of base	eline f	or envir	onm	ental		
como	onen	5		- 11-54	-10429.	10.2		1000-00745	14
3	10.1	Micro meteorology	······						14
3	10.2	Air Environment					1112 /115		15
2	10.3	Noise Environment							16
3	10.4	Water Environment		-0.W	-01 -02-				16
2	10.5	Soll Environment						****	20
3	10.8	Terrestrial Ecology	- 10	110	11 10				21
3	10.7	Merica Equinoment							28
2.44	Ma	ing England and Rindingsite			101 - 101 777 - 275			****	20
201	nasi	the Ecology and Blockversky	·		-111330				29
3	111	introduction						****	20
3.	11.2	Mecrophytes			-111555				21
3	11,3	Primary productivity				-1107		wi=wv3	24
3	11.4	Chlorophyll			111-111	- (**)			27
3	11.5	Plankton	and the second			1000		w=ww	27
3	11.8	Benthos							27
З.	11.7	Fish & Other Marine Community	6					in the second	27
3.	11.8	Seaweeds and Sea Grasses							27
З.	11.9	Mangroves				10.0			27
3.	11.10	Corals							27
3.	11.11	Marine protected area							27
3	11,12	Marine mammals							27
3.	11.13	Endangered species			111 111		1110 (11)		27
3.12	Tra	ffic Scenario							27
3.13	Soc	io - Economic Study		-0.89	-0.0 -0.0	- 0.0	111 121		28
3	13.1	Demographic pattern						3	28
3	13.2	Demographic pattern of district		0.00	-01 88-				28
3 14	Rei	linecitivity - Recknround Status							28
40.0	nticir	ated Environmental Impact and N	Aitigatic	n Me	acutes	1000	-1222-1223	A	20
4 1	Ide	stification of Imnects	nugeuu	40,000	asures				90
4.2	Cor	struction Phase				100		100 - 00 V.S	20
4.2	lmo	ast and Militation Measurer During	Deces	ine Di					00
4.0	7.4	act and mitigenon measures During	operat	NOTE PT	ase	1000			20
1	2.0	Tarffa Values				- (11)			20
4.	32	All Quality	07073M	-500	000700	7033		w=wv/	30
1	0.0	All GUBILY				111			34
4	3.4	NOISE LEVEIS	11 Million					m_mn;	30
4.	3.6	Water Environment							30
- 4	3.6	Biological Environment	and the second second					in the second	31
4.	3.7	Occupational Health and Safety		1122	11-02				31
-4	3.8	Soil & Agriculture			-181111		1114 (11)		31
4.	3.9	Socie Economics							31
5.0 A	nalys	is of alternatives (Technology an	d site)			110			31
5.1	Tet	hnological alternatives							31
5.2	Site	Options.	10	0.32	-01 -82-	- 01	11.131	10.002	31
6.0 E	nviro	nmental Monitoring Programme							31
61	Env	fronment Cell and Compliances	1	100	-m 81-	10166			31
6.2	Fee	t Project Monitoring							31
7 0 A	dditie	onal Studies		willing.	all more than the	(Calif			31

\mathbf{Z}^{\pm}	Haza	irds Identification & Risk Assessment				
7.2	Eme	rgency Preparedness Plan				
7.3	Disa	ster Management Plan	- XX	111	100	
8.0 Pr	oject	Benefits				
9.0 Er	viron	mental Cost Benefits Analysis				
10.0	Envi	ronmental Management Plan				
10.1	EMP	for Construction Phase	100 111			
10.2	EMP	for Operation Phase				
10	1.2.1	Land Environment	1011-0-003	111 111 1111		
10	12.2	Traffic Impact				
10	123	Air Environment				
10	2.4 N	oise Levels	ALC: 17.17			
10	12.5	Water Environment				
10	.2.6	Biological Environment	ALC: 17.17			
10	127	Social Measures				
10	.2.8	Occupational Health Measures				
10	1.2.9	Plastic Waste Management				
10.3	EMP	Budget				
10.4	Envir	conmental Policy of IREL				
11.0	Sum	mary Environmental Impact Assessmen	t Report		1000	
11.1	Intro	duction				
11.2	Proje	et Proponent	46		0.31 0	
11.3	Proje	ct Profile				
11.4	Desc	ription of the Environment	101 111			
11	4.1	Environmental Setting				
11.5	Base	line Environmental Status.	1015-0-003	111 111 1111		
11.6	Antic	ipsted Environmental Impacts				
11.7	Envir	onmental Monitoring Programme	00000	100 - 11 - 100		
11.8	Addit	tional Studies	ALC: 171.07	in man		
11.9	Proje	ect Benefits				
11.10	Envir	ormental Management Plan	NU-17197			
12.0	Disc	losure of consultant				
12.1	Serv	ices of ABC Techno Labs India Pvt Ltd	1,500,0081		10000	

List of Tables

Table 1.1 : Village wise extent of area of the proposed mine	
Table 1.2 Area falling in CRZ	
Table 1.3 The Latitude and Longitude of the Mining Lease Area - Villagewise	
Table 2.1 Development & Production - Plan Period & Subsequent Periods	
Table 2.2 Plan Period Production & Expected Mineral Production from ROM	
Table 2.3 Geological Reserves / Resources Estimation	
Table 2.4 Reserves / Resources Estimation - Categorywise	95
Table 2.5 Mineral Reserves and Resources as on 01.04.2023	
Table 2.6 Bench Bark Locations in the Study Area	
Table 2.7 Development & Production - Plan Period	
Table 2.8 Villagewise land use breakup	
Table 3.1 Environmental Sensitivity - 15 km radius	
Table 3.2 Environmental components and methodologies	
Table 3.4 Annual Temperature Data	
Table 3.5 Relative Humidity	
Table 3.6 Total Rainfall & Number of Rainy Days.	
Table 3.7 Summarized meteorological data for winter (2022-23)	
Table 3.8 Wind Frequency Distribution at IREL during winter season, 2022-23	140
Table 3.9 Ambient Air Quality (AAQ) monitoring stations	150
Table 3.10 Methodology of sampling & analysis and equipment used	152
Table 3.11 National Ambient Air Quality standards	152
Table 3.12 Summarized Ambient Air Quality monitoring results (Winter 2022-23).	163
Table 3.13 Results of free silics in respirable dust (up/m3)	164
Table 3 14 Summarized results of metals	165
Table 3.15 Ambient opise monitoring stations	165
Table 3.16 Summarized results of noise monitoring	168
Table 3.17 MOEF&CC norms in respect of noise	168
Table 3 18 Surface water location	169
Table 3.19 Water quality criteria as per Central Pollution Control Board	
Table 3.20 Results of surface water analysis	
Table 3.21 Water sampling locations	188
Table 3.22 Results of groundwater analysis	
Table 3 23 List of soll sampling locations	201
Table 3.24 Physical properties of soil	209
Table 3.25 Chemical properties of soil	209
Table 3.26 Available NPK contents in soil	209
Table 3 27 Exchangeable cations	210
Table 3.28 Available micro-nutrients in soil	210
Table 3.29 Details of locations for plot survey	219
Table 3.30 Floristic Diversity in the Gore Area	220
Table 3.31 Phytosopiological Analysis Of Tree Species	225
Table 3.32 Interpretation of Vegetation Results in the Core Area	229
Table 3.33 Interpretation of Vegetation results in the Core Area	229
Table 3.34 FLORISTIC DIVERSITY IN THE BUFFER AREA	230
Table 3.35 Phytosociological Analysis of Tree Species	239
Table 3.36 Interpretation of Vegetation Results in the Ruffer Area	248
Table 3.37 Interpretation of Vegetation results in the Core Area	248
Table 3 38Fauna Recorded from the Primary Survey in the Study Area and their	Conservation
Status	248

Table 3.39 Characterization of Fauna in The Study Area (As Per W.P Act, 1972, Last Up	dated
1-4-2023)	. 253
Table 3.40 Description of Flora and Fauna	. 203
Table 3.41 Bed sediment sampling locations	254
Table 3.42 Marine Sediment Quality Results.	. 259
Table 3.43 Marine water sampling locations	. 260
Table 3.44 Results for marine water analysis	. 268
Table 3.45 Marine Sampling Locations	269
Table 3.46 Description of Macrophytes	. 270
Table 3.47 Primary productivity and chlorophyll concentration	271
Table 3.48 Chlorophyll Concentration	_271
Table 3.49 Analysis Result of Phytoplankton	273
Table 3.50 Analysis Result of Zooplankton	274
Table 3.51 Plankton Biodiversity Indices results	276
Table 3.52 Sub tidal and inter tidal benthic population	277
Table 3.53 Fish and Marine Species reported	. 278
Table 3.54 Traffic Density near Nithiravilai (T1) during Study period	. 280
Table 3.55 Traffic Density near Midalam (T2) during study period	. 281
Table 3.56 Level of Service & Performance of a Road (IRC:64-1990 Norms)	282
Table 3.57 Predicted Traffic Scenario at the Junction	. 282
Table 3.58 Population within 5 km Redius	283
Table 3.59 Population within 10 km radius	. 284
Table 3.60 Ambient Outdoor External Dose Rate (Hp/10)], uSy h ⁻¹ at Block A	290
Table 3.61 Ambient Outdoor External Dose Rate (Ho(10)], uSy h 1 at Block B	291
Table 3.62 Ambient Outdoor External Dose Rate (Hp(10)), uSy h1 - Buffer Zone	292
Table 3.63 Comparison of estimated external dose rate at mined and un-mined locations	292
Table 3.64 Ambient outdoor external dose rate at intertidal regions along western co	ast of
Kenvakumari	293
Table 3.65 Long lived gross alpha air activity at Block A locations	295
Table 3 66 Long lived gross slobs air activity at Block B locations	295
Table 3.87 Estimation of Arsenic and Eluoride in around water (ma 11) at Block-A	200
Table 3 68Estimation of Arsenic and Elucride in ground water (mg 1) at Block-B	200
Table 4.1 PM 2.5 - Input Data	305
Table 4.2 PM 2.5 - Output data	305
Table 4.3 PM 18 - Innut data	306
Table 4.4 PM 10 - Output Data	308
Table 4.5 Producted GI Co	306
Table 4.6 Source Note Levels - Mine Machineries	300
Table 4.7 Green Balt Development	311
Table 4.9 CSD Activities in the Degion by IDCI	212
Table 8.1 Cart Project Meditoring Schedule	217
Table 7.1 Potential Hazeric due to Proposal	319
Table 7.2 Disk Matrix (D)	210
Table 10.1 EMD with Mentione Matrix	224
Pape 10.1 EMP With Monitoring Association	

List of Figures

Figure 1.1 Index Map						66
Figure 1.2 Site Photographs	Distanti	10	-28 m-	316 Q		79
Figure 1.4 HTL/LTL (CRZ Map) prepared by IRS. Anna L	University,	Cher	1nai			- 81
Figure 1.5 7km (CRZ Map) prepared by IRS, Anna Unive	ersity, Che	nnsi	111 111			82
Figure 1.6 Topo Map covering 10km radius						84
Figure 2.1 Schematic Disgram of Method of Mining		111	111 111			- 98
Figure 2.2 Sench Bark Locations						99
Figure 2.3 Key Plan – Block A & Block B		111				102
Figure 2.4 Mine Lease Plan – Block A						103
Figure 2.5 Mine Lesse Plan – Block B					muni	104
Figure 2.6 Surface Plan – Block A		1000				105
Figure 2.7 Surface Plan – Block B						108
Figure 2.8 Geological Plan – Block A.			111-111			107
Figure 2.9 Geological Section - Block A						108
Figure 2.10 Geological Plan – Block B.			111-111			109
Figure 2 11 Geological Sections - Block B						110
Figure 2.12 Progressive Plan – Block A	10.1.X.1.01	10	-28 m-	000		111
Figure 2 13 Progressive Flan – Block B						112
Figure 2.14 Environment Management Plan - Block A	10.13	11	-26 m-	110		113
Figure 2.15 Environment Management Plan - Block B						114
Figure 2 16 Environmental Plan – Block A			111 111			115
Figure 2 17 Environmental Plan – Block B						118
Figure 3.1 Study area of 15 km radius		0000	3021100	-2000		123
Figure 3.2 Physiography						128
Figure 3 3 Contour Map - 2km radius		0000	- 3334 (S).			127
Figure 3.4 Drainage Pattern		1000	100.000			129
Figure 3.6 Drainage Pattern – 2km radius					muni	130
Figure 3.6 Approved CZMP Sheet No.4		ant.	100000			131
Figure 3.7 Approved CZMP Sheet No.11						132
Figure 3.8 Approved CZMP Sheet No.10			-02 10-			132
Figure 3 9 Shoreline Change of Kannivakumari Coast						133
Figure 3.10 Shoreline Changes Map - Block A		10	-22 10-			134
Figure 3 11 Shoreline Changes Map Block B						135
Figure 3.12 Satellite Imagery - 15km radius			-33 11-	11		141
Figure 3 13 Land use/Land Cover Map						143
Figure 3 14 Historical windrose diagram		111	-23 10-			144
Figure 3 15 Average monthly min and max temperature.						145
Figure 3.16 Relative humidity during devtime and night ti	me (1970-	2000)			148
Figure 3 17 Monthly total rainfall and rainy days	111220-002	00000	1000 0000			147
Figure 3 18 Windrose for Study period		2000	- 35311233	-2000	1002-101	148
Figure 3 19 Monitoring locations				7000		151
Figure 3 20 Monitoring Locations		1000	10000	1.55		188
Figure 3.21 Sampling Locations		Silv				170
Figure 3.22 Sampling Locations		100		1000		197
Figure 3 23 Sampling Locations		and the	101.101			202
Figure 3.24 Forest Map of Tamil Nadu (Source: Forest S	urvey of In	idie	2009)			213
Figure 3 25 Map showing the Big-geographic Provinces	of India	Contraction of the	alex alex			216
Figure 3 26 Sempling Locations						255
Figure 3.27 Sampling Locations		11	W 10	10		287
Contraction of the contraction o						

Figure 3.28 10km radius of Settlements from the Project Site	
Figure 4.1 Mineral Transportation through the Lease Area	
Figure 4.2 Predicted GLCs - PM 2.5	307
Figure 4.3 Predicted GLCs – PM 10	308

List of Annexures

Doc:1 - Letter of Intent (LoI) issued by Government of Tamil Nadu

Doc:2 - Letter of Mining Plan Approved by AMD.

Doc:3 - Baseline Monitoring Photographs

Doc:4 - Hydrogeology : Ground Water Level Data

Project Proponent Declaration

[in compliance with MoEF Office Memorandum No. J-11013/41/2006-IA.II (I) dated 04.08.2009]

Project Proponent Declaration

[in compliance with MoEFCC Office Memorandum No. J-11013/41/2006-IA II (I) dated 04.08.2009]

We, M/s IREL (India) Limited (IREL), a Central Public Sector Enterprise (CPSE), proposes the Mining of Atomic Minerais (Monazite, Zircon, Ilmenite, Rutile, Sillimanite and Garnet) over an extent of 1144.0618 ha in Keezhmidalam-A. Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu. The Proposal requires prior EC under EIA Notification-2006 under SI. No.1 (a)-Category A' as well as under CRZ Notification-2011, as amended. Accordingly, IREL submitted Application to the McEFCC, New Delhi on 28.12.2022 to obtain the Terms of References (TORs). The Proposal was deliberated in 53rd Expert Appraisal Committee for Nuclear, Defense and other Strategic Projects – EAC (N&D) meeting held on 27rd January 2023. TOR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023

The EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate No.NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 22.02.2024).

The ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022 with validity till 02.04.2024. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The Environmental Impact Assessment (EIA) Report and Summary Environmental Impact Assessment Reports have been prepared in compliance with the awarded TORs and as por the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

Date: 04.03.2024 Place: Manavalakurichi Manavalakurichi

EIA Consultant Undertaking

[in compliance with MoEF Office Memorandum No. J-11013/41/2006-IA.II (I) dated 04.08.2009]

M/s. IREL (India) Limited (IREL), a Central Public Sector Enterprise (CPSE), proposes the Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu.

The Proposal requires prior EC under EIA Notification under SI. No.1(a)-Category 'A' as well as under CRZ Notification 2011, as amended. Accordingly, IREL has filed the Application to MoEF&CC on 26.12.2022. The Proposal was deliberated in 53rd Expert Appraisal Committee (EAC) – Nuclear & Defense (ND) meeting held on 27th January 2023. TOR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023.

The EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 05.06.2024). The ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022 with validity till 02.04.2024. The Lab is also recognized by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The Environmental Impact Assessment (EIA) Report and Summary Environmental Impact Assessment Reports have been prepared in compliance with the awarded TORs and as per the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

For ABC Techno Labs India Private Limited

Date : 02.03.2024

Place : Chennai

Authorized Signatory

Certificate of Plagiarism Check

Title of EIA Report	M/s. IREL (India) Limited (IREL), a Central Public Sector Enterprise (CPSE), proposed Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu
Name of Accredited Organization	ABC Techno Labs India Private Limited, Chennai
Name of EIA Coordinator (EC)	K Sekar
Name of the Software	Plagiarism Software – Online Plagiarism Checker
	https://plagiarismchecker.co
Date of check	Completed on 07.09.2023

I hereby certify that this EIA report has been evaluated using online software Online Plagiarism Checker (<u>https://plagiarismchecker.co</u>). The report has been analysed by the system and based on it, I certify that the EIA Report produced in accordance with good scientific practice.

Signature of EIA Coordinator : Name: K. Sekar Designation: EC Date: 02.03.2024

Signature of Head of Accredited Organization : 6 Name of the EIA Consultant Organization: ABC Techno Labs India Private Limited, Chennai NABET Certificate No. & Issue Date: NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 Date: 02.03.2024

Disclosure of Experts

Details as per Schedule of	of EIA Notification 2006, as amended till date
Name of the Project	EC for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon,
-	Monazite, Sillimanite and Garnet) over an extent of 1144.0618
	ha in Keezhmidalam-A, Midalam-B, Enayamputhenthurai,
	Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor
	Taluk, Kanniyakumari District, Tamil Nadu by M/s. IREL (India)
	Limited-EIA & CRZ Clearances.
Schedule as per ElA	A 1 (a)
notification 2006	
Category	A
NABET Sector No.	1

DECLARATION:

Declaration by experts contributing to the Environmental Impact Assessment Report for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu by M/s. IREL (India) Limited.

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the above EIA/EMP.

EIA Coordinator Signature:

Name

Signature

K. Sekar

:

Period of involvement Contact information

Sep. 2022 to till date abc@abctechnolab.com

SI. No.	Functional Areas	Name of the Expert/s	Involvement (Period)	Signature & Date
1.	LU	Dr. N. Rama Krishnan	Sep. 2022 to till date	ded-minit
2.	AP	Dr. Muthiah Mariappan	Sep. 2022 to till date	needes
3.	AQ	Mohammad Akhtar	Sep. 2022 to till date	Conver
4.	WP		Son 2022 to till	. 01
5.	EB	Abhik Saha	date	halib Sata
6.	SHW		uale	ADV
7.	NV	Haneesh K. R	Sep. 2022 to till date	- 11 andrike
8.	SE	Dr. Geetha Sreenivasagam	Sep. 2022 to till date	In Strand
9.	HG	Dr.S. Voozbingthan	Sep. 2022 to till	
10.	GEO	DI.S. Veezilinatian	date	(meesman_
11.	SC	Amitaben Rathod	Sep. 2022 to till date	Aronita
12.	RH	Vinod Kumar Gautam	Sep. 2022 to till date	Hauten

Declaration by the head of the Accredited Consultant Organization

I, Mr. G. Murugesh, hereby confirm that the above-mentioned experts prepared the EIA/EMP Report for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode-A & B Villages of Killiyoor Taluk, Kanniyakumari District, Tamil Nadu by M/s. IREL (India) Limited.

I also confirm that ABC Techno Labs India Pvt. Ltd. shall be fully accountable for any misleading information mentioned in this statement.

Signature

Name Designation Name of the EIA Consultant Organization

NABET Certificate No. & Issue Date

Mr. G. Murugesh

 Chairman & Managing Director
 ABC Techno Labs India Private Limited.

: Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025

Awarded Terms of Reference

Page 1

SPEED POST

F. No. 1A-Z-11013/10/2023-1A-1 Government of India Ministry of Environment, Forest and Climate Change (IA Division)

Indira Paryavaran Bhawan, Jor Bagh Road, Aliganj New Delhi-110 003 E-Mail: <u>shruti.rai@nic.in</u>

Dated: 22nd February, 2023

To,

Sh. N Selvarajan General Manager & Head IREL (India) Limited

(A Government of India Undertaking -Department of Atomic Energy) Manavalakurichi – 629 252 Kanyakumari District, Tamilnadu Telephone: 04651-237325, 237309 Email: <u>head.mk@irel.co.in</u>

Subject: Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited-reg.

This has reference to your communication no. IREL/MK/Res/EC/205C/2022/5830 dated 26th December 2022 regarding the project proposal pertaining to above cited subject. The proposal was considered during the 53rd EAC (N&D) meeting held on 27th January 2023.

2. The above-mentioned project/activity is covered under category 'A' of item 1 (a) 'Mining of minerals' of the Schedule to the EIA Notification, 2006 as amended, and being strategic project requires appraisal at Central Level by EAC(N&D).

3. As part of the presentation and various other documents submitted to the Ministry, the proponent submitted following information about the project:

 Project Description: The Project is for mining and separation of Monazite (Uranium bearing mineral) which is radioactive and prescribed substance under the Atomic Energy Act, 1962 and other associated minerals i.e., Ilmenite, Rutile, Zircon, Sillimanite and Garnet from the Beach Sand Mineral (BSM) deposit.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillmanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited

ili.

Page | 2 ·

ii. Project Location: The Mine Lease (ML) area is spread over an area of 1144.0618 ha (Government Land - 79.8613 ha and Private Land - 1064.2005 ha) in Killiyoor Taluk, Kanniyakumari district of state Tamil Nadu. The mining lease area is as per the letter of intent dated 28.06.2022 received from Govt of Tamil Nadu. The project site bifurcated into two adjacent non-contiguous blocks. Block A includes 544.0688 ha (Keezhmidalam-A, Midalam-B and Enayamputhanthural): Block B includes 599.99.30 ha (Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B). Village wise details of the Mining lease area is as follows:

SI. No	VILLAGES	LATITUDE	LONGITUDE
1	Keezhmidalam-A	08°11'19.78" to 08°12'37.53" N	77°13'01.76" to 77°14'08.82" E
2	Midalam-B	08°12'04.09" to 08°13'18.51" N	77°11'53.12" to 77°13'10.98" E
3	Enayamputhanthurai	08°12'44.61" to 08°13'33.12" N	77°11'13.13" to 77°12'15.36" E
4	Ezhudesam-A	08°15'17.31" to 08°15'49.46" N	77°09'12.69" to 77°09'34.63" E
5	Ezhudesam-B	08°16'31.24" to 08°17'03.15" N	77°07'45.99" to 77°08'48.20" E
6	Ezhudesam-C	08°15'17.31" to 08°16'31.24" N	77°07'45.22" to 77°09'12.69" E
7	Kollencode-A	08°17'10.98" to 08°17'32.23" N	77°07'07.45" to 77°07'33.66" E
8	Kollencode-B	08°16'24.86" to 08°17'19.44" N	77°06'50.15" to 77°07'56.20" E

sl. no	VILLAGES	TOTAL EXTENT (HA)	PATTA LAND (HA)	PORAMBOKE LAND (HA)
1	Keezhmidalam-A	204.06.52	194.70.74	9.35.78
2	Midalam-B	202.96.86	190.10.98	12.85.88
3	Enayamputhanthurai	137.03.50	134.36.50	2.67.00
4	Ezhudesam-A	41.10.00	35.89.50	5.20.50
5	Ezhudesam-B	82.90.00	80.58.50	2.31.50
6	Ezhudesam-C	275.82.90	246.17.92	29.64.88
7	Kollencode-A	28.39.50	25.76.50	2.63.00
8	Kollencocie-B	171.77.00	156.59.41	15.17.59
	Total	1144.06.18	1064.20.05	79.86.13

Project Capacity: Considering the Mineral content in the area of 1144.0618 ha, it is proposed to extract 5000 tons of ore per day and 15.00 lakh tons of

Terms of Reference (TaR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Kanniyakumart, Tamil Nadu by IREL (India) Limited

Page 3

ore per annum in consonance with the consented mineral production capacity of 1,14,600 tons per annum. The mined out BSM Ore will be transported from the mining lease area to the existing Mineral Separation Plant (Mineral Beneficiation Plant) of IREL for separation of individual atomic minerals. The Mineral Separation Plant (MSP) is located in the existing Mining Lease area of IREL (141.2269 ha) in the village of Manavalakurichi. MSP is in operation since 1970 and is having valid Consent to Operate (CTO) from Tamil Nadu Pollution Control Board for production of 1,14,600 TPA total minerals. The RoM from the proposed mining lease area will be transported to the existing MSP for up-gradation of Atomic Minerals from the BSM Ore and finally separation of individual minerals. The distance between the Plant and the new mining lease area of 1144.06.18 ha ranges between 12-30 km.

iv. Land use and Land ownership: The new mining lease area of 1144,0618 ha comprises Patta and Poramboke land. The Private patta lands are found with scattered Coconut trees. The mining operation over the private lands will be carried out only after obtaining the Consent from the respective land owners and after mining and backfilling, the land will be returned to the respective land owners within 11 months along with payment of Lease Compensation as per the Land Leasing Policy of IREL. On return of land, the land owners predominantly carry out the plantation of Coconut and other fruit bearing trees and also utilize the land for other activities including construction. The mining would not result in change of ownership of the land. No mining would be carried out in the mining lease area where the permanent structures/ public places exist and the Village built-up area shall not be disturbed. Mining shall not lead to any displacement.

Village name	Total extent in Ha	Built up area (Buildings/ Houses, Church /Temple, Cemetery, etc.,) in Ha	Area covered under Road in Ha	Area covered under Water bodies/ Pond/ Canal in Ha	Vacant land (with bushes and Coconut trees) in Ha
Keezh midalam- A	204.06.52	52.00.84	4.20.00	5.40.50	142.45.18
Midalam- B	202.96.86	51.67.78	8.36.50	5.94.31	136.98.27
Enayam Puthanthurai	137.03.50	8.44.47	1.83.50	2.70.60	124.04.93
Ezhudesam-A	41.10.00	3.57.24	0.26.50	0.13.00	37.13.26
Ezhudesam-B	82.90.00	20.85.01	2.38.90	0.53.60	59.12.49
Ezhudesam-C	275.82.80	85.19.33	8.00.10	1.36.70	181.26.67
Kollencode-A	28.39.50	7.97.00	1.08.50	0.14.00	19.20.00
Kollencode-B	171.77.00	32.97.68	3.31.16	1.56.00	133.92.16
Total	1144.0618	262.69.35	29.45.16	17.78.71	834.12.96

v. Land use break-up: The land use break-up of the Mine lease area is shown below:

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenife, Rufile, Zircon, Monozile, Sillimanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited.

Page 4

vi. Method of Mining: The method of mining is opencast mechanized mining and mining does not involve drilling nor blasting as the deposit is sandy and soft in nature. The mineral bearing sand is extracted and loaded using excavator and transported to Mineral Separation Plant through tippers for separation of individual minerals. After taking out minerals in MSP, the balance sand will be returned back to backfill the areas where mining has been done. Details of machineries involved will be as follows:

Equipment	Nos.	Capacity	Make
Tipper	30	25/30 tons	TATA, Ashok Leyland, Volvo
Hydraulic Excavators	3	1.1 m ³ or 3 tons	TATA, Hitachi, Caterpillar
Dozer	1	D155 OF D110	Caterpillar, Komatsu, Hitachi

vii. Total Cost of the project is Rs.648 lakhs. Details as follows:

SI. No	Description of the Cost	Cost in Lakhs (Rs)
	I. Fixed Asset Co	ost
1	Land Cost (Lease)	10.00
	Labor Shed	10.00
	Sanitary facilities	10.00
	Fencing Cost	5.00
	Sub Total	35.00
	II. Variable cos	ł
1	Operational Cost	525.00
	Machineries	20.00
	Sub Total	545.00
2	EMP Cost	20.00
	Afforestation	15.00
	Water Sprinkling	5.00
	Water Quality Test	12.00
	Air Quality Test	12.00
	Noise/Vibration Test	6.00
	Sub Total	68.00
3	Grant total	648.00
	CSR Activities	150.00

- viii. Number of working days: 365 Days / Year.
 - ix. Water requirement and source: Mining/ excavation operation from 1144.0618 ha ML area does not require any water and hence there is no abstraction or transfer of water from ground or surface waters. The quantity of water required for the new mining lease area is 2.5 KLD for drinking and other miscellaneous purpose. For the existing Mineral Separation Plant at Manavalakurichi, IREL is permitted to draw 4500 KLD of water from the Valliyar river at tail end (confluence with Arabian Sea) in the village of Manavalakurichi by the Water

Terms of Reference (ToR) for Mining of Atomic Minerals (limenite, Rutile, Zircon, Monazite, Sillimanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by IREL (India) Umited

Resources Department, Government of Tamilnadu. Hence, through the same source, the water requirement would be met by using Tanker Lorry.

- x. Electricity requirement: The mining operation over 1144.0618 ha is proposed to be carried out in 3 shifts. Power supply is required only for lighting purpose. The estimated power requirement would be 200 kVA which will be met through the Tamil Nadu Electricity Board power supply. Diesel Generators, each 125 kVA are proposed for emergency purpose. Excavation of atomic mineral bearing sand and transportation will be carried out through outsourcing. Diesel requirement for excavation and transportation of BSM Ore is 1.5 KLD.
- xi. Alternate site examined: Alternative site is not considered.
- xii. Solid and Liquid Waste Generation: No solid/ liquid wastes are generated due to mining operations. Water is not required for mining operation and hence no effluent would be generated in the mining lease area. Domestic effluent from the mine office would be collected in a septic tank and soak pit. No toxic effluent would be generated in the form of solid, liquid and gases and hence requirement does not arise for its treatment.
- xiii. Green Belt Development: The new mining lease area consists mostly of private patta lands. The Private Patta lands are found with scattered Coconut trees. The mining operation over the private lands will be carried out only after obtaining the Consent from the respective land owners and after mining and backfilling, the land will be returned to the respective land owners within 11 months along with payment of Lease Compensation as per the Land Leasing Policy of IREL. On return of land, the land owners predominantly carry out the plantation of Coconut and other fruit bearing trees. The mining would not result in change of ownership of the land. Generally, 70 coconut saplings are planted in one acre of land.
- xiv. Rehabilitation and Resettlement (R&R) Plan: IREL formulated a Policy called IREL's Concession Option Scheme for taking possession of the Private Patta land on lease. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the respective land owners with lease compensation as worked out under the IREL's Concession Option Scheme. Mining in the lease hold areas will not result in any displacement nor change in the ownership of the land. Also, after mining, the land will be brought to its original topography and will not have mining foot print. Neither land acquisition nor purchase of land would be done in the proposed mining lease area. The permanent structures will not be disturbed and mining shall not lead to displacement of people. There will not be any involuntary displacement of people due to mining operations by IREL.
- xv. CRZ Clearance: Requirement of CRZ Clearance: The proposed Mining Lease area lies adjacent to Arabian Sea covering a coastal length of 11.2 Km. Out of the total area of 1144.0618 ha, 334 ha area falls under the CRZ area and thus the Project attracts CRZ Notification 2011. The mining lease area falls under the category of CRZ-1(B), II and III. The proposed project is a permissible activity as per clause 4 (ii) (g) of CRZ Notification-2011 dated 06.01.2011 and amendment dated 06.10.2017).
- xvi. NBWL Clearance: NA
- xvii. Forest Clearance: No forest land is involved with the ML area.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Silimanite and Gameti over an extent of 1144.0518 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited

- xviii. Details of Court cases: No litigation is pending against the instant proposal. xix. Details of water bodies nearby: The following are the list of rivers/ Ponds/other water bodies existing within the radius of 10 Km of the proposed mining lease area.
 - Thamirabarani river 260 m (W)
 - Kulathoor 4.49 Km(WNW)
 - Neyyar Backwater 5.26 Km (NW)
 - Perumkulam pond 5.52 Km (ENE)
 - Vaalankulam Pond 6.78 Km (ENE)
 - Vazhode pond 6.95 Km (ENE)
 - Valiyakulam pond 7.68 Km (NNW)
 - Periyakulam 8.18 Km (ESE)

xx. Details of critically polluted area: NA

- xxi. Tree Cutting: The project area of 1144.0618 Ha is devoid of any notable species of trees except coconut plantation. Coconut plantation is removed prior to commencement of mining activities.
- xxii. Impact on drainage pattern: The proposed mining lease area is located near to the coastal belt which is highly permeable, hence there are no noteworthy drainage pattern witnessed. Mining of atomic minerals will not have any impact on drainage pattern. Mining will be carried out at a depth of 6.5 mts and refilling of the minedout area will be carried out simultaneously.
- xxiii. Employment generation: The mining & allied activities would provide direct employment to 155 persons and indirect employment to 250 persons.
- xxiv. Benefits of the project: Strategic importance for country's energy security, defence and space.
- xxv. EIA Consultant- ABC Techno Labs Private Limited, Chennai (Certificate No. NABET/EIA/1922/RA0155 validity extended to 27.01.2023)

4. The committee noted that the method of mining proposed is opencast mechanized mining and mining does not involve drilling or blasting as the deposit is sandy and soft in nature. Moreover, after mining, the land will be brought to its original topography and will not have mining foot print. Further, it doesn't have any impact on social-culture aspect of the area, with no component of R&R activity.

5. It was further confirmed by the PP that there is no ban for sand beach mining for government companies as per OM No 1/1/2019-M.VI dated 1st March 2019 of Ministry of Mines.

6. EAC noted that the proponent has applied for ToR for both Mining activity (category 'A' of item 1 (a)) and 'Mineral Beneficiation (Category 'B' of item 2(b)). However, during the deliberation proponent informed that the Mineral separation plant (1.14.600 TPA Production capacity) is located 12-26 km from the proposed mining lease and the said plant is in operation since 1970. In view of this, EAC opined that ToR for Mineral Beneficiation is not required as this will be executed outside the proposed MLA (1144.0618 ha) in the facility that already exists and is operating.

Terms of Reference (ToR) for Mining of Alamic Minerals (limenite, Rufile, Zircon, Manazite, Sillimanite and Gamet) over an extent of 1144,0618 ha in Kannlyakumari, Tamli Nadu by IREL (India) Limited

7. On basis of detailed deliberations and recommendation of EAC (N&D), the Ministry of Environment, Forest and Climate Change hereby accords Terms of References for preparation of the EIA/EMP report for 'Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Garnet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by M/s IREL (India) Limited' with following stipulations:

SPECIFIC TOR

- STUDY AREA: Core zone i.e. 1144.0618 ha of Mining Lease area of the project and Buffer zone of 10 km radius all around outside the boundary of the core zone.
- STUDY PERIOD: Environmental Baseline data generation is to be for one season comprising of 3 months during pre-or post monsoon.
- 3. In order to ascertain statistically significant analysis, adequate representative sample size traversing across the lease area of 1144.0618 ha shall be taken for each parameter including for the radiological parameters to be monitored utilizing appropriate sampling methods as part of the baseline studies. Frequency of the studies shall be minimum three times during the study period. Grid based analysis of sampling to be done.
- Baseline background radiation including radon concentration across the lease area shall be plotted on map for presentation.
- Possible Radiological impact of the proposed mining on labours health and adjacent areas need to be addressed along with mitigation measures as per the provisions of AERB.
- Regular ground water monitoring including the background status to be undertaken which shall inter-alia include the concentration of arsenic, fluoride and uranium in GW.
- External gamma radiation, gross alpha & beta activity levels in Air, Water, soil
 and biological samples by HPU of BARC in study area to be ensured both
 during the study period and during the project implementation period.
- Impacts on background radiation levels on account of the project, if any, shall be predicted.
- Impacts on ambient air quality due to material handling on surface, operation
 of boiler in mill and material despatch shall be predicted using computerized
 mathematical dispersion models.
- Impact on ground water and ambient air quality due to tailings dam shall be predicted using appropriate mathematical dispersion models.
- 11.Zero discharge ETP shall be ascertained.
- PP should make provisions for installation of solar panels to ensure the energy efficiency in the project area.
- Strategic nature of the project shall be certified by Department of Atomic Energy (DAE) if seeking exemption from public hearing under para 7(i)III(f) of EIA Notification, 2006.
- 14. CRZ Related Studies
 - Probability, impact and management plan wrt Coastal erosion due to proposed mining shall be studied.
 - b. Non-eroding coast to be confirmed by satellite imagery.

Terms of Reference (ToR) for Mining of Atomic Minavais (ilimenite, Rutile, Zircon, Monazite, Sillimanite and Gamet) over an extent of 1144.0618 ha in Konniyakumari, Tamii Nadu by IREL (India) Limited

Page 8

- c. Assessment of shoreline changes. Shoreline assessment study of the area to see impact of reclamation on the project site and on the adjacent site and hydrodynamic study for flooding in the area.
- d. A map covering aerial distance of 15 km on the landward side from the proposed project boundary delineating environmental sensitive areas as specified in column no 9(iii), Form 1 of EIA notification dated September 14, 2006.
- e. Land use map of the study area to 1:25,000 scale based on recent satellite imagery of the proposed area and 10 kms from the proposed project boundary delineating the cropping pattern, wastelands, forest area and built-up areas, water bodies, human habitation and other surface features such as railway tracks, ports, airports, roads, NH, major industries etc.
- Area drainage contour map of the project area 2.5 km from the proposed project area shall be clearly indicated. In case of any proposed diversion of nallah/canal/river, same shall also be shown in the map.
- g. Assessment of marine water quality with respect to Physico-chemical characteristics.
- h. Assessment of Biological Environmental Status:
 - Food Chain Organisms: Phytoplankton, Zooplankton (species diversity, density, dominance etc.)
 - ii. Benthic organism (Species diversity, density, dominance etc.).
 - iii. Fishery Resources.
 - iv. Coastal vegetation.
 - v. Corals and mangroves
 - vi. Rare, Protected and Threatened Flora/Fauna their Conservation Concern with Respect to the Study Area.
- i. Assessment of impact of the dredging activity on the Marine environment and on heavy metal changes to be ensured.
- Details of water bodies and impact on drainage to be evaluated. It is to be made sure that marine environment is not harmed during the construction and operation activities.
- k. Assessment of sea water, sea sediments, marine ecology within 1km radial area of the project activity.
- I. Details of impact on corals and mangroves.
- m. Slope stability study and impact on creek to be assessed.

STANDARD TOR FOR MINING PROJECT

A. Project Details

 A copy of the document in support of rightful lessee of the mine should be submitted. In case of new mines copy of LoI granted by State Government to be submitted. PP should ensure that LoI is valid at the time of grant of ToR. PP should submit the copy of lease deed/supplementary lease deed/extension

Terms of Reference (TaR) for Mining of Atomic Minerals (Ilmenile, Rufile, Zircon, Manazile, Sillimanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamii Nadu by IREL (India) Limited

Page 9

letter/transfer deed, from its initial grant to subsequent renewals/ transfer/extension of validity.

- All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- PP should submit the District Survey Report (DSR) as per S.O. 3611(E) dated 25.07.2018 in case of minor minerals.
- 4. Brief of proposal to be submitted which include total excavation of the material required for the production of certain quantity of the minerals, location of the project, mining lease area, latitude longitude, seismic zone etc. In case of expansion, project details of expansion viz. expansion in mining lease area or expansion in production of any particular mineral or expansion in total excavation, latest certified Compliance report (CCR) from IRO of conditions granted in existing EC needs to be submitted.
- 5. The PP should submit the real-time aerial video footage & video of the mining lease area and of the transportation route.
- 6. All comer coordinates of the mine lease area, superimposed on a High-Resolution Imagery/toposheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
- 8. The PP should collect the Baseline data (BLD) in respect of initial level of the mining lease. For this permanent bench marks (BM) needs to be established at prominent location preferably close to mining leases in question and should have precisely known relationship to the level datum of the area, typically mean sea level.
- 9. A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
- Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- Conceptual past mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
- 12. The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Silimanite and Garnet) over an extent of 1144.0518 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited

- Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 14. Compliance of the Ministry's Office Memorandum No. F: 3-50/2017-IA.III (Pt.), dated 30.05.2018 on the judgment of Hon'ble Supreme Court, dated the 2nd August, 2017 in Writ Petition (Civil) No. 114 of 2014 in the matter of Common Cause versus Union of India needs to be submitted and included in the EIA/EMP Report.

B. Forest

- 15. PP shall submit a certificate from Chief Conservator of Forests regarding involvement of Forest Land in the mining lease area if any. In case forest land is involved i) PP should submit the proof of application made for obtaining forest clearance and ii) a map clearly showing the forest & non-forest area.
- 16.Status of forestry clearance for the broken-up area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.
- 18. The vegetation in the RF / PF areas in the study area, with necessary details should be given. The details shall encompass enumeration of trees which interalia shall include name of species and girth wise classification.

C. Court Matters

 Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.

D. Land Environment

- 20. PP should submit the details of survey number [viz. survey no, area in hectare, classification of land (government, private, forest, grazing land etc.), villages] duly authenticated by State Government, falling in the mining lease area.
- 21. The study area will comprise of 10km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
- 22. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- 23. Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rutile, Zircon, Monazite, Sillimanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamii Nadu by IREL (India) Umited

E. Wildlife

- 24. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- 25. A detailed biological study of the study area [core zone and buffer zone] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. PP shall submit list of Schedule-1 species present in core and buffer zone duly authenticated by CWLW. In case of any Scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest/Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost. Proof of its submission of conservation plan to the CWLW needs to be submitted.
- 26. PP shall submit a certificate from Chief Wildlife Warden regarding distance of mining lease from the protected area falling within 10 KM of the mining lease. In case project requires clearance under Wildlife (Protection) Act, 1972 then copy of application made for the same needs to be submitted.

F. Baseline Environment:

- 27. One season (non-monsoon) [i.e. March May (Summer Season); October December (post monsoon season); December February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.
- 28. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modelling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The windrose showing pre-dominant wind direction may also be indicated on the map.
- 29. The PP should submit the photograph of monitoring stations & sampling locations. The photograph should bear the date, time, latitude & longitude of the monitoring station/sampling location. In addition to this, PP should submit

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rufile, Zircon, Manazite, Sillimanite and Garnet) over an extent of 1144,0618 ha in Kanniyakuman, Tamil Nadu by (REL (India) Limited

the original test reports and certificates of the labs from which samples were analyzed.

G. Water Environment

- 30. The water requirement for the Project, its availability and source should be furnished. Quantity of surface or ground water to be used for the Project should be indicated. A detailed water balance should also be provided. Submit the year wise target for reduction in consumption of the ground/surface water by developing alternative source of water through rain water harvesting measures. Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided. The capital and recurring expenditure to be incurred needs to be submitted.
- Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.

H. Hydro Geology

- 32. Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be.
- 33. Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and BGL. A schematic diagram may also be provided for the same.
- 34. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working bench will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished. In case of surface water is proposed to be utilized then Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.

I. Transportation

35. Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rufile, Zircon, Monazite, Silimanite and Garnet) over an extent of 1144.0618 ha in Kanniyakumari, Tamii Nadu by IREL (India) Limited

J. Land Acquisition and R&R

- 36. Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- 37. R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need-based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.

K. Socio-Economic Environment

- 38. Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 39. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 40. Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
- Activity-wise time-bound action plan on the issues raised and commitment made during public hearing to be submitted as part of the final EMP Report in compliance of the Ministry's OM F.No.22-65/2017-IA.III dated 30th September, 2020.

L. Environmental Monitoring and Management

42. It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spell out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the proposed safeguard measures in each case should also be provided.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenife, Rutile, Zircon, Monazite, Sillimanite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nado by IREL (India) Limited

43. Detailed environmental management plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.

M. Critically Polluted Areas, Aravali & CRZ

- 44. Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Dept. Should be secured and furnished to the effect that the proposed mining activities could be considered.
- 45. Similarly, for coastal Projects, A CRZ map duly authenticated by one of the authorized agencies demarcating LTL, HTL, CRZ area, location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).

N. Risk Assessment & Disaster Management

- 46. Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 47. Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 48. A Disaster Management Plan shall be prepared and included in the EIA/EMP Report.
- 49. Environmental Management Plan (EMP) EMP shall be specific to the outcome of EIA Studies. EMP should include:
 - Recommendations for Air, Noise, Water, Sediments, Solid and Hazardous Waste Management, Conservation of Marine Life and Local Ecosystem during the Proposed Project Activities.
 - Summary of potential adverse impacts and recommended mitigation measures.
 - iii. Allocation of resources and responsibilities for implementation.
 - iv. Administrative and Technical setup for the Management of Environment.
 - Institutional arrangements proposed with other organizations/ Government authorities for effective implementation of environmental measures proposed in the EIA.

Environmental specifications for the contractors should contain adequate safeguards to ensure that Management measures will

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rufile, Zircon, Monazite, Sillimonite and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamil Nadu by IREL (India) Limited

Page 15

not be compromised under adverse field conditions or time constraints.

- vii. Emergency preparedness manual shall be prepared, which should also include plant emergency, site emergency and general emergency exercises and their periodicity.
- Risk Assessment and Emergency Planning with assessment of risks involved in construction and operation phases, and identification of maximum credible accident scenario, Emergency Preparedness Plan and Suggestions for Disaster Management Planning.
- ix. Energy efficiency measures
- x. Waste and effluent management details
- xi. Air pollution, water pollution and noise pollution mitigation measures.
- xii. Due mitigations to be adopted in case of any impact identified at the stage of EIA preparation.
- xili. Suggestion of suitable measures for prevention and control of marine pollution from proposed project activities.
- xiv. A well-defined monitoring matrix shall be part of EMP.

O. Miscellaneous

50. The general points are also to be followed: -

- All documents to be properly referenced with index and continuous page numbering.
- b. Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
- c. Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
- d. Where the documents provided are in a language other than English, an English translation should be provided.
- e. The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
- f. While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
- g. Changes, if any made in the basic scope and project parameters (as submitted in Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the TOR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
- h. As per the circular no. J-11011/618/2010-IA.II (I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the environment clearance for the existing operations of the project.

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rulile, Zircon, Manazite, Silimonite and Garnet) over an extent of 1144.0618 ha in Kanniyakumori, Tamil Nadu by IREL (India) Limited

should be obtained from the Regional Office of Ministry of Environment. Forest and Climate Change, as may be applicable.

 The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

8. The prescribed TOR would be valid for a period of four years for submission of the EIA/EMP report, as per the notification S.O 751 (E) dated 17.02.2020. The PP shall submit the EIA/EMP report within the stipulated time period of 4 years as per the procedure prescribed in OM vide F. No. IA3-22/10/2022-IA.III [E 177258] dated 08.06.2022.

9. The Project Proponent should submit the EIA/EMP report as per the generic structure prescribed in Appendix-III of the EIA Notification, 2006 after incorporating the details of public hearing conducted and covering the above-mentioned issues, to take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.

10. This issues with the approval of the Competent Authority.

(Dr. Shruti Rai Bhardwaj) Director/Scientist 'F'

Copy to:

- Director, Department of Environment, No. 1, Jeenis Road, Panagal Building, Ground Floor, Saidpet, Chennai-600015, Tel- 044-24336421, 24336928, E-mail: <u>indoe@tn.nic.in</u>
- Addl. Principal Chief Conservator of Forests (C), Ministry of Environment, Forests and Climate Change, Integrated Regional Office, 1st and IInd Floor, Handloom Export Promotion Council, 34, Cathedra, Garden Road, Nungambakkam, Chennai – 34, Email: <u>ro.moefccc@gov.in</u>
- The Chairman, Central Pollution Control Board Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi - 110 032. Email: ccb.cpcb@nic.in
- The Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai- 600032, Tel- 044-22353134-139, Email-ID: <u>hpcb-chn@gov.in</u>
- 5. Guard File/ Monitoring Cell

(Dr. Shruti Rai Bhardwaj) Director/Scientist 'F'

Terms of Reference (ToR) for Mining of Atomic Minerals (Ilmenite, Rufile, Zircon, Monazite, Sillimanile and Gamet) over an extent of 1144.0618 ha in Kanniyakumari, Tamii Nadu by IREL (India). Limited

Compliance to awarded Terms of Reference

S.No	ToR Conditions	Compliance & Page No.	
	Specific ToRs		
1. 2. 3.	SpecificStudyArea:Corezonei.e.1144.0618 ha of Mining Leasearea of the project and Bufferzone of 10 km radius all aroundoutside the boundary of the corezone.StudyPeriod:EnvironmentalBaseline data generation is to befor one season comprising of 3monthsduringpreorpostmonsoon.In order to ascertain statisticallysignificantanalysis,adequate	IC IORSMining Lease area has been designated as the core zone. The buffer zone for the present study has been considered as an area encompassing 10 km from boundary of the Mining Lease. Para 1.9 – Page No. 83 Para 3.1 - Page No. 121Baseline Data (BLD) collected during 	
	representative sample size traversing across the Mining lease area of 1144.0618 ha shall be taken for each parameter including for the radiological parameters to be monitored utilizing appropriate sampling methods as part of the baseline studies. Frequency of the studies shall be minimum three times during the study period. Grid based analysis of sampling to be done.	dimension 1 x 1 km were developed using ArcGIS Version:10 software. The Core Area – "Block A" was divided into 12 grids whereas Core Area – "Block B" was divided into 11 grids. An accessible location near the centre of each grid was chosen as preferred reference spot for radiological monitoring. Similarly, the buffer areas with dimension of 5 x 5 km were demarcated around the core zone and sampling locations were identified at the centre of each grid. The radiation survey of core and buffer zone locations were carried out and the Radiological monitoring was carried out by the Health Physics Division, Bhabha Atomic Research Centre during Pre- Monsoon period of March, April and May 2023. Para 3.14 - Page No. 288	
4.	Baseline background radiation including radon concentration across the Mining lease area shall be plotted on map for presentation.	Ten readings at one metre height from ground are taken from each location and average of the same is calculated in micro- sievert per hour (μ Svh ⁻¹). The minimum detection limit (MDL) for the dose rate measurement is 0.01 μ Sv h ⁻¹ . GIS based Dose rate profile / contour of the Block A & B are given in the EIA Report. Page No. 290	
5.	Possible Radiological impact of the proposed mining on labors health and adjacent areas need to be addressed along with	The study locations consist of noted Natural High Background Radiation Area of these coastal stretches in Manavalakurichi. Some hinterland	

S.No	ToR Conditions	Compliance & Page No.
	mitigation measures as per the provisions of AERB.	locations have Monazite content in the soil in the range of 5-12%. Due to the presence of Monazite, the radiation field and individual doses are much higher in these coastal areas as compared to other locations. This has been evidenced that the residents of Block A, Block B and Buffer zone receive significantly higher doses as compared to other populations. On removal of the BSM ore (Run of Mines) containing Monazite and other minerals and backfilling with Monazite free tailings over the mined-out areas, the background radiation in the mined out and back filled area is brought down to 0.2 - 0.4 μ Svh ⁻¹ . In other words, there has been 8-to-10-fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining does not affect either environment or people and makes the area free from high background radiation. Para 4.3.7 - Page No. 312.
6.	Regular ground water monitoring including the background status to be undertaken which shall <i>inter- alia</i> include the concentration of arsenic, fluoride and uranium in GW.	Baseline Ground Water Quality was monitored at 10 Locations and Report submitted. Page No. 187. Apart from the radiological measurements, measurement of Total dissolved salts (TDS), pH fluoride and arsenic in ground water was also carried out. Para 3.14 - Page No. 288 - 300
7.	External gamma radiation, gross alpha & beta activity levels in Air, Water, Soil and biological samples by HPU of BARC in study area to be ensured both during the study period and during the project implementation period.	The radiological monitoring carried out at core areas and buffer areas by the Health Physics Division, Bhabha Atomic Research Centre during Pre-Monsoon period includes (1) Ambient outdoor gama dose rate (2) Air activity measurements of long lived (²³² Th) radionuclides (3) Air activity measurements of radon (²²² Rn), thoron (²²⁰ Rn) and progenies (4) Gross dust load in air (5) Gross alpha and gross beta activity in ground water (6) Measurement of uranium and thorium concentration in ground water (7) Measurement of thorium and uranium activity in the soil (8) Measurement of gross alpha and gross beta activity in food stuff and (9) Estimation of external dose

S.No	ToR Conditions	Compliance & Page No.
		received by general public in the study
		area.
0		Para 3.14 - Page No. 288.
0.	levels on account of the project, if any, shall be predicted.	containing Monazite and other minerals and backfilling with monazite free tailings over the mined-out areas, the background
		radiation in the mined out and back filled area is brought down to $0.2 - 0.4 \mu Svh^{-1}$ In other words, there has been 8-to-10-fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining does not affect either environment or people and
		makes the area free from high background
		Para 4.3.7 - Page No. 312
9.	Impacts on ambient air quality due	Mining of BSM Ore is only proposed and
	to material handling on surface,	no process involved in the Proposal. The
	material dispatch shall be	located at Manavalakurichi
	predicted using computerized	Para 1.10 – Page No. 86
	mathematical dispersion models.	
10.	Impact on ground water and	No tailing dam is proposed.
	dam shall be predicted using	average depth of 6 m and upto a maximum
	appropriate mathematical	depth of 9 m depending upon the location
	dispersion models.	and mineralization. No ground water-table
		intersection is envisaged as ground water-
		table level in the Mining Lease Area
		will be there and thus: no mine drain is
		envisaged. Thus, no impact is anticipated
		on the ground water sources in the Mining
		Lease vicinity.
		Loading and Transporting activities would
		generate both fugitive dust emissions and
		smoke from HEM
		Machineries/Equipments & Transporting
		Para 4.3.3 – Page No. 304
11.	Zero discharge ETP shall be	The mining will be carried out at an
	ascertained.	average depth of 6 m and upto a maximum
		and mineralization. No ground water-table
		intersection is envisaged.
		With no permanent facilities proposed in
		the Mining Lease area and with the
		moving population of worker/employees

S.No	ToR Conditions	Compliance & Page No.
12.	PP should make provisions for installation of solar panels to ensure the energy efficiency in the	during the mining, the water demand will be 2.5 KLD only. Sewage generation of 2.2 KLD will be biologically treated in a mobile Bio-Toilets and the sludge will be used as manure for the Green Belt development. No Workshop is proposed and thus, no trade effluent generation from the Mine. No mine pit will exist and thus; no mine drain is envisaged. Thus, 'Zero Effluent Discharge' will be adopted/ practiced. Para 4.3.5 – Page No. 309 With no permanent facilities proposed in the Mining Lease, there is no provision for installation of solar panels.
10	project area.	Dublic Llouinn is being conducted for the
13.	Strategic nature of the project shall be certified by Department of Atomic Energy (DAE) if seeking exemption from public hearing under para 7(i)III(f) of EIA Notification, 2006.	Public Hearing is being conducted for the Project and Action Plan to address the PH issues along with Budget provision will be incorporated in the EIA report.
14.	CRZ Related Studies	
a.	Probability, impact and management plan wrt Coastal erosion due to proposed mining shall be studied.	As per National Centre for Coastal Research (NCCR), Blocks A & B falls in Low erosion and Low accretion area. Also, some Mining lease pockets in Block A falls in the intertidal zone. Shoreline changes are studied based on imageries of 2010-2015, 2010-2020, 2010-2023 and stable coastline has been observed in both the Blocks. As the mining in CRZ area is proposed to be regulated in accordance with the guidelines issued by MoEFCC, no impact is anticipated to the Mining Lease area due to Shoreline Changes. Para 3.5 - Page No. 131
b.	Non-eroding coast to be confirmed by satellite imagery.	Shoreline changes are studied based on imageries of 2010-2015, 2010-2020, 2010-2023 and stable coastline has been observed in both the Blocks. As the mining in CRZ area is proposed to be regulated in accordance with the guidelines issued by MoEFCC, no impact is anticipated to the Mining Lease area due to Shoreline Changes. Para 3.5 - Page No. 131
C.	Assessment of shoreline changes. Shoreline assessment	Block A Area is about 0-310 m from the Coastline. As Block B Area is about 365 m

5.NO	IOK CONDITIONS	Compliance & Page No.
	study of the area to see impact of	to the Mining Lease due to Shereline
	on the adjacent site and	Changes
	bydrodynamia study for flooding in	Dara 2.5 Dago No. 121
	the area	Fala 3.5 – Faye NO. 151
d	Δ man covering aerial distance of	The study area man of 15 km is shown as
u.	15 km on the landward side from the proposed project boundary delineating environmental sensitive areas as specified in column no 9(iii), Form 1 of EIA notification dated September 14, 2006.	Fig. 3.1. Page No. 123
e.	Land use map of the study area to 1:25,000 scale based on recent satellite imagery of the proposed area and 10 kms from the proposed project boundary delineating the cropping pattern, wastelands, forest area and built- up areas, water bodies, human habitation and other surface features such as railway tracks, ports, airports, roads, NH, major industries etc.	Land Use/Land Cover (LU/LC) at 10 km radius based on recent Satellite Imagery are studied and submitted. Fig. 3-12 & Fig. 3-14 Page No. 141 & 143
f.	Area drainage contour map of the project area 2.5 km from the proposed project area shall be clearly indicated. In case of any proposed diversion of nallah/canal/river, same shall also be shown in the map.	The drainage pattern of the study area is shown in Fig. 3.4 and 2km radius Drainage map is given as Fig 3.5. As observed, there is no marked drainage pattern in the Mining lease area and the existing water bodies like ponds/streams will not be disturbed. Block-B is does not contain river or stream whereas, there are 2 streams in Block A which will not be disturbed as such. Page No. 129 - 130
g.	Assessment of marine water quality with respect to Physico- chemical characteristics.	The collected marine water samples were analyzed and results of marine water analysis are given in Table 3.44. Page No. 259
h.	Assessment of Biological Environm	nental Status:
i. 	Food Chain Organisms: Phytoplankton, Zooplankton (species diversity, density, dominance etc.)	Para 3.11 – Page No. 268 - 279
II. 	Benthic organism (Species diversity, density, dominance etc.).	
iv	Coastal vegetation	Page No 279

S.No	ToR Conditions	Compliance & Page No.
٧.	Corals and mangroves.	
vi.	Rare, Protected and Threatened	
	Flora/Fauna their Conservation	
	Study Area	
i	Assessment of impact of the	Not Applicable
	dredging activity on the Marine	No dredging activity is proposed.
	environment and on heavy metal	
	changes to be ensured.	
j.	Details of water bodies and impact	There is no marked drainage pattern in the
	on drainage to be evaluated. It is	Mining lease area and the existing water
	to be made sure that marine	bodies like ponds/streams will not be
	the construction and operation	streams whereas there are 2 streams in
	activities	Block A which will not be disturbed as
		such. The river Thamiraparani flows in the
		Eastern parts of Block B at an elevation of
		18-33 m AMSL while Block B is located in
		the elevation range of 37 m AMSL near the
		water course. There will not be any flood
		impacts anticipated due to the mining on
		the river course.
		Para 3.4 – Page No. 125
		Being a Mine Proposal without any
		installation, no Construction Phase
		activities will be there. Mining in the CRZ
		Area will be regulated by IREL so as to
k	Assessment of sea water sea	Para $3.10.7 - Page No. 254$
IX.	sediments, marine ecology within	
	1 km radial area of the project	
	activity.	
I.	Details of impact on corals and	Not Applicable.
	mangroves.	And the study Area is devoid of Corais and Manaroves
		Page No. 279
m.	Slope stability study and impact	As Mining is proposed upto the maximum
	on creek to be assessed.	depth of 9m with an average of 6m and
		simultaneous backfilling, no mine pit will
		be there. With backfilling the mined-out
		void will be reclaimed to its original status.
		Right A Area is about 0.210 m from the
		Coastline Block B Area is about 365 m
		from the Coastline Mining in the CR7
		Area will be regulated by IREL so as to
		maintain the marine environment as such.
		Thus, no impact anticipated on the creek.
		Page No. 128

Standard ToR for Mining Project

S.No	ToR Conditions	Compliance & Page No.
Α	Project Details	
1.	A copy of the document in support of rightful lessee of the mine should be submitted. In case of new mines copy of Lol granted by State Government to be submitted. PP should ensure that Lol is valid at the time of grant of ToR. PP should submit the copy of lease deed/supplementary lease deed/extension letter/transfer deed, from its initial grant to subsequent renewals/transfer/extension of validity.	The Ministry of Mines, Government of India issued the Notification vide G.S.R.399(E) dated 11.06.2021 reserving the area of 1144.0618 Ha for mining by IREL under section 17A (1A) of Mines and Minerals (Development and Regulation) Act, 1957. The Government of Tamil Nadu has issued the Letter of Intent (LOI) vide No.12503/MMD.2/2015-19 dated 28.06.2022. Doc-1 – Page No. 54
2.	All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.	Complied. All documents including approved mine plan and EIA report are compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and are in the name of the lessee. IREL has requested the Ministry to exempt the Public Hearing.
3.	PP should submit the District Survey Report (DSR) as per S.O. 3611 (E) dated 25.07.2018 in case of minor minerals.	Not Applicable. Proposal is for Mining of Monazite (Prescribed substances under the Atomic Energy Act, 1962) and other Atomic Minerals.
4.	Brief of proposal to be submitted which include total excavation of the material required for the production of certain quantity of the minerals, location of the project, mining lease area, latitude longitude, seismic zone etc. In case of expansion, project details of expansion viz. expansion in mining lease area or expansion in production of any particular mineral or expansion in total excavation, latest certified Compliance report (CCB) from IBO of conditions	The Mining Lease area of 1144.0618 Ha comprises of 79.8613 Ha Government land and 1064.2005 Ha Private Patta lands. There is no forest land involved. The Mining Lease area is located at Keezhmidalam-A, Midalam- B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages, Killiyoor Taluk, Kanniyakumari District, Tamil Nadu. Para 1.6 – Page No. 68 ML Block - A is located 08°11'19.78" to 08°13'33.12" North Latitudes and 77°11'13 13" to 77°14'08.82" East

S.No	ToR Conditions	Compliance & Page No.
	granted in existing EC needs to be submitted.	Longitudes and Block - B is located between 08°15'17.31" to 08°17'32.23" North Latitudes and 77°06'50.15" to 77°09'34.63" East Longitudes. Para 1.9 - Page No. 83 The method of mining will be Non- Conventional Opencast Mechanized Mining by Excavator-Tipper combination with no Drilling & Blasting involved. It is proposed to mine out Atomic Minerals-BSM Ore @ 5000 Tonnes per day (TPD) ROM viz. 15.00 Lakh Tonnes ROM. Mining operation will be carried out at an average depth of 6 m and a maximum depth of 9 m depending upon the location and
		mineralization. Para 1.10 – Page No. 86
5.	The PP should submit the real-time aerial video footage & video of the mining lease area and of the transportation route.	To be submitted at the time of EC Presentation.
6.	All corner coordinates of the mine lease area, superimposed on a High-Resolution imagery/toposheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	The study area falls in the Survey of India Topo Sheet No. 58H/3, 58H/4, 58H/7 and 58H/8. Topo map of 10km radius is shown in Fig 1.6 - Page No. 84. Regional & Local Geology in Para 2.3.1- Page No. 91 HRS depicted in Fig. 1-1 - Page No. 69. Satellite Imagery as Fig. 3-12 – Page No. 141 Land Use Map as Fig. 3-13 – Page No. 143
7.	Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.	Topo map of 10km radius is shown in Fig 1.6 - Page No. 84. Regional & Local Geology in Para 2.3.1 - Page No. 91 Drainage Pattern – Para 3.4 – Page No. 125 Fig. 3.4 – Page No. 129
8.	The PP should collect the Baseline data (BLD) in respect of initial level of the mining lease. For this	The topography of the new mining lease area is flat except undulation found in certain patches.

S.No	ToR Conditions	Compliance & Page No.
	permanent bench marks (BM) needs to be established at prominent location preferably close to mining leases in question and should have precisely known relationship to the level datum of the area, typically mean sea level.	Para 3.3 - Page No. 125
9.	A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution	It is proposed to plant and develop 1,41,700 No's Coconut trees in Mined out and reclaimed area of 834.12 Ha @ 170 Trees per Ha by the land owners. Survival rate will be 85 – 90%. Para 4.3.6 – Page No. 310
10.	Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.	The mining will be carried out in the Mining Lease Area in a staggered manner after obtaining land owners' consent. Thus, there is no infrastructure facilities required for the Mine. The Mineral Separation Plant is provided with all facilities like drinking water, canteen, rest shelter, latrines and urinals, bathrooms, first aid centre, dispensary, vocational training center, workshops for Electrical, Mechanical and Civil etc. Food at the canteen is supplied at subsidized rate. Occupational Health Centre exists at MSP. Medical facilities are available

S.No	ToR Conditions	Compliance & Page No.
		round the clock and the OHC is
		Para 2.8 – Page No. 118
11.	Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.	At the Conceptual Stage, 834.1296 Ha will be the mined out and back filled area. Backfilled area will be used for plantation of Coconut trees & fruit bearing trees and other activities by the respective land owners. Para 2.9 – Page No. 118 - 119
12.	The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.	The Project Cost is Rs.31.25 Crores. An amount of Rs. 20.00 Lakhs is earmarked as Capital EMP Budget and Rs10.50 Lakhs per Annum is Operating Cost. Para 10.3 – Page No. 331
13.	Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.	IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value-added products. The Zircon produced from Manavalakurichi Unit is directly sent to the Nuclear Fuel Complex (NFC), Department of Atomic Energy for strategic applications. Chapter 8 – Page No. 328
14.	Compliance of the Ministry's Office Memorandum No. F: 3-50/2017-IA.III (Pt.), dated 30.05.20 18 on the judgment of Hon'ble Supreme Court, dated the 2 nd August, 2017 in Writ Petition (Civil) No. 114 of 2014 in the matter of Common Cause versus Union of India needs to be submitted and included in the EIA/EMP Report.	Not Applicable. Fresh Mining Lease and Mining is yet to be commenced and there is no violation for this application attracting Common Cause Judgement.
В.	Forest	
15.	PP shall submit a certificate from Chief Conservator of Forests regarding involvement of Forest Land in the mining lease area if any. In case forest land is involved i) PP should submit the proof of application made for obtaining forest clearance and ii) a map clearly showing the forest & non-forest area.	Not Applicable. Entire Mining Lease Area is private patta land & Govt. Land and no Forest Land is involved. No Reserved Forest within the Study Area. Para 1.6 - Page No. 68

S.No	ToR Conditions	Compliance & Page No.
16.	Status of forestry clearance for the	Not Applicable.
	broken-up area and virgin forestland	The proposal does not require any
	involved in the Project including	forest clearance.
	deposition of net present value	
	(NPV) and compensatory	
	afforestation (CA) should be	
	indicated. A copy of the forestry	
	clearance should also be furnished.	
17.	Implementation status of recognition	Not Applicable.
	of forest rights under the Scheduled	There is no Reserved Forest within the
	Tribes and other Traditional Forest	study area of 10 km radius.
	Dwellers (Recognition of Forest	
	Rights) Act, 2006 should be	
	indicated.	
18.	The vegetation in the RF / PF areas	Not Applicable.
	in the study area, with necessary	There is no Reserved Forest within the
	details should be given. The details	study area of 10 km radius.
	shall encompass enumeration of	
	trees which interalia shall include	
	name of species and girth wise	
	classification.	
С.	Court Matters	
19.	Details of litigation pending against	No litigation pending against the
	the project, if any, with direction	Proposal.
	/order passed by any Court of Law	Page No. 313
	against the Project should be given.	
D.	Land Environment	
20.	PP should submit the details of	Provided in Page No. 70 - 78 as given
	survey number [viz. survey no, area	by the State Govt. In the LOI.
	In neclare, classification of land	
	(government, private, lorest, grazing	
	authentiested by State Covernment	
	falling in the mining lease area	
21	The study area will comprise of 10	Mining Lease area has been designated
۷۱.	km zone around the mine lease from	as the core zone. The buffer zone for
	lease periphery and the data	the present study has been considered
	contained in the FIA such as waste	as an area encompassing 10 km from
	generation etc. should be for the life	boundary of the Mining lease
	of the mine / lease period	All the data are provided for the Plan
		Period and Conceptual Stage.
		Fig. 3.1 – Page No. 123
22	Land use of the study area	Page No. 137 - 138
	delineating forest area, agricultural	Land use plan of the Mining lease area
	land, grazing land, wildlife	for preoperational, operational and post

S.No	ToR Conditions	Compliance & Page No.
	sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.	operational phases is given in Table 2.8. Para 2.9 – Page No. 118 – 119
23.	Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.	No Dump is proposed as simultaneous backfilling by the tailings from MSP is proposed. Para 2.4 - Page No. 97 Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to displacement of people. Thus, no R&R issue due to the Proposal. Page No. 63
E.	Wildlife	
24.	A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.	Not Applicable There are no Eco Sensitive Areas like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. within 10 km from the Mining Lease Area. Page No. 83
25.	A detailed biological study of the study area [core zone and buffer zone] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. PP shall submit list of Schedule-1 species present in core and buffer zone duly authenticated	Dealt under Para 3.10.6 Terrestrial Ecology. Page No. 210 No Scheduled-I fauna found and thus no Conservation Plan is required. Page No. 254

S.No	ToR Conditions	Compliance & Page No.
	by CWLW. In case of any	
	Scheduled-I fauna found in the study	
	area, the necessary plan along with	
	budgetary provisions for their	
	conservation should be prepared in	
	consultation with State	
	Forest/Wildlife Department and	
	details furnished. Necessary	
	allocation of funds for implementing	
	the same should be made as part of	
	the project cost. Proof of its	
	submission of conservation plan to	
	Ine CVVLVV needs to be submitted.	Net Applicable
20.	Chief Wildlife Warden regarding	Not Applicable.
	distance of mining lease from the	study area from the mining lease
	protected area falling within 10 KM	Kannivakumari Wildlife Sanctuary is at
	of the mining lease. In case project	25 km (shortest) distance in northeast
	requires clearance under Wildlife	
	(Protection) Act 1972 then copy of	
	application made for the same	
	needs to be submitted.	
F.	Baseline Environment:	
27.	One season (non-monsoon) [i.e.	Baseline Data (BLD) collected during
	March - May (Summer Season);	December 2022-February 2023
	October -	representing Winter 2022-23 Season
	December (post monsoon season);	has been utilised for the EIA Study.
	December - February (winter	Chapter 3 covers all the data.
	season)] primary baseline data on	Page No. 121
	ambient air quality as per CPCB	
	Notification of 2009, water quality,	
	hoise level, soil and liora and launa	
	other data so compiled presented	
	date wise in the EIA and EMP	
	Report Site-specific meteorological	
	Report. Site-specific meteorological data should also be collected. The	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre dominant	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre dominant downwind direction and location of	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre dominant downwind direction and location of sensitive receptors. There should be	
	Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within	

S.No	ToR Conditions	Compliance & Page No.
	dominant downwind direction. The	
	particularly for free silica should be	
	given.	
28.	Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modelling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind rose showing pre-dominant wind direction may also be indicated on the map.	AERMOD View Software is used for Predicting the maximum Ground Level Concentrations (GLCs) including Transportation Impact. Para 4.33 – Page No. 304 – 308 Predicated GLC contours superimposed on Baseline map are given as Fig 4.2 & 4.3 Page No. 307 – 308 Windrose Diagram is shown as Fig 3.18. Page No. 148
29.	The PP should submit the photograph of monitoring stations & sampling locations. The photograph should bear the date, time, latitude & longitude of the monitoring station/sampling location. In addition to this, PP should submit the original test reports and certificates of the labs from which samples were analyzed.	Complied. Photograph of monitoring stations & sampling locations along with Lab Reports are provided in Chapter 3.0. Page No. 128
G.	Water Environment	
30.	The water requirement for the Project, its availability and source should be furnished. Quantity of surface or ground water to be used for the Project should be indicated. A detailed water balance should also be provided. Submit the year wise target for reduction in consumption of the ground/surface water by developing alternative source of water through rain water harvesting measures. Description of water conservation measures proposed to be adopted in the Project should be	Water demand will be 2.5 KLD which will be sourced from permitted 4500 KLD from Valliyar River for the existing MSP at Manavalakurichi. Also, the quantity will be managed with local Drinking Water Suppliers. Sewage generation of 2.2 KLD will be biologically treated in a mobile Bio Toilets and the sludge will be used as manure for the Green Belt/Afforestation. No Workshop is proposed and thus, no trade effluent generation from the Mine. No mine pit will be there and thus; no mine drain is envisaged.

S.No	ToR Conditions	Compliance & Page No.
31	given. Details of rainwater harvesting proposed in the Project, if any, should be provided. The capital and recurring expenditure to be incurred needs to be submitted.	Para 2.10 – Page No. 119 With simultaneous backfilling of mined out voids, there is no provision for Rainwater Harvesting in the Mining Lease Area.
01.	quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.	the mining on the natural drains and rivers in the vicinity Para 4.3.5 – Page No. 309 – 310
H.	Hydro Geology	
32.	Details of any stream, seasonal or otherwise, passing through the lease area and modification/ diversion proposed, if any, and the impact of the same on the hydrology should be.	Block-B is devoid of any water body and there are 2 Nos. streams in Block A which will not be disturbed as such. As the mined-out areas are going to be backfilled simultaneously, no surface Runoff generation from the Mining Lease (Pre-Project & Post-Project Runoffs will remain almost same). Also, there will not be any disturbance due to the mining on the natural drains and rivers in the vicinity. Page No. 309
33.	Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and BGL. A schematic diagram may also be provided for the same.	The topography of the new mining lease area is flat except undulation found in certain patches. Page No. 125 The mining will be carried out at an average depth of 6 m and upto a maximum depth of 9 m depending upon the location and mineralization. No ground water-table intersection is envisaged as ground water-table level in the Mining Lease Area ranges between 10-15 m BGL. Page No. 310
34.	Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working bench will intersect groundwater table, a detailed Hydro Geological Study should be	No ground water-table intersection is envisaged as ground water-table level in the Lease Area ranges between 10- 15 m BGL. Page No. 310 No NOC from State GWA is required.

S.No	ToR Conditions	Compliance & Page No.
I.	undertaken and Report furnished. The Report inter-alia shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished. In case of surface water is proposed to be utilized then Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided. Transportation	
35.	Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.	The existing traffic volume in the Project vicinity was found to be 9,458 Passenger Car Units (PCUs)/day. In the Post-Project Scenario, there will be an addition of 334 Vehicle (in 2 ways) due to due to the Project. It is worked to be only 16% volume addition to the existing traffic volume. The existing Roads/SH are adequate to handle the proposed traffic volume due to the Project. Para 4.3.2 – Page No. 302
J.	Land Acquisition and R&R	
36.	Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.	The Mining Lease area of 1144.0618 Ha comprises of 79.8613 Ha Government land and 1064.2005 Ha Private Patta lands. IREL has formulated a Policy i.e., Concession Option Scheme for taking possession of the Private Patta land on lease for mining. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the

S.No	ToR Conditions	Compliance & Page No.
		lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation. Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to displacement of people. Thus, no Rehabilitation & Resettlement (R&R) issue due to the Proposal. Para 1.8 – Page No. 80
37.	R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need- based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectorial programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report	No Rehabilitation & Resettlement (R&R) issue due to the Proposal. Para 1.8 – Page No. 80
К.	Socio-Economic Environment	
38.	Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed a long with budgetary allocations.	On removal of the BSM ore (Run of Mines) containing Monazite and other minerals and backfilling with monazite free tailings over the mined-out areas, the background radiation in the mined out and back filled area is brought down to $0.2 - 0.4 \mu Svh^{-1}$ In other words, there has been 8-10 fold reduction in the radiation level in the area where mining

S.No	ToR Conditions	Compliance & Page No.
		& backfilling is carried out by IREL and as such our mining does not affect either environment or people and makes the area free from high background radiation. Para 4.3.7 - Page No. 312
39.	Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.	Commencement of mining operation over the mining lease area of 1144.06.18 ha will result in overall development of the region in its own way like provision of direct & indirect employment, improvement in the general living standards and knowledge sharing, improved wage level and the living standard of the local people and continual improvements in the amenities and infrastructure facilities for the local populace. As such, extraction of Monazite and Zircon along with other associated minerals is very much essential for country's nuclear energy programme and transition to Green Energy etc., IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value- added products. The Zircon produced from Manavalakurichi Unit is directly sent to the Nuclear Fuel Complex (NFC), Department of Atomic Energy for strategic applications. Page No 328
40.	Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.	Public Hearing is being conducted for the Project and Action Plan to address the PH issues along with Budget provision will be incorporated in the Final EIA-EMP report.
41.	Activity-wise time-bound action plan on the issues raised and commitment made during public hearing to be submitted as part of the final EMP Report in compliance of the Ministry's OM F.No.22-	Public Hearing is being conducted for the Project and Action Plan to address the PH issues along with Budget provision will be incorporated in the Final EIA-EMP report.

S.No	ToR Conditions	Compliance & Page No.
	65/2017-IA.III dated 30111	
	September, 2020.	
L.	Environmental Monitoring and Mar	nagement
42.	It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non- compliances/violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the proposed safeguard measures in each case should also be provided.	IREL has well laid 'Quality, Environment, Occupational Health & Safety' Policy approved by its Unit Head as appended. There is a hierarchy system established in the Unit to deal with Environmental issues. Any non- compliance will be reported to the Unit Head who will direct the Environment Cell to address the issue and place the action plan report. IREL will ensure the compliance of all Environmental Norms. Page No. 332 – 333
43.	management plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.	Page No. 330 - 336
Μ.	Critically Polluted Areas, Aravali &	CRZ
44.	Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities.	Not Applicable. The project area does not fall in 'Critically Polluted Area' or in 'Aravali Range'.

S No	ToP Conditions	Compliance & Page No				
3.NU	TOR COllutions					
	Such as the SPCB of State Mining					
	furnished to the effect that the					
	proposed mining activities could be					
	considered					
45	Similarly for coastal Projects A	Out of the total area of 1144 0618 Ha				
	CRZ map duly authenticated by one	353.4876 Ha area falls under CRZ-I(B),				
	of the authorized agencies	II and III categories. MOEF&CC				
	demarcaling LTL, HTL, CRZ area,	Sonsing (IPS) Appa University				
	coastal features such as	Chennai has prepared HTL/LTL (CPZ)				
	manaroves if any should be	Maps as required and submitted				
	furnished (Note: The Mining	Para 1 7 $-$ Page No. 80				
	Projects falling under CR7 would	For obtaining TNSC7MA				
	also need to obtain approval of the	recommendations for the proposal				
	concerned Coastal Zone	IREL has submitted the CRZ application				
	Management Authority).	to DCZMA, Kanniyakumari and the				
	5	same is under their perusal. The				
		recommendation will be obtained and				
		submitted to the Ministry				
		Para 1.12 – Page No. 87				
Ν.	Risk Assessment & Disaster Mana	gement				
46.	Issues relating to Mine Safety,	The method of mining will be Non-				
	including subsidence study in case	Conventional Opencast Mechanized				
	of underground mining and slope	Mining by Excavator-Tipper				
	study in case of open cast mining,	combination with no Drilling & Blasting				
	blasting study etc. should be	involved. Wining operation will be				
	measures in each case should also	and a maximum donth of 0 m dononding				
	he provided	upon the location and mineralization				
	be provided.	Para $2.2 - Page No. 89$				
47	Occupational Health impacts of the	IREL will provide and continually				
	Project should be anticipated and	improve the occupational health and				
	the proposed preventive measures	safety performance. Personal				
	spelt out in detail. Details of pre-	Protective Equipments will be provided				
	placement medical examination and	to the mine employees. All the workers				
	periodical medical examination	will be provided with Internal Dosimetry				
	schedules should be incorporated in	and Medical Surveillance. Maintenance				
	the EMP. The project specific	of Pre, during & Post Employment				
	occupational health mitigation	Records will be done. Duly qualified				
	measures with required facilities	Radiological Safety Officer (RSO) will				
	proposed in the mining area may be	be appointed. External Radiation				
	detailed.	Monitoring (by BARC) will be carried out				
		periodically All the workers will be				
		trained and instructed in radiation safety				

S.No	ToR Conditions	Compliance & Page No.
		Para 4.3.7 – Page No. 312
48.	A Disaster Management Plan shall be prepared and included in the EIA/EMP Report.	IREL is having an effective Disaster Management Plan (DMP)/Emergency Preparedness Plan (EPP) in place in their Plants and Mines. The same procedure will be adopted/in place for the Proposed Project also. Para 7.3 – Page No. 318
49.	Environmental Management Plan (EMP) EMP shall be specific to the outcome of EIA Studies. EMP should include:	
i.	Recommendations for Air, Noise, Water, Sediments, Solid and Hazardous Waste Management, Conservation of Marine Life and Local Ecosystem during the Proposed Project Activities.	Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to the various attributes of environment due to the proposed mining operations.
ii.	Summary of potential adverse impacts and recommended mitigation measures.	Chapter 10.0 – Page No. 330
iii.	Allocation of resources and responsibilities for implementation.	
iv.	Administrative and Technical setup for the Management of Environment.	
V.	Institutional arrangements proposed with other organizations/Government authorities for effective implementation of environmental measures proposed in the EIA.	
vi.	Environmental specifications for the contractors should contain adequate safeguards to ensure that Management measures will not be compromised under adverse field conditions or time constraints.	Personal Protective Equipments will be provided to the mine employees. All the workers will be provided with Internal Dosimetry and Medical Surveillance. Maintenance of Pre, during & Post Employment Records will be done. Duly qualified Radiological Safety Officer (RSO) will be appointed. Para 2.12 – Page No. 120
vii.	Emergency preparedness manual shall be prepared, which should also include plant emergency, site emergency and general emergency exercises and their periodicity.	IREL is having an effective Disaster Management Plan (DMP)/Emergency Preparedness Plan (EPP) in place in their Plants and Mines. The same

S.No	ToR Conditions	Compliance & Page No.
		procedure will be adopted/in place for the Proposed Project also. Para 7.3 – Page No. 318
viii.	Risk Assessment and Emergency Planning with assessment of risks involved in construction and operation phases, and identification of maximum credible accident	There is no storage of Hazardous Chemicals in the Mine lease area and thus, no Modelling is warranted. Para 7.1 – Page No. 318
	scenario, Emergency Preparedness Plan and Suggestions for Disaster Management Planning.	IREL is having an effective Disaster Management Plan (DMP)/Emergency Preparedness Plan (EPP) in place in their Plants and Mines. The same procedure will be adopted/in place for the Proposed Project also. Para 7.3 – Page No. 318
ix.	Energy efficiency measures	Not Applicable
Х.	Waste and effluent management details.	Not Applicable
xi.	Air pollution, water pollution and noise pollution mitigation measures.	Page No. 330 – 331
xii.	Due mitigations to be adopted in case of any impact identified at the stage of EIA preparation.	Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to the various attributes of environment due to the proposed mining operations. Chapter 10.0 – Page No. 330
xiii.	Suggestion of suitable measures for prevention and control of marine pollution from proposed project activities.	All parameters were estimated following the standard methods. Biological variables have also been studied and this includes planktons (both Phyto and Zooplankton), productivity and benthos (macro & meio). Marine water samples were collected from 10 locations within 10 Km radius of the project site. Page No. 254
xiv.	A well-defined monitoring matrix shall be part of EMP.	Radioactivity Monitoring as per AERB Norms and periodical monitoring of Ambient Air Quality (3 locations), Fugitive emissions/Workzone Air Quality (4 locations), Ambient & Workzone Noise Levels (4 locations), Water (4 Surface & 4 Ground waters along with Mine Pit water) and Soil

Quality (3 Locations) shall	ha
	be
undertaken and reported to Author	ities.
Page No. 288	
50 The general points are also to be	
followed: -	
a. All documents to be properly Complied.	
referenced with index and	
continuous page numbering.	
b. Where data are presented in the Complied.	
period in which the data were	
collected and the sources should be	
indicated.	
c. Project Proponent shall enclose all Complied.	
the analysis/testing reports of water,	
air, soil, noise etc. using the	
laboratories All the original	
analysis/testing reports should be	
available during appraisal of the	
Project.	
d. Where the documents provided are Complied.	
In a language other than English, an English translation should be	
provided.	
e. The Questionnaire for Submitted as Form – I.	
environmental appraisal of mining	
projects as devised earlier by the	
Ministry shall also be filled and	
f. While preparing the EIA report the Complied	
instructions for the Proponents and Page No. 9 & 10	
instructions for the Consultants	
issued by MoEF vide O.M. No. J-	
11013/41 /2006-IA.II (I) dated 4th	
August, 2009, which are available	
should be followed.	
g. Changes, if any made in the basic Noted and Compled.	
scope and project parameters (as There is no change in basic scope	and
submitted in Form-I and the PFR for project parameters as submitted in	TOR
securing the IOR) should be Application and EIA Report delibe	rated
MoFF&CC with reasons for such Summary FIA reports in English	and

S.No	ToR Conditions	Compliance & Page No.
	changes and permission should be sought, as the TOR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA /EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.	Tamil languages are submitted for Public Consultation & Public Hearing.
h.	As per the circular no. J- 11011/618/2010-IA.II(I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the environment clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.	Not Applicable. Fresh Proposal for EC.
i.	The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.	Complied. Surface Plan – Page No. 104 – 105 Geological Plan – Page No. 106 & 108 Geological Section – Page No. 107 & 109

Doc – 1. Precise Area Communication

Industries (MMD.2) Department, Secretariat, Chennai - 600 009.

Letter No.12503/MMD.2/2015-19, dated 28.06.2022

From Thiru S.Krishnan, I.A.S., Additional Chief Secretary to Government.

To

The General Manager and Head, TvI.IREL (India) Limited, Manavalakurichi, Kanyakumari District – 629 252.

Sir,

- Sub: Industries Mines and Minerals Atomic Minerals/Beach Sand Minerals - Area of an extent of 1144.06.18 hectares of Government and Private lands reserved by the Central Government in Kanyakumari District, Tamil Nadu for undertaking prospecting or mining operations through TvI.IREL (India) Limited - Mining Lease application preferred by TvI.IREL (India) Limited - Communication of precise area/Letter of Intent - Regarding.
- Ref: 1. Government of India, Ministry of Mines Notification No.G.S.R.399 (E), dated 11.06.2021.
 - Mining lease application preferred by the General Manager & Head, Manavalakurichi, TvLIREL (India) Limited (Formerly Indian Rare Earths Limited), dated 24.06.2021.
 - Government letter No.12503/MMD.2/2015-14, dated 08.12.2021 and 20.04.2022 addressed to the Government of India, Ministry of Mines.
 - From the Government of India, Ministry of Mines, Order No.M.IV-7/74/2021-Mines IV, dated 21.04.2022.
 - From the Government of India, Ministry of Mines, letter No.M.IV-7/74/2021-Mines IV, dated 22.04.2022.

I am directed to invite attention to the references cited. In the reference 5th cited, the Government of India, Ministry of Mines has conveyed its previous approval for grant of mining lease in favour of TvI.IREL (India) Limited under the proviso to Section 5(1) and proviso to section 17A(2A) of the Mines and Minerals (Development and Regulation) Act, 1957 in respect of Beach Sand Minerals (BSM) over an extent of 1144.06.18 hectares in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages in Killiyoor Taluk, Kanyakumari District.

(p.t.o.)

Anteochina Value

2. Accordingly, under rule 6(5) of the Atomic Minerals Concession Rules, 2016. I am directed to request you to submit the Approved Mining Plan and other necessary clearances from the concerned Government agencies as required for grant of mining lease under section 17A(2A) of the Mines and Minerals (Development and Regulation) Act, 1957 for mining Beach Sand Minerals (BSM) over an extent of 1144.06.18 hectares comprised in survey numbers as annexed to this letter in Keezhmidalam-A, Midalam-B, Enayamputhenthural, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages in Killiyoor Taluk, Kanyakumari District for a period until the entire reserves of the Beach Sand Minerals are exhausted subject to the following conditions:-

- (i) TvI.IREL (India) Limited should submit an undertaking or an affidavit stating that consent of the private land owner or surface rights will be obtained and furnished in a phased manner to the State Government prior to entering into the private lands for mining, and no mining shall be carried out in private lands not owned by IREL without obtaining the consents or surface rights.
- Mining operations shall not cause any hindrance to the local public and adjoining pattadars.
- (iii) All conditions prescribed under Rule 10 of Atomic Minerals Concession Rules, 2016 shall be strictly adhered to.
- (iv) The applicant company is required to obtain a licence from the Atomic. Energy Regulatory Board (AERB), Mumbal under Rule 3 of Atomic Energy (Radiation Protection) Rules, 2004.
- (v) The applicant company is required to obtain a licence from the Department of Atomic Energy under Rule 3 of the Atomic Energy (Working of the Mines, Minerals and Handling of Prescribed Substances) Rules, 1984.
- (vi) The applicant company should prepare a Mining Plan and obtain approval (including Progressive Mine Closure Plan) from the Atomic Minerals Directorate for Exploration and Research approved by the AMD, Hyderabad within a period of twelve months from the date of issuance of the communication from the Government.
- (vii) The applicant company shall obtain environmental clearance from the Ministry of Environment, Forest and Climate Change.
- (viii) The applicant company shall obtain CRZ clearance from the Competent Authority.
- (ix) The applicant company should provide a performance security to the State Government in the form of a bank guarantee or as a security deposit for an amount equivalent to 0.50 percent of the value of estimated resources as per Rule 6(6)(b) of AMCR 2016.

(contd..)

- (x) The applicant company should sign a Mine Development and Production Agreement with the State Government as per the format specified by the Central Government after compliance of conditions specified in clauses (a), (b), (c) and (d) of rule 6(6) of AMCR 2016.
- (xi) The applicant company should obtain approval or permit or no-objection or the like from the concerned Government authorities as may be required under applicable laws for commencement of mining operations.

Yours faithfully,

Br. 2 3 w gn & 28/06/2022 for Additional Chief Secretary to Government

Copy to:

The Secretary to Government of India, Ministry of Mines, Shastri Bhavan, Dr. Rajendra Prasad Road, New Delhi – 110 001.

The Secretary to Government of India, Department of Atomic Energy, Anushakti Bhavan, C.S.M.Marg, Mumbai-400 001.

The Commissioner of Geology and Mining, Guindy, Chennai – 600 032.

The District Collector, Kanyakumari, Nagercoll – 629 001.

Doc – 2. Mining Plan Approval by AMD

भारत सरकार Government of India परमाणु ऊर्जी विभाग Department of Atomic Energy परमाणु खनिज जन्वेषण एवं अनुसंधान निदेशालय Atomic Minerals Directorate for Exploration and Research 1-10-153/15

1-10-153/156, वेगमपेट Begumpet, हैवरावाद Hyderabad-500 016 दिनॉफ Date: 21.02.2024

संख्या No. AMD/MRG-4/6/2/2(8A)

- विषयः मेसर्स आईआरईएल (इंडिया) लिभिटेड, मनावालाकुरिची के पक्ष में ग्राम कील मिदालम-ए, मिदालम-वी, इनयमपुर्थेअुराई, एलदेसम-ए, बी & सी, एवं कोल्लेकोड़े- ए & बी, जिला : कन्नियाकुमारी, तमिल नाडु में क्षेत्रफल 1144.0618 हेक्टेयर की सीमा में खनन योजना और प्रयामी खान बंदीकरण योजना के अनुमोदन के संदेभ में।
- Sub: Approval of Mining Plan and Progressive Mine Closure Plan over an extent of 1144.0618 ha in Keezhimidalam-A, Midalam-B, Enayamputhenthural, Ezhudesam-A, B & C and Kollencode- A & B villages, Kanniyakumari district, Tamil Nadu in favour of M/s IREL (India) Limited, Manavalakurichi – Reg.

संदर्भ Ref : पत्र संक्या Letter No. IREL/MK/ 1144.0618 Ha /2024/107, दिनांक dated 02.02.2024

खान और खनिज (विकास और विनयमन) अधिनियम, 1957 के धारा 5 के उपधारा (2) के परंतुक (बी) और परमाणु खनिज रियायत नियमावली, 2016 के नियम 8(1) के द्वारा प्रदत्त शक्तियों का उपयोग करते हुए निदेशक, प.ख.नि. द्वारा मेमर्स आईआरईएल (इंडिया) लिमिटेड (आईआरईएल), के पक्ष में ग्राम कील मिदानम-ए, मिदालम-वी, इनयमपुर्येथुराई, एलदेसम-ए, वी & सी, एवं कोल्लोंकोडे-ए & वी, जिला : कन्नियानुमारी, तमिल नाडु में क्षेत्रफल 1144.0618 हेक्टेयर की सीमा में खनन योजना और प्रगामी खान बंदीकरण योजना निम्नलिखित शर्तों के तहत अनुमोदित किया जाता है:

In exercise of the powers conferred by clause (b) of sub-section (2) of Section 5 of the Mines and Minerals (Development and Regulation) Act, 1957 and Rule 8 (1) of the Atomic Minerals Concession Rules, 2016, the Mining Plan and Progressive Mine Closure Plan in Keezhimidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode- A & B villages, Kanniyakumari district, Tamil Nadu, extending over 1144.0618 ha is approved by the Director, AMD in favour of M/s IREL (India) Limited (IREL), subject to the following conditions:

- खनन योजना और प्रगामी खान बंदीकरण योजना तटीय बालू खनिज नामतः इल्मेनाइट, रुटाइल, जिरकान, मोनाज़ाइट, गार्नेट और सिलिमेनाइट के संबंध में अनुमोदित है जिसे खान और खनिज (विकास और विनियमन), 1957 की प्रथम अनुसूची के भाग-ख के अधीन 'परमाणु खनिज' के रूप में अधिमूचित किया गया है। The Mining Plan and Progressive Mine Closure Plan is approved in respect of beach sand minerals viz. ilmenite, rutile, zircon, monazite, garnet and sillimanite which are notified as 'Atomic Minerals' under Part B of First Schedule of Mines and Minerals (Development & Regulation) Act, 1957.
- यह अनुमोदन खनन पट्टा बिलेख के निष्पादन और अन्य वैधानिक मंजूरी प्राप्त करने के बाद वर्ष I से वर्ष v तक पांच वर्ष की योजना अवधि के लिए वैध है। This approval is valid for the five-year plan period from Year I to Year V after the execution of mining lease deed and obtaining other statutory clearances.
- 3. आईआरईएल एएमसीआर, 2016 के प्रावधानों के अनुसार प्रत्येक पॉच वर्ष में खनन योजना की समीक्षा करेगा और इन नियमों के अंतर्गत चिनिर्दिष्ट समय सारणी के अनुसार प.ख.नि. के अनुमोदन के लिए उसे प्रस्तुत करेगा। IREL shall review the mining plan for every five-year as per the provisions of AMCR, 2016 and submit the same for approval of AMD as per the time schedule specified under these Rules.
- यह अनुमोदन खनन कार्यों के लिए आवश्यक केंद्रीय और राज्य प्राधिकरणों / विभाग से अन्य वैधानिक मंजूरी की पूर्ति के अधीन है।

This approval is subject to fulfilment of other statutory clearances from the Central and the State Authorities / Department(s) required for mining operations.

1

- 5. आईआरईएल परमाणु ऊर्जा (खान, खनिज कार्यकरण और विहित परार्थ उठाई-धराई) नियमायली, 1984 के प्रावधानों के अनुमार अनुमानित माथा के प्रहस्तन/खनन का उल्लेख करते हुए, परमाणु ऊर्जा विश्वाग में लाइसेंग प्राप्त करे तथा संबंधित साइसेंग में यगावर्णित निबंधन एवं शतौँ का पायन करें। इगकी एक प्रतिलिपि प.ख.ति, के रिकार्ड हेतु रोजी जाए। IREL shall obtain License from DAE to handle/mine the estimated quantities of prescribed substances as per the provisions of Atomic Energy (Working of Mines, Minerals and Handling of Prescribed Substances) Rules, 1984 and comply with the terms and conditions stipulated in the said License. A copy of the same may be submitted to AMD for records.
- परमाणु ऊर्जा (विकिरण संरक्षण) नियम, 2004 (दिनांक 09.05.2009 के स्था.आदेश में. 1210) के प्रावधानों के अनुसार, आईआरईएल एईआरबी से लाइसेंस प्राप्त फरेगा। इसकी एक प्रतिलिपि प.च.नि. के रिकार्ड हेतु मेजी जाए। IREL shall obtain License from AERB as per the provisions of Atomic Energy (Radiation Protection) Rules, 2004 (vide S. O. No. 1210 dated 09.05.2009). A copy of the same may be submitted to AMD for records.
- 7. परमाणु ऊर्जा नियमाक परिपद के निदेशानुसार खनिज पृथक्करण संयंत्र से उत्पादित मोनाजाइट समृद्ध भारी खनिज मांद्रम का भंडारण अलग से किया जाए। उत्पादित मोनाजाइट का भंडारण/निपटान पऊवि एवं एईआरबी के लाइमेंस की श्रदों के अतिरिक्त एमएमडीआर अधिनियम, 1957 के अंतर्गत प्रावधानों के अधीन होगा। The monazite-rich heavy mineral concentrate produced from the mineral separation plant shall be stored separately as per the directions from AERB. The storage/disposal of monazite recovered shall be subjected to the conditions of licenses issued by DAE and AERB and also the provisions specified under MMDR Act, 1957.
- 8. भारत सरकार, राज्य सरकार अथवा किसी अन्य प्राधिकारी द्वारा तैयार, समय-समय पर स्नान/क्षेत्र पर निदेशित / अधिमूलित किसी कानून के तहत बिना किसी पूर्वाग्रह के सान योजना तथा प्रयामी स्नान वंदीकरण योजना का अनुमोदन किया जाता है। That the Mining Plan and Progressive Mine Closure Plan is approved without any prejudice to any other laws applicable to the mine/area from time to time whether made by the Government of India, State Government, or any other authority.
- 9. खनन योजना (प्रगामी खान बंदीकरण योजना महित) का यह अनुमोदन किसी भी तरह से खान एवं खनिज (विकास एवं विनियम) अधिनियम, 1957 अथवा परमाणु खनिज रिपायत नियम, 2016 अथवा बन (संरक्षण) अधिनियम, 1960, पर्यावरण संरक्षण अधिनियम, 1986 और उसके तहत बनाये गये नियमों का किसी भी अन्य प्रावधानों के संदर्भ में सरकार के अनुमोदन का संकेत नहीं देता है।

That this approval of the Mining Plan (including Progressive Mine Closure Plan) does not in any way imply the approval of the Government in terms of any other provisions of the Mines and Minerals (Development and Regulation) Act, 1957 or the Atomic Minerals Concession Rules, 2016 or any other law including Forest (Conservation) Act 1960, Environment Protection Act, 1986 and the rules made thereunder.

- मान एवं खनिज (विकास एवं विनियम) अधिनियम, 1957 के प्रावधानों तथा उसके अंतर्गत बनाए गए नियमों का और अन्य वैद्यानिक प्रवधानों का अनुपालन किया जाए।
 That the provisions of the Mines and Minerals (Development and Regulation) Act, 1957 and Rules made thereunder and other statutory provisions shall be complied with.
- खान को प्रारंभ करने की सूचना, प्रबंधक तथा अन्य वैधानिक प्राधिकारियों की नियुक्ति सहित और खान अधिनियम, 1952 के प्रावधानों तथा उसके अंतर्गत बनाए गए नियमों और विनियमों के अनुपालन को सुनिश्चित किया जाए। That the provisions of the Mines Act, 1952 and Rules and Regulations made thereunder including submission of notice of opening, appointment of manager and other statutory officials shall be complied with.
- 12. इस खनन योजना (प्रगामी खान बंदीकरण योजना सहित) का अनुमोदन किसी अन्य आदेश या सक्षम क्षेत्राधिकार रखने वाले किसी न्यायालय के निदेशों पर पूर्वाग्रह के बगैर किया गया है। That this Mining Plan (including Progressive Mine Closure Plan) is approved without prejudice to any other order or direction from any court of competent jurisdiction.

13. खतन योजना (प्रगामी खान बंदीकरण योजना सहित) का निष्पादन, यदि कोई प्रतिबंधन आदेश/नोटिम हो तो उसके निरस्त होने की शर्त पर किया जाएगा।

The execution of Mining Plan (including Progressive Mine Closure Plan) shall be subjected to vacation of prohibitory orders/notices, if any.

14. यदि खनन योजना (प्रगामी खान बंदीकरण योजना सहित) और सुधार प्रस्ताव की विषय-वस्तु में किसी ऐसे तब्य को छियाया हुआ पाया जाता है जिसे की खान अधिनियम, 1952 के अंतर्गत खुमासा करना अतियार्थ है, तो इस अनुमोदन को तत्काल प्रभाव से निरस्त समझा जाए।

If anything is found to have been concealed, which otherwise is required to be disclosed under the Mines Act, 1952 and MMDR Act, 1957 or the Rules made under the said Acts, in the contents of the Mining Plan (including Progressive Mine Closure Plan) and the proposals for rectification, the approval shall be deemed to have been withdrawn with immediate effect.

- 15. यदि किसी चरण में यह पता चलता है कि दस्तावेज में दी गई जानकारी असत्य है या किसी तब्य को गलत ढंग में प्रस्तुत किया गया है, तो इस प्रसेख का अनुमोदन तत्काल प्रभाव में वापस से लिया जायेगा। If at any stage, it is observed that the information furnished in the document is incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 18. यनन प्रवालन और उससे संबद्धित गतिविधियों के लिए अनुमोदन केवल खनन पट्टा क्षेत्र (तमिल नाडु मरकार दारा गया अनुमोदित) में दिया गया है। खनन पट्टा क्षेत्र वह होगा जो अनुमोदित खनन गोलना के अधीन पट्टेदार/ आर्हित व्यक्ति/अवेदक द्वारा सांविधिक योजनाओं में दिखाया गया है। आवेदक/पट्टेदार हारा प्रस्तुत पट्टे का नक्शा और अन्य योजनाओं के तहत प्रस्तुत जानकारी के संदर्भ में स्थल पर पट्टे क्षेत्र की परिसीमा (वार्डड्री) की मरयता के संबंध में प.ध.नि. की कोई जिम्मेदारी नहीं होगीं। This approval of mining operations and associated activities is restricted to the mining lease area (as approved by the Government of Tamil Nadu) only. The mining lease area is as shown on the statutory plans in the approved mining plan submitted by the lessee/qualified person/applicant. AMD does not take any responsibility regarding correctness of the boundaries of the lease shown on the ground with reference to the lease map and other plans furnished by the applicant/lessee.
- आईआरईएन राज्य सरकार द्वारा दिए गए खनन पट्टे का विवरण या उसमें किए गए संशोधनों की सूचना निदेशक, प.च.नि. को रिकार्ड के लिए भेजे।

IREL shall furnish the details of grant of lease or modifications in mining lease by State Government to Director, AMD for record.

- 18. खनन योजना (प्रमामी खान वंदीकरण योजना सहित) के क्रियान्वयन के धौरान, राज्य सरकार द्वारा खनन पट्टे की मंजूरी पर विचार करते समय विनिर्दिष्ट शतों पालन किया जाए। The conditions stipulated by the State Government, if any, while considering the grant of mining lease shall be taken care of while implementing the Mining Plan (including Progressive Mine Closure Plan).
- 19. यदि खान के प्रचालन के दौरान किसी भी समय यह पाया जाता है कि मौजूदा कानूनों का पालन नहीं किया जा रहा है तो निदेशक, प.ख.लि. सिश्चित रूप में संवंधित कारण बताते हुए अनुमोदन को निलंबित कर सकते हैं। That if anytime, during the operation of mines, it is found that the existing laws are not being followed, Director, AMD may suspend the approval accorded by giving the relevant reasons in writing.
- 20. मुख्य नियंत्रक खनन, आईबीएम नागपुर द्वारा उनके दिनांक 06.04.2010 के पत्रांक 11013/3/एमपी/90-सीसीओएम बाल्यूम VII द्वारा जारी किये गये परिपत्रांक 2/2010 की अंतर्वस्तु का अनुपालन किया जाए और पखनि को इसकी प्रति प्रष्ठांकित की जाए।

The contents of circular No. 2/2010 issued by the Chief Controller of Mines, IBM, Nagpur vide his letter No. 11013/3/MP/90-CCoM Vol VII dated 06.04.2010 shall be complied with and a copy endorsed to AMD.

 यदि खनन/प्रक्रमण पद्धति में कोई बढ़ा परिवर्तन होता है तो तत्संबंधी सूचना निदेशक, प.ख.नि., हैदराबाद को प्रस्तुत की जाए तथा खनन योजना में आवश्यकतानुसार और भी संशोधन किए जाए।

That if there is any drastic change in the method of mining/processing, the information in this regard shall be submitted to Director, AMD, Hyderabad and the mining plan may be subjected to further revision as per requirement.

 खनन योजना के कार्यान्वयन की निरीक्षण / मानिटरिंग के लिए परमाणु खनिज अन्वेषण एवं अनुसंधान निदेशालय के सक्षम प्राधिकारी या प्राधिकृत अधिकारी को पूर्ण सुविधाएँ प्रदान की जाएंगी।

Full facilities shall be accorded to the Competent Authority or the Authorised Officer of the Atomic Minerals Directorate for Exploration and Research for inspection/monitoring of implementation of mining plan.

 विद्यमान नियमों के अनुसार सभी सांविधिक विवरणियाँ और सूचनाओं की प्रतियाँ राज्य मरकार और निदेशक, प.स.नि. को रिकार्ड हेतु प्रस्तुत किए जाए।

Copies of all statutory returns and notices as per rules in vogue shall be submitted to the State Government and the Director, AMD, Hyderabad for record.

उपरोक्त शर्तों की पूर्ति के अधीन तरीय बाजू खिनज नामतः इल्मेनाइट, रुटाइल, जिरकान, मोनाज़ाइट, गार्नेट और सिलिमेनाइट के संबंध में अनुमोदित खनन योजना की दो प्रतियाँ संतग्न हैं।

Two copies of approved Mining Plan in respect of beach sand minerals viz. Ilmenite, Rutile, Zircon, Monazite, Garnet and Sillimanite subject to fulfilment of above conditions are enclosed.

(भास्करन सरवणन 'BiSaravanan) लिदेशकाDirectori लिदेशका, पर्वात /DIRECTOR, AMP

सेवा में To

थी एन सेल्वाराजन	Shri N Selvarajan,
मुख्य महापर्वधक एवं प्रमुख, आईआरईएल (इंडिया) लिमिटेड, मनावालाकुरिची, जिला : कश्रियाकुमारी, तमिल नाडु - 629 252	Chief General Manager & Head, IREL (India) Ltd., Manavalakurichi, Kanniyakumari district, Tamil Nadu- 629 252

मुचनार्थ प्रति प्रेपित_Copy for information to:

- संयुक्त सचिव (आई एंड एम), परमाणु ऊर्जा विभाग, पऊवि मचिवालय, अणुशक्ति भवन, सीएसएम मार्ग, मुंबई-400001. Joint Secretary (I&M), Department of Atomic Energy, DAE Secretariat, Anushakti Bhavan, Chatrapati Shivaji Maharaj Marg, Mumbai- 400001
- वेयर्थन, ऐईआरबी, नियामक भवन, जणुशक्ति नगर, चेम्बूर ईस्ट, मुंबई 400094 The Chairman, Atomic Energy Regulatory Board, Niyamak Bhavan, Anushakti Nagar, Chembur East, Mumbai- 400094
- अध्यक्ष एवं महाप्रबंधक, मेसर्स आई आर ई एल (इंडिया) लिमिटेड, प्लाट ने 1207, वीर सावरकर मार्ग, प्रभादेवी, मुम्बई - 400028.

Chairman and Managing Director, M/s IREL (India) Ltd., Plot No. 1207, Veer Savarkar Marg, Prabhadevi Mumbai-400028.

4

- मुख्य खान निर्मेषफ, भारतीय खान व्यूरो, 6वां ठल, 'डी'-व्लॉफ, इंदिरा भवन, सिविल लाइन्स, नागपुर-440001. The Chief Controller of Mines, Indian Bureau of Mines, 6th Floor, Block 'D', Indira Bhavan, Civil Lines, Nagpur-440001.
- क्षेत्रीय आग नियंत्रक, भारतीय खान ब्यूरो, राजाजी जवन, C -4 A, सीजीओ काम्प्लेक्स, वेसंत नगर, चेन्नई 600 090. The Regional Controller of Mines, Indian Bureau of Mines, Rajaji Bhavan, C-4A, CGO Complex, Besant Nagar, Chennai – 600 090.
- आयुक्त. भूविज्ञान और खनन आयुक्तालय, खान एवं भूविज्ञान विभाग, औरोगिक एस्टेट, गिंडी, चेन्नई 600 032.
 The Commissioner, Commissionerate of Geology and Mining, Department of Mines and Geology, Industrial Estate, Guindy, Chennai – 600 032.
- तिदेशक, खान सुरक्षा महानिदेशालय, चेन्नई क्षेत्र, तीसरी मंजिल, बाएं विंग, नया अतिरिक्त भवन, सीजीओ काम्प्लेक्स, शास्त्री भवन, गंगमवक्रम, चेन्नई - 600 006.

The Director, Directorate General of Mines Safety, Chennal Region, 3rd Floor, Left Wing, New Additional Building, CGO Complex, Shastri Bhawan, Nungambakkam, Chennal- 600 006.

(मास्करन सरवणन B. Saravanan) निदेशक Director

1.0 Introduction

1.1 Purpose of the Report

M/s. IREL (India) Limited (IREL) is a Multi-Unit-Multi-Product Central Public Sector Enterprise (CPSE) incorporated under the Companies Act 1913 and wholly owned by the Government of India, under the Administrative Control of the Department of Atomic Energy (DAE). IREL was established in August 1950 and entered into the activities of mining, mineral beneficiation and refining of heavy minerals found in the coastal stretches and inland Teri deposits. The Beach Sand Mineral (BSM) are suite of 7 minerals viz., Monazite, Zircon, Ilmenite, Rutile, Garnet, Sillimanite, and Leucoxene. These seven minerals occur together in nature by virtue of their formation along with coastal stretches/ inland areas near to the shore and in Teri deposits in varying grades in India.

IREL's first Plant was set up at Rare Earth Division (RED) in Aluva, Kerala started operations in the year 1952. IREL took over the operations of M/s. Travancore Minerals Limited in Chavara, Kerala and Manavalakurichi (MK), Tamil Nadu in 1965. Subsequently, in order to augment its share in strategic and commercial sectors, IREL set up its flagship unit Orissa Sands Complex (OSCOM) at Chatrapur, Ganjam District, Odisha in 1979 which is the largest mining and mineral separation unit in operation at present. The present total installed production capacity of all the above plants of IREL in Odisha, Tamil Nadu and Kerala is 10.04 lakh tonnes of minerals per annum (LTPA).

IREL is also involved in processing of the **Prescribed Substance, Monazite**, to extract Mixed Rare Earth Chloride (MRCL), Nuclear Grades Ammonium Di-Uranite (NGADU), Tri-Sodium Phosphate and Thorium Nitrate. The MRCL is further refined to produce separated High Pure Rare Earths. IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value-added products. IREL is a 'Mini Ratna' Category-I CPSE with "Excellent" MoU rating over the last four consecutive years.

The Coastal stretches in Kanniyakumari District of Tamil Nadu is bestowed with the world best deposit of Monazite containing Uranium, Thorium and Rare Earth Oxide. The Monazite mineral is present in the deposit along with Titanium bearing mineral (Ilmenite, Rutile and Leucoxene), superior grade of Zircon (which is further processed to produce Zircon alloy for use in Nuclear Power Plant), Sillimanite and Garnet.

IREL, Manavalakurichi Unit in Kanniyakumari District of Tamil Nadu has been in operation since 1970, before Environmental Impact Assessment (EIA) & Coastal Regulation Zone (CRZ) Notifications came into force in the Country. The Unit is harnessing Monazite & Zircon along with other associated minerals and supplying the same to the Department of Atomic Energy and other downstream industries in the value chain. The Unit is being operated for an annual production capacity of 1,14,600 Tonnes of Atomic Minerals (HM).

As Tamil Nadu Pollution Control Board (TNPCB) has issued Consents to Operate (CTOs) for producing Ilmenite, Rutile, Zircon, Sillimanite, Monazite and Garnet from thr BSM. Monazite is supplied to IREL Rare Earth Extraction Plant located in OSCOM, Chathrapur for producing Rare Earth concentrate as Mixed Rare Earth Chloride (MRCL),

Tri-sodium Phosphate, Thorium Nitrate along with other strategic materials for supplying to DAE.

IREL has been initially granted with 3 Mining Leases in Kanniyakumari District by the Government of Tamil Nadu. The First Mining Lease granted for 7.06 Ha vide G.O. Ms.No.3707 dated 01.11.1968, was renewed vide GO 3(D) No.6 dated 28.01.2000 and extended vide G.O.Ms.No.327 dated 01.12.2021 with validity till the mineral is exhausted. The Second Mining Lease granted vide G.O.Ms.No.1085 dated 21.09.1977 was executed on 15.10.1979. The Third Mining Lease for an extent of 141.2269 Ha has been granted vide G.O.Ms.No.1114 dated 12.08.1981 and extended vide G.O.Ms.No.73 dated 11.02.2021 with validity till the mineral is exhausted. EC for this Mining Lease has been awarded by MoEF&CC vide Order No. J-11015/387/2010-IA-II (M) dated 06.04.2018 for 10.00 Lakhs Tonnes Run-of-Mines (ROM) per annum.

Meanwhile, considering the importance of the strategic minerals i.e., Monazite and Zircon, DAE vide Letter No.3/10(21)/2015-PSU/11010 dated 13.08.2015 sought the concurrence of the Government of Tamil Nadu for reservation of Monazite rich area of 1144.0618 Ha in Kanniyakumari District for the purpose of mining of Atomic Minerals by IREL. Upon concurrence given by the Government of Tamil Nadu vide letter No.12503/MMD.2/2015-12 dated 15.04.2021, the Ministry of Mines, Government of India issued the Notification vide G.S.R.399(E) dated 11.06.2021 reserving the **area of 1144.0618 Ha for mining by IREL** under section 17A (1A) of Mines and Minerals (Development and Regulation) Act, 1957. Consequent to the issuance of the aforesaid Notification dated 11.06.2021, IREL has submitted the Application dated 25.06.2021 for grant of Mining Lease. On the said application, the Government of Tamil Nadu issued the required statutory clearances including approved Mining Plan towards the grant of Mining Lease.

The Mining Lease area of 1144.0618 Ha comprises of 79.8613 Ha Government land and 1064.2005 Ha Private Patta lands located in villages Keezhmidalam-A, Midalam-B, Enayamputhenthurai (**Block A**), Ezhudesam-A, B & C and Kollencode A & B Villages (**Block B**) of Killiyoor Taluk in Kanniyakumari District. Out of the total area of 1144.0618 Ha, 353.4876 Ha area falls under the CRZ zone. IREL has formulated a Policy i.e., Concession Option Scheme for taking possession of the Private Patta land on lease for mining. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation.

Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to displacement of people. Thus, no Rehabilitation & Resettlement (R&R) issue due to the Proposal.

The mineable reserves estimated in the new mining lease area of 1144.0618 Ha is **59.88 Million Tonnes** ('111'category) and total reserve and resources is 109.15 Million Tonnes. Mineral content in the deposit varies between 10.0% and 22.6% with an average 14.5%. The method of mining will be **Non-Conventional Opencast Mechanized Mining** by Excavator-Tipper combination with no Drilling & Blasting involved. It is proposed to mine out Beach Sand Minerals-BSM @ 5000 Tonnes per day (TPD) ROM viz. 1.5 Million

Tonnes ROM per Annum. Mining operation will be carried out average depth of 6 m and a maximum depth of 9 m depending upon the location and mineralization. **No ground water-table intersection** is envisaged as ground water-table level in the Mining Lease Area ranges between 10-15 m BGL

ROM from the new mining lease will be transported and separated for individual atomic minerals at existing Mineral Separation Plant (MSP) at Manavalakurichi. In the MSP, the ROM is fed to Heavies Upgradation Section (HUS) and subsequently separated using its physical properties viz., Specific Gravity, Conductivity and Magnetic Susceptibility.

In the production quantity of 15.00 Lakhs TPA ROM & with about 70% recovery, the feed to the Mineral Separation Plant can have mineral production of 1,52,250 TPA. The generation of tailings (after removal of Minerals-Quartz) will be about 13,47,750 Tons per annum which will be transported to the mined-out voids and backfilled. Mining and backfilling will be carried out simultaneously. Thus, there will be **no bench** formation and **no Mine Pit** in the Mining Lease. Ore: Waste Ratio will be 1:0.

The Proposal requires prior EC under EIA Notification under SI. No.1(a)-Category 'A' as well as under CRZ Notification 2011, as amended. Accordingly, IREL has filed the Application to MoEF&CC on 26.12.2022 to obtain the Terms of Reference (TOR) for carrying out the EIA Study. The Proposal was deliberated in 53rd Expert Appraisal Committee (EAC) – Nuclear & Defense (ND) meeting held on 27th January 2023. ToR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023.

Baseline Data (BLD) collected during December 2022-February 2023 representing Winter 2022-23 Season has been utilised for the EIA Study in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017. EIA Report has been prepared in compliance with awarded ToRs and submitted as per generic structure proposed in Appendix-III of EIA Notification 2006.

The EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 15.07.2024). The ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2024 with validity till 02.04.2026. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The EC Proposal was deliberated in the 61st EAC (N&D) Meeting held on 23.04.2024 as Agenda SI. No. 3.1. The additional details sought by the committee are addressed in this Report and submitted for Public Hearing with Summary EIA reports in English and Tamil language. Action Plan to address the PH issues along with Budget provision will be incorporated in the Final EIA-EMP report.

1.2 Project Proponent

IREL (India) Limited is a Multi-Unit-Multi-Product Central Public Sector Enterprise (CPSE) incorporated under the Companies Act 1913 and wholly owned by the Government of India, under the Administrative Control of the Department of Atomic Energy. IREL was established in August 1950 and entered into the activities of mining, mineral beneficiation and refining of heavy minerals found in the coastal stretches and inland Teri deposits.

IREL's first Plant was set up at Rare Earth Division (RED) in Aluva, Kerala started operations in the year 1952. IREL took over the operations of M/s. Travancore Minerals Limited in Chavara, Kerala and Manavalakurichi (MK), Tamil Nadu in 1965. Subsequently, in order to augment its share in strategic and commercial sectors, IREL set up its flagship unit Orissa Sands Complex (OSCOM) at Chatrapur, Ganjam District, Odisha in 1979 which is the largest mining and mineral separation unit in operation at present.

IREL is also involved in processing of the **Prescribed Substance**, **Monazite**, to extract Mixed Rare Earth Chloride (MRCL), Nuclear Grade Ammonium Di-Uranite (NGADU), Tri-Sodium Phosphate and Thorium Nitrate. The MRCL is further refined to produce separated High Pure Rare Earths. IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value-added products.

IREL has also set up a Rare Earth Extraction Plant (REEP) in its unit at OSCOM with installed capacity of producing about 11,200 TPA of Rare Earth concentrate as Mixed Rare Earth Chloride (MRCL), 13,500 TPA of Tri-sodium Phosphate, 150 TPA of Thorium Nitrate along with other strategic materials which are supplied to DAE. Thorium oxalate generated during the process is stored in engineered trenches for future use in the 2nd & 3rd stage nuclear power programme of the Country while the High Pure Rare Earth Plant located in Aluva, Kerala further processes the Mixed Rare Earth Chloride (MRCL) produced in Odisha to produce separated High Pure Rare Earths (HPRE) such as compounds of Lanthanum, Cerium, Neodymium-Praseodymium, Samarium, Gadolinium, Dysprosium etc.

IREL has set-up a Rare Earth Permanent Magnet Plant (REPM) in Bhabha Atomic Research Centre (BARC) Campus, Vishakhapatnam for production of Samarium-Cobalt Magnets for use in Defense, Space and Atomic Energy Sectors. Further, a Rare Earth & Titanium Theme Park is being set up in Bhopal, Madhya Pradesh to demonstrate pilot plants of scientific principles developed by BARC in laboratory scale and to provide hands-on experience of the plant to entrepreneurs so as to encourage them to set up commercial operations and develop the skilled manpower to operate the plants of future.

IREL is a 'Mini Ratna' Category-I CPSE with "Excellent" MoU rating over the last four consecutive years. IREL contributes to atomic energy programme by way of supplying strategic material to the DAE and also has excellent contribution for sustenance of industries in the value chain of its mineral & rare earth products. The processed mineral products find application in number of commercial sectors such as aerospace industry, infrastructure development, ceramics, foundries, oil industries etc., while Rare Earths are used in niche applications such as consumer electronics, renewable energy, EVs, etc.

All production units of the company are certified by ISO 9001:2015, ISO 14001:2015 and OHSAS 45001:2018. All the R&D Centers are NABL accredited as per ISO/IEC 17025 standard.

IREL, Manavalakurichi Unit in Kanniyakumari District of Tamil Nadu has been in operation since 1970, before Environmental Impact Assessment (EIA) & Coastal Regulation Zone (CRZ) Notifications came into force in the Country. The Unit is harnessing Monazite & Zircon along with other associated minerals and supplying the same to the Department of Atomic Energy and other downstream industries in the value chain. The Unit is being operated for an annual production capacity of 1,14,600 Tonnes of Atomic Minerals (HM).

Monazite is supplied to IREL Rare Earth Extraction Plant located in OSCOM, Chathrapur for producing Rare Earth concentrate as Mixed Rare Earth Chloride (MRCL), Tri-sodium Phosphate, Thorium Nitrate along with other strategic materials for supplying to DAE. Zircon produced from Manavalakurichi Unit is directly sent to the Nuclear Fuel Complex (NFC), Department of Atomic Energy for strategic applications.

Address for correspondence of project proponent:

Name :	Shri N. Selvarajan,
Designation:	Chief General Manager & Head,
Address:	IREL (India) Limited,
	Manavalakurichi,
	Kanniyakumari District - 629 252
Fax:	04651-237220
Phone:	04651-237325
Email:	head.mk@irel.co.in
Website:	www.irel.co.in

1.3 Existing Mining Leases

IREL has been initially granted with 3 Mining Leases in Kanniyakumari District by the Government of Tamil Nadu. The First Mining Lease granted for 7.06 Ha vide G.O. Ms.No.3707 dated 01.11.1968, was renewed vide GO 3(D) No.6 dated 28.01.2000 and extended vide G.O.Ms.No.327 dated 01.12.2021 with validity till the mineral is exhausted. The Second Mining Lease granted vide G.O.Ms.No.1085 dated 21.09.1977 was executed on 15.10.1979. The Environmental Clearance (EC) obtained for the Mining Lease from the Ministry of Environment, Forest and Climate Change (MoEF&CC) is pending before Hon'ble Supreme Court of India. The Third Mining Lease for an extent of 141.2269 Ha has been granted vide G.O.Ms.No.1114 dated 12.08.1981, executed on 27.06.1984 and extended vide G.O.Ms.No.73 dated 11.02.2021 with validity till the mineral is exhausted. EC for this Mining Lease has been awarded by MoEF&CC vide Order No. J-11015/387/2010-IA-II (M) dated 06.04.2018 for 10.00 Lakhs Tonnes ROM per annum.

1.4 Need for the Project

Continuing the operation in the aforesaid Mining Leases for the last 50 years and that too in a small extent of area, the minable reserves within the Mining Leases are nearly exhausted. The Plant capacity utilization during the past 10 years has been less than

40%. Hence, in order to ensure uninterrupted supply of strategic materials i.e., Monazite and Zircon to the Department of Atomic Energy, Defence, Space etc., DAE vide Letter No.3/10(21)/2015-PSU/11010 dated 13.08.2015 sought the concurrence of the Government of Tamil Nadu for reservation of Monazite rich area of 1144.0618 Ha in Kanniyakumari District for the purpose of mining of Atomic Minerals by IREL.

The new mining lease area of 1144.0618 Ha was explored in detail by Atomic Minerals Directorate for Exploration and Research (AMD) in various periods from 1994 to 2003. The mineable reserves estimated is 59.88 Million Tonnes. Mineral content in the deposit varies between 10.0% and 22.6% with an average 14.5%. Thus, the New Mining Lease will feed the Manavalakurichi Plant sustainably for another 40 Years period.

The processed mineral products, apart from its usage for strategic purpose in Nuclear Energy, Defence, Space, etc., finds application in number of commercial sectors such as aerospace industry, infrastructure development, ceramics, foundries, oil industries etc., while Rare Earths are used in niche applications such as consumer electronics, renewable energy, EVs, etc., As such, extraction of Monazite and Zircon along with other associated minerals is very much essential for country's nuclear energy programme, transition to Green Energy, etc., The project will generate revenue in terms of royalty and taxes etc. to the state of Tamil Nadu in addition to make available of strategic material. The project will also generate employment to the people and ancillary industries around the area. All these minerals and Rare Earth's provides input for other industries and plays a vital role in global economy. Hence, the project is of utmost importance for the country and the region.

1.5 Statutory Approvals

1.5.1 ML Grant

Upon concurrence given by the Government of Tamil Nadu vide letter No.12503/MMD.2/2015-12 dated 15.04.2021, the Ministry of Mines, Government of India issued the Notification vide G.S.R.399(E) dated 11.06.2021 reserving the **area of 1144.0618 Ha for mining by IREL** under section 17A (1A) of Mines and Minerals (Development and Regulation) Act, 1957. Consequent to the issuance of the aforesaid Notification dated 11.06.2021, IREL has submitted the Application dated 25.06.2021 for grant of Mining Lease. On the said application, the Government of Tamil Nadu issued the Precise Area Notification/Letter of Intent (LOI) vide No.12503/MMD.2/2015-19 dated 28.06.2022 with validity till the minerals are exhausted. It has also sought the required statutory clearances including approved Mining Plan towards the grant of Mining Lease.

1.5.2 Approved Mining Plan

IREL has applied and obtained the approval of Mining Plan along with Progressive Mine Closure Plan under Rule 8(1) of AMCR 2016 and Rule 23 of MCDR 2017 from Atomic Minerals Directorate for Exploration and Research (AMD), Hyderabad vide its Letter No. AMD/MRG-4/6/2/2(8A) dated 21.02.2024 with 5 years validity (Doc - 2).

On obtaining EC, the Mining Lease will be granted and executed. Consents to Establish (CTEs) and Consents to Operate (CTOs) will also be applied and obtained from TNPCB. The expected implementation schedule is 3 months on obtaining all statutory approvals.

1.6 Mining Lease Area

The Mining Lease area of 1144.0618 Ha comprises of 79.8613 Ha Government land and 1064.2005 Ha Private Patta lands. There is **no forest land** involved. ML area mainly consists of Teri Sand & Beach sand. There is no forest land involved.

Private Patta Lands	:	1064.2005 Ha
Government Lands	:	79.8613 Ha
Total ML Area	:	1144.0618 Ha

Out of the total area of 1144.0618 Ha, 353.4876 Ha area falls under the CRZ I-B, II & III Areas and 790.5742 Ha area falls in Non-CRZ Area. Government Lands mainly comprises of Road, Ponds and Public Buildings. Private Patta Lands fall in Dry Teri Sands with Coconut Plantations, permanent structures for residential use, etc. However, the permanent structures will not be disturbed at all for the Mining.

Details of tree cutting: Most of the private patta lands are found with scattered Coconut trees @ 70 Nos. per Ac. which will be cleared in the identified pocket lands for mining.

The Mining Lease area is located at Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages, Killiyoor Taluk, Kanniyakumari District, Tamil Nadu and Index map is shown in Fig 1.1. For operational convenience, the total area of 1144.0618 Ha is divided into two Blocks i.e., **"Block A"** covering an area of **544.0688 Ha** in three villages viz., Keezhmidalam-A, Midalam-B & Enayamputhenthurai and **"Block B"** covering an area of **599.9930 Ha** in five villages viz., Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B. <u>Mining Lease Area Survey Nos. are given in Table 1.1</u>. Site Photographs are appended as Fig 1.2.

Name of the Village	Total Extent (Ha)	Patta Land (Ha)	Poramboke Land (Ha)
Block A			
Keezhmidalam - A	204.0652	194.7074	9.3578
Midalam - A	202.9686	190.1098	12.8588
Enayamputhenthurai	137.0350	134.3650	2.6700
Sub Total	544.0688	519.1822	24.8866
Block B			
Ezhudesam - A	41.1000	35.8950	5.2050
Ezhudesam - B	82.9000	80.5850	2.3150
Ezhudesam - C	275.8280	246.1792	29.6488
Kollencode - A	28.3950	25.7650	2.6300
Kollencode - B	171.7700	156.5941	15.1759
Sub Total	599.9940	545.0183	54.9747
Total	1144.0618	1064.20.05	79.86.13

Table 1.1 : Village wise extent of area of the proposed mine

Mining Lease Area Survey Numbers

DISTRIC	T: KANNIY	AKUMARI	TALUK: KILLIYOOR					
		VILLAGE:	KEEZHMID	ALAM-A	-			
Serial No.	Resurvey	Total Extent	IREL Proposed Area	Patta Lood	Poramboke Lan			
	1955	Hectares	Hectares	Hectares	Hectares			
1	16	5,83,00	3.83,00	3.71.00	0,12.00			
2	17	3.34.50	3.34,50	2:97:50	0.37.00			
3	18	4.82.00	4,82.00	4,49.50	0,32.50			
4	19	4,42.50	4:42:50	4.19.00	0.23.50			
5	45	3.89.00	3,89.00	3.81.50	0.07.50			
6	- 46	4,17.50	4:17.50	3.91.50	0,26.00			
7	47	4,04,50	4.04.50	3,97.00	0.07.50			
8	348	3/07:50	3:07:50	2.59.00	0.48.50			
ġ	49	3,38.50	3,38,50	1.13.50	0,25.00			
10	50	3.11.50	3.11.50	3,11.50	0,00,00			
11	51	3.12.00	3,12.00	3.12.00	0.00.00			
12	52	3.55.00	3.55.00	3,32,50	0.22.50			
13	53	4.27.00	4.27.00	4.27.00	0.00.00			
14	54	3,66,00	3.65.00	3,66.00	0.00.00			
15	55(Part)	0,74,80	0.74.80	0,74,80	0.00.00			
16	56(Part)	0.29.07	0.29.07	0.29.07	0.00.00			
17	57(Part)	3.26.00	3.26.00	3.26.00	0,00,00			
18	58	2.37.50	2.37.50	2.31,50	0.06.00			
19	\$9	3.83.50	3,83.50	3.79.50	0.04.00			
20	60	3.24,50	3.24.50	3.12.50	0.12.00			
21	61	2.35.50	2.35.50	2.06.50	0.29.00			
22	69	1.15,50	1.15.50	1,15.50	0.00.00			
23	70	1,42,50	1.42.50	1,34.00	0.08.50			
24	71	0.19.50	0.19.50	0.00.00	0.19.50			
25	72	0.36.00	0.36.00	0,00,00	0.36.00			

ļ	26	73	2,71.00	2:71:00	2.71.00	0.00.00
ļ	27	74	1.07.00	1.07.00	1.07.00	0.00.00
ļ	28	75	0,41.00	0:41:00	0.00.00	0.41.00
	29	76	2.69.00	2,69.00	2.69.00	0.00.00
-	30	77	0,24,50	0.24.50	0.00.00	0.24.50
ŀ	31	78	1.86.00	1.86.00	1.85.00	0.01.00
ļ	32	79	0.40.50	0.40.50	0.00.00	0.40.50
ŀ	33	80	0.56:00	0.56.00	0.00.00	0,56.00
ŀ	34	- 81	2.38.50	2.38.50	2.38.50	0.00.00
ł	35	82(Part)	1.61.00	1.61.00	1,61.00	0.00.00
ļ	36	83(Part)	2.23.44	2.23.44	2.23,44	0.00.00
ŀ	37	84	1.28.50	1.28.50	1.28.50	0.00.00
ļ	-38	85	2.15.00	2 15:00	2.15.00	0.00.00
ļ	39	86	1.20,50	1.20:50	1.20.50	0.00.00
L	:40	87	7.91.50	7,91.50	7.85.00	0.06.50
1	41	88	3.95.00	3.95.00	3.87.50	0.07.50
-	42	89(Part)	2.40.33	2.40.33	2,40,33	0.00.00
ļ	43	90(Part)	0.00,61	0.00.61	0.00.61	0.00.00
-	44	91(P#t)	1.05.27	1.05.27	1.05.27	0.00.00
ļ	45	92	3.01.50	3.01.50	3.01.50	0.00.00
ŀ	46	93	1.96.50	1.96.50	1.96,50	0.00.00
	47	94	3.91.00	3.91.00	3,91.00	0.00.00
L	48	95	2.40.00	2.40.00	2.40.00	0.00.00
ļ	49	96(Part)	22.31.00	22.31.00	22,24.50	0.06.50
L	50	97	3.73.00	3.73.00	3.73.00	0.00.00
	51	98	4.50.50	4.50.50	3.64.22	0.86.28
	52	99	0.96.00	0.95.00	0.84,00	0,12.00
ļ.	53	100	2.08.50	2.06.50	2.08.50	0.00.00
	54	101	3.71.50	3.71.50	3.71.50	0,00.00
	55	102	2.27.00	2.27.00	2.15.00	0.12.00
	56	103	2,66.00	2:66:00	2.07.00	0.59.00
					the second se	The second

0.04.5

0.60.5 0.00.0 0.07.0 0.07.0 0.23.5 0.13.5 0.34.0 0.01.5 0.24.0

0.13.0 0.14.5 0.10.0 0.00.0 0.29.0 0.29.0 0.22.0 0.00.0 0.00.0 0.00.0

0.00,0

0.00.0 0.44.5 0.12.0 0.15.0

0.13.5

0.46.5

								1			000000
F	1252	100	1.62:50	1.67.50	1.59.50	0.04.00	<u>t1</u>	91	0.25.50	0.25.50	0.21.00
1	57	104	3.51.00	2.68.00	3 45 50	0.18.50	12	92	1.93,00	1.93.00	1.32.50
	58	105	3,04.00	4.33.00	1.04.00	0.19.00	13	93	1.45.00	1.48.00	1.48.00
i.	59	106	1.23.00	2.63.00	3.19.00	0.32.00	14	94	2.69.50	2.69,50	2.65.50
	60	107	3,50,00	3.50.00	5.19.0V	0.00.00	15	95	2.67.50	2.67.50	2.60.50
	61	108	0.44.50	0.44.50	0,44,50	0.21.00	16	96	1.93.00	1.93.00	1.93.00
+	62	109	0.28.50	0.28,50	0.07.50	0.41.00	17	97	1.67.50	1.67.50	1,44,00
	63	110	0,67,50	0.67.50	0.65.50	0.01.00	18	98	2.01.50	2.01.50	1.68.00
	64	123	3.52.50	3.52,50	3.33.00	0.19.20	19	99	1.75.50	1.75.50	1,41,50
	65	124	2.92.00	2,92.00	2.82.00	0.10.00	20	100	3:72.50	3.72.50	3.71.00
	66	126	2.50.50	2.50.50	2.38,00	0,12,50	21	101	3.30.50	3.30.50	3.06.50
	67	127	1.75.50	1.75.50	1.71.50	0.04.00	22	105	2 58 50	2.58.50	2,45,50
	68	128	2,43,00	2:43:00	2.31.50	0.11.50	23	106	2.60.50	2,60,50	2.46.00
	69	129	3.45.50	3,45.50	3.39.00	0.06.50	34	107	1.49.50	1,49,50	1.39.50
	70	136	2.62.50	2:62.50	2.20 50	0.42.00	25	108	3,31,00	3.31.00	3 31.00
	71	137	2.13.50	2.13.50	2.03:00	0.10.50	192	100	2.20.00	2.79.00	2,79.00
Ĩ	72	138	3.50.00	3.50.00	3,50.00	0.00.00	20	110	1.21.00	1.31.00	0.92.00
1	73	139	3,17.50	3.12.50	3,17.50	0.00.00	21	110	0.40.60	0.40.50	0.18.48
	74	140	2.29.00	2.29.00	2.15.00	0.14.00	85		0.90.00	5.52.00	2 37 00
Ì	75	141(Part)	0.72.00	0.72.00	0.72.00	0.00.00	29	112	3.37,00	4.76.00	A 25.00
	т	OTAL	204.06.52	204.06.52	194.70.74	9.35.78	30	113(Part)	4.76.00	9.70.00	1.70,00
1			VILLAC	SE: MIDALA	MB		31	114	3.39.50	3, 39, 50	3.39.00
1	1	80	3.85.50	3.85.50	3.63.50	0.22.00	32	115(Part)	2,42,50	2,42.50	2.92.50
1	3	82	2.10.50	2.10.50	1.86.00	0.24.50	33	115	0.53,00	0.53.00	D:00.00
ľ	2	83	2.37.00	2.37.00	2.37.00	0.00.00	34	117	1.11.50	1,11.50	1,01.00
	N N	84	1.98.50	1.98.50	1.44.50	0.54.00	35	118	4.64.00	4.64.00	4.64.00
1			3 97 00	2.92.00	2.92.00	0.00.00	36	119	3,45,50	3.45.50	3.01,00
		ind:	1 69 00	1.68.00	1.68.00	0.00.00	37	120	3,08,50	3.08.50	2.96.50
1	0	03	2.07.00	2.07.00	2:06:50	0.00.50	38	121	3.34.50	3.34.50	3.19.50
	1	87	2.07.00	3.33.50	3 32 50	0:00.00	39	122	1.43.00	1.43.00	1.29.50
	8	88	2.32.50	2/07/00	2:06:50	0.00.50	40	123	0,26.50	0.26.50	0,00,00
	9	89	2.07.00	2.01.00	0.16.00	0.00.00	41	124	1.87.00	1:87:00	1.40.50
	10	9/1	0.16.00	0.10.00	0170/00	10.0001979					

42	125	1.14,50	1:14:50	1.14:50	0.00.0	73	156	1.82.00	1.82.00	1.82:00	0.00.00
43	126	1.77.00	1.77.00	1.77.00	0.00.0	74	157	0.23.50	0.23.50	0.23.50	0.00.00
9445	127	1:52:00	1.52.00	1.52,00	0.00.0	75	158	0.14.00	0.14.00	0.14.00	0.00.00
45	178	4:41.00	4,41,00	4,41.00	0.00.0	76	159	2.02.50	2.02.50	0.84.00	1.18,50
46	129	2.16.00	2.16.00	2.16,00	0.00.0	77	160	1.84.00	1.84.00	1.84.00	0.00.00
47	130	3,84,50	3.84.S0	3.84.50	0.00.0	78	161	0.96.00	0.96.00	0.96.00	0.00.00
48	131	1.71.50	1.71.50	1.71.50	0.00.0	79	162	3:43.95	3.43.95	3.43.95	0.00.00
49	132	1.87.50	1,67.50	1.55.00	0.32.5	80	163(Part)	0.00.38	0,00.38	0.00.19	0.00.19
50	133	0.14.50	0.14.50	0.00.00	0,14,5	81	166(Part)	0.72.52	0.72.52	0.72.52	0,00.00
51	134	0.52,50	0.52.50	0.00.00	0.52.5	82	167	1.45.00	1.45.00	1.38.50	0.05.50
52	135	4.16,00	4,16,00	4.03.00	0.13.0	83	168	1.31.50	1.31.50	1.31.50	0.00.00
53	136	3.69.50	3.69.50	3:60.00	0.09.5	84	169	1.63.50	1.63.50	1.63.50	0:00:00
54	137	3.09.50	3.09.50	3.03.50	0.06.0	85	170(Part)	0.06.09	0.06.09	0.06.09	0.00.00
55	138	2.54.00	2154.00	2:47:50	0.06.5	86	173	2.32.50	2.32.50	2,22.00	0.10.50
50	139	3.12.50	3,12,50	3.08,50	0.04.0	87	174	0.40.00	0.40.00	0.00.00	0.40.00
57	1910	0.17.00	0.17.00	0.17.00	6,00,0	88	175	3.36.00	3.36.00	3.23.90	0.12.50
58	141	1,44,50	1.44,50	1.44.50	0.00.0	89	176(Part)	0.04.31	0.04.31	0.03.07	0.01.24
59	142	0.31.00	0.31,00	0.00.00	0.31.0	96	177(Part)	2.13.52	2:13.52	1.88.02	0.25.50
60	143	2.74.35	2.74.35	1.98.91	0.75.4	91	178(Part)	0.38.14	0.36.14	0.38.14	0.00.00
61	144	3.29.50	3.29.50	3.17.50	0.12.0	92	179(Part)	0.46.69	0.46.69	0.46:69	0.00.00
62	145	2.28.00	2.28.00	2.11.00	0.17.0	93	180(Part)	0.66.50	0,66,50	0.66,50	0.00.00
63	146	1.81.00	1.81.00	1.76.50	0.04.5	94	182(Part)	2.15.00	2.15.00	2.15.00	0.00.00
64	147	2.34.50	2.34.50	2.25.00	0:09:5	95	183	2.53.50	2.53.50	2.37.50	0.16.00
65	148	2,43,00	2.43.00	2.36.50	0.06.5	96	184	1.94.50	1,94.50	1:83.00	0.11.50
66	149	2.80.50	2.80.50	2.80.50	0:00:0	97	185	1.56.50	1.56.50	1.42.50	0.14.00
67	150	0,18:50	0.18.50	0.00.50	0.18.0	98	186	2 15.50	2,15.50	2.01.00	0.14.50
68	151	2,43,50	2.43.50	2,43.50	0.00.0	99	187	2,80,41	2,80,41	2,46,90	0.33.51
69	152	0.18.00	0,18.00	0.00.00	0.18.0	100	188	2.05.00	2.05.00	1.94.00	0.11.00
70	153	2.97.00	2.97.00	2,97.00	0.00.0	101	100	1.47.00	1.47.00	1.26.50	0.20.50
71	154	1,42,00	1,42.00	1.42.00	0.00.0	102	190	0.24.00	0.24.00	0.17.00	0.07.00
77	155	1.32.00	1.32.00	1.32.00	0.00.0	102	1250	0.00.00	0.10.50	n to en	0.00.00

101	192	1.77.00	1.77.00	1.77.00	0.00.00
105	193	1.17.00	1,12,00	1.14.50	0.02.50
106	194	0.24.00	0,24.00	0.23.50	0.00.50
107	190	0.25.50	0.25.50	0.00.00	0.25,50
108	203	0.06:50	0.06.50	0.06.50	0.00.00
TS	TAL	202.96.86	202.96.86	190.10.98	12.85.88
	VII	LAGE: ENA	YAMPUTH	ENTHURAL	
1	494(Part)	2.81.51	2,81,51	2.81.51	0.00.00
2	495	3,57,50	3,57.50	3.57.50	0.00.00
3.	496	0.24.00	0.24.00	0.00.00	0.24.00
341	529	1.08.00	1.05.00	1.98.00	0.00.00
5	530	1.60.00	1.80.00	1.80.00	0.00.00
6	531	2.40.00	2,40,00	2.40.00	0.00.00
Ŧ.	532	0.99.00	0.179.00	0.99.00	0,00,00
8	533	2/13:00	2.13.00	2.13.00	0,00.00
9	534	2.24.50	2/2/4.50	2.24.50	0.00.00
10	\$35	2.16.50	2,16.50	2.15.55	0.00.00
11	536	1.58.00	1.58.00	1.50.00	0.05.00
12	537	1:20.00	1.20.00	00,05.1	0.00.00
13.	541	1:25:50	1.25.50	1 25:50	0.00.00
14	542	1.23.50	1.23.50	1.23.50	0.00.00
15	543	1.04.49	1.04.49	1.04.49	0.00.00
15	544	1.57.50	1.57.50	1.57.50	0.00.00
17	545	1032(50	1:32.50	3.23.00	0.09.50
18	546	1.17.00	1,17.00	0.99.50	0.17.50
19	547	1.90.50	1.90.50	1,90,50	0,00.00
20	548	1.65.00	1,65,00	1.65.00	0.00.00
21	\$49	0.17.50	0.17.50	0.04,50	0.13.00
22	550	0,66.50	0.66.50	0.66.50	0.00.00
23	551	1.13.90	1.13.00	1,13,00	0.00.00
24	600	3.71.50	2 21 50	2.75.50	0.00.00

25	iners)	OK APRIMA	45.14.141.4626	00.00000	a'na 1661
100	353	0.37.00	0.17.00	0.17.00	0.00.00
26	594	0.22.09	0,22.90	0,22.00	0.00.00
	555	1,85,50	1,85,50	1.85.50	0.00.00
20	556	1,20,50	1:29.50	1.20.50	0.00.00
47	557	0.09.50	0.09.50	0.09.50	0.00.00
30	558	0.85.00	0.85.00	0.85.00	0.00.00
31	559	0.30.00	0.30,00	0.00.00	0.30.00
32	560	2,46,00	2,46.00	2.46,00	0.00.00
33	- 561	2.21.00	2.21.00	2.21.00	0.00.00
34	562	2.49.05	2:49:00	2.49.00	0.60.60
35	563	3,14.50	3.14.50	3/14.50	0.00.00
36	584	1.69.50	1.69,50	1.69.50	0.00.00
37	565	1.75.50	1.75,50	1.75.50	0.00.00
38	566	1.53.50	1.53,50	1.53.50	0.00:00
3.9	567	1.11.50	1.11.50	1.11.50	0:00:00
40	578	3,70,00	1.70.00	3,70.00	0,00,00
41	581	2,55.50	2.58.50	2.58.50	0.00.00
42	582	1.32.00	1.32.00	1.32.00	0.00.00
43	585	0.07.00	0.07.00	0.07.00	0:00.00
-44	582	0.41.50	0.41.50	0.41.50	0.00.00
45	555	0.09.00	0.09.00	0.08.50	0.30.50
46	589	1.02.50	1.02.50	1.02.50	0.00.00
47	590	0:09.50	0.09.50	0.00.00	0.09.50
48	:591	1.53.50	1.53.50	1,40.50	0.13.00
49	592	0.07.50	0.07.50	0.00.00	0.67.50
50	593	1.68,50	1.68.50	1.68.50	0.00.00
51	594	0.07.00	0.07.00	0.01.50	0.05.50
52	595	2.76.50	2.76.50	2:76:50	0.00.00
53	596	0.29.00	0.29.00	0.03.50	6.25 50
56	5,97	0.34.00	0.24.00	0.00.00	0.24.00
55	508	0.42.50	0.42.50	0.07.50	0.35.00

56	599	0.17.50	0.17.50	0.00.00	0.17.	87	630	2.47.00	2,47,00	2.47.00	0.00.00
57	600	1544550	1544.50	1,44,50	0.00,	88	631	0.22.50	0.22,50	0.08.50	0:14:00
58	661	2.35.00	2.35.00	2.35,00	0.00.	89	632	4.07.50	4.07.50	4.02.50	0.00.00
59	602	1:13:00	1,13,00	1.13.00	0.00.	90	633	3.47.00	3:47:00	3:47:00	0.00.00
60	603	0.75.50	0.75.50	0.75.50	0.00.	91	634	4.09.00	4.09.00	4.09.00	0,00.00
61	604	4.11.50	4.11,50	4,11.50	0.00.	T	OTAL	137.03.50	137.03.50	134.36.50	2.67.0
62	605	1.76,50	1.76.50	1.76,50	0.00.			VILLAGE	EZHODESI	419-24	
63	606	1.27.00	1.27.00	1.27.00	D.00.	1	374(PART)	0.31.50	0.31,50	0.11.50	0,00.00
64	607	1,73,00	1.73.00	1.73.00	0.003	2	402	1.88.00	1.88.00	1.88.00	0.00.00
65	608	2.71.00	2.71.00	2.71,00	0.00.	3	404	0.94.50	0.94.50	0.94.50	0.00.00
66	669	1.15.00	1.15.00	1.15.00	0.00.		403	1.66.00	1.66,00	1.66.00	0.00.00
67	610	0.86.50	0.86.50	0.86.50	0.00.	.5	407	2,91.50	2.91.50	2.83.00	0.08.5
2.0	611	1.52.00	1:67.00	1:62:00	0.00.	6	408	4.10.00	4.10.00	1.32.00	2.78.0
69	212	8 18 58	0.10.50	0.19.50	0.00.	20	409	2.12.50	2.12.50	2.12.50	0.00.0
222	2012	0.10.00	0.00.00	0.19.00	0.00.	8	410	1,55,50	1.55.50	1.54.50	0.61.0
70	013	0.15.00	0.19.00	7 15 00	0.00	9	411	1.65.00	1.68.00	1.68.00	0.06.0
	019	2:15:00	2.15,00	0.12.50	0.00	10	412	0.74.00	0.74.00	0.74.00	0:00.0
-72	015	0.18.00	0.28.00	0.17.90	0.00	11	413	2.05.50	2.05.50	2.05.50	0.00.0
1.2	016	1.87.50	1.87.50	1,92,00	0.05	12	448	1,41,50	1:41:50	1.41.50	0.00.0
74	617	3.61.50	3;61,50	3:50.00	0.03	13	449	0.77.00	0.77.00	0.77.00	0.00.0
75	618	1,54,50	1.64.50	1.63.00	0.01.	14	450	0.82.00	0.82:00	0.82,00	0.00.0
76	619	1.37.00	1.37,00	1.37.00	0,00.	15	451	4.75.50	4.75.50	2.71.50	2.04.0
77	620	1,49.00	1.49.00	1.49.00	0.00.	16	452	1.97.00	1.97.00	1.97.00	0.00.0
78	621	2,25,50	2.26.50	2.26.50	0.00	17	453	2,44.50	2.44.50	2,44.50	0.00.0
79	622	3,34.00	3,34,00	3.34.00	0.00	18	455	1.91.00	1.91.00	1.90.00	0.01.0
80	623	0.73.00	0.73.00	0.73.00	0.00	19	455	1.62.50	1,62,50	1.62.50	0.00.0
81	624	1,45,50	1.45.50	1:45:50	0.00.	-20	457	1.20.00	1.20.00	1.20.00	0.00.0
82	625	1.67.50	1.67.50	1.67.50	0.00.	21	458	1.01.00	1.01.00	0.88.00	0.13.0
83	626	3.35.50	3:35,50	3,35.50	0.00.	22	489	2 35 00	2.35.00	2.35.00	0.00.0
:B4	627	0.18.50	0.18.50	0.18.50	0.00	22	.100	0.86.00	0.86.00	0.71.00	0.15.0
85	628	0.13.50	0.13,50	0.13.50	0.00	2.0	-130	41.10.00	41.10.00	35.89.50	5.20.5
86	629	0.17.50	0.17 50	0.17.50	0.00		VIAL			10-F-4-C072722-24-14	

1	_	VILLAGE	EZHUDES	M-B	
	139	4:09.00	4.09.00	4,02.50	0.06.50
2	146	1.10.50	1.10.50	1.10.50	0.00.00
33	149	0.13.00	0.13.00	0.00.00	0.13.00
	150	0.91,50	0.91.50	0.75.90	0.16.00
5	151	2.43.00	2,43.00	2,40,00	0.03.00
6	152	1.39.00	1,39.00	1.26.00	0.13.00
7	153	3,61.50	3,61.50	3,45,50	0.15.00
8	154	3.58.00	3,58.00	3.58.00	0.00.00
9	157	0.09.50	0.09.50	0.06.50	0.03.00
10	169	2,80,50	2,80.50	2.76.50	0.04.00
1.5	170	4.29.50	4.29.50	4,29,50	0.00.00
1.2	171	3.37.00	3.37.00	3.23.50	0.13.50
13	172	1.21.00	1.21.00	1.21.00	0.00.00
191	173	3,70.00	3.70.00	3.62.00	0.08.00
15	174	1.23.00	3,23.00	3,11.50	0.11.50
16	175(Part)	2:14.55	2:14.55	2.14.55	0.00.00
17	186	1.86.00	1.85.00	1.86.00	0.00.00
18	187	2.55.00	2,55,00	2.55.00	0.00.00
19	192	3.14.00	3.14.00	3,14.00	0.00.00
20	393	1/30/00	1.30.00	1.30.00	0.00.00
21	194	3.13.95	3.13,95	3.13.95	0.00.00
22	195	3:32.50	3.32.50	3,25,00	0.06.50
23	196	2.95.50	2.95.50	2.95.50	0.00.00
24	197	2.65,50	2.65.50	2.63.00	0.02.51
25	198	2,59,00	2.59.00	2.46.00	0.13.0
26	199	1.94.50	1.94.50	1.81.50	0.13.0
27	200	1,49.50	1.49.50	1,43,00	0.06.5
28	201	3.96.50	3,96.50	3.55.00	0.41.5
29	202	2.66.50	2.66.50	2.66.50	0.00.0
30:	203	1.21.00	1.21.00	1.21.00	0.00.00

31	201	1.96.00	1.96.00	1.95,00	0,00,00
32	205	3.32.00	3/32.00	3:32:00	0,00,00
33	205	2.21.50	2.21.50	2.01.00	0.20.50
34	207	2.50,50	2.58.50	2,30,00	0.20.50
TO	TAL	82.90.00	\$2.90.00	80.58.50	2.31.50
		VILLAGE	: EZHUDES	AMC	_
i.	206	3,54,50	3.54.50	3:37:00	0:17.50
2	209	2,04,50	2.04.50	1.96.50	0.06.00
3.	210	3,16.00	3.16.00	3,14.00	0.02.00
4	211	11:40:50	3:40:50	2.73.00	0.67.50
<u>4</u>	212	1.61.00	1.61.60	1534550	0.26.51
6	213	2.59,50	2 59,50	2.31.00	0.28.57
7	214	2.44.00	2.44.00	2,37.00	0.07.00
8	21.9	1,73.50	1.73.50	1,44,00	0,29.50
9 10	216 217	1.14.50 2.02.50	1.14.50 2.02.50	1.00.00	0.14.50 0.09.51
1.1	2.1:8	1.57.00	1.57.00	1.57.00	0,00,0
12	219	1.12.50	1.12.50	2.12.59	0.00.0
13	220	8.55.00	8.55.00	8.55.00	0:00.0
14	221	5.35.50	5.35.50	5,35.50	0.00.0
15	225	8.81.00	8.51.00	8.81.00	0,00.0
16	226	6,50.00	6,90,00	ō.90.00	0.00.0
17	228	6.83.00	6.83.00	6.83.00	0.00.0
18	229	2:03:50	2.03.50	2,03.50	0.00.0
19	246	9,10.00	9,30.00	9.06.00	0.04.0
20	247	8,19,50	8,19,50	6 19.50	0.00.0
28	248	2.93.50	2.93.50	2:93:50	0.00.0
22	249	1,45,00	1.45.00	1.39.50	0.05.5
23	250	1.86,00	1.86.00	1,80,00	0.06.0
24	251	2:37.00	2.37.00	2.37.00	0.00.0
25	292	1.51.00	1.51.00	1.33.00	0,18,0

26	253	1,40,50	1.40.50	1.30.50	0.10.00	57	296	17,14.30	17.14.30	16,45.30	0.68.0
-27	254	1.28.50	1.28.50	1.28,50	0.00.00	58	319	9.31.50	9,31.50	8.54.50	0,77.0
28	255	0.68,50	0.68.50	0.61.00	0.07.50	59	320	8.29.00	8.29.00	8,29.00	0.00.0
29	256	3:20:50	3.20.50	2.90:50	0.30,00	60	322	6.41.00	6.41.00	5,59.00	0,82.0
30	258	0.13.50	0,13,50	0.00.00	0.13.50	61	327	3.38.00	3.38:00	3.38.00	0.00.0
31	259	0.20.50	0.20.50	0.00.00	0.20.50	62	328	6.91,00	6.91.00	0.00.00	6.91,0
32	261	2.30.00	2.30.00	2,30.00	0.00.00	63	329	22.85.00	22.85.00	9:80:50	13.04.5
33	262	3.44.00	3.44,00	3,44.00	0.00.00	64	330	3.00.50	3,00.50	2.91.50	0.09.0
34	263	1.65.50	1.65,50	1,65,50	0.00.00	65	331	1.95.00	1:95:00	1.87.00	0.08.0
35	264	2.69.00	2,69.00	2.69.00	0.00.00	66	332	1.09.50	1,68.50	1.07.00	0.01.5
36	265	2,39,00	2.39.00	2,39.00	0.00.00	67	333	0.76.50	0:76:50	0.64.50	0.12.0
37	266	1.83.00	1 83.00	1.78:00	0.05.00	68	334	1.65.00	1,65,00	1.48.50	0.16,5
38	257	1.16.50	1.16.50	1.15.00	0.01.50	:69	335	1.86.00	1.86.00	1.85.00	0.01.0
39	268	1.16.50	1,16.50	1,16.50	0.00.00	70	336	2.53,00	2.53.00	2.39.62	0.13.3
40	269	1.83.50	1.83.50	1:83:50	0.00.00	71	337	2.02.00	2.02.00	2.02.00	6.00.0
41	270	0.17.00	0.17.00	0,00.00	0.17.00	22	338	4.58,00	4.58.00	4.58:00	0.00.0
42	271	1.39.50	1.39.50	1,19.50	0.20.00	73	339	1,49,00	1.49,00	1.41.00	0.08.0
43	272	0.84.00	0.84.00	0.74.50	0.09.50	24	340	4.43.50	4,43.50	4,34.00	0.09.5
44	273	1.16:00	1.16.00	1.08.00	0.08.00	75	341	2.77.50	2.77.50	2.77.50	0.00.0
45	274	0.60.00	0,60,00	0.52.00	0.08.00	76	342	1.06.50	1.05.50	1.00.00	0.06.5
46	275	0.51.50	0,51.50	0.51.50	0.00.00	77	343	2.32.00	2.32.00	2.18.00	0.14.0
47	276	0.56.50	0.56.50	0.56,50	0.00.00	78	344	2.06.50	2.06.50	1.75.50	0.31.0
48	277	0.21.00	0.21.00	0.00.00	0.21.00	79	345	2.31.00	2.31.00	2.23.50	6.07.5
49	278	2.27.50	2.27.50	2016/00	0.11.50	80	346	0.98.00	0.98.00	0.98:00	0.00.0
50	279	0.22.50	0.22.50	0.22.50	0.00.00	81	347	3.12.50	3.12.50	2.98.00	0.14,5
51	280	0.99.00	0,99.00	0.98.50	0.00.50	82	348	3.06.50	3.05.50	2:96:00	0.10.5
52	281	1.48.50	1,48.50	1,47.50	0.01.00	83	351	1.99.00	1.99,00	1.99.00	0.00.0
53	282	6.68.00	6.68.00	6.66,00	0.02.00	84	352	2.78.50	2.78.50	2.77.50	0.01.0
-54	283	7.95.50	7,95.50	6.76.00	1,19,50	85	353	1.24.50	1.24.50	1.24.50	0.00.0
55	294	0.24.50	0.24.50	0.24.50	0.00.00	86	354	2.03.00	2:03:00:	2:03.00	0.00.0
56	295	3.78.50	3.78.50	3.78,50	0.00.00	87	355	1.90.00	1.90.00	1.61.50	0.28.5
		· · · · · · · · · · · · · · · · · · ·		and the second se							

88	359(Part)	1.72.00	1,72,00	1.72.00	0.00.0	16	607	3.32.50	3,32.50	3,00.50	0.32.00
ा	OTAL	275,82.80	275.82.80	246.17.92	29.64.	32	608	7,77.00	7.77.00	2.44.00	5.33.00
_		VILLAGE:	KOLLENCO	DE-A		18	609	3,06,50	3.06.50	3.06.50	0.00.00
а.	347	2,80,50	2.80.50	2.80.50	0.00.0	1.9.7	610	2.74.50	2.74.50	2.74.50	0.00.00
2	348	1.80.50	1.80.50	1.80.50	0.00.0	20	611	1.25,50	1.26.50	1.18.00	0.08.50
3	354(Par) 3.25.50	3.25.50	3.04.00	0.21,5	21	612	0:79:00	0.79.00	0.79.00	0.00.00
4	355	4.59.50	4,59,50	4.44.00	0.15.5	22	613	1.98.00	1.98.00	1.98.00	0.00.00
5	356	3.48.00	3.48.00	3,16,00	0.32.0	23	614	3.29.50	3.29.50	3,26,59	0.03.00
6	357	2,48.50	2,48.50	2.21.00	0,27,5	24	615	2.18.50	2.18,50	2.05.50	0.13.00
7	358	3.27.00	3.27.00	1.85.00	1.42.0	25	61.6	2,44,00	2.44.00	2,21,00	0.23.00
8	362	0.95.50	0.95.50	0.87.00	0.08.5	26	617	2,34.00	2.34.00	2.34.00	0.00.00
9	363	2.69.50	2.69.50	2.53.50	0.16.0	27	618	2.25.00	2.25.00	2.17.00	0.08.00
10	364	3:37.50	1.37.50	1,37.50	0.00.0	28	619	1.97,00	1.97.00	1.81.00	0.16.00
11	365	1,67.50	1.67.50	1.67.50	0.00.0	29	620	2.52.00	2,52,00	2.46.00	0.06.00
	TOTAL	28.39.50	28.39.50	25.76.50	2.63,0	30	-621	2.09.00	2.09.00	2.69.00	0.00.00
	VILLAGE: KOLLENCODE-B				31	623(Part)	1.50,15	1,50,15	1.50,15	0.00.00	
1	585	2.87.00	2,87.00	2,80,81	0.06.1	32	651	2.80.00	2.80.00	2.31.00	0.49.00
2	586	2.13.00	2.13.00	2.13:00	0.00.00	33	652	1.30.00	1.30.00	1.16.50	0.13,50
3	587	0.82.50	0.82.50	0.82.50	0.00.0	34	655	2:68:90	2.68.90	2.53.40	0.15.50
36	588	4.71.00	.4.71:00	4,71,00	0.00.0	35	656	2.10.50	2.10.50	2.05,50	0.05.00
5	589	4,17.50	4,17,50	4.17.50	0.00.0	36	657	2,88.00	2.88.00	2.80.50	0.07.50
6	590	1:51.00	1.51.00	1.51.00	0.00.0	37	658	1.33.50	1.33.50	1.21.00	0.12.50
7	591	3.30.50	3,30.50	3,30,50	0.00,0	38	659	0.69.00	0.69.00	0.59.50	0.09.50
8	595	1.53.50	1.53,50	1.42.00	0.11.5	39	560	1.14.00	1.14,00	1.14.00	0.00.00
9	596	1.63.00	1.53.00	1.63.00	0.00.0	40	661	1.02.50	1.02.50	1.02.50	0.00.00
10	601	1.89.00	1.89.00	1,59,00	0.00.0	41	662	1.11.00	1.11.00	1.01.50	0.09.50
11	602	2.18.50	2.18.50	2.18.50	0.00.0	42	663	1.59,50	1.59.50	1.45.00	0.13.50
12	603	3.53.00	3.53.00	3.53.00	0.00.0	43	664	1.52.50	1.52.50	1.46.50	0.06.00
13	604	3.78.50	3,78,50	3.71.00	0.07.5	64	665	2.00.50	2.00.50	1.81.00	0.19.50
14	605	5.09.50	5.09.50	0.00.00	5.09.5	45	666	2.77.50	2.77.50	2.77.50	0,00,00
15	606	2:15.50	2.15.50	2.01.00	0.14.5	46	667	1.78.00	1,78.00	1.63.50	0,14.50

	TOT	AL	171.77.00	171.77.00	156.59.41	15.17.59
-	68	689	2.83.50	2.83.50	2.41.60	0.41.90
-	67	688	3.89.50	3,89,50	3.89.50	0.00.00
	66	687	2,49,50	2.49.50	2.29:50	0.20.00
L	65	686	3.00.00	3.00.00	2.99:00	0.01.00
	Ba	685	2:45:50	2.45.50	2.45:50	0:00:00
	63	684	2.57,00	2.57.00	2.57.00	0.00.00
	62	683	1.23,50	1.23,50	1.23.50	0.00.00
	61	682	3.85.00	3,85,00	3.65.00	0.00.00
L	60	681	1.90.00	1.90.00	1.90.00	0.00.00
	59	680	2.09.50	2.09.50	2.09.50	0.00.00
	58	679	3.54.00	3,54.00	3.38.00	0.16.00
	57	678	3,90.50	3.90.50	3.90.50	0.00.00
L	56	677	3.01.50	3.01.50	3,01,50	0,00,00
	55	675	9.85.95	9.85.95	9.69.45	0.16.50
	54	675	2.36.50	2.36.50	2.19,00	0.17.50
	53	674	1.95.00	1.95.00	1.95.00	0.00.00
	52	673	0.85.50	0.86.50	0.86.90	0.00.00
	51	672	2,37.00	2.37.00	2:19:00	0.18.00
1	50	671	1,43.00	1.43.00	1.39.00	0.04,00
1	49	670	1.71,00	1,71,00	1,55.50	0.15.50
L	49	669	2.33.50	2.33,50	2.33.50	0.00.00
Ĩ.	47	668	2.48.00	2.48.00	2.48.00	0:00:00

ABSTRACT

Letter No. 1259 3 (HMD: 2/2015-19 Industries (MMD: 2) Debarroseot.

si.	Village	Fotal Extent	IREL Proposed Area	Patta Land	Priraco Lar Hesta	
		Hostaros	Hoctores.	Hockness		
1	HTEPHINIDALAH - A	204.98.52	201.01.52	194.70.71	9.36	
2	MUALAUE - B	202.55.88	202.95,00	100.10.03	12.01	
1	EDAYAMPUTHERTHURAL	137.03.50	137.63.50	134.36.50	2.67	
4	IZHUDESAH - A	41.10.00	41,10.00	35.09.50	5.20	
5	ICZNUDESAH - E	82.90.00	\$2,90,00	MA SH RE	3.21	
6	EZHIDESAM -C	275,82.80	275.02:60	246.17.92	29.64	
2	KIN1478/2306 - 4	28.29.50	28.70,50	25.70.50	2.02	
8	KOLLENCODE -6	171.77.00	171.77.60	156,59,41	15.27	
Total		1144.06.18	1144.00.18	1004.29.05	79.00	

5. KRISHNAN ADDITIONAL CHIEF SECRETARY TO GOVERNMENT

// True copy //

50 SE HOT

S. KRISHNAN ADDITIONAL CHIEF SECRETARY TO GOVERNMENT

// True copy //

SECTION OFFIC

1.7 Area in CRZ

Out of the total area of 1144.0618 Ha, **353.4876 Ha area falls under CRZ-I(B), II and III categories**. Area falling in CRZ area are given in Table 1.2.

ML Area falls in:

ŀ

Total ML Area	:	1144.0618 Ha
Area falls in Non-CRZ Area	:	790.5742 Ha
	•	555.4070 Ha.
		353 4876 Ha
CRZ-III	:	144.8439 Ha
CRZ-II	:	203.3491 Ha
CRZ-IB	:	5.2946 Ha

MoEF&CC authorized agency, the **Institute of Remote Sensing (IRS), Anna University,** Chennai has prepared HTL/LTL (CRZ) Maps as required and submitted as Fig 1.4 & 1.5. IRS, Anna University report is appended as Annexure.

Survey Nos.	Zonation	Area(Ha)
Proposed Project Site in	CRZ-IB	4.4700
Keezhmidalam-A,	CRZ-II	122.0806
Midalam-B,	CRZ-III (200m to 500m from HTL)	80.6453
Enayamputhenthurai	CRZ-III (NDZ No Development Zone)	64.1986
Villages	OUT OF CRZ	272.6742
	TOTAL	544.0688
Proposed Project Site in	CRZ-IB	0.8246
Kollencode - A & B and	CRZ-II	81.2685
Ezhudesam - A, B & C	OUT OF CRZ	517.8999
Villages	TOTAL	599.9930

Table 1.2 Area falling in CRZ

1.8 Mining Lease Area Surface Right

IREL will not acquire any Private Patta land for the project. It has formulated a Policy i.e., Concession Option Scheme for taking possession of the Private Patta land on lease for mining. Private land owners volunterly provide their lands to IREL under this Scheme for mining. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation. On return of land, the land owners predominantly carry out the plantation of Coconut and other fruit bearing trees and also utilize the land for other activities including construction. Mining in the lease hold areas will not result in any displacement nor change in the ownership of the land.

Neither land acquisition nor purchase of land would be done for the Project. The permanent structures, village builtup areas, etc. will not be disturbed and mining shall not lead to displacement of people. Thus, no Rehabilitation & Resettlement (R&R) issue due to the Proposal.

Figure 1.3 HTL/LTL (CRZ Map) prepared by IRS, Anna University, Chennai

1.9 Environmental Setting

The study area falls in the Survey of India Topo Sheet No. 58H/3, 58H/4, 58H/7 and 58H/8. Topo map of 10km radius is shown in Fig 1.6. The mining area is accessible by SH-179 (West Coast Road-WCR). Block-A is connected to SH 179 by a series of Major District Roads (MDRs) and Block-B is connected by SH- 179 which is passing through the site.

The ML Block-A is located $08^{\circ}11'19.78"$ to $08^{\circ}13'33.12"$ North Latitudes and 77^{\circ}11'13.13" to 77^{\circ}14'08.82" East Longitudes and Block-B is located between $08^{\circ}15'17.31"$ to $08^{\circ}17'32.23"$ North Latitudes and 77^{\circ}06'50.15" to 77^{\circ}09'34.63" East Longitudes (Table 1.3).

SI. No	Village	Latitude	Longitude	
1	Kaazhmidalam A	08°11'19.78" to	77°13'01.76" to	
I	Reezhinidalam-A	08°12'37.53" N	77°14'08.82" E	
0	Midolom	08°12'04.09" to	77°11'53.12" to	
2	IVIIdalaIII	08°13'18.51" N	77°13'10.98" E	
2	Encyamputhanthurai	08°12'44.61" to	77°11'13.13" to	
3	Enayampumenunurai	08°13'33.12" N	77°12'15.36" E	
Л		08°15'17.31" to	77°09'12.69" to	
4	Ezhudesam- A	08°15'49.46" N	77°09'34.63" E	
Б	Ezbudosom B	08°16'31.24" to	77°07'45.99" to	
5	Ezhudesam- D	08°17'03.15" N	77°08'48.20" E	
6	Ezbudosom C	08°15'17.31" to	77°07'45.22" to	
0	Ezhudesam- C	08°16'31.24" N	77°09'12.69" E	
7	Kallanaada A	08°17'10.98" to	77°07'07.45" to	
1	Kollencode- A	08°17'32.23" N	77°07'33.66" E	
0	Kallanaada R	08°16'24.86" to	77°06'50.15" to	
8	Nulle licoue- D	08°17'19.44" N	77°07'56.20" E	

Table 1.3	The Latitude	and Longitude o	f the Mining	Lease Area -	Villagewise
			J		

There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed) within 10 km from the Mining Lease Area. Kanniyakumari Wildlife Sanctuary is at 25 km (shortest) distance in northeast.

Existing Mineral Separation Plant located at Manavalakurichi is aerially located at 8.4 km from Block-A and 19.4 km from Block-B in the southeast (road distance 12 km from Block-A and 30 km from Block-B). Existing Mining Leases are in and adjacent to the Mineral Separation Plant.

Two Mining Leases of 2.42 Ha & 3.63 Ha granted to M/s. V V Minerals are demarcated separately in the Mining Lease plan. IREL approached the Tribunal (Mines), Ministry of Mines, Govt. of. India and the granted Mining Lease was set aside by the Tribunal.

Figure 1.5 Topo Map covering 10km radius

River Valliar drains the eastern parts of the Study Area and River Thamirabarani drains the central parts of the Study Area which flows adjacent to the Block-B at 0.12 km in the northeast and 4.5 km from Block-A in the northwest. Valliyar River flows eastern side of the Mineral Separation Plant at Manavalakurichi and is flowing at 9.6 km from Block-A and 20.7 km from Block-B in southeast. Arabian Sea and its coastline are in southern parts.

Tamil Nadu-Kerala State Boundary is at 1.5 km in the west from Block-B & 12.4 km from Block-A and General Condition applies to this Mining Project. There is no major industry in the Study Area. The mining area does not fall Critically Polluted Areas /Industrial Clusters identified by CPCB. The project area (ML Area) does not fall in the Aravali Range. Part of the Mining Lease Area falls in Coastal Regulation Zone Area and thus, attracts Clearance under CRZ Notification 2011.

Thiruvananthapuram-Nagercoil Section of National Highway NH-66 runs at 9.3 km north of Block-A and 6.5 km north of Block-B. The State Highway SH-179 runs parallel and through the Mining Lease. Nagercoil- Thiruvananthapuram Section of Southern Railway BG Line runs at a distance of 6.5-7.0 km in the north. Nagercoil Junction is at 23 km from the Mining Lease in the east. The nearest airport is Thiruvananthapuram at 28 km in the northwest. Thengapattinam Port is at 2 km in the southeast from Block-B and Colachel Port is at 2.0 km in the southeast from Block-A.

Moderately populated villages such as Pallapallam, Enayamputhenthurai, Karungal, Puthukadai, Manavalakurichi, Monday Market, Neyyoor, Kalingarajapuram, Nithiraivilai and Poothurai. Hospitals, Schools, Churches, Temples, Mosque, Community Halls, recreation clubs etc. are located within the study area. Municipal Corporations of Colachel and Kollencode are located near the Mining Lease. Kanniyakumari District Head Quarters Nagercoil is at 23 km in the east from Block-A.

There is no litigation, directions or any order passed by any Court of Law or pending against the project.

1.10 Mining Profile

The Beach Sand Mineral (BSM) are suite of 7 minerals viz., Ilmenite, Rutile, Zircon, Monazite, Sillimanite, Leucoxene and Garnet. These seven minerals occur together in nature by virtue of their formation along with coastal stretches/ inland areas near to the shore and in Teri deposits in varying grades in India.

The mineable reserves estimated in the new mining lease area of 1144.0618 Ha is **59.88 Million Tonnes**. Mineral content in the deposit varies between 10.0% and 22.6% with an average 14.5%. The method of mining will be **Non-Conventional Opencast Mechanized Mining** by Excavator-Tipper combination with no Drilling & Blasting involved. It is proposed to mine out Beach Sand Minerals-BSM @ 5000 Tonnes per day (TPD) ROM viz. 15.00 Lakh Tonnes ROM. Mining operation will be carried out average depth of 6 m and a maximum depth of 9 m depending upon the location and mineralization. No ground water-table intersection is anticipated due to the mining.

ROM from the new mining lease will be transported and separated for individual atomic minerals at existing Mineral Separation Plant (MSP) at Manavalakurichi. In the MSP, the ROM is fed to Heavies Upgradation Section (HUS) and subsequently separated using its physical properties viz., Specific Gravity, Conductivity and Magnetic Susceptibility.

In the production quantity of 15.00 Lakhs TPA ROM & with about 70% recovery, the feed to the Mineral Separation Plant can have mineral production of 1,52,250 TPA. The generation of tailings (after removal of Minerals-Quartz) will be about 13,47,750 Tons per annum which will be transported to the mined-out voids and backfilled. Mining and backfilling will be carried out simultaneously.

Description	Area/Capacity
Total Mining Lease area	1144.0618 ha.
Total Mineable Quantity	59.88 Million Tonnes
Annual Production	1.5 Million Tonnes @ 5000 TPD (Max)
No of working days	300 days (3 Shifts)
Life of the Mine	40 Years
	Open cast (without drilling & blasting)
	- No topsoil & No OB – Excavator and
Mathad of Mining	tipper combination upto a maximum depth
	of 9 m (average 6 m)
	No ground water intersection involved.
	No R&R issue due to the proposal

Mine Profile:

1.11 Project Cost

The Project Cost is Rs.31.25 Crores with the following break-ups:

Land Compensation for Surface Rights	:	Rs.10.65 Crores
Machineries (on Contract)	:	Rs.15.00 Crores
Others (Documentation & Incidental)	:	Rs. 5.60 Crores
Total	:	Rs.31.25 Crores

Adequate EMP Budget and CER Budgets are allotted.

1.12 EIA Study

The Proposal requires prior EC under EIA Notification under SI. No.1(a) (>250 Ha)-Category 'A' as well as under CRZ Notification 2011, as amended. Accordingly, IREL has filed the Application to MoEF&CC on 26.12.2022 to obtain the Terms of Reference (ToR) for carrying out the EIA Study. As it is involved the mining of Prescribed Substance Monazite, the Proposal was deliberated in 53rd Expert Appraisal Committee (EAC) – Nuclear & Defense (ND) meeting held on 27th January 2023. ToR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023.

Baseline Data (BLD) collected during December 2022-February 2023 representing Winter 2022-23 Season has been utilised for the EIA Study in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017. EIA Report has been prepared in compliance with awarded ToRs and submitted as per generic structure proposed in Appendix-III of EIA Notification 2006.

For obtaining TNSCZMA recommendations for the proposal, IREL has submitted the CRZ application to DCZMA, Kanniyakumari on 08.03.2024 and the same is under their perusal. Being a parallel activity, the SCZMA recommendation will be obtained and submitted to the Ministry for awarding the EC.

The EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 15.07.2024). The ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2024 with validity till 02.04.2026. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The **EIA Report has been prepared and submitted as per the awarded ToRs** and as per generic structure proposed in Appendix-III of EIA Notification with the following Chapters:

Chapter-1: Introduction with Need for the Project & Environmental Setting of the Project. Chapter-2: Project Profile - an outline of the Project and allied activities.

Chapter-3: Description of Environment (Baseline Status).

Chapter-4: Anticipated Impacts, with Prediction of Impacts and Mitigation Measures.

Chapter-5: Analysis of Alternatives (Technology & Site).

Chapter-6: Environmental Quality Monitoring Programme.

Chapter-7: Additional Studies like Risk Assessment, DMP, Hydrogeological Study, etc.

- Chapter-8: Project Benefits.
- Chapter-9: Cost-Benefit Analysis, if any.

Chapter-10: Environmental Management Plan

Chapter-11: Summary EIA.

Chapter-12: Disclosure of Consultants engaged.

IREL has requested the Ministry for exemption of Public Hearing under Para 7(ii) of EIA Notification 2006 vide The Chairman, Atomic Energy Commission & Secretary, Department of Atomic Energy letter dated 28.02.2023. The Proposal was deliberated in the 61st EAC (N&D) Meeting held on 23.04.2024 as Agenda SI. No. 3.1. The Hon'ble Committee advised to review the request of exemption from Public Hearing. Accordingly, Public Hearing is being conducted for the Project and Action Plan to address the PH issues along with Budget provision will be incorporated in the Final EIA-EMP report. The additional details sought by the Hon'ble Committee are also addressed in this Report and submitted for Public Consultation & Public Hearing with Summary EIA reports in English and Tamil languages.

2.0 Project Description

2.1 Type of Project

The Project is for mining of atomic minerals (BSM Ore) containing Monazite (Uranium & Thorium bearing mineral) which is radioactive and Prescribed Substance under the Atomic Energy Act, 1962 along with other associated minerals i.e., Zircon, Ilmenite, Rutile, Sillimanite and Garnet.

Mining Lease Area is 1144.0618 Ha. It is proposed to mine @ 5,000 TPD and 1.50 MTPA ROM. The ROM will be transporated to the existing Mineral Separation Plant (MSP) located at Manavalakurichi. The MSP is having consented production capacity of 1,14,600 TPA minerals.

The Proposal requires prior EC under EIA Notification under SI. No.1(a) (>250 Ha)-Category 'A' as well as under CRZ Notification 2011, as amended. Accordingly, IREL has filed the Application to MoEF&CC on 26.12.2022 to obtain the Terms of Reference (ToR) for carrying out the EIA Study. As it is involved the mining of Prescribed Substance Monazite, the Proposal was deliberated in 53rd Expert Appraisal Committee (EAC) – Nuclear & Defense (ND) meeting held on 27th January 2023. ToR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023.

2.2 Technology & Magnitude of Operation

The mineable reserves estimated in the new mining lease area of 1144.0618 Ha is 59.88 Million Tonnes. Mineral content in the deposit varies between 10% and 22.6% with an average 14.5%. There will be no Top Soil or Over Burden (OB) in the Mining Lease as the entire Soil have Heavy Minerals and will be mined out as such. The method of mining will be Non-Conventional Opencast Mechanized Mining by Excavator-Tipper combination with no Drilling & Blasting involved. Mining operation will be carried out average depth of 6 m and a maximum depth of 9 m depending upon the location and mineralization. It is proposed to mine out Beach Sand Minerals-BSM @ 5000 TPD ROM viz. 1.50 MTPA ROM.

ROM from the new mining lease will be transported and separated for individual atomic minerals at existing Mineral Separation Plant (MSP) at Manavalakurichi. In the MSP, the ROM is fed to Heavies Upgradation Section (HUS) and subsequently separated using its physical properties viz., Specific Gravity, Conductivity and Magnetic Susceptibility.

In the production quantity of 15.00 Lakhs TPA ROM & with about 70% recovery, the feed to the Mineral Separation Plant can have mineral production of 1,52,250 TPA. The generation of tailings (after removal of Minerals-Quartz) will be about 13,47,750 Tons per annum which will be transported to the mined-out voids and backfilled. Mining and backfilling will be carried out simultaneously.

During the Plan Period, 7.50 Million Tonnes of ROM @ 1.50 MTPA will be mined out and the tailings - Quartz (after removal of Minerals) will be generated from the MSP to the tune of 6.738 Million Tonnes @ 1.347 MTPA, which will be transported back to the Mining Lease Area to backfill the mined-out voids. This process would continue till the Conceptual Stage.

Table 2.1 Development & Production - Plan Period & Subsequent Periods

			Mineral Rejects, Tons	ROM Pro	oduction,		Wastes (Quartz)
Year	Top Soil, E Tons	Over Burden, Tons		cu. m	Tonnes	Atomic Minerals Concentrate in Tonnes	from MSP for Backfilling Mined out Voids, Tons
First Plan/ Block Period:							
I	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
II	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
III	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
IV	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
V	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
Total	0	0	0	46,87,500	75,00,000	7,61,250	67,38,750
Subsequent Plan/Block Periods							
2 nd Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
3 rd Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
4 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
5 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
6 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
7 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
8 th Block Period (4 Years only)	0	0	0	46,12,500	73,80,000	7,49,070	66,30,930
Grand Total	0	0	0	3,74,25,000	5,98,80,000	60,77,820	5,38,02,180

Table 2.2 Plan Period Production & Expected Mineral Production from ROM

		Anticipated Atomic	Expected Individual Mineral Production, Tonnes								
Year ROM, Tonnes	Minerals Production in Tonnes	Monazite	Zircon	Ilmenite	Rutile	Sillimanite	Garnet				
I	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762			
II	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762			
	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762			
IV	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762			
V	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762			
Total	75,00,000	6,31,745	35,910	27,815	4,61,760	13,860	58,590	33,810			

2.3 **Project Description**

2.3.1 Geology

2.3.1.1 Regional Geology

The rocks of Kanniyakumari district belong mainly to Archaean age, except for a narrow girdle along the coast in the southwest and south, occupied by sediments of Tertiary and Quaternary ages, respectively. Rocks of Eastern Ghats Supergroup of Archaean age include three divisions, viz, Khondalite, Charnockite and migmatite. The khondalite group comprises garnet-biotite-sillimanite, with thin bands and lenses of quartzite, calc granulite and crystalline limestone. The charnockite litho unit of the Charnockite group is well exposed in the southern and southwestern parts of the district, occurring mainly as concordant bands and lenses of variable dimension, associated with Khondalite group of rocks. The migmatite complex comprises garnet-biotite gneiss, garnetiferous quatzofeldspathic gneiss and quatzofeldspathic granolites. Cuddalore formation of Mio-Pliocene age (Correlatable with Warkalli/Quilon beds of Kerala), comprising calcareous sandstone/limestone is exposed as thin cappings southwest of Kuzhitura nearer to the coast, bordering Kerala State. Quaternary sediments of fluvial, fluviomarine, Aeolian and southern part of the district, adjacent to coast.

Atomic minerals concentrations (Monazite, Zircon, Ilmenite, Rutile, Sillimanite, Leucoxene & Garnet) occur in beach sands along the east coast and west coast in the Kanniyakumari District. Significant concentration occurs between Vattakottai and Lipuram, Manavalakurichi deposit, Midalam deposit and Vayakkallur-Thoothur deposit.

2.3.1.2 Local Geology

The Mining Lease area mainly consists of beach sand, Teri sand/soil underlain by the laterite/gravel bed while the latter is commonly observed in the northern part. The Teri sands are massive but at places they are clearly bedded and even show graded bedding. Beach sands with varying degree of admixture of fine Teri occur in the southern part. Few scattered outcrops of leptynite (garnetiferous biotite gneiss) and charnockite (Pre-Cambrian) are also seen within the applied area.

The Ilmenite-rich Teri sand and beach sand of Quaternary period overlie the laterite, which has developed on the crystallines, namely, Proterozoic charnockite and khondalite. Outcrops of these rocks are found to occur in the southern part of the deposit. A thin veneer of gravel bed overlies the laterite in a few locations in the northern part of the dune. A few occurrences of sandstone and conglomerate of Tertiary period have been observed in the nala cutting to the east and north of the dune. The deposit sand is coated with red ochrous material (iron oxide).

The sands occurring in the project area of the beach sands and the Teri sands. The beach sands are found in the Southern part of the project are over a width of about 800 m (across the coast) and are devoid of any rock outcrops. The Teri sands occur in the Northern part over a width of 200 - 600 m.

The Proterozoic khondalites, lyptynites and charnockite are major rock types that outcrop to the North of the applied mine lease area. The charnockite group consists mainly of charnockite, pyroxene granulite and their associated migmatite. Khondalites group comprises garnetiferous sillimanite-graphite gneiss, garnet-biotite gneiss and their

migmatite derivatives. Warkalli beds of Tertiary age occur as thin cappings South-West of Kuzhidurai (7 km Northwest of the applied Mining Lease area).

Heavy minerals of economic value are found along the western and eastern coast of Indian Peninsula. The source rock for many of these heavy mineral deposits are charnokites and pensinsular gneiss intruded by leptynites and Khondalite to some extent. These deposits are formed by weathering and transportation processes. In suitable location, enrichment of heavy mineral in the western coast is due to cyclic subsidence of coast, wind and wave action. Fossiliferous sandstone is predominant in inland and placer deposit.

Proterozoic khondalites and charnockites are the two groups of rocks outcrop in the region especially in the north with few isolated outcrops in the coastal plains. Charnockite group consists mainly of charnockite, pyroxene-granulite, and their associated migmatites. Khondalite group comprises garnetiferrous – Sillimanite – graphite gneiss, garnet-biotite gneiss and their migmatite derivatives with granite permeations. Charnockites also occur as thin lenses and bands within khondalite group at several places. The deposit is covered by sedimentary formation comprising coastal alluvium and beach sand. This is underlain by the crystalline rock of the Archaean age. The rock type is garnetiferous granitic gneisses (Leptinytes).

2.3.2 Exploration

Coastal stretches of Kanniyakumari District including this mining lease area was investigated in detail by Atomic Minerals Directorate for Exploration and Research (AMD), Hyderabad, Department of Atomic Energy, Government of India. Taking into consideration of the detailed investigations conducted by AMD in different phases from 1994 to 2003, no further exploration proposals are envisaged for the Mining Lease area of 1144.0618 Ha.

Blocks	Extent, Ha	Period of exploration	Total No. of Holes	Avg. Depth, m	No. of sample s	Grid interval, m	Type of drill
Midalam Deposit	167	1997-98	193	4.15	568	100 x 50	Hand Auger
Midalam Inayam	294	2002-03	589	5.15	2168	100 x 50	and Conrad Bunka Drill
Inayam	55	2000-01	210	5.82	847	50 X 50	
	Block-I 100	1994-95	441	6.5	2002	50 x 50	Conrad Bunka Drill
Vayakkall ur - Thoothur	Block-II 105	1996-97	165	7.9	913	100 x 50- 100	Hand Augor
	Block-III 187	1997-98	318	6.7	1216	100 x 50- 100	and Conrad
	Block-IV 347	2002-2003	347	7.4	1622	100 x 100	Bunka Drill

The Block wise details of exploration carried out in the mining lease area are as under:

2.3.3 Reserves & Resources

There is no top soil or over-burden in these deposits and the entire mineral sand available up to the drilling depth is taken as proved reserves. The weight percent of each individual mineral is calculated from the total number of grains counted for each mineral, its specific gravity and the weight of the respective sieve fractions. Initially, pure fractions of all the individual heavy minerals are separated and their specific gravities are determined with a gravity bottle. Only these values are used for calculations in lieu of empirical values. The weight of the individual minerals in the respective sieve fractions are summed up to determine the total weight percentage of that mineral in the original sample. The total tonnage of raw sand in each block was calculated from its volume and the tonnage factor/bulk density of the corresponding composite/block samples. The individual mineral tonnages in total raw sand in each block are calculated from their respective weight percentages, the weighted average for each mineral in a given block.

Based on the above and the Economic axis has been fulfilled all the aspects of UNFC classification, the raw sand reserve of the proposed mining lease area is categorized "111".

Strike length / continuity (m)	11.2 km
Dip continuity (m)	Almost Flat
Width / thickness (m)	400 – 1440 m
Cut-off grade (%)	2%
Estimated Bulk Density (g/cc) or Specific	16
Gravity as the case may be	1.0
Explored Depth	13.5 m BGL
Vertical intercept of mineralization	Mineralization occurs from surface.
Threshold Value (As per AMCR,2016)	Threshold value is 0.00% Monazite in total heavy minerals of Beach sand mineral deposit as per AMCR,2016. The proposed mining lease area consist monazite content more than threshold value as per the exploration report of AMD.

Geological Reserves/Resources are given in Table 2.3.

Table 2.3 Geological Reserves	s / Resources Estimation
-------------------------------	--------------------------

Block-A (Inayam and Midalam Block, Midalam Block & Inayam Block)										
Enayamputhenthurai										
Section line	Section area (m2) (a)	Influence (m) (b)	Volume (m3) (c) = a x b	BD (g/cc) (d)	Raw sand / ROM Quantity (MT) (e)=(c)x(d)	Av. THM Grade (%) (Wt. Avg.) (f)	Quantity of HM (MT) (g) =e x f/100			
B-B'	5891	150	883680	1.65	1458072	17.57	256183			
C-C'	9858	200	1971680	1.69	3332139	24.01	799973			
D-D'	9022	200	1804480	1.65	2977392	22.77	677952			
E-E'	7483	200	1496640	1.68	2514355	32.75	823451			
F-F'	6882	200	1376320	1.57	2160822	25.09	542150			
G-G'	5392	200	1078400	1.7	1833280	27.87	510935			

		Total			14276061	25.29	3610645
			Midala	m-B			
H-H'	5218	200	1043680	1.71	1784693	31.43	560929
- '	6952	200	1390400	1.7	2363680	31.93	754723
J-J'	2430	200	486080	1.61	782589	24.61	192595
K-K'	4368	200	873600	1.56	1362816	18.30	249395
L-L'	3963	200	792640	1.57	1244445	15.45	192267
M-M'	2482	200	496480	1.61	799333	18.33	146518
N-N'	3435	200	687040	1.62	1113005	20.46	227721
0-0'	3604	200	720800	1.57	1131656	14.93	168956
P-P'	2293	200	458560	1.59	729110	18.26	133136
Q-Q'	1521	200	304160	1.59	483614	15.84	76605
R-R'	3595	200	719040	1.6	1150464	16.61	191092
S-S'	4322	200	864320	1.64	1417485	21.81	309153
		Total			14362890	22.30	3203089
			Keezhmid	alam-A			
T-T'	2509	200	501760	1.64	822886	29.77	244973
U-U'	3054	200	610880	1.59	971299	24.34	236414
V-V'	2795	200	559040	1.51	844150	17.88	150934
W-W'	3824	200	764800	1.53	1170144	10.72	125439
X-X'	3526	200	705120	1.53	1078834	21.88	236049
Y-Y'	2708	200	541600	1.56	844896	21.49	181568
Z-Z'	2342	200	468480	1.5	702720	19.96	140263
ZA-ZA'	3094	200	618880	1.49	922131	12.53	115543
ZB-ZB'	4411	200	882240	1.49	1314538	18.59	244373
ZC-ZC'	3773	262	988474	1.54	1522249	19.73	300340
					10193848	19.38	1975896
		вюск-в (va			BIOCK-I to IV)		
	0105	220	Kollencoc	1 5 2	2071464	E 00	156020
	9100	220	2020700	1.32	307 1404	5.00 6.75	100000
	0716	200	2070040	1.0	3011060	6.75	224277
	9/10	200	1943200	1.55	2695242	0.25 5.85	160240
	7030	200	1586080	1.50	2005242	6.75	163802
	8201	200	1640160	1.55	2501/53	13 1/	3/0517
	8163	200	1632640	1.50	2661203	13.14	357032
	01/18	200	1820600	1.00	285/176	10.45	280600
	8560	200	1712000	1.50	2722080	10.13	205055
<u> </u>	9094	200	1818720	1.60	2928139	11 19	327659
	0004	Total	1010720	1.01	28275043	8.85	2501685
			Ezhudesam	A. B &	C	0.00	
LL - LL'	8002	200	1600480	1.61	2576773	7.49	193000
MM - MM'	6579	200	1315840	1.56	2052710	6.49	133221
NN - NN'	7256	200	1451200	1.61	2336432	8.61	201167
00 - 00'	7790	200	1557920	1.6	2492672	8.62	214868
PP - PP'	7437	200	1487360	1.62	2409523	10.69	257578
QQ - QQ'	7752	200	1550400	1.59	2465136	10.36	255388
RR - RR'	8899	200	1779840	1.71	3043526	13.40	407833
SS - SS'	9028	200	1805600	1.57	2834792	8.44	239256
TT - TT'	10312	200	2062400	1.59	3279216	10.38	340383
UU-UU'	7842	200	1568320	1.62	2540678	9.43	239586
VV-VV'	7447	200	1489440	1.63	2427787	9.94	241322
WW-WW'	7928	200	1585600	1.65	2616240	11.36	297205
XX-XX'	6361	200	1272160	1.65	2099064	13.92	292190

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

YY - YY'	4663	200	932640	1.74	1622794	15.92	258349
ZZ - ZZ'	4648	200	929600	1.78	1654688	18.66	308765
ZZA-ZZA'	7904	200	1580800	1.7	2687360	13.14	353119
ZZB-ZZB'	7672	230	1764560	1.65	2911524	11.79	343269
Total					42050916	10.88	4576498
Grand Total					109158757		15867813

Heavy Minerals Grade in **Block-A is found to be 22.6% and in Block-B is 10.0%** only with **Average of 14.5%** (Table 2.4).

Reserve/Resource estimation for 1144.0618 Ha										
	Blo	ock-A	Bl	ock-B	То	tal				
	Area in Ha	Reserves/ Resources in million Tonnes	Area in Ha	Reserves/ Resources in million Tonnes	Area in Ha	Reserves/ Resources in million Tonnes				
Mineable area and Reserve - 111	315	22.49	319	37.39	634	59.88				
Resources under 7.5 meters safety barrier - 211	31	2.21	29	3.40	60	5.61				
Resources under 50 meters distance from private Permanent structures- 221& 222	58.0688	4.14	81.993	9.61	140.0618	13.75				
Resources under Permanent structures- 331	140	9.99	170	19.92	310	29.91				
Total	544.0688	38.83	599.993	70.32	1144.0618	109.15				
Average thickness Average	4.4	13 m	7.	7.28 m		6 m				
Grade in %	22.6 % THM 10.0 % THM 14.5 % T		6 THM							

Table 2.4 Reserves / Resources Estimation - Oalegorywise
--

About 5.57 Million Tonnes Ore is blocked due to 7.5 m Safety Barriers - '211' Category (2.20 Million tons in Block-A and 3.37 Million tons in Block-B), 13.67 Million Tonnes Ore is blocked due to safety distance from the private permanent structures – '221' & '222' Categories (4.12 million tons in Block-A and 9.55 Million tons in Block-B) and 29.73 Million Tonnes Ore is blocked due to presence of permanent structures- '331' Category (9.92 Million tons for Block-A and 19.81 Million tons for Block-B).

The **Total Mineral Reserves/Resources estimated as on 01.04.2023**, as per UNFC, are given in Table 2.5.

SI. No.	Description & UNFC Category	ROM Quantity in Million Tonnes	Grade
1	Proved Mineral Reserves (111)	59.88	
2	Feasibility Mineral Resources (211)	5.61	Plack A 22.60/
3	Prefeasibility Mineral Resources (221 & 222)	13.75	Block-A $- 22.6\%$ Block-B $- 10.0\%$
4	Measured Mineral Resources (331)	29.91	Average - 14.5%
	Total Reserves & Resources	109.15	

	Table 2.5 Mineral	Reserves and	Resources a	as on	01.04.2023
--	-------------------	---------------------	-------------	-------	------------

The Proved/Mineable Reserves, as on 01.04.2023, is 59.88 Million Tonnes and the total Resources available is 109.15 Million Tonnes.

2.3.4 Heavy Minerals & their Uses

- Monazite is a radioactive mineral and a prescribed substance under the Atomic Energy Act, 1962 and it contains 0.38% of Uranium, 9% of Thorium and 60% of Rare Earth Oxide which is further processed to produce High Pure Rare Earths (HPRE) such as compounds of Lanthanum, Cerium, Neodymium-Praseodymium, Samarium, Gadolinium, Dysprosium etc. The sector wise use of rare earths includes Aerospace, Defence, Health Care, Clean Energy, Nuclear Energy, Electronics, Chemicals, Oil refineries and in the manufacture of many specialty metal alloys.
- Zircon is Zirconium Silicate (ZrSiO4). Zirconium metal which is used in atomic reactors to provide cladding for cylindrical fuel rods that helps nuclear reaction. Zircon is used for production of i) Zircon flour and opacifier that are used as a coating in ceramics, sanitary ware, etc. to impart opacity to the end-products ii) Special purpose refractories and iii) various zirconium compounds.
- Ilmenite is a Titaniferrous mineral (FeTiO3) and the TiO2 content is 55%. Ilmenite is used for production of i) Titanium dioxide pigment which is used in paints, papers, plastics, textiles, industries. ii) Intermediate products like Synthetic Rutile (SR) and TiO2 slag that are further processed for producing TiO2 pigment iii) Titanium sponge, that finds application in aircraft body, artificial limbs, golf clubs, etc.
- Rutile is a Titanium bearing mineral (TiO2). The TiO2 content is over 94%. Rutile is used for the production of i) Titanium dioxide pigment, used in paints, papers, plastics, textiles, etc., ii) Titanium sponge that finds application in aircraft body, artificial limbs, golf clubs, etc., iii) Welding fluxes, used as a coating on welding electrodes.
- Sillimanite is Alumino-silicate mineral (Al2SiO5). It is used in production of refractories that find usage in metal and alloy making industry. Also, by ceramic and foundry industry.
- Garnets are a Silicate group of minerals. Major grades produced are Coarse grade (30-60 mesh), Normal grade (60-100 mesh) and medium grade (50-100 mesh). Garnet is used i) as abrasive for sandblasting for descaling of vessels and surface preparation ii) in water jet cutting for a precision cutting job iii) as abrasive in grinding wheels iv) as medium for water filtration and iv) for rough glass polishing.

Uses of Rare Earths

- Neodymium is used in manufacture of permanent magnets in industries along with boron and iron. It is also employed in the laser industry for the manufacturing crystals such as yttrium aluminum garnet. It can absorb the glare in the flame; it is utilized for the purpose of coloring glasses.
- Praseodymium is used in the aircraft engines in the form of alloying agent and for the purpose of creating high field strengths. It is also utilized in the permanent magnets present in the wind turbines and motors. The carbon electrodes used in the arc lightning lamps make use of the oxides of Praseodymium.
- Samarium The most important application of Samarium is Samarium-Cobalt magnets which can withstand high temperature. These magnets are used in strategic sectors like defence, space and atomic energy. This element is also used in the manufacture of solar-powered electric aircrafts. Samarium can be used in the production of superconducting materials and samarium-doped iron superconductors are among the highest-temperature superconductors known.
- Gadolinium is used in the field of atomic energy, microwave application and also used in color television sets in the form of phosphorous. The alloys of gadolinium are utilized in the manufacture of magnetic and electronic gadgets such as video recorder, etc. The isotope of gadolinium Gd is widely employed in curing tumors and neutron therapy.
- Lanthanum is found in modern television sets, the energy saving lamps, fluorescent tubes, etc. It is also used in the field of optics as lenses and radiation absorbing glasses. One of the most important applications is as catalysis in the field of petroleum refineries.
- Cerium is the key component of mischmetal alloy which is used in flints for cigarette lighters. The reason for it is cerium produces sparks when struck. It is also used in almost all color televisions and energy-saving lamps.
- > Minerals are produced in standard specifications which are called as **MK Grade**.

2.4 Proposed Mining

Mining activity in this mining lease area will be carried out by Fully mechanized Non-Conventional Opencast method of Mining - Inland mining (non- replenishable deposit) @ 15.00 Lakhs Tonnes ROM per Annum. The inland areas of the mining lease areas will be mined by Excavator-Tipper combination. There will be no Drilling & Blastings. Also, there will be no Developmental activities like Top Soil & Over Burden removal. Thus, there will be **no Dump** in the Mining Lease.

The mining will be carried out at an average depth of 6 m and upto a maximum depth of 9 m depending upon the location and mineralization. **No ground water-table intersection** is envisaged as ground water-table level in the Mining Lease Area ranges between 10-15 m BGL. The mining operation will consist of two-layer operation. The mineralisation occurs from the surface. First, the surface layer up to 2.5-3.0 m from surface is excavated by Tipper & Excavator combination and followed by the excavation in bottom layer. While excavating the bottom layer, backfilling of the mined-out voids by

the Tailings from MSP will be carried out simultaneously. Thus, there will be **no bench** formation and **no Mine Pit** in the Mining Lease. Ore: Waste Ratio will be 1:0.

After mining and backfilling, the land would be returned to the respective land owners within a lease period of 11 months along with lease compensation. Plantation is predominantly carried out in the mined-out areas after backfilling and the land is used for other activities including construction and thereby ensuring Eco-friendly and Sustainable mining.

Mined out atomic mineral bearing sand as ROM will be transported to the existing Mineral Separation Plant (MSP) at Manavalakurichi, with a lead distance of 12-30 km, for separation of individual Heavy Minerals.

Figure 2.1 Schematic Diagram of Method of Mining

Leveling survey of the area to be done before start of mining would be carried out by using precise datum levels. Bench Bark locations is given in **Table 2.6**.

Figure 2.2 Bench Bark Locations Table 2.6 Bench Bark Locations in the Study Area

Location	Bench Mark at	Latitude	Longitude	Elevation in M
1	Sri Bhadrakali Amman Temple, Pattariyar Street	8°12'16.39"N	77°18'54.92"E	53
2	CSI Church Kadamankuzhi, kuttuthani	8°12'27.20"N	77°14'0.99"E	72
3	CSI Church (Manavalakurichi)	8° 9'5.63"N	77°18'27.92"E	41
4	St. Lucia's Church, Puthoor	8° 9'36.02"N	77°16'56.36"E	38
5	Arulmigu Sri Mandaikadu Bhagavathi Temple	8° 9'47.79"N	77°16'47.78"E	40
6	Mead Memorial Church (CSI) Mondaikad - Protestant church	8° 9'58.39"N	77°16'41.24"E	49
7	CSI Auditorium Mandaikadu	8°10'0.44"N	77°16'44.34"E	49
8	St. Alex Church - Kottilpadu	8°10'13.47"N	77°15'52.17"E	29
9	CSI Church Kariyavilai	8°10'23.10"N	77°16'27.04"E	69
10	CSI Church, Paruthivilai	8°10'23.92"N	77°16'51.49"E	73
11	CSI Church Cheramangalam	8° 9'55.71"N	77°17'58.89"E	53
12	St. Jude's Church	8°10'37.29"N	77°14'41.00"E	30
13	Saint Bartholomew's Church	8°10'39.04"N	77°14'25.86"E	29
14	Bethel Church	8°10'49.19"N	77°14'17.10"E	30
15	St. James Church Vaniyakudi	8°11'0.11"N	77°14'4.44"E	33

Location	Bench Mark at	Latitude	Longitude	Elevation in M
16	Siluvaiyar Kurusadi Kurumpanai	8°11'11.14"N	77°13'51.26"E	31
17	PFC Ground Kurumpanai - Football club	8°11'14.43"N	77°14'1.10"E	39
18	St Francis Xavier's school ground, Alanchi	8°11'43.22"N	77°13'56.88"E	79
19	Paraikal Beach Resort, Kanyakumari district	8°11'51.90"N	77°13'25.25"E	36
20	Forane Church of St. Francis Xavier, Alanchy	8°11'50.96"N	77°13'59.94"E	78
21	Ilangam Sree Bhahreshwari Amman Thiru Kovil	8°12'3.66"N	77°13'32.19"E	42
22	Udayamarthandam Bus Stop	8°12'21.63"N	77°12'56.80"E	40
23	South India Full Gospel Church	8°12'31.41"N	77°13'1.37"E	53
24	St.AntonysKurusady - Chapel	8°12'31.53"N	77°12'17.60"E	34
25	Koodavilai CSI Church	8°12'42.71"N	77°12'28.30"E	46
26	C.S.I Church - Parakkanvilai	8°13'18.22"N	77°12'8.05"E	68
27	St. Francis Xavier Church, Enayam Helen Nagar	8°12'51.98"N	77°11'51.40"E	36
28	Zion Lutheran Church (I.E.L.C), Paravai	8°13'26.25"N	77°11'29.94"E	48
29	Dem Boys Beach Football Ground	8°13'9.23"N	77°11'3.74"E	19
30	Barath Matriculation School,Ananvilai,Keezhkulam	8°14'3.29"N	77°11'4.79"E	59
31	St. Barbara's Church, Ramanthurai	8°13'43.08"N	77°10'45.14"E	31
32	Thengapattanam Fishing Harbour	8°14'20.60"N	77°10'10.90"E	33
33	Amsi Mukkadu CSI Church	8°15'12.52"N	77°10'26.22"E	55
34	Hindu Temple	8°15'19.12"N	77° 9'1.31"E	31
35	Nithiravilai Police Station	8°15'42.58"N	77° 9'2.63"E	32
36	AV Charitable Foundation	8°16'1.12"N	77° 8'4.44"E	31
37	Jaya Matha Matriculation School	8°16'24.60"N	77° 8'15.07"E	38
38	SJYSC (St.Jude's Youth Sports Clup)	8°16'36.07"N	77° 7'25.76"E	31
39	Rethinapuram CSI Church	8°17'3.27"N	77° 7'45.55"E	43
40	SASC Ground Vallavilai - Playground	8°17'4.38"N	77° 6'53.78"E	27
41	ABC Matric Hr Sec School Kollencode	8°17'23.07"N	77° 7'19.69"E	43
42	Sri Subramaniya Swamy Temple	8°17'14.56"N	77° 6'31.42"E	36
43	St.Mathews English Medium School	8°18'14.89"N	77° 5'31.70"E	43
44	Lekshmi Central School	8°18'43.07"N	77° 6'22.23"E	84

Location	Bench Mark at	Latitude	Longitude	Elevation in M
45	Bethel A G Church, Ambanthalai, Kattukadai, Palavilai	8°18'9.26"N	77° 7'45.96"E	64
46	St. Joseph's Church, Valanoor	8°17'54.47"N	77° 8'24.92"E	88
47	CSI Pastorate Church, Nadaikkavu	8°17'25.36"N	77° 8'50.62"E	82
48	CSI Church Pallikkal	8°16'40.52"N	77° 9'32.07"E	46
49	Govt high school ananthamangalam	8°16'0.74"N	77°10'36.69"E	74
50	AvurankuzhiVilai Amman Temple	8°14'38.63"N	77°11'18.96"E	59
51	Rose of Sharon Matriculation School	8°13'36.66"N	77°12'39.87"E	86
52	Manikkavilai Bus stop	8°12'59.45"N	77°13'23.48"E	74
53	CSI Church Kadamankuzhi, kuttuthani	8°12'27.07"N	77°14'1.13"E	72
54	Holy Mother Shrine, Neeruvakuzhi, Alanchy	8°12'9.21"N	77°14'22.89"E	72
55	Ritapuram Colony Amman Temple	8°11'20.46"N	77°15'6.19"E	50
56	St. Rita's Church, Ritapuram	8°11'25.01"N	77°15'0.55"E	59
57	Sri Sakthi Vinayagar Temple	8°11'17.80"N	77°14'48.67"E	43
58	CSI Home Church, Neyyoor	8°12'26.39"N	77°18'14.43"E	88
59	Karungal bus stand - Bus depot	8°14'17.73"N	77°14'28.46"E	99
60	St. Joseph's Church	8°15'18.73"N	77°12'44.86"E	107
61	Eraniel (railway station)	8°12'49.35"N	77°18'29.57"E	70
62	Palliyadi (railway station)	8°15'56.83"N	77°15'34.26"E	64
63	Kulitturai (railway station)	8°18'4.69"N	77°13'7.28"E	40
64	Kulitturai west rail station	8°19'26.49"N	77°12'32.03"E	53
65	Parassala (railway station)	8°20'23.39"N	77 [°] 9'55.97"E	63
66	Dhanuvatchapuram station	8°22'41.56"N	77 [°] 7'33.05"E	59

2.5 Yearwise Development & Production Plan

During the Plan Period, 75.00 Lakh Tonnes of ROM @ 15.00 Lakh Tonnes ROM per Annum will be mined out. With the proposed production, Life of the Mine is 40 Years. Balance Reserves will be mined out during subsequent Plan/Scheme Periods. The Rejects (mainly Quartz Material-Sand) from the HUS & MSP to the tune of 6.738 Million Tons @ 1.347 Million Tonnes per Annum will be generated which will be transported back to the Mining Lease Area to backfill the mined-out voids. This process of Mining and backfilling will be carried out simultaneously till the Conceptual Stage.

With 70% recovery, the feed to the Mineral Separation Plant can have mineral production of about 1,52,250 TPA. However, IREL will maintain the consented production capacity of 1,14,600 TPA.

			ROM Pro	oduction,		Wastes (Quartz) from
Year	Top Soil, Tons	Over Burden, Tons	cu. m	Tonnes	Ore: Waste Ratio	MSP for Backfilling Mined out Voids, Tons
	0	0	9,37,500	15,00,000	1:0	13,47,750
II	0	0	9,37,500	15,00,000	1:0	13,47,750
III	0	0	9,37,500	15,00,000	1:0	13,47,750
IV	0	0	9,37,500	15,00,000	1:0	13,47,750
V	0	0	9,37,500	15,00,000	1:0	13,47,750
Total	0	0	46,87,500	75,00,000	1:0	67,38,750

ROM Production per annum	:	15,00,000 Tonnes @ 5,000 TPD
Ore: Waste Ratio	:	1:0
No. of days per annum	:	300
No of shifts in a day	:	3
Expected life of the mine	:	40 years

Mining activity is limited to only in mineral deposit area. Hence, ultimate pit limit lies on the mineral deposit area only.

2.6 Machineries

The machineries to be deployed for the Mine are given in Table. To facilitate the maintenance of all equipments, there is a central workshop available at MSP for electrical, mechanical and instrumentation repairs.

Equipment	Nos.	Capacity
Hydraulic Excavators	4	3 – 5 tons
Dozer	2	15 – 20 tons
Tipper	35	25/30 tons

2.7 Competent Mining Personnel

The Mine will be operated with the required Statutory Officials and Competent Persons mandatorily appointed as per the provisions of Mines Act 1952, AMCR 2016 and MCDR 2017. Project will employ about 155 persons directly and 250 persons indirectly.

SI No.	Operations	No. of Persons required		
51.NO.	Operations	Departmental	Contract	
1	Mines Manager	1	-	
2	Asst.Mines Manager	4	-	
3	Geologist	1	-	
5	Chemist	1	-	
6	Mines Foreman/Mate	-	15	

SING	Operations	No. of Persons required		
31.NO.	Operations	Departmental	Contract	
7	Semi Skilled Persons – Drivers and Operators	-	80	
8	Mechanic cum fitter	-	10	
9	Helpers, Mazdoors	-	40	
10	Clerk	-	3	
	Total	7	148	

2.8 Facilities in the Mining Lease

The mining will be carried out in the Mining Lease Area in a staggered manner after obtaining land owners' consent. Thus, there is no infrastructure facilities required for the Mine.

The Mineral Separation Plant is provided with all facilities like drinking water, canteen, rest shelter, latrines and urinals, bathrooms, first aid centre, dispensary, vocational training center, workshops for Electrical, Mechanical and Civil etc. Food at the canteen is supplied at subsidized rate. Occupational Health Centre exists at MSP. Medical facilities are available round the clock and the OHC is equipped with an ambulance.

2.9 Progressive Mine Closure & Conceptual Plans (Land Use Pattern)

The land use break-up of the Mine lease area is given in Table 2.8.

Village name	Total extent in Ha	Built up area (Buildings/ Houses, Church /Temple, Cemetery, etc.,) in Ha	Area covered under Road in Ha	Area covered under Water bodies/ Pond/ Canal in Ha	Vacant land (with bushes and Coconut trees) in Ha
Keezh midalam-A	204.06.52	52.00.84	4.20.00	5.40.50	142.45.18
Midalam- B	202.96.86	51.67.78	8.36.50	5.94.31	136.98.27
Enayam Puthanthurai	137.03.50	8.44.47	1.83.50	2.70.60	124.04.93
Ezhudesam-A	41.10.00	3.57.24	0.26.50	0.13.00	37.13.26
Ezhudesam-B	82.90.00	20.85.01	2.38.90	0.53.60	59.12.49
Ezhudesam-C	275.82.80	85.19.33	8.00.10	1.36.70	181.26.67
Kollencode-A	28.39.50	7.97.00	1.08.50	0.14.00	19.20.00
Kollencode-B	171.77.00	32.97.68	3.31.16	1.56.00	133.92.16
Total	1144.0618	262.69.35	29.45.16	17.78.71	834.12.96

Table 2.8 Villagewise land use breakup

About 106.50 Ha is required for Mining during the Plan Period which will be mined out, back filled and handed over to the Land Owners. At the Conceptual Stage, 834.1296 Ha will be the mined out and back filled area. Backfilled area will be used for Coconut tree plantation by the respective land owner.

Net area put to use for mining & allied services for the proposed period is 13.60.00 Ha. As per rule 27(2) of MCDR 2017, an amount of Rs 68,00,000/- (Rupees sixty-eight lakh only) @ Rs. 5,00,000/- per Ha of bank guarantee towards the Financial Assurance will be submitted to the Director, Atomic Minerals Directorate for Exploration and Research, Hyderabad.

	Activities		Land Use, Ha			
SI. No.			At Start of Plan Period	End of Plan Period	End of Life of Mine (Conceptual)	
	Area under	Mined out	0.000	106.500*	834.1296**	
1	inland	Active Mine	0.000	3.000	0.000	
	mining	Backfilled	0.000	103.500*	834.1296**	
2	Storage of to	psoil	0.000	0.000	0.000	
3	Overburden/dump/Waste		0.000	0.000	0.000	
4	Mineral storage		0.000	0.000	0.000	
5	Infrastructure	9	0.000	0.000	0.000	
6	Road		29.4516	29.4516	29.4516	
7	Railways		0.000	0.000	0.000	
8	Tailing pond		0.000	0.000	0.000	
9	Effluent treat	ment plant	0.000	0.000	0.000	
10	Mineral sepa	ration plant	0.000	0.000	0.000	
11	Township		0.000	0.000	0.000	
12	Coastal sea		0.000	0.000	0.000	
13	Greenbelt/Afforested area		0.000	103.50.00	834.1296	
14	Inhabitated Village areas and water bodies		280.4806	280.4806	280.4806	
15	Undisturbed	Area	834.130	727.630	0.00.00	
	Total		1144.0618	1144.0618	1144.0618	

*: Mining will be carried out at the rate of 21.3 Ha per Annum and Backfilled simultaneously – Land use for 5 years is considered. Backfilled area will be used for Coconut tree plantation by the respective land owner. **: At conceptual stage 834.1296 Ha will be the Mined-out area backfilled simultaneously.

2.10 Water Demand

With no permanent facilities proposed in the Mining Lease and with the moving population of worker/employees during the mining, water demand will be 2.5 KLD which will be sourced from permitted 4500 KLD from Valliyar River for the existing MSP at Manavalakurichi. Also, the quantity will be managed with local Drinking Water Suppliers Sewage generation of 2.2 KLD will be biologically treated in a mobile Bio Toilets and the sludge will be used as manure for the Green Belt/Afforestation purpose. No Workshop is proposed and thus, no trade effluent generation from the Mine. **No mine pit will be there** and thus; no mine drain is envisaged.

2.11 Power & Fuel Demand

There is no Power requirement for the Project. However, mobile Light Towers with 2 x 125 KVA DG Set will be utilized for night time operations. **HSD @ 2,500 lits. /Day** is required for the mining equipments and transportation. Commercial mobile lighting towers are available from 7.5 kVA for lighting 10–15 LUX intensity at the working areas for night operation. The engine capacity will be 16-20 BHP.

2.12 Occupational Health & Safety

IREL will provide and continually improve the occupational health and safety performance. Personal Protective Equipments will be provided to the mine employees. All the workers will be provided with Internal Dosimetry and Medical Surveillance. Maintenance of Pre, during & Post Employment Records will be done. Duly qualified Radiological Safety Officer (RSO) will be appointed. External Radiation Monitoring (by BARC) will be carried out periodically All the workers will be trained and instructed in radiation safety.

2.12.1 Radiation Monitoring

Personal Monitoring:

- Persons working in the mines will be provided with Thermo Lumiesent Dosimeter (TLD). The TLD will be issued on quarterly basis and it will be evaluated by Nuclear Fuel Complex (NFC). External dose level will be calculated and the same will be recorded.
- Work place monitoring: Radiation in work place will be carried out by Radiation survey meter. Radiation survey will be conducted once in a month.
- First aid room will be provided in the site and the same will be maintained as per Mines Rules, 1955.
- All persons to be employed would undergo Initial Periodical Medical Examination as per Mines Act, 1952 and AERB guidelines.
- Periodical Medical examination: Once in 5 years for below 45 years and once in 3 years for above 45 years.
- As per Radiation Protection Rules, 2004, periodical medical examination will be conducted once in a year for the persons working in mines site.
- Medical examination will be carried out for the persons retiring (30 days before retirement)
- > All the data will be digitally maintained.

3.0 Description of environment

3.1 Project Site and Study Area

IREL mining lease area has been designated as the core zone. The buffer zone for the present study has been considered as an area encompassing 10 km from boundary of the mine lease. The core zone and the buffer zone together constitute the study area. The study area map of 15 km is shown in Table 3.1.

SI. No.	Areas Name/Identity	Aerial distance (within 15 km) Proposed project boundary
1	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value.	No protected area falls within 15 km of the proposed mining lease area.
2	Areas which are important or sensitive for ecological reasons –Wet lands, water courses or other water bodies, coastal zone, biospheres, mountains, forests	Part of proposed mining lease area falls under the Coastal Regulation Zone. For operational convenience, the proposed mining lease area are considered into two blocks, "Block A" and "Block B". Thamirabarani river, which is flowing between Block-A and Block-B, is about 0.12 km away from the Eastern boundary of Block-B and 4.5 Km away from the Western boundary of Block-A. No Wet lands, mountains, bio-spheres and forests fall in the study area.
3	Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration	No protected areas relating to sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration falls within the study areas.
4	Inland, coastal, marine or underground waters	River Valliar drains the eastern parts of the Study Area and River Thamirabarani drains the central parts of the Study Area which flows adjacent to the Block-B at 0.12 km in the northeast and 4.5 km from Block-A in the northwest. Valliyar River flows eastern side of the Mineral Separation Plant at Manavalakurichi and is flowing at 9.6 km from Block-A and 20.7 km from Block-B in southeast. Arabian Sea and its coastline are in southern parts.
5	State, National boundaries	Kerala state boundary is located at a distance of 1.5 km from the proposed mining lease area.
6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas	National Highway NH-66 runs at 9.3 km north of Block-A and 6.5 km north of Block-B. The State Highway SH-179 runs parallel and through the Mining Lease. Mandakkadu Baghavathy amman

Table 3.1 Environmental Sensitivity – 15 km radius

SI. No.	Areas Name/Identity	Aerial distance (within 15 km) Proposed project boundary
		temple, a famous pilgrimage centre is located near MSP on SH-179.
7	Defence installations	No defence installation is located in the proposed study area.
8	Densely populated or built- up area	The Municipal Corporations of Colachel on the South-East side and Kollencode on the North- West side fall under the study area. Moderately populated villages such as Pallapallam, Enayamputhenthurai, Karungal, Puthukadai, Manavalakurichi, Monday Market, Neyyoor, Kalingarajapuram, Nithiraivilai, Poothurai etc., are located within the study area.
9	Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)	Hospitals, Schools, Churches, Temples, Community Halls, recreation clubs etc. are located within the study area. Proposed mining operations would not have impact on any of these activities.
10	Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)	The proposed mining lease area contains Monazite (Uranium, Thorium and Rare Earth Oxide) in the BSM Ore, which is required for strategic applications by Department of Atomic Energy.
11	Areas already subjected to pollution or environmental damage. (Those where existing legal environmental standards are exceeded)	The study area is not subjected to any pollution or environmental damage. The coastal areas in Kanniyakumari District which includes the proposed mining lease area are having high natural background radiation in the range of 1 to 4 Micro Sievert per hour. This high radiation is primarily due to the presence of Monazite which is a radioactive mineral. Backfilling the mined-out areas with monazite free tailings reduces the background radiation to 0.2 to 0.4 Micro Sievert per hour. In other words, there has been 8-to-10-fold reduction in the radiation level in the area where mining is carried out and as such our mining does not affect either environment or people and makes the area free from high background radiation.
12	Areas susceptible to natural hazard which could cause the project to present environmental problems (earthquakes, subsidence, landslides, erosion, flooding or extreme or adverse climatic conditions)	No such areas are available in the study area.

3.2 Environmental Components and Methodology

The environmental components studied and the methodologies followed for the preparation of EIA report are given in Table 3.2.

SI.No.	Environmental Components	Area	Parameters	Methodology	Frequency
1	Air	10 locations in Core zone & Buffer zone	Meteorology Ambient Air Quality (PM ₁₀ , PM _{2.5} , SO ₂ , NO _x , Pb and other metals composition in PM ₁₀)	Field monitoring/ secondary data	Continuous for 3 months 24 hourly- Twice a week for 3 months in Non- Monsoon season
2	Water	10 locations in Core zone & Buffer zone	Water Quality Surface (parameters as per IS:10500) Ground (parameters as per IS:10500) Ground water regime (hydrogeology) Water level measurement (in pre and post monsoon seasons)	Field Monitoring	Once in season
3	Soil	10 locations in Core zone & Buffer zone	Soil Quality (pH, Elect. Conductivity, texture, NPK, Exch. cations, micronutrients)	Field monitoring	Once in season
4	Noise	10 locations in Core zone & buffer zone	Noise levels	Field monitoring	Once in season
5	Ecological Features	Core zone & Buffer zone	Flora & fauna	Field study/ Secondary data	Once in season

Table 3.2 Environmental components and methodologies

SI.No.	Environmental Components	Area	Parameters	Methodology	Frequency
6	Socio- economic Features	Core zone & Buffer zone	Parameters related to socio- economic aspects (agricultural situation, employment, income, consumption and saving etc.)	Field Study (Public Consultation by questionnaire survey)/ Secondary Data	Once in season
7	Traffic Survey		Traffic density to understand interface of study area & project site	Field Monitoring	Once in season
8	Land Use	Core zone & Buffer zone	Land cover categories based on satellite image	Land schedule records, Satellite image processing	Once in season

3.3 Physiography

The topography of the new mining lease area is flat except undulation found in certain patches.

SI.no.	Villages	Elevation, AMSL (m)
1.	Keezhmidalam	6.0
2.	Midalam	6.1
3.	Enayamputhenthurai	4.9
4.	Ezhudesam	4.9
5.	Kollencode	3.4

Contour Map of the study area is given as Fig. 3.2 and 2 km radius Contour Map is given as Fig 3.3.

3.4 Drainage Pattern

River Valliar drains the eastern parts of the Study Area and River Thamirabarani drains the central parts of the Study Area which flows adjacent to the Block-B at 0.12 km in the northeast and 4.5 km from Block-A in the northwest. Valliyar River flows eastern side of the Mineral Separation Plant at Manavalakurichi and is flowing at 9.6 km from Block-A and 20.7 km from Block-B in southeast. Arabian Sea and its coastline are in southern parts.

The drainage pattern of the study area is shown in Fig. 3.4 and 2km radius Drainage map is given as Fig 3.5. As observed, there is no marked drainage pattern in the Mining Lease area and the existing water bodies like ponds/streams will not be disturbed. Block-B is devoid of any streams whereas, there are 2 streams in Block A which will not be disturbed as such. The river Thamirabarani flows in the Eastern parts of Block B at an elevation of 18-33 m AMSL while Block B is located in the elevation rage of 37 m AMSL near the water course. There will not be any flood risk to the mining lease as well as no impacts anticipated due to the mining on the river course.

There are 2 stream crossing in Block 'A' which will be maintained as such till Conceptual Stage. There is no marked drainage pattern.

Photographs showing the Monitoring locations are appended and also in the Annexure.

Page | 129

Figure 3.4 Drainage Pattern

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

3.5 CRZ Area

The Mining Lease area partly falls in CRZ and falls in approved Coastal Zone Management Plan (CZMP) of Tamil Nadu map nos. 4, 11 & 10 as appended Fig 3.6, 3.7 & 3.8. HTL/LTL CRZ Maps referred by the Institute of Remote Sensing, Anna University for the project are given as Fig 1.4 & 1.5 in chapter 1. Out of the total area of 1144.0618 Ha, 353.4876 Ha area falls under CRZ-I(B), II and III categories. As per National Centre for Coastal Research (NCCR), Block A & B falls in Low erosion and Low accretion area. Also, some Mining Lease pockets in Block A falls in the intertidal zone. Shoreline changes are studied based on satellite imageries of 2010-2015, 2010-2020, 2010-2023 and stable coastline has been observed in both the block areas. There was accretion to an extent of 4.0 m near Block B. As Block B Area is about 365 m from the coastline no impact is anticipated to the Mining Lease area due to Shoreline Changes.

Figure 3.6 Approved CZMP Sheet No.4

Source: National Assessment of Shoreline Changes along Indian Coast (1990 – 2016) by NCCR

Figure 3.9 Shoreline Change of Kanniyakumari Coast

3.6 Seismicity

There are 4 major seismic zones (zones II, III, IV and V) in India, based on the seismotectonic parameters, history of seismicity and certain geophysical parameters. The Study Area is categorized in the **seismic zone III**, which is classified as having **Moderate risk zone**.

3.7 Regional Hydrogeology

Ground water in phreatic aquifers in Kanniyakumari district, in general, is colourless, odourless and slightly alkaline in nature. The specific electrical conductance of ground water in phreatic zone (in Micro Seimens at 25° C) was in the range of 150 to 2240 in the district. It is between 750 and 2250 μ S/cm at 25° C in the major part of the district. Conductance below 750 μ S/cm has been observed in ground water in parts of Marthandam, Attur, Villukuri and Chettiyarmadam.

It is observed that the ground water is suitable for drinking and domestic uses in respect of all the constituents except total hardness and Nitrate. The incidence of high total hardness is attributed to the composition of litho units constituting the aquifers in the district, whereas the Nitrate pollution is most likely due to the use of pesticides and fertilizers for agriculture.

The estimation of groundwater resources for the district has shown that all block is under "**Safe**" category.

3.7.1 Hydrogeology

During baseline data generation, the hydrogeological studies were also conducted in detail within a 10 km radius of the study area. About 30 bore wells were inventoried and the water levels were measured to understand the characteristics of phreatic aquifers. The hydrogeological details of the measured wells around the project site are given in Annexure as Doc 4.

3.8 Long term study of Land Use in study and surrounding area

The terrain is classified as Agriculture Land, Barren Land (empty land with sand exposure and rocky surfaces), Sandy Beach, Salt Pan, Settlement (built-up land), and Waterbody (rivers, small reservoirs, and ponds) to study the land use and land cover changes. The changes figured from 2000 to 2020 are generated and shown in below figure.

Recorded Land use pattern from 2000 to 2020

The changes in the area for the years 2000, 2005, 2009, 2015, and 2020 are examined, and each classified area is tabulated in Table. Through this study, it is significantly observed rapid growth in Settlement areas. The Settlement region is increased gradually in each period: 5.94% (2000); 6.37% (2005); 7.05% (2009): 8.07% (2015); and, 9.52% (2020). On the other hand, a simultaneous quandary decrease in Agriculture and Barren

Land is seen. The Settlement Area increased abruptly along the coast from 2000 to 2011 by converting Agriculture Land and Barren land. The changes in Agriculture Land is observed to be 84.57% (2000), 84.58% (2005), 84.42% (2009), 83.87% (2015), and 83.12% (2020). The changes in Barren Land seem to have decreased from 4.86% in 2000 to 4.61% in 2005 and 4.25% in 2009; it decreased again to 3.95% in 2015 and 3.22% in 2020. The Waterbody seems to be decreased from 2.05% in 2000 to 1.85% in 2020. The variation in the amount of rainfall and alteration of the waterbodies to built-up and agricultural land leads to the loss of the waterbodies. The Salt Pan is reduced from 1.31% (2000) to 1.01% (2020). The intense decrease in the Salt Pan in 2005 (0.87%) is due to the effect of the tsunami in 2004. However, in Sandy Beach, no significant change is noted, but the dynamic change is due to the erosion and accretion by the sea waves and the creeks in this region.

The overall difference in the percentage of land use and land cover changes from 2000 to 2020. From 2000 to 2020, the Agriculture Land, Barren Land, Salt pan, and Waterbody decreased by 20.09%, 22.88%, 4.21%, and 2.79%, respectively, with an increase in the Settlement area by 49.89%. The decrease in the area of Agriculture Land and Barren Land is reflected in this conversion to Settlement areas.

Year	2000		2005		2009		2015		2020	
Class	Area									
	km ²	%	km ²	ж	km ²	%	km ²	%	km ²	%
Agriculture Land	257.3	84.57	257.33	84.58	256.86	84.42	255.17	83.87	252.91	83.12
Barren Land	14.8	4.86	14.01	4.61	12.93	4.25	12.01	3.95	9.8	3.22
Salt Pan	3.98	1.31	2.64	0.87	3.18	1.05	3.22	1.06	3.06	1.01
Sandy Beach	3,84	1.26	4.12	1.35	3.93	1.29	3.43	1.13	3.87	1.27
Settlement	18.08	5.94	19.38	6.37	21.44	7.05	24.56	8.07	28.98	9.52
Waterbody	6.25	2.05	6.75	2.22	5.92	1.95	5.87	1.93	5.64	1.85
Total	304	100	304	100	304	100	304	100	304	100

Variation in land use from 2000 to 2020

3.8.1 Land Use in the Study area

Information on existing LU/LC, its spatial distribution and change are essential prerequisite for land use planning. In order to use the land optimally, it is not only necessary to have information on existing LU/LC but also its capability to monitor the dynamics of land use change. The land use planning and land management strategies hold key for development of any region.

The present work is preparing LU/LC for the proposed mining of atomic minerals (BSM Ore) (Monazite, Zircon, Ilmenite, Rutile, Sillimanite and Garnet) in the mining lease area of 1144.0618 Ha by IREL (India).

3.8.1.1 Methodology for land use/land cover mapping

The present LU/LC map prepared based on the following method. Google Satellite imageries were collected and processed using GIS software through add base map plugin. The satellite imageries initially converted into geographical coordinate system WGS 84 then converted into projected coordinate system (UTM Zone). Followed by all images layer stacked and clipped into 10km radius from the proposed project boundary.

3.8.1.2 Geo-database

Geo database was created for LU/LC classes using GIS software and the LU/LC classification were processed based National Remote Sensing Centre (NRSC), Department of Space, Government of India LU/LC classification by using visual interpretation method. Visual image interpretation is a first analysis approach to remote sensing imagery. Here, the tone, shape, size, pattern, texture, shadow, association and position of objects as well as the contrast and colour saturation are analyzed on the corresponding FCC satellite images. Field verification/ground truth has been carried out to cross check the LU/LC classes. Accordingly, the LU/LC map was prepared by using GIS software.

LU/LC Map Interpretation: The given figure shows the spatial distribution of Land Use/Land Cover (LU/LC) at 10 km radius from the proposed project boundary, which includes rural built-up with plantation, Industrial area, crop land, Plantation, barren land, river/creek/ stream/canals, tank/pond/lake/reservoir, waterlogged area, scrub land, sea, sandy area, existing shore protection structures.

Continuous patches of rural settlement along with the mixed plantation exists in majority of the terrestrial portion, which occupies 33 % of total land. The major rural settlement in 10 km radius is Colachel, Vaniyakudi, Mandaikadu, Neyyoor, Eraniel, Karungal, Marthandam, Kuzhithurai, Kaliyakkavillai, Puthukkadai, Kollamkode, Poovar, Methukummal, Ayira, Pozhiyoor, Chenkal, Vattivila, Kulathoor, Plamoottukada, Parassala, Nadaikavu, Nithiravilai, Keezhkulam, Enayam, Karumkulam, Arumanoor, Swamiyar Madam, Kappukadu, Kalluvilai, Kuzhicode, Vizhunthayambalam. In which Vaniyakudi, Enayam, Kollamcode and Nithiravilai are very adjacent to the proposed project location.

Mineral Separation Plant of IREL (India) Limited, is located 8.5 km from the proposed boundary on the southern portion of the 10 km radius. The big patches of crop land noted nearby Kulathoor, Puthukkadai, Keelkulam, Enayam Kolachal and northern side of Mandaikadu villages respectively, which is exists 166 ha. The area under plantation is widely distributed all over the 10 km radius of the project boundary. In particular, the major portion of plantation is planted either side Thamirabarani, Neyyar and Valliyaru of river bank. Also, Continuous patches of Plantation were found near Karungal, Kuzhicode, Karumkulam and poovar villages respectively, which is noted 10927 ha.

Very small batches of Barren land identified near Karungal and Keezhkulam villages, which received 222 ha.

The small patches of Tank/Pond/Lake/Reservoir are found all over the terrestrial portion of 284 ha and spatial distribution Creek/River/Canal/Stream also exist in the 10 km radius namely, Neyyar is present 6 km away, Thamirabarani river is 120 m away and Valliyar is 9.6 km away from the project boundary also AVM canal is found nearby the project boundary.

A big patch of waterlogged area found near Colachel fishing Harbour of 16 ha land. Area under scrub is noted nearby the sand area and a continuous patches of sandy area exist along the shore of 15 ha. There are some existing shore protection structures also identified near Neerody, Enayam, Thengapattinam, Melmidalam, Colachel, Mandaikadu, Chinnavilai etc., in the 10 km radius.

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

SI. No.	LC/LC Classes	Area in Ha	Area in %	
1	Rural Build Up mixed with Plantation	23295.20	33.58	
2	Plantation	10927.10	15.75	
3	Barren Land	222.59	0.32	
4	Industrial Area	14.62	0.02	
5	Creek/River/Canal/Stream	296.39	0.43	
6	Tank/Pond/Lake/Reservoir	284.20	0.41	
7	Crop Land	1847.35	2.66	
9	Sandy Area	166.13	0.24	
10	Existing Coastal Structures	15.45	0.02	
11	Sea	32271.40	46.52	
12	Scrub Land	11.70	0.02	
13	Waterlogged Area	16.69	0.02	
	Total	69,368.82	100	

Land Use/Land Cover split up:

Inference:

Based on the present LU/LC map describes that the Project site is bifurcated into two adjacent non-contiguous blocks. "Block A" – 544.0688 ha (Keezhmidalam, Midalam, Enayamputhenthurai Villages in killiyoor Taluk, Kanniyakumari District) "Block B" – 599.99.30 ha (Ezhudesam, Ezhudesam, Kollencode, Villages in killiyoor Taluk, Kanniyakumari District). Total Mining Lease area is 1144.0618 ha. The major land use is rural build up with mixed plantation are the dominating land use features. The major source of the Water Bodies is Neyyar, Thamirabarani river and Valliyar. Thamirabarani river and AVM canal is very near to the project boundary. The horticulture and plantations are the major preferable crops produced by the local farmers. Agriculture and fishing are the major source of income for their livelihoods. Colachel Fishing Harbour, Thengaipattinam fishing harbour were identified within 10 km radius. Trivandrum – Nagercoil, Panvel-Kochi-Kanniyakumari, National highways NH 66 and many major state highways like SH 91, SH 179, SH 181 were identified the important routes in the 10 km radius from the project boundary

3.9 Meteorology

The study area lies in the tropical region where the climate is witnessed by very hot summers, mild winters with monsoon rains. The historical meteorological data is collected from the nearest Indian Meteorological Department (IMD) station located at Thiruvananthapuram in order to understand the macro - meteorological parameters. The climatological data for Thiruvananthapuram (8.5241° N, 76.9366° E), published by the IMD, based on daily observations at 08:30 and 17:30 hour IST for the past 30-year period is detailed in the following sections.

3.9.1 Wind speed and direction

From historical data the predominant wind direction was from northwest (25%) and the second predominant direction was from west (24%). This historical data has been used as a base for selecting the sampling locations. The wind rose based on historical data is shown in Fig 3.15.

Figure 3.14 Historical windrose diagram

3.9.2 Temperature

Table 3.4 presents the annual monthly distribution of temperature during the Period. From the table it can be observed that December and January are the coldest months and March, April and May are the hottest month of the year. Fig 3.16 bar chart depicts monthly mean max and min. temperature. The mean monthly max temperature is recorded in the month of March/April/May as 35.1°C and mean monthly min. temperature is recorded in December/January as 20.5°C & 20.1°C. Summer is typically from March to June and winter is from November to February.

Manth	Temperat	ure (^o C)
Wonth	Mean monthly max.	Mean monthly min.
January	34.0	20.1
February	34.2	20.8
March	35.1	22.1
April	34.8	22.9
May	34.3	22.6
June	32.4	22.0
July	31.7	21.6
August	31.7	21.6
September	32.6	22.2
October	32.2	21.9
November	32.6	21.6
December	33.6	20.5

Table 3.3 Annual Temperature Data

3.9.3 Relative humidity

The annual average relative humidity is in the range of 75-88% for daytime and 63-80% for nighttime. Table 3.5 and Fig 3.17 shows the historical relative humidity data.

	-								
Mantha	Relative H	lumidity (%)							
Wonths	Daytime	Night time							
January	75	63							
February	77	63							
March	78	66							
April	80	73							
May	82	75							
June	88	80							
July	88	79							
August	88	78							
September	85	77							
October	87	80							
November	86	78							
December	78	69							
Annual mean	83	73							

Table 3.4 Relative Humidity

3.9.4 Rainfall

The average annual rainfall as recorded at IMD observatory at Thiruvananthapuram is 1754.2 mm. The Southwest monsoon lasts from mid-June to mid- November and the area gets more than 80% of the annual rainfall during this period. The no. of rainy days is observed as 95.4. Table 3.6 and Fig 3.18 shows mean total rainfall and no. of rainy days during the Period.

Months	Monthly total rainfall (mm)	No. of rainy days
January	15.9	1.0
February	22.7	1.7
March	27.8	2.3
April	118.8	6.5
May	198.6	9.7
June	330.4	16.6
July	188.1	13.4
August	152.3	10.3
September	169.1	8.7
October	254.5	11.7
November	211.9	9.2
December	64.0	4.2
Annual total	1754.2	95.4

Figure 3.17 Monthly total rainfall and rainy days

3.10 Baseline data generation/establishment of baseline for environmental components

Establishment of the baseline conditions of different environmental components in the study area and in the core zone has been carried out by conducting field monitoring for baseline data generation. The data generation was carried out covering Meteorology, Ambient Air Quality, Noise Levels, Surface and groundwater quality, soil, traffic density, ecology and socio-economic features. Besides additional data/information regarding ecology, demographic pattern and socio-economic conditions were collected from various central and state government agencies.

3.10.1 Micro meteorology

Prevailing micro-meteorological conditions at site regulate the dispersion (and hence dilution) of air pollutants in the atmosphere. Therefore, study of micro-meteorological conditions is an integral part of environmental impact assessment studies.

Accordingly, a meteorological station was set up at settlement which lies within Mining Lease boundary. The following parameters were recorded at hourly intervals continuously during the monitoring seasons:

- ➢ Wind speed
- ➢ Wind direction
- > Air temperature

Summary of meteorological data collected during winter season, 2022-23 is given in Table 3.7. The wind frequency distribution, overall, day time and night time is presented in Table 3.8.

Figure 3.18 Windrose for Study period

Table 3.6 Summarized meteorologica	I data for winter (2022-23)
------------------------------------	-----------------------------

Month	Wind	l speed	(m/s)	Temp	perature	(°C)	Relative humidity (%)		
	Mean	Max.	Min.	Mean	Max.	Min.	Mean	Max.	Min.
Dec 2022	2.17	8	1	25.77	34	20	82.63	100	33
Jan 2023	2.1	4	1	25.58	35	19	74.68	94	49
Feb 2023	2.69	10.8	1	28.19	33.4	20.4	70.33	94	30

Table 3.7 Wind Frequency Distribution at IREL during winter season, 2022-23

		Ve	locity Ran	ges (m/s)			
Direction	0.50 -	2.10 -	3.60 -	5.70 -	8.80 -	>=	Sum %
	2.10	3.60	5.70	8.80	11.10	11.10	
Ν	1.99074	0.92593	0.09259	0	0	0	3.00926
NNE	2.5463	0.23148	0	0	0	0	2.77778
NE	7.5463	0.13889	0	0	0	0	7.68519
ENE 6.2963		0.18519	0	0	0	0	6.48148
E 4.49074		0.37037	0	0	0	0	4.86111
ESE	1.62037	0.37037	0	0	0	0	1.99074
SE	0.92593	0.23148	0.0463	0	0	0	1.2037
SSE	0.78704	0.37037	0.0463	0	0	0	1.2037
S	1.89815	1.2037	0	0	0	0	3.10185
SSW	2.36111	1.80556	0	0	0	0	4.16667
SW	6.66667	2.12963	0	0	0	0	8.7963
WSW	4.58333	3.42593	0.09259	0	0	0	8.10185
W	5.69444	2.73148	0.37037	0	0	0	8.7963
WNW	2.36111	0.74074	0.60185	0	0	0	3.7037
NW	2.5	1.06481	0.27778	0	0	0	3.84259
NNW	1.43519	0.64815	0.09259	0	0	0	2.17593
SUM %	53.7037	16.5741	1.62037	0	0	0	71.8981
			CALM	% = 28.10	19		

3.10.2 Air Environment

To quantify the impact of the mining and allied activities on the ambient air quality, it is necessary at first to evaluate the existing ambient air quality of the core and the buffer zones. The existing ambient air quality, in terms of Respirable Particulate Matter (PM₁₀& PM_{2.5}), Sulphur-dioxide (SO₂) and Oxides of Nitrogen (NO_x) and Carbon monoxide (CO) have been measured through a planned field monitoring. In addition, free silica and mineralogical composition of PM10 have also been analyzed.

3.10.2.1 Ambient Air Quality (AAQ)

In order to fix the locations of the monitoring stations, a model suggested by Houghland and Stephens (Ref: The Design of Air Quality Monitoring Network; R.E. Munn, 1981) has been used. This model suggests setting up of monitoring stations at those locations where ground level concentration (GLC) is high. The probability factor was found by determining the "coverage factor" for potential monitoring locations around the project, which are likely to be affected due to air pollutants from the project. The coverage factor for all potential locations was calculated by the following formula:

$$A_{jk} = \frac{Freq.(k)}{(1 + D_j)}$$

Where,

Ajk = Coverage factor of the monitoring site in the kth downwind sector

Freq. (k) = Frequency of wind direction in the k^{th} sector.

Dj = Distance (km) from the source (project) to the site.

The wind rose data of IMD Thiruvananthapuram observatory was used to calculate the Ajk values of all potential AAQ monitoring stations. Stations were set up all around the project site.

Stations were set up at all around the two noncontiguous blocks of mine lease area. Possible stations covering all possible downwind directions and in varying distances up to a limited stretch from the project site were tested with this mathematical model. The list of selected AAQ Stations is given in Table 3.9. Ten locations were identified for establishing Ambient Air Quality monitoring network. The table gives location of the ambient air quality monitoring stations and their coverage factors.

 Table 3.8 Ambient Air Quality (AAQ) monitoring stations

StnNo.	Location	Latitude	Longitude
A1	Ezhudesam 1	08°16'02.28" N	77°08'35.98" E
A2	Ezhudesam 2	08°15'54.53" N	77°09'40.85" E
A3	Midalam	08°12'16.76" N	77°12'56.31" E
A4	Alanji	08°11'51.90" N	77°13'58.48" E
A5	Helen Nagar	08°12'53.02" N	77°11'51.34" E
A6	Simon Colony	08°10'35.07" N	77°14'44.88" E
A7	Paloor Vattakkottai	08°14'54.50" N	77°13'36.94" E
A8	Rethapuram	08°11'44.45" N	77°15'04.46" E
A9	Kollencode	08°17'03.38" N	77°07'31.94" E
A10	Chemmanvillai	08°18'09.32" N	77°09'55.44" E

3.10.2.2 Monitoring schedule

As mentioned earlier, the EIA report has been prepared on the basis of Ambient Air Quality data generated in the study area for one full season covering three months of winter season (December-January-February) in 2022-2023. Samples of 24-hourly durations were taken for monitoring PM₁₀, PM_{2.5}, SO₂, NO_x and free silica.

3.10.2.3 Methods of Sampling and Analysis

The methods of sample collection, equipment used and analysis procedures as followed are given in Table 3.10 and National Ambient Air Quality Standards are given in Table 3.11.

Table 3.9 Methodology of sampling & analysis and equipment used

SI. No.	Parameter	Instrument/ Apparatus Used	Methodology	Reference		
1.	SO2 (µg/m3)	RDS with Impinger Tube, Spectro– photometer	Improved West & Gaecke Method	MOEFCC G.S.R 826 (E) dtd. 16.11.09		
2.	NOX(µg/m3)	RDS with Impinger Tube, Spectro– photometer	Jacobs & Hoccheiser Modified (Na- Arsenite) Method	-do-		
3.	PM10(µg/m3)	Respirable Dust Sampler (RDS)	Gravimetric	-do-		
4.	PM2.5(µg/m3)	PM2.5fine Dust Sampler	Gravimetric	-do-		
5.	Free Silica	FTIR	NIOSH 7603	-do-		
6.	Lead (Pb) and other Metals (µg/m3)	AAS, sampling on EPM 2000	Gravimetric followed by AAS	-do-		

Table 3.10 National Ambient Air Quality standards

			Concentration in	Ambient Air
SI.No	Parameter	Time Weighted Average	Industrial, Residential, Rural & Other Areas	Ecologically Sensitive Area (Notified by Central Government)
1	SO2· (ua/m3)	Annual*	50	20
•	302, (µg/113)	24 Hours**	80	80
2	NOx: (ug/m3)	Annual*	40	30
2	NOX, (µg/113)	24 Hours**	80	80
2	DM10 (ug/m2)	Annual*	60	60
5	FΜ10, (μg/m3)	24 Hours**	100	100
1	$DM2.5\cdot(\mu a/m^2)$	Annual*	40	40
4	FIVIZ.5, (µg/115)	24 Hours**	60	60
5	Eroo Silioo	8 Hours**	02	02
5	FIEE Silica	1 Hour*	04	04
6	$l a d (Db) \cdot (u d m^2)$	Annual*	0.50	0.50
0	Leau (PD), (µg/113)	24 Hours**	1.0	1.0
7	Arsenic (As); (ng/m3)	Annual*	06	06
8	Nickel (Ni); (ng/m3)	Annual [*]	20	20

*Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals

**24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be compiled with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days.

ABC '	Feehrio	Labs	AB	C TOWER A Ph : +93 Email: Ial	w400, 110 mbattur, Cl -44-2625 7 b∉abctech	n street, S Sennai - G 788 / 99, Nolab.con	00 098, Tami +91 94442 8 n / Web: ww	ar Looke - / Inadu, INDV 0000 / 9566 wabctechne	Vorat enaite, 1.87777 alah.com		The second	110
		147	110 000	11, 150	taggit 15	D 4500	17 5 ISO : 2	2000 Ceril	fied Comp	uny)		
Att	rodited by	NABL	ide TC-57	70, NAS	et / QQI, I	Recognia	nd by MoEE	LCC. MID. A	HEDA, IQI	inC Teo box	nd Indio	
SSUED TO	Th IRI De Ma	e Gener EL Indi partmer navalal	al Manag a Limited n of Aton corichi,Ka	er and H nic Energ nyakum	ead ty ari Distric	TEST F	REPORT)				
Report num	her	- 14	ABCTU/	REL/EIA/	2022/12/A	AD1		_				
Sample draw	ra by	1	ABC Tech	no Labs f	ndia Private	Limited	104 C 24 MILLION					
Sample desc	ription	1	Ambient	Air Quality	Monitorin	g-24 Hou	ely Ranis Twi	ne a week fo	r three Mon	the out out		
Location of a Project name	ampling	i i	Mining a	Atomic M	Sample 1, 5 linerals at 7	o m feom Seechmich	ilam ~A, Mid	ge. N-08'16 slam -11 Eno	s oz.28" E+7 iyampithen	thural Exhad	esant - A,B	& C and
	1. 1967 22		Kollenco	ie A & E V	illages of KI	Siyoor Ta	luk in Kanniy	akumari dis	mict, Tamil	Naaha		100002
uate of samp Report date	nuni	15	05-03-20	22 10 27/	01-1013					- 410 - 11	age 1 of 1	
Parameter	PM 2.5	PM 10	SO:	NO.	CO morm3	O1 unim ¹	NHo worker?	Loud un/m ³	Benzame Joint ³	BiajP	NI.	As no/m ²
Method Date of	EPA 40 CFR P50	18: \$182 P23	15: 5182 P2	15: 5162 P6	15: 5182 P10	ABCT L/SOF /A/07	ABCTL/5 OP/A/05	45; 5182 P22	15: 5182 Part 11	15: 5182 Part 12	USEPA Method 10-3.2	ABCTU SOP/A10
Monitoring			2.6	14.0	0.11	10.4	800/<52	801/40.15	80640.11	80L(=0.01)	0015<31	HDL(<1)
08.12.2022	17	39	6.5	15.6	0.13	11	804(<5)	R01(<2.1)	E04/-0.11	800(<0.01)	6011<11	801(<1)
12 12 2073	21	45	6.9	14.1	9.17	10.0	000(+5)	80((40.1)	80(<0.1)	804(<0.01)	BD1(<3)	004<1)
14.12.2022	24	52	7.2	16.8	0.15	12.4	80((45)	101(d) 1)	804/40.11	800/x0.011	BOL(<1)	804(<3)
22.32.2022	.34	59	7,0	19.5	0.15	11.8	BDL(<5)	001(-0.1)	804/<0.11	8012-0.011	1012-11	HDL(+1)
15.12.207.2	21	44	6.9	14.1	0.15	12.2	BBL(<5)	8021(+0.1)	80x(<0.1)	BOL(=0.01)	HDL(<1)	HEIL(<\$)
29.17.2022	19	40	2.4	16.7	2,12	.12.9	80635	801(40.1)	abe(<0.1)	E01(<0.01)	8016<11	80(<1)
03/01/2023	21	(43	6.6	19.5	0.16	12.2	BDU(<5)	001(00:0)	BD6(<0.1)	80(+0.01)	804(<1)	#FR(+3)
05.01.2023	23	47	7.4	13.9	0.18	10.9	000(45)	101(40,1)	804(<0.1)	BELOGIOI	Runt (ett	Mill(st)
12 01 2023	11	38	1.0	16.3	0.71	187	801/451	HUL(+0.2)	BD6[+0.1]	000000011	801(<1)	600(<1)
17.01.2023	21	46	5.7	15.5	4.14	12.9	BDL(<5)	BOL(=0.1)	806(<0.1)	0.0.4%	BDK.(<1)	HD1(<1)
19.01.2023	21	47	7,1	14.2	0,15	12.4	800(<\$)	801(49.1)	8DQ-0.1	HERE-0001	BOL(<1)	materi
23.01.207.8	20	-41	13	12.1	0.19	113	BDH(<53	HOU(+0.1)	304/+0.1	806(40.01)	80((*1)	HD1(<1)
77.01.7013	- 24	50	6.5	16.7	.0.17	34.1	804(<5)	HOL(45.1)	HDU(d).11	801/00.011	0.01(<1)	800(+1)
07.07.2073 05.07.2073	21	-44	6.9	12.5	0,35	18.2	80((<5)	80(40.1)	BD62+0.11	BD4(+00.01)	001(41)	BOL(+1)
00 07 2023	10	39	64	14.6	0.19	12.2	BELCCE	100000	HD4/<0.1)	804/<6/011	Hite(<1)	404(<1)
13.02.2023	21	44	6.2	16.5	0.19	13.7	BDL(+5)	801(40.1)	804(+0.1)	868.(<0.01)	856(<1)	#D1(*1)
15.02.2023	- 29	42	6.6	14.7	8.54	\$2.2	BDL(<s)< td=""><td>101(-0.1)</td><td>HD4[40.1]</td><td>806(<0.01)</td><td>60L(<1)</td><td>800(<1)</td></s)<>	101(-0.1)	HD4[40.1]	806(<0.01)	60L(<1)	800(<1)
20.02 1023	22	47	6.4	24,1	.0.11	32.3	BIH (+Ci)	804(+0.1)	HD[[40.1]	801/-0.011	RDL(<1)	801(+1)
27.02.2023	20	40	5.7	16.3	0.15	12.5	800.2455	HELLODI	HDU40.1	801240.011	BOL/«TI	BELLAN
Min	17	3.8	\$.7	13.9	0.13	10,4		+	1)+(and the second second
Max	24	53	7.9	17.1	0.23	\$4.6	+			- 141-		
Menn	30.79	44.33	6.72	15.47	0.15	12.48	×	+)		100		
percentile	24	52.54	7.008	17.05	0.2001	14.17		+	.7	1.9.1		1
Standard	60	100	80	80	1	100	400	2	5	1	20	6
IDL-Belov	Detection	in Lim	1t > 140	ABS	E	nd of reg	ort			D. D	04	_
Qu	S.Dhara ality Mar	ui 1ager	Carl	EANNA)						A. Rob Tech	son Chinr nical Mar	adurai ager
			1000	1013 /	/	VIEW C				200	and the second sec	A CONTRACTOR OF A CONTRACTOR O

Tolla	Private Lin	ind .		Email: la	-wi-zbzs // b@abctechr	ea / 90, 1 olab.com	/ Web: ww	w.abctechn	olab.com		TC-	8.770
) (An	150 99	1,152	14(0),155	2:4500	1 4 150 2	2000 Cert	fins Comp	enn)		
Ac	criedited b	y NAIL \	ida 10-51	770, NAB	ET / OCI, R	etogitise	d by MoEF	acc, dis a	FEGA, ICP	EMC. Two Ber	and India .	
SSUED TO:	Th IR De Ma	e Gener EL India partmer mavalak	al Manag I Limited It of Aton Iurichi,Ka	er and H nic Energ mynkum	ead ty ari District	TEST R	EPORT	1				
leoort num	ber	1	ADCTL/	RTL/FTA/	2022/12/44	62	_					
ample drav	va by		AllC Tect	ino Labii I	ndla Private	Limited					_	
ample desc ocation of s	ription templing	14	Ambient AAQ 2-Er N- 08*15	Air Qualit; ihudesam \$4.\$3* E-	y Monitoring Sample 2, 30 77°09'40.85'	-24 Hour na from N	y Basis Twi ledumpuran	ce a week fo n Sree Mathi	r three Mon imariammar	th a Temple,		A.S.I.S. (199
raject nam	e	10	Mining of	Atomic &	linerals at Ke Ilagen of Kill	wyhmidal woor Tele	am - A. Mida dr in Kanzis	alam - B. Ena mlummeri dia	yamputhent trict, Tamil	thurui, Exhiod Nachi	esam - A,B	& C and
late of samp	pling	11	05-12-20	22 TO 27	02-2023							
eport date	01825	PM 10	96-03-20	23		0	NH-	Lead	Bergena	Blaip	NI NI	As
Test Method	PQ/m ³ EPA 40	pp/m* IS:	15:	pgmi ^s iS:	CO mg/m*	ABCT	ABCTL/	10: 6187	15: 5107	ng/m ²	ng/m* USEPA	ABCTL/
Date of Sonitoring	CFR P50	5182 P23	5182 P2	5182 P8	P10	IJSOP JAJ07	SOP/A/Q	P22	Part 11	Part 12	Nethod IO-3.2	SOP/A10
05.12.2022	20	63	BOL(<5)	12.5	BDL(<0.1)	9.9	BDL(<5)	HDL(+0.1)	004(40.1)	-BOL(x0.03)	(804(<1)	68((<1)
08.12.2022	17	96	801(<5)	33.6	80((-0.1)	10,2	BDL(<i)< td=""><td>BDL(+0.1)</td><td>806(<0.1)</td><td>801(<0.01)</td><td>7004(<1)</td><td>四((<1)</td></i)<>	BDL(+0.1)	806(<0.1)	801(<0.01)	7004(<1)	四((<1)
3.12.2022	21	44	806(<1)	(14)	801(=0.1)	12.2	BD1(+5)	BDU(+0.1)	DD4(+0.1)	100(<0.01)	HEL[cl]	800(<3)
4.12.2022	19	39	1015-51	\$2.7	801(<0.1)	9.5	80(1<5)	IIDU(=0.1)	HDR(<0.1)	804(+0.01)	housen	000/411
19.12 2022	17	30	BOLICSI	13.3	BDL(<0.1)	11.1	80(1<5)	801(49.3)	HUR (CILL)	R01(00.01)	BDL(<1)	801(<1)
12 12 MITS	17		BEUGEST	14.9	80(200.1)	10.1	STR(+5)	BD0(40.5)	DOLLAD TY	80100.01	BER (cl)	BELINT
99.12.2022	19	41	ROLIST	22.7	BDL(d11)	9.7	BELICH	BDL(40.1)	HD61=0.1)	Bill(c0.01)	REL[<1]	四((<1)
19.01.207.8	17	37	BOL(-S)	14.7	801(-0.1)	12.2	BOL1+5)	BDL(+0.1)	BDL(<0.1)	B00(<0.01)	RCL(<1)	8004<31
15.01.701.8	19	41	REL(<5)	13.ñ	801.(<0.1)	11.6	RDL(<5)	BDL(-0.1)	RDL(<0.1)	80(2401)	BEL(CI)	BDL(<1)
11 01 1011	UT	猫	30L(<5)	10,1	801(<0.1)	10.8	0D((<5)	BDL(<0.1)	BD5(<0.1)	BUL(+0.01)	OU(<1)	10((<1)
12 01 2023	- 75	42	BLUES	14.1	BD4(+0.1)	12.8	and state	HDL(+0.1)	BDR <0.13	804(<0.011	001/41	BDL(<3)
17.01.2023	18	38	BDL(<5)	19.7	HDI(<0.1)	11.4	BDU((5)	HDU((0.1)	BURLOW I)	801(+0.03)	BOUGH	101(43)
19 01 2023	18	40	BDU<5)	16.0	801(-0.1)	12.6	apursi	#DL/40.11	BD64=0.12	BULCODI	813. <11	EDU(<1)
27.03.3029	17	36	8001-51	33.5	801(40.1)	11.0	(BER.)<55	HDL(<0.1)	BER (<0.1)	001(<0.01)	800(<1)	804(<1)
12 03 2023	29	39	806(<5)	\$4.7	804(40.1)	12.2	004.9<53	BDUAD.13	804(41.1)	BDL(<0.011	80U<11	804(<1)
6 03 2023	18	41	804(<5)	\$3.H	8D1(<0.1)	11.7	60L <5]	BDL(40:1)	000(=0.1)	#01(+0.01)	(IOL(<))	80(1<1)
5 02 2025	37	38	80(140)	15.8	BD1(<0.1)	18.8	801/452	BDU(ctr.1)	BOLIKU 1	801(=0.01)	001(<))	80((<1)
1.02.2023	- 41	30	50(1/5)	17.0	BDI (=0.1)	11.0	BOLI-61	HDU/(0.1)	000-0.1	80000011	101/<11	801(<1)
102 2023	20	41	BIR(+5)	14.4	BDU D.U	17.2	806(<5)	HDL/(0.1)	804(<0.1)	801(<0.01)	8012<1)	17>300
9 02 2023	21	44	100(<3)	12.3	BDI.(<0.1)	10.7	000(<5)	804.(«fi 1)	BD6(<0.1)	EDL(=0.D1)	(ROL(<1)	BDI(<3)
7.02.2023	19	11	804(45)	15.7	6DI;[<d.1.]< td=""><td>10.9</td><td>804, (5)</td><td>HDU<0.1</td><td>803(<0.1)</td><td>BDL(<0.01)</td><td>8016<11</td><td>60((1)</td></d.1.]<>	10.9	804, (5)	HDU<0.1	803(<0.1)	BDL(<0.01)	8016<11	60((1)
Max	25	36	1	12.5	-	13.3		1.5			-	
Maati	16.79	30-02	1.2	51.00		\$3.41	1	-Tai	-	14	41	
AP CPCH	21	44.54	-	15.470		13.024	1		- 12	74		
Standard	60	100	300	na		200	440	1995 I	3		्रम्	6
DL-Belg Qu	S.Dhara ality Mar	on Lim 5125 ni nager		LAES HENNA DO 000		d of rep	ort			J. H. A. Robs Tech	A.C. Fon Chinr nical Mar	iadural iager

ABC	Feehno	Lubs		Ar Ph:+91- Ferail: Ide	nbattur, Che 44-2625 771 Mahrterhu	ninal - 600 88 / 99, 49 olah com (098, Tami 1 94442 6 Web- ww	Inadu, 1900 0000 / 9566 waturtechov	4. 1 87777 alah.com		T	R
	- Henny and A	27) (14a	150 : 90	in iso	14010) 7 1155	1.46601	A 130	2000 Ciriti	fied Colmb	toy	195	1.0%
Acc	redited by	NAR	nde 10-57	70, NAUE	TT QCI, R	ecopniaed	by MotPl	кос. Ш. A	FEDA IDP	FFG. Tela Elor	and India	
		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		and the second	and the second second		Cherry Charles		A PROPAGATION			
SSUED TO-	Th IR De Ma	e Gener EL Indi partmer mavalai	al Manag s Limited it of Ator urichi,Ki	er and He nic Energ myakuma	ad X rl District	TEST RE	PORT	E.				
Report num	ber	12	ABCTL/I	REL/EA/2	022/12/AA	01					_	
Sample draw	m by	1	ABC Tech	ino Labs In	dia Private	Limited	Rector		William W.	ā. —		
sample desc Jocation of s	ampling	3	AAQ 3: M N-08*12	Air Quality lidatou San '16.76* E-7	Monitoring iple, Karony 7*12'56.31	ai Midalam	Rnad,115	m trans Gov	t High Schoo	n I Udayamarth	andam	
roject nam	8) (1	25	Mining a Kallenco	f Atomic M de A 6.0 Vil	inerals at Ke lages of Kill	erzhmidala Iyoor Talul	m – A, Mida t in Kanny	alam +11, Era yakumari dis	iyamputhen trict. Tamif	thorrai, Exhud Nadu	esam >A,B	& C and
tate of samp Report date	ning	3	05-12-20	22 10 27-1	12-2023					3	Page 1 of 1	
Paramotar	PM25	PM 10	80,	HO.	00	0,	NHz	Load	Benzene	B[s]P	NI.	Aa
Method Date of	EPA 40 CFR	15: 4182	IIS: 0182	15: 6182	15: 5182	ABCTL/ SOP(A)	ABCTL/ SOP(A)	15: 5182	15: \$182 Bart 11	15: 5182 Part 12	USEPA Method	ABCTLJ
Monitoring	P-00	P23	P2	P6	014	07	00		Billion 11	818143 815	10-3.2 #Dife11	HUNICES
08 13 2023	25	53	0.3	12.8	0.11	9.6	HDU/<5	60L(<0.1)	1012-0.1	8D((<0.01)	HOU-1)	0Dt(<1)
17.12.2072	20	- 4L	6.9	13.8	0.15	10.9	801.(<5)	804i<011	801(<0.1)	80((-0.01)	BDG(413	BERI«1)
14 12 2022	29	48	2.5	14.7	0.17	11.7	60((-5)	80(<0.1)	BDL(-0.1)	RDL(G2B1)	BDQ/413	0001<11
12 12 2022	26	53		14.1	0.11	12.2	801/<51	004/4017	BDL(<0.1)	BDL(<0.01)	BDE(41)	HDL(x1)
16 12 2022	20	-40	5.7	14.9	0.14	13.1	801(<5)	001.[<0.1]	BOL(+0.1)	BEE.(+0.01)	RDL(+1)	8041411
19.12.2022	24	-30	6.4	133	0.19	11.8	001(<≤	BB4,]<0.1.)	Bfll(+0.1)	8D5(<0.01)	IIDC(=(1)	BDt(xt)
05.01.2023	- 21.	44	5.9	12.5	0.11	9.9	800<51	BOURD 1	BOLISO 11	BDL(+0.01)	BDUM	BDU<1)
05 01 2023	22	47	6.9	14.7	0.13	11.2	804<5)	661.(<0.1)	BCIL[+0.1]	HDL(=0.01)	HDU/+1)	DDL(+1)
12.01.2021	21	43	7.1	35.5	0.14	12.3	1014-51	80L(+0.1)	804.011	nDx(<0.01)	#DL(<1)	803(<3)
17:01.2023	22	416	£.8	15.1	0.17	12,7	HOL(<s!< td=""><td>BEH, will, t.).</td><td>BDL(+0-1)</td><td>#Ex[<0.01)</td><td>#D6(<1)</td><td>BD:(<1)</td></s!<>	BEH, will, t.).	BDL(+0-1)	#Ex[<0.01)	#D6(<1)	BD:(<1)
19.01.2023	200	- 47	155	24.6	0.11	12.4	800.651	801400.13	R0((40.1) R0((40.1)	BDC(<0.01)	HIPLICES	HD4(v1)
27.01.2023	23	- 49	5.8	35.7	0.15	11.5	BDUGI	80L/dl.11	800,00.1	#EX. (v0.01)	BULICE	Billel<1}
62.02.2023	23	- 45	5.8	12.é	0:13	10.4	HD1(<5)	HDL(=0.1)	HOL(+0.1)	HD((<0.01)	BDL(-1)	856(<1)
06.02.2023	26	57	5.8	12.9	0.34	10.5	BDL(<\$)	BOL-0.1	BUL(+G-1)	BDL(+0.01)	BDLiv1)	BDG[<13
09.02.2025	23	47	0.6	1.6.7	0.12	10.9	BDL(<5)	BER (+0.1)	BOL(+0.1)	BDU(+0.01)	RDL(<1)	BDs(<)
16.02.2023	29	44	1.2	13.0	0.13	18.4	800453	101/40.11	BOU-10 1)	BDL(H0.01)	BDS.4+15	nts(d)
20.02.2025	20	42	1.2	35.7	0.14	12.9	BDU(S)	804(+0.1)	BDU(+0.1)	@OL(<0.01)	abs/ <u< td=""><td>B08(<3)</td></u<>	B08(<3)
23.02.2023	29	48	2.2	19.0	0.13	12.4	HDL(+5)	101(+0.11	1011-0.11	808.(<0.01)	804/411	HTL(<1)
27.02.2023	24	49	1.1	\$3.6	0.15	10.9	804,(<5)	804(+0.1)	80(-0.5)	#DL(+0.01)	HDK(<3)	BD6(<1)
Min	18	39	5.2	12.6	0.11	9.6		17		1	-	
Mean	22.25	46.38	6.34	14.14	0.14	11.40				1.	-	-
99	94			1000	0.10	19.2	1	1 22	÷	100 E	-	
CPC8 Standard	60	100	80	80	2	100	400	4	5	-1	20	6
DL-Below Qu	Detection S.Dharadality Mar	oy Limi SlQ - D ni mger	ac tech	LABS MULT	Em	d of repo	rt), C A, Robe Tech	ion Chinr nical Mar	adurai iager

A: ISSUED TO	rectioned b Th	NASL	150 1 70	0)_HC	14001.45	D 4500	- A (S(A) - 2	2000000000		(#) ()		
A3 ISSUED TO	rented b	Y NALL	and the second se		WARDOWN DO NOT		The Lot of the Lot				And Personal Property lies of the lease of t	
ISSUED TO	Th		WHATC-S	770, NAS	et i giel, f	- singht is	d ay Math	400, BIS, A	PEDA, IOP	EPC, Ten Bor	are hidie.	
ISSUED TO-	Th					a set of second	In the local division of the local divisiono					
	1.000	e Gener	al Maney	er and He	end	TEST R	EPORT					
	IR	EL Indi	a Limited	ate Pierre								
	M	partmer	u of Ator curichi K	nic energ	y el District	6						
	37	acid v Alida	an icai teo	ануаканы	ar wisi in	5						
Donard man	100		ARCTUR	DET INTA P	NY 22 24 29 24	101						
Sample drav	n by	1	ABC Tec	huo Labs ir	idia Private	Limited						
Sample desc	ciption	ż	Ambient	Air Quality	Monitoring	-24 Bour	y Basis Tw	ce a week fo	r three Mou	th		
Location of a	ampling	15	AAQ 4: A	lanji Sampl	e 30 m fron	St. Franc	s Xavier Ch	urch				
Project name		1	Maingo	f Atomic M	inecals at K	ershnida	atti - A. Mid	alam -B. Eru	wamputhen	thurat, Exhod	esant -A.B	& C and
-2004.1V		- P	Kollenco	de A & II VI	lages of Kil	iyoor Tak	ik in Kanni	yakumari dis	trict, Tamil	Nadu	WI SUS	23.MU
Date of samp	ung	- 1	03-12-20	2270.27	02-2023						Same 2 and 4	
Parameter	PM 2.5	PM 10	50,	NO.	co	0,	ADA.	Looit	Benzene	DEATP	N	As
Test	ug/m ^a	µg/m ³	hilli the	nituu,	-mg/m ³	Jag/m ^a	jagim*	10/m²	"entigu	ng/m ¹	ng/m ³	ng/m³.
Date of Monitoring	EPA 40 CFR P50	15; 5182 P23	15: 5182 P2	15: 5182 P6	19: 5182 P10	ABCT L/SOP /A/07	ABGTL/ SOP/A/0	IS: 6182 P22	19: 5182 Part 11	15: 6182 Port 12	USEPA Method 10-3.2	ABCTL/ SOP/A10
05.12.2022	IT	30	6.6	13.7	8.14	10.1	80(1<5)	801,(<0.1)	005(-0.1)	8015<0.011	801.(v1)	304/ci)
08.12.2022	- 21	44	1.9	14.0	0.23	11.2	RD1(<5)	801(<0.1)	806(+0.1)	801/<0.01	SED1.(<1)	BOL(+1)
12.12.2022 23 47 7.5 12.8 0.16 0.17 13.8 00.163 00.001 00.161 00.101 00.161 00.												
19.12.2021	12	29	7.7	13.6	0.17	10.5	BELINS)	BDL(<0.1)	BDL-0.1)	HOL(+0.01)	801/<11	BELOCIT
22.12.2022	21	(45)	11.11	34,4	0.14	11.1	HDL(+5)	HDL(+0.1)	80((+0.1)	801/<0.011	801(41)	101(41)
36.12.2022	1.0	40	5.4	18.5	411	16.5	80((<5)	801((0.1)	804(+0.1)	BDUARON	BD1(=1)	Bill(<1)
03.01.2023	- 23	40	0.4	18.1	0.10	12.1	#00(9:5) #24/951	IDL(+0.1)	100(+0.1) 100(+0.1)	BDL(<0.01) BDL(<0.01)	60((=1) 80((<1)	HDL(C)
05.01.2028	17	36	7.7.	11.9	0.16	10.3	HOL(<5)	BUX(NO.1)	804(40.1)	BDU(4001)	BD1(<1)	H51(+1)
09.01.2023	18	39	7.1	14.5	8,13	118	10(-5)	ROL(+0-1)	40((-0.1)	BDU<0.01)	BD((<1)	BDEL+11
12:01:2023	21	.45	529)	25.8	0.14	12:1:	-800<	BDL(<0.1)	#81(<0.1)	#DU(<0.01)	#D((<1)	HOLEST
19,01,2023	21	48	5.8	\$2.0	0.11	19.8	BOL(-S)	#06(+0.1)	.000(<0.11	BDU(COLIT)	BDU<15	HULL+1)
73-01-2023	- 20	42	2.4	\$2.5	0.53	10,1	HEL(<s)< td=""><td>HEEL(+0.1)</td><td>fiDL(+0.1)</td><td>BD1(<0.01)</td><td>BD11-(1)</td><td>00t(<1).</td></s)<>	HEEL(+0.1)	fiDL(+0.1)	BD1(<0.01)	BD11-(1)	00t(<1).
27.01.1013	18	37	7.5	11.6	0.15	12.3	HOLIST		BDU-9.11	80(340.01)	BDK[41]	#UU1+13
06.02,2023	17	10	5.9	15.8	0.14	13.8	HDL(<s)< td=""><td>HUL -0.1</td><td>HEU(-D.I.)</td><td>806(<0.01)</td><td>BDL(41)</td><td>ND((<1)</td></s)<>	HUL -0.1	HEU(-D.I.)	806(<0.01)	BDL(41)	ND((<1)
05.02.2023	10	37	6.8	11.6	0.11	12.3	HDL(<)	BEL2-68.21	80(1<0,1)	804(<0.01)	BDA141]	8041<13
14.02.2023	21	45	6.3	14.7	0.16	19.9	10451	801(+0.1)	BD1/<0.1)	804.(<0.111)	804(x1)	BIX[<1]
20.02.2023	15	38	4.4	13.5	0.11	15.1	WARS)	801/48111	SUX(<0.1)	BOL(<0.01) BOL(<0.01)	804(43) 804(41)	BERG411
23.02.2023	12	4E	2.7	14.0	0.16	12.3	BDL(<s)< td=""><td>RDL(+G 3)</td><td>801/49.3)</td><td>RDL(+0.01)</td><td>801(+1)</td><td>BDX(<1)</td></s)<>	RDL(+G 3)	801/49.3)	RDL(+0.01)	801(+1)	BDX(<1)
77.02.2023	38	40	6.9	23.3	0.13	10.0	HD6(<5)	#DL((0.2)	SEL(+0.1)	0DL(<0.01)	801.(<)	\$D6(4)
Mate	73	36	7.7	125	0.10	95				-	T	
Mean	19.33	41.42	6.77	1410	0.14	11:16				1	1	
98							12	- 22	223	S	1.22	- 225
CPCB	23	47.54	7.7	15.854	0.1754	-13.02	100				1475	Varia
Standard	60	100	- 90	80	4	100	400	1	5	-1	20	- 100 P
DL-Below	Detectio	an Limit	5		En	d of repo	716					
	4.	do!	5 . 8	TAPAN						· () /	11	
S		DIR-	10	LAUS		-				2. 94	fu	
	S.Dharay	i	iste	Man	3					A Robe	on Chinn	adurai
Qui	lity Man	ager	121	000 000	10					Tech	tical Man	ager
1917		SMC O L	181	5 2	9/ 1	and the				0.000		100 Oct.
			the second se	and the second s	100	NO 7430-						

Verified by

Terms and tanditions : • The beginning in the true terms terms • The field report and rules reported to bill of port address the robust general to Adv. 11, • The beginning of the robust data many terms to a 15 data for the data of terms offer true to the true terms to a 15 because d'Advisite terms to the robust data of the robust data of the terms of the terms of the robust data of the terms of terms of

ABC ABC

	de l'annapour	4		Condition and	io-autreum	elau.com	/ Web: ww	watereens	olab-costri		TC-	5770
		181	150 190	91. (fiQ	14001, 66	4500	1.5.15122	2000 Citri	fied Comp	ami		
200	nodited b	U NABL	ade 10-5	770, NABE	T / OCU II	ecogilies	d by Matti	ROCIUS, A	VAED Y 1044	EPC. Tea Bo	ard India	
ISSUED TO:	Th IR De Mi	ie Gener El. Indi partmer anavalal	ral Manag a Limited nt of Ator turichi,K	ter and He l nic Energ anyakuma	ad 🚺 y ri District	TEST R	EPORT	Ú.				
Report num	bet	1	ABCTL/	REL/EIA/2	022/12/AA	Q5						1
Sample draw	m hy	7	ABC Tec	hno Labs In	dia Private	Limited						
Sample desc	ription	+	Ambient	Air Quality	Monitoring	-24 Hour	ly Basis Twi	on a week fo	r three Mon	th .	_	
Location of s	mathautt	1	N-08'32	"53.02" E-7	7'12'51 34"	n trom St.	Francis Xav	ter church 1	shayan Hele	n teatro.		
Project name	e :	1	Mininga	f Atomic M	inerals at Re	ezhmida	um - A, Mid	alam -D, Cai	ounputhen	thurai, Exhad	esam - A,B	& C and
	100	_	Kollenco	de A &B Vil	lages of Kill	lyoor Tale	ik in Kanniy	rakumart dir	trict. Tamil	Nadu		
Conterof samp Report dura	mint	1	05-12-2	122 10 224	12-2023						and 2 of 1	
Parameter	PM 2.5	PM.10	50,	NG.	CO.	01	titta.	Land	Bonzene	Elfa]P	NI	As
Test	HOM.	pagne.	UD/m*	JUD/IN [®]	(TUS/ITT"	ugin"	pg/m*	MS/III.	µgan'	ngim'	INCEPA	ngim*
Date of	CFR	5182	5182	6182	15: 5182	USOP.	BOPIAO	15: 5182	15: 5182 Part 11	15: 0182 Part 12	Muthod	ABCTL/ SOP(A10
Monitoring	Pto	#23	P2	PO	1.14	1A/07	1			* 403 44	10-3.2	house
08 11 2022	29	- 40	0.1	16.0	0.19	12.2	BDUKS	BDE (eff.1)	BDLOO 11	BDL(<0.01) BDL(<0.01)	BDEI413	BDL(<1) BDL(<1)
12.12.3022	神	41	(2.2)	14.2	0,21	31,4	000(<5)	BDK1<0.1)	80(1-01)	HD6.(<0.01)	BD()<1)	(D-UOB
14.12.2022	24	31	3.3	16.8	0,15	11.1	800(4)	BDL(<0.1)	80((<0.1)	表(k)×0.01)	-BDC(<1)	BDU(KI)
18 13 2022	11	47	2.10	25.8	0.17	.13.6	BDCHSL	BOL ell 1	104(01)	BDL[+0;01]	REE.[<1)	BD([+1)
12.12.2022	- 45	23	0.8	10.7	0.35	32.9	0001051	BOL(C0.1)	001(49.1)	800,040,010	BDL(41)	200000
29.12.2022	19	43	6.6	15.3	0.11	13.1	BDUIST	801-011	BD((=0.1)	804/40301	BOX(<1)	BOLICIA
07,01.2023	22	補	7.5	34.8	0.17	12.6	101(15)	HGE 40.11	HDU(<0.1)	884(=0.011	HEE(<1)	304/<1)
05.01.2023	24	49.	7.1	13.4	0.13	11.7	12-108	301-011	ntel-q 12	8042-02.011	BDX:{<12	BDU411
09.01.2023	25	- 51	6.9	19.9	0.15	12.6	BDC(+5)	801-0.11	R0x(<0.1)	001/=0.01	#00(<1)	BDLI=1)
12:01:2022	22	47:	5,4	16.1	0.16	13.2	(25) (2018-	800,00.1	#DE(40.3)	80(40.01)	HIL(d)	BDE(<1) BDE(<1)
19.01.2023	20	42	5.9	14.0	0.12	12.5	BDU(<5)	800,40.11	BDK(c0.1)	101(+0.01)	fill(d)	6DL/cl3
23.01.2023	22	- 548	0,2	13.9	0.15	11.7	IDL(-C)	(IOL(02.1)	HIX(=0.1)	10.011	80L[<1]	304.(<1)
37.01.2023	.24	- 91	7,1	15.5	\$1.17	12.6	EP-Ude	906-0.11	808(<0.1)	BBB(@.011	801/41	8045-11
02.03.2023	22	46	7.1	14.7	0.16	12,1	mDC(r/S)	804-0.11	#DU(+0.1)	101(+0.01)	BDU(cl)	806<11
00.02.2023	n	47	4.5	15.5	0.15	12.8	BDUx53	BDLF43.53	804/<0.1	BDL(<0.01)	BOLGEL	BULICIT
13.07.7023	22	51	6.1	15.1	9.12	17.4	BDU/(S)	BDL(+0.1)	801(<0.1)	#PU(<0.01)	801(<1)	804(<1)
16-02-2023	22	-40	3.2	16.1	0.18	13.0	(100(45))	BDL(-0.1)	1001(=0.1)	001(<0.01)	301(+1)	INDL(+2)
20.02.2023	11	46	5.0	25.3	0.10	12.4	BC8.(-53	BDUKE 1	BOL(40.1)	#D[(<0.01]	BOL(<1)	Britten
27.02.2023	20	41	6.0	1216	0.19	20.6	101.051	BDL/40.1	BCIL(+0.1)	BD1/(001)	HEE(=T)	BOU(+1)
Min	19	41	5.9	12.9	0,1	10.8	(Description (heart of st.	and west	and share)	lieve(-a)	
Max	25	53	8.1	16.9	0.21	13.7		19	(÷)	÷.	242	+1
Mean	22.25	47,33	6.91	15.18	0.16	12.40	-74°		- 23			
98 Seccuntile	25	52.54	7,962	16.800	0.21	13.65	123	- 22	22	2	-123	- 2° -
CPCB Standard	260	100	80	80%	-37	100	400	1	5	1	320	6
DL-Below	Detectio	on Limi	t		Ens	d of repa	irt				1	
-3	S.Dharau ality Mar	्रींग्र ni nager	0	Children Children			Ì			9. Ho A. Robs Tech	JU on Chinn nical Man	adurai Iager

Here a state communication only to the development of the balance of the magnetic and to be a part when a paper of the Article approximation ABCPL + The test development for mark there is the transmission of the balance of the bala

ABC

ABC	Feehno Prime Line	Labs		Ph : +91 Email: Jal	44-2625-77 D@ubctechi	nolab,com	91 94442 (/ Web: ww	0000 / 956 Wabctechn	61 87777 olab.com		27	1276
		1Ar	150 90	01, 150	14001, 150	0.4500	1.60	2009 Cen	med Comp	anyi		
Ao	redited b	V NABL	id6/10-5	770, NAB	ET / QCL R	latogal un	d by MoEP	scc. IIIS, /	HIEDA, KOH	EPC, Tais Bo	ard India	
SSUED TO;	Th IR De Mi	e Gener EL Indi partmer inavalal	al Manag a Limited it of Alor curichi,Ka	er and H nic Energ anyakumi	ead y ui District	TEST R	EPORT	Ú)				
eport num	her	T	ABCTL/	REL/TIA/2	022/12/A/	106	_					
ample druy	m by		ABC Tecl	ino Labs li	ulia Private	Limited						
ample dest	amplian		Ambient.	Air Quality	Monitoring	-24 Hunri	ly Basis Two Manimulant	Read 115	tr three Man	thi en Church		
Proceedings of the	startions.		N-08-10	35.07" E- 2	7"14"44.88"		• anyaacuts	second a ray of	tenin 26 Ing	ca Custica		
hoject ham	•	t.	Mining a	f Atomic M	inerals at K	reishmidal	am -A. Mid	alam -H, En,	ayampathen	thursi, Exhud	esam -ð, li	ñ C and
late of same	dine		Collence 05-12-20	Get A 長日 Vi 122 TO 27	Dages of Kell	uyoor Tah	ix tii Kantiiy	/aloumari du	strict, Tamil	Nadu		
leport date			06-03-20	213							Page 1 of 1	
Test	PM 2.5	PM 10	BO ₂	NO.	CO	O ₀	NH.	Land	Benzene	B[a]P	301	As
Method Date of Senitorina	EPA 40 CFR PS0	15; 5182 P23	iS: 5182 P2	iS: 5182	IS: 5182 P10	ABCT L/SOP	ABCTL/ SOP/A/0	IS: 8182 P22	15: 5182 Part 11	is: s182 Part 12	USEPA Method	ABCTL/ SOP/A10
05 12 2022	23	51	8.1	16.6	0.16	13.4	IDU(<s)< td=""><td>HDL(+D,T)</td><td>BD6/90.1)</td><td>UD1(+0.03)</td><td>001.(<1)</td><td>#01(<3)</td></s)<>	HDL(+D,T)	BD6/90.1)	UD1(+0.03)	001.(<1)	#01(<3)
B5:12.2022 23 51 8.1 10.6 0.36 13.4 HDL(<0.1) HDL(<												
DBL12_2027 21 43 7.4 14.2 0.37 12.2 BDL(=0.1) BDL(=												
14.12.2022 26 55 7.7 57 0.19 12.6 000(<1) 000(<0) 000(<1) 000(<0) 000(<1) 19.12.2022 27 47 7.9 13.8 0.22 10.8 000(<5) 000(<0.1) 000(<0.1) 000(<0.1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 000(<1) 00												
22.12.2022	19	43	8.3	15.6	0.54	11.9	804(<5)	#DL(<0.1)	BOL(-0.1)	8044-05.013	IDL(<1)	IIDL(+1)
26.12.2022	21	+5	6.5	16.3	0.17	13.1	804(<5)	HD4.(<0.1)	即((30.1)	BD4(<0.01)	0DU(<0)	801(<1)
03.01.2023	24	42	55	14.7	0.15	12.1	800(=5) 800(<5)	801.(40.1)	60((<0.1)	BDL(+0.01)	RDL(<)	BOL(<1) BOL(<1)
05.01.2023	21	50	6.9	14.9	0.17	11.2	801(-5)	800()(0.1)	BDL(<0.1)	HER.(<0.01)	6DL(<1)	B(01(-(1))
29.02.2623	15	#1	7.1	15.7	0.36	13.1	80(1<5)	80L(=0.1)	000<01)	BDL(+0.01)	BDU(<1)	HUL(<1)
13.01.3025	25	48	58	16.2	0.21	32.6	HDL(<)	#01240.1}	BDI(-02-1)	8042<0.01)	BDEI-(1)	804(<1)
10.01.2023	22	- 52	5.9	17.1	0.14	11.4	HDU(<5)	HDL(ett.1)	HUL(CLT)	1016(<0.01) 0016(0.01)	BOLICI)	#CR.(<))
23.01.3025	24	50	8.9	15.8	8.22	31.7	BDUHS	RD1/-0.11	BDL(<0.1)	BOU(<0.01)	800411	80(41)
27.01.2023	- 22 :-	46	7.1	16.6	0.23	32.4	BD((<5)	BD1(<0.1)	0DU(<0.1)	861(<0.01)	606(<1)	BDA(<1)
06.03.2023	21	33	64	14.2	0.71	12.1	BDL(<5)	BDL(<0.1)	00U(<0.1)	BOL(<0.01)	800.41	806(<1)
09.02.2023	n	49	5.9	13.6	0.13	12.5	hD4.1<51	HDA (+D.1)	BDL(x0.1)	RDL(+0.01)	HD1/<1)	HDL(c1)
11.001.3023	- 25	53	6.8	15.1	0.14	12.7	8434,[<5]	806(<0,1)	000401	BDU <0.01)	8DL[<1]	8DL(<1)
0.02.2023	21	43	7.2	14.8	8.17	17.2	BD12451	#Dk(c0.1)	801(-0.1)	REK (+0.07)	800(<1)	604(+1)
13.02.2023	24	50	6.6	17.1	0.19	11.5	BDL(c5)	BOL(40.1)	BER (+0.1)	80((d)81)	BDI(<1)	AD(42)
17.02 2028	22	41	6.3	34.5	0.14	12.2	800(<5)	B01(nll.1)	BCH(<0.1)	BDK(<0.01)	RDU(CL)	BD((<1)
Mia	19	41	3.8	12.9	0.11	10.0					-	
Max	26	55	8.3	17.3	0.23	18.5	·*		14	-	-	1
36	- 24.98	481.011	0.49	15.34	0.17	1241		1.4.		-	*	
hirchnitile	26	54.08	6,208	17,208	0,2254	12.454			- 19	(*	2	
CPCB	60	100	BO	80	7	100	400	- Si 2 - 1	5	4	20	- 6
Di Holori	Detection	in Limit	1160	- sen - ,	-72. 	OF THE			18	-	0.92	
Qui Qui	S.Dharar dity Man	u ager	SC TEORIS	UHENNAL BOO DOB		With With				9. GA	en Chinn pical Man	adurai ager

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

ABC	Feehno Preme tak	Labs		BC TOWER A Ph : +91 Enual) lab	9400, 13th mbattur, Ch 44-2625 77 gPabctech	Street, 51 ennal - 60 88 / 99, - iolab.com	000 Indust 10 098, Tam 191 94442 6 1 / Web: ww	rial Estani Ilisadu, INDI 10000 / 956 w.abctechn	North Phase A. 51 87777 Iolab.com	Ŕ	a Land	\$770
		(64	150 / 90	01, ISO 1	TAROTLIRA	0.1.4900	16:60:2	2000 Cart	iffed Comp	orof		
140	- added U	NASL .	nde 70-5	770, HABI	1 - 96 · 1	econise	d by Moth	800, WS, /	ANDA IOP	EPC. Tec Bo	and India	
SSUED TO	Th IR De Ma	e Gener EL Indi partmer mavalab	al Manag Limited t of Ator urichl,K	ger and He l nic Energ myakuma	rad. 🌘 y ri District	TEST R	EPORT	l.				
lepart auro	ber	1±	ABCTLZ	REL/EIA/2	122/12/1	07		_			_	
iample drav	vn by	1	ABC Tec	hno Laby In	atia Private	Limited						
sample desc	ription	1	Ambient	Air Quality	Monitoring	-24 Hour	y Banis Two	ce a work fo	it three Mon	th		
acation of s	umpilog	0	AAQ 7: P	aloor Vatta	Reuttal, 15 a	n from Pal	ioor Vattakk	ottat Bus Sta	and			
roject nam	e)	Ť.	Mining a Kollenco	CAtomic M de A Bill Vil	inerals at K lages of Kill	emhmida iyoor Tab	iam - A, Mid ak in Kasnis	alam -N, En. Vakumari dis	ayamputhen strict, Tamil	churáf, Ezhud Nadu	esam -A _i B	& C and
late of samp	sting		05-12-20	22 10 27-4	12-2023				Martin Charles Contra			
Parameter	PM 2.5	PM 10	06-03-20	NO.	00	0.	NH-	Lead	Banzone	B(will	age 1 of 1	As
Test Method Date of	pg/m² EPA 40 CFR	pg/m² 19: 6182	ug/m ² 15: 6102	15: 6182	mg/m ² 18: 6182	HIGH HIGH	HO/M* ABCTL/ SOP/A/0	900m ³ 15: 8182	sigtm ³ IS: 5182	ng/m ³ 15, 5182	ng/m ^{il} USEPA Method	ABCTL/
Aonitoring	P50	P22	P2	198	0.13	(A/07	6	P.4.6		Traffy Sa	10-3.2	Boulen
12.3022	21	40	7.0	19.6	0.15	12.2	IDC/457	BDL(<0.1)	#DL(+D.1)	800<0.011	HCL(<1)	BOL(<1)
2.12.2022	17	- 9E	2.4	14.2	0.12	32.7	BDL(45)	BOL(+0.1)	HOL(=0.1)	BDL(+0.01)	101(+1)	801(+11
4.17.3022	22	- 47	8.2	13.7	0.17	11.4	804 (45)	BRG(r0.1)	800(40.11	BDL(<3.01)	ROL(<1)	804(+1)
3.12.2022	20	40	7.1	34.4	0.15	12.6	801, (5)	BOL(-05.1)	HCL(+0.1)	HDL(<0.01)	BCH(<1)	BDG(+1)
£.12.38923	19	48	8.3	15.9	0.13	12.3	#UU/451	BDC(40.1)	800001	80((40.01)	100(<1)	800443
9.12.2022	22	47	75	16.1	611	13.0	800/453	B0((+0.1)	804<0.1	#DL(<0.01)	HUL(CI)	BDL(+1)
0.01.7021	23	248	7.10	17.0	0.28	13.6	801,<5)	BOC(+0.1)	101(-01)	8D((<0.01)	101(<2)	UD(1<1)
5.01.2023	25	51	7.1	15.7	8.19	12.7	#EBL(<5)	BIR.(<0.1)	HOL(n2.1)	800.000	HOL(<1)	:#D4(<1)
0.012021	21	144	1.9	16.1	0.24	11.6	101(5)	MOL=01	HELIOD 1	#D((<0.01)	HOLI-(1)	HDU<1)
7 01 2023	19	40	7.4	16.7	0.01	\$9.5	ROU-ST	BDU-611	800(401)	904140.013	BOLIST	ativists
9.01.2023	23	47	7.7	13.5	0.15	12.9	HOL(<5)	#01.(<0.1)	HO((=1))	BD5(<0.01)	BOLE(1)	#06(<1)
3.01.2071	25	249)	304	16.0	0.17	thi	BDL(<5)	80(=0.1)	RD((-0.1)	BDL(=0.01)	RDUIKI	HDC(<1)
7,01,2023	22	46	7.4	15.2	0.15	12.5	HDL(-5)	101/-011	101140-13	BEA/+0.811	RD61411	000(21)
6.02.0029	20	244	69	14.9	0.34	33.5	BDG(45)	BDU(02.2)	HD(1+0.1)	800.40.01	#DUs1	HDU(CI)
9.02.2023	. 29	51	7.1	15.5	0.56	122	NDL95)	RDL(+0.1)	BDL(+0.1)	801740.011	AURIAL	BDU(<1)
3 02 2023	19	40	9.5	16.9	0.13	33.6	#D(1<5)	BDL(40.1)	BD0.(<0.1)	801 \$6.01	806(+1)	HOL(<1)
6.02.2021	21	43	5.39	14.7	0.54	12.7	RDC(<s)< td=""><td>HDC(+DI)</td><td>R01(40.1)</td><td>801/=0.01</td><td>BDL(-C)</td><td>801/11</td></s)<>	HDC(+DI)	R01(40.1)	801/=0.01	BDL(-C)	801/11
102.2021	- 19	39	8.3	15.5	0.13	17.9	#00(45)	#DL(+0.1)	BDE(e3.1)	HDU/48.01	HOLIST!	MUL(*1)
7.02.2023	22	46	6.0	16.5	9.34	12.2	HOL/GI	m2x(+0.1)	HDL(<0.1)	#D1(<0.01)	HEDL(+1)	IIDU-CI
Min	17	39	5.9	11.0	0.11	11.1		- 4 ¹¹	1.00	in the second	1.1	24
Mar	25	54	8.3	17.3	0.28	13.6	1.24	+	- E	÷)	29	
Mean	25.17	44.50	7,19	1531	R.15	12.58		×		· · · ·	-	
ercentile CPCB	25	-51	38.254	17.116	02616	13.6	31		5	20	12	2
landard	60	100	80	80	2	100	400	1	5	<u>1</u>	20	6
DL-Below	Detection	n Limit TI 2	2	NOLAB	En	d of repo	11 1). BI	L Ce	
Qu	S.Dharai ality Man	ú ager	ACTE!	Children and	劇					A. Robs Tech	on Chinn sical Man	adurai ager

ARC

(Feet)	floor games	d International		WILLIAM D	WANNEL PRO	S VINA	10000	PERMIT	CONTRACTOR OF	(taV)		-
_			150 - 90	1.110	1000 ISC	1 2500	8 MO 1	Pool Car	hed Carno	2001 	000	_
MLC	mades ej	i tentte i	106 11-121	70, IMAG	111120-0100	Rođinala	e oy water	9616, 513, A	and the	115) 110,000	axonnaar	
SUED TO:	Th IRI De Mi	e Gener EL Indi parimen navalak	al Manag a Limited at of Aton arichi,Ka	er and He nic Energ myakurne	ad 📗 y ri District	fest r	EPORT	1				
		-	anem a	INT ANTA CO	622712744	10			-	_	_	
ample draw	in by	14	ABC Tech	ino Labs In	dia Private	Limited						
ample dosc	ription	1	Ambient	Air Quality	Monitoring	-24 Hourt	y flattis Two	ice a week fo	r three Mon	Ш.		
ocation of s	analajjara	-	AAQ 8: IL	chapuram	Sample, Mu	nicipality	Office Retha	upuram Karu	ngal Road			
callect name		17	Minimen	Atumic M	nerals at K	ozhunistel	am -A Mid	dam -0. Ers	vanouthan	hurai, Exhad	esum -A.B	& C and
Sect mint	-	1	Kollenco	de A &B VII	lages of Kill	iyoor Tals	ik in Kannis	akumari dis	trict. Tamil I	Vaitu		
ate of samp	illing :	1	05-12-20	22 TO 27-0	2-2023	- Alter and the Col	and the second				HIMDSHARE	
eport date	PM 2.5	Phr 10	00-03-20	NO.	60	0.	NHG	Looit	Benzone	Blate	Alle Y IN 1	As.
Tout	httyung	valmi	pigine	ug/m ²	mgrm	ppm	µpim*	pigtim ²	pgnn ⁴	ing in the	ag/m*	ngimi
Nethod Date of	CFR DEA	18: 5102 833	85: 5583 PT	5182 P6	45: 5182 P10	ABCT L/SOP	ABCTU SOP(A/0	IS: \$182 P22	15: 5182 Part 11	15: 5162 Part 12	Muthod IO-3.2	ABCTL/ SOP/A10
5.12.2022	22	47	3.5	15.8	0.19	12.8	878.[-(5)	803,1+0.11	8003011	8041-0.01)	BDEP(1)	BDU(st)
11.12.2022	26	56	7.4	37,7	0,13	13.5	BOL(=5)	BD6.)<0.11	BDI(-@1)	00L(<0.01)	80(1<1)	BDL(<1)
2.12.2022	34	- 51)7.9 ¹	16.9	0.17	12.7	80045	006(+0.11	#DE(<0.1)	HDG=0.01)	BDtj+3)	(1)-JU00
4.12.2622	26	54	0.5	14.7	0.15	12.2	BULKS	8031 cli.13	nunt-or ti	BIX -0.013	BDU(41)	- 60L(-1)
112,2022	22	48	8.3	15.0	0.34	13.1	BULLES	BOLLCO.11	HOLGO 11	60x1<0.013	BOUKE	Britist)
6.12.2022	11	40	8.2	16.4	6.23	18	BIJLI-SI	WOLI-ILL	NOL(+0.1)	ADU-0.013	HILIST	Juni(41)
11.12.2022	29	51	8.7	15.3	0.27	12.7	#01/5}	804(<0.1)	HOU(<0.1)	BD((+0.01)	HOURT	BDL(<1)
13.01.2023	22	48	6.9	14.6	11.16	12.9	BCIL <5	BDC(-0.1)	BDU<0.1)	HDL(40.01)	#DU(<1)	BER(-cf.)
4.01.2023	19	- 60	7.4	11.8	6.13	193	BOLIST	BOL[40.1]	HOLIAGE 1	MOLI-DITTS MTRANIVOTS	BDU(#1)	BOU(41) BOU(41)
2.01.2024	34	- G1	6.3	35.0	11.14	18.1	BOLI	0041+0.11	HDUSC 1	HDL(+0.01)	HDL(-1)	(HEL(+C))
7,01.2025	29	47	7.8	14.8	8.17	12.9	BDL5-5	868.[eft:13	HOLI+DIT	R04(+20.013	804(+33	10(1<1)
3 01,2021	34	50	9.4	16 fi	0.18	11.7	BOLICI	806.(<0.1)	BOL(KG 1)	004(40.01)	NDU(d)	BDU(<1)
3.01.2023	24	- 51	6.2	33.2	11.13	12.6	BOU	0041+0.11	1001-0.21	HDL(+0.01)	- UDL(C1)	BOU(-C2)
101.2023	21	41	5.0	16.9	0.13	12.3	BOLIST	BOL(+0.1)	BOLING 1	HOL-0.013	BOLI-C)	BDU<1)
6.02.2023	20	50	6.3	15.5	0.15	11.0	BOLIS	0041+0.11	BDL(<0.2)	#DL(+0.01)	HOL(<1)	BEH.(-CL)
107.7011	118	53	7.2	11.6	11.1.9	32.3	BOLIS	823 (sl.1)	HURISCE I	004(40.01)	BD1(<1)	80((<1)
3.07.2021	24	49	7.7	14.5	0.14	10,0	BOUI	ROL(CO.1)	BOL(+G-L)	806(+0.01)	BDL(<1)	BDL(<1)
0.02.2003	15	45	7.1	33.8	0.12	17.1	BODIES	BDC(W0.1) 809,140,17	001(-0.1)	HD0(40.01)	BDLEED	BD(Jett)
3.02.2011	22	51	7.5	16.6	0,19	17.5	BOUIST	NOL(-0.1)	BOL(+0.1)	800(+0.01)	NDU(<1)	BDL(<1)
7.02.2023	22	46	1.1	14.7	0.12	12.9	BULLIST	BOL1+0.11	HD1(<0.1)	HDU(+0.01)	8D1(<1)	80L(-C)
Min	18	40	5.9	133	0.12	10.9	223	1			-	-
Max	27	56	8.0	17.7	0.24	13.9	-			•	-	
Mean	22.79	49,04	7,29	15/48	0,15	12.67		-			-	
excentile	26.54	55.08	8.754	17.424	0.2354	13.71	2	3	11-5	<u> </u>		
Standard	60	100	80	00	2	100	400	4	5	1	-20	<u> </u>
DL-Relow	Detection	on Limi	t >	-	En	d of repo	ort			A P	<u> </u> \$r	
Qu	S.Dhara ality Mar	nî tager	C TEC	HEAMAN STREAM		Artice.			3	A. Robe Tech	son Chint nical Mar	iadurəl iager

Judie	Peiven Lin	iluit L		Emailt lat	44-2625 77 Millabetitehn	ee y 99, in Iolati.com	/ Web: ww	wabctechn	alatz.com		TC -	\$770
		(An	15052-866	51, BO I	14601, 186	5 : 4500	14150-0	3000 Céri	Red College	iinel	_	
Area Area	montoa e	NAS .	ndo TC-o/	70 NAS	97/94/1T	ncognise	d by MoEf	SCC, 215./	PEDA, ICP	EPC, Toa Ba	anî îndia	
SSUED TO-	Th IR De Mi	e Gener EL Indi partmer mavalal	al Manag Limited it of Aton turichi,Ki	er and He nic Energ myakuma	end 🚺 y wi District	TEST R	EPORT	E.				
leport num	ben	Τ	ABCTL/I	REL/EIA/7	022/12/٨/	09						-
iampie drav	en by	1	ABC Tech	una Lahis fr	ufia Private	Limited			Sector Sector			
ample dejc location of a	ampline	1	Ambient AAO 9: K	allencode ⁶	ample, 300-	n from St	George Shri	or a week fo ne. Pazha U	r three Mon hakkarta - K	invalormari V	Vest Coast 1	load
ruject name		1	N-08*17 Mining o Kollenco	03.38" E- 7 Atomic M de A &H Vi	7*07'31.94" inetals at Kell	ezhinidal ivoor Tab	am -A, Mid	ilam -R. Ens	yamputheis triet Tawill	thatai, Ezhad Nadu	esati -AB	& C and
late of same	lling	1	05-12-20	22 TO 27	02-2023	-			14001.00000			
Paramotor	PM 2.5	PM 10	SO:	NO.	00	0.	MH,	Lund	Bergrane	BialP	Page 1 ad 1 Ni	As
Tost	Jigim ²	pg/m ³	pann	p0/m*	mg/m ³	pilling.	µg/m ^a	pg/m ³	hð(u),	ng/m ²	ng/m ³	ng/m ³
Date of Aonitoring	CFR P50	5182 P23	5182 92	5182 P6	15: 6102 P10	L/SOP	SOP/A/0	15: \$102 P22	15: 6192 Part 11	15: 5182 Part 12	Method IQ- 3.2	ABCTL/ SOP/A10
05.12.2022	21	45	7.1	15:6	0.12	12.5	10L(+5)	8017-0.11	80(0-411)	00440.011	804(<1)	804(43)
08.12.3022	25	-52	(2)法:	16.6	0.19	313	HDL(<s)< td=""><td>RDL(cl.1)</td><td>001(-0.1)</td><td>HD4.[+0.01]</td><td>HIL(C)</td><td>BDE(cl)</td></s)<>	RDL(cl.1)	001(-0.1)	HD4.[+0.01]	HIL(C)	BDE(cl)
14.12.2022	23	49	1.7	14.1	0.14	12.2	BDL(45)	BDL-01	BOU-G 1)	601/-0.01	BDU(c1)	B042511
13 12 2022	24	51	0.0	15.2	0.17	12.9	HDL(-S)	BEL[<0.1]	UD1(=0.1)	HER.(+(1.(11)	#DL[<1]	BDL(+3)
12 11 2002	21	47	7,4	35.3	0.11	111	10(125)	101(40.1)	104[#3.13	MD4(#0.01)	800(41)	RAINT
16 17 2077	25	- 58	7.1	13.7	0.16	12.8	EP-LICE	800(-0.1)	BDC(=0.1)	HDL(<0.01)	100000	BDG(2)
14.01.3023	22	47.	5.4	34.0	0.16	31.8	BDU45)	BDL(+0.1)	BER(+0.1)	804(=1.01)	801(-0)	B06(41)
15.01.2003	25	51	6.7	34.1	0.15	11.4	BOL(45)	BDL(c0.1)	#DK(=0.1)	BDL(+0.01)	ner(at	804(<1)
18.01.2029	22	一般	5#	15.9.	0.11	22.6	804(5)	BDL(+0.1)	BDL(+0.1)	BOL(+0.01)	1000(-01	80((<1)
7.01.2023	23	69	5.9	15.7	0.12	12.2	BOUISS	BDU-0.1	BDX(+0.1)	HDU(+0.01)	HOL/CI	BOLET
9.01.2025	10	-41	2.1	36.9	0.18	12.0	006(<5)	BDL(=0.1)	800(=0.1)	804(+0.01)	101(<1)	NOU(<2)
13-01-2023	22	47	8.9	19.1	#13	12.7	HOLDEST	BER (vfp.1)	80((0.1)	BD1(+0.01)	HOL(<1)	80((+1)
27.01.2023		42	7.2	16.0	0.14	13.3	BDL(S)	BDC[+0.1)	804/-0.1	HDU(+0.01)	HOL(c1)	BOLIST
NE-03-2023	25	50	8.5	15.8	41.11	12.8	BUD(CS)	BOK HELL	801(<0.1]	BD1(-0.01)	HDL(<1)	80(41)
09.02.2023	23	41	6.1	18.4	0.12	11.4	10630	804.(+0.1)	REU(+0.1)	#D((<0.01)	#01(<3)	BOL(+0)
3-03-2023	22	47	2.4	13.4	0.15	11.1	000(<5)	804,=0.1	BOL(=0.1)	#DL(<0.01)	HEU.(*3.)	BEILISTY
0.07.2023	72	46	6.5	14.9	0.14	32.5	NDL-CI	B015-011	BOL(+D.1)	BOUND	#DL(=1)	BD((*1)
1.02.1013	20	42	8.1	16.7	13.1Z	113	UDL(<5)	BEIL (40.1	HEIL(<0.1)	HER [-01.01]	HDL(<3)	B()L(<t)< td=""></t)<>
7.03.2021	23	48	6.3	14.2	0.17	32.4	8011(<5)	8045=2.1]	HOL(-051)	805(+0.01)	HD4(<1)	BDU(s13
Mar	26	56	8.2	13.6	0.11	10.4		*				
Mean	22.08	46.46	6.93	15.28	0.14	12.38			+:	-		
98 percentile	25.54	54.16	11.562	16.808	0.1854	13.46 2	- 282	Ξ.			592	
Standard	60	100	80	80	2	100	400	1	5	*	20	6
DL-Below S Qu	Detection S.Dharan ality Man	in Limi Je il ager	aler.		En	d of repo	H.T			A A Robs Tech	on Chinn nical Man	adurai ager

			ABC	C Tee c tower	hrið I. 1400, 13th	abs I sveet, st	ndia I	Private al Estate - I	: Limit North Phase,	ed	(C			
ABC	Feehner Prinne Las	Labs	×	Ai In +91 Email: lat	nbattur, Ch 44 2625 77 @ubctechn	ennal - 60 88 / 99, + iolab.com	0 098, Tami 91 94442 6 / Web: ww	Inadu, 1NDI/ 0000 / 9566 w.abctechni	4. 1.17777 Slab.com		D to	5770		
. Du	W Congred	14	150 - 500	n, 150 -	14001.60	0 : 4500	A 60 2	ລັບເທີ Cern	rind Comp	ew).				
40	and in the second s	NABL	(dia 110-357	70, NA98	T / Q.C.I. R	occig//ise	l by Matth	RCC, BIS A	PEDA; ICIPI	EPC. Tele Box	ord India	1.00		
155UED 710)	Th IR De Mi	e Gene EL Indi partme mavala	al Manug a Limited at of Aton curichi,Ka	er and He ile Energ myakumi	ad 🚺 y ri District	TEST R	EPORT	l.						
			T a planne da											
Keport nam Sample drav	uer va.by		ABC Tech	ino Labs h	ndia Privat=	Limited	_		_	_				
Sample dese	ription	11	Ambient.	Air Quality	Monitoring	-24 Hours	y Basis Two	ce a week fo	r three Mon	th manufiller de	uitaan			
ocation of	ampung	-1	N- 08*18	09.32* E-2	77'09'55.44'	vo in bia	ne net linges b	styteenine t	canego, cateur	usanvinat, Ar	moestant			
Project cam	e	1	Mining of Kollenco	f Atomic M Se A &B VI	inerals at Ke llages of Kill	eechenidal iyoor Tah	anı - A. Mid ık in Kanniy	alam –B, Ena rakumari dir	iyamputhen trict, Tamil J	thurwi, Betrud Nadu	esam - A.B	& C and		
Bate of same	phing	1	05-12-20	22 70 27-	02-2023						Page 1 of 1			
Parametar	PM25	PM 10	804	NO,	00	0,	76H3	Labit	Benzane	BIAIP	Ni.	Au		
Method	EPA 40	IS:	US;	16:	18: 5182	ABCT	ABCTL	15: 5182	15: 5182	IS: 5182	USEPA	ABCTL/		
Date of Monitoring	PS0	P23	5162	5182 P6	P10	(A/07	SOPIAIO	P22	Part 11	Part 12	Nothod IO-12	SOP/A10		
05.17.2032	22	47	.7.4	14.5	9.14	12.5	BDU[<5]	806(<0.1)	804(<0.1)	IIDL(+0.017	10011-(3)	8084+11		
11 12 2077	23	43	2.2	15.7	0.16	-13.3	BDL(c5)	BDU/013	- 800/x0.1) - 800/x0.1)	BDE(40.01)	BDU+15	BDH(c1)		
14 57 2022	24	53	7.9	7.1 15.7 0.13 12.2 NGL(-6) BGL(-0.1) BGL(-0.01) BGL(-0.0										
18 17.2071	21	48	8.4	14.8	0.14	12.8	(HEL:<))	BER.(<0.1)	BDL(+0.1)	IIDL(<0.01)	101(4)	(<i>1></i>)100		
12 12 2022	24	58	7.3	15,2	42.18	12,7	3031(<3)	80L(<0.1)	B08(<0.1)	0001-00013	BDL(<1)	603(41)		
26.12.2022	22	47	7.7	17	0.15	13.6	HOL(-5)	00((<0.1)	NOL(+0.1)	10((0.01)	HULPS)	8034(<3)		
10 13 2022	75	- 51	8.1	15.3	0.14	12.7	BOLIST	65L(<0.1)	-500(×0.1)	BOILCODI	BOUND	BDUR13 BDUR13		
05.01.2023	26	53	3.8	16.6	0.14	12.9	HDL(C37	884.(dl1)	B0L(+0.1)	HDI(+0.01)	BDL(<1)	80((4))		
19 01.2023	22	45	7.1	15.4	0.15	12.5	901(st)	8044111	BUL(<0.1]	00011	BDL(et)	8004(<5)		
12 01 2023	26	54	8.2	14.9	0.17	12.4	(D=)108	BDUKEL1)	R01(+0.1)	BD1(<0.01)	BD((=1)	BIN(<1)		
14.01.2023		49	7.6	- 17	0.15	131	1001<0	6041<0.1	B0L/00.1	BDE(<0.01)	BDLIVI	BD6(<1)		
23.01.2023	25	52	7.1	36.9	0.16	12.9	BDL(<s)< td=""><td>801.(<11)</td><td>601(+0.1</td><td>BD1(<0.01)</td><td>RDU=15</td><td>806(<1)</td></s)<>	801.(<11)	601(+0.1	BD1(<0.01)	RDU=15	806(<1)		
27.01.2033	27	55	7.9	5#	0日	13.4	HOL((S)	881(+0.1)	BDU(+0.1)	(10.0+)209	BDC(+1)	BDS(<1)		
06.02.2023	27	40	6.4	142	0.12	12.4	BDL(+S)	8013-0.11	BDL(+0.1)	BD6(+0.01)	BDL(#1)	BDG(41)		
01-02-2023	25	\$1	8.7	15.#	0.17	12.9	201(<5)	BBL(<0.1)	BDL(+0.1)	BDC(+0.01)	100(=1)	805(<1)		
21.02.2023	116	- 53	1.5	15.5	0.10	132	801/<53	80440.11	801(-0.11	BDE(-0.01)	BDL(<1)	80%(<1)		
16.07.2073	34	47	6.0	14.7	0.73	11.9	BDD(45)	BOLISO TI	BDQ+011 BDG+011	BDC(+0.01)	BDC(=1)	808(<1)		
1103 2001	21	40	1.1.1	13.5	0.10	±2.4	804<53	801(<0.1)	BUL(<0.11	BDL(<0.01)	BDLIKI	BDL(41)		
27,02,2023	24	50	7,9	15.1	0.14	14.1	BDL(<5)	RDL(+0.1)	BDU-0.1)	#DL(+D.D1)	BDL (1)	804(<1)		
Mill	19	-41	0.4	13.9	0.12	11.0			+		P			
Меан	23.46	49.54	7.38	15.50	0.16	12.81			+			a		
ue www.watile	26.54	55.54	8.454	17	0.1208	13.91	- 67	- S	#	4		÷.		
CPCB Standard	60	100	80	.00	2	100	400	- I	秉	4	20	6		
DL-Belov	Detecti	on Lim	t		En	d of repo	ort			. All	6			
.0	20	312	1	LARC		100				1. WA	10			
Ou	S.Dhara ality Mar	ni uger	130	-	1					A. Roby	ion Chinr nical Mar	adural lager		
Ver	ified by		S	00 000		nitati,				A	thorised f	Signatory		
1000	(interesting)		2.5	1 700	11-		-		_		AND	CHINNER .		

Table 3.11 Summarized Ambient Air Quality monitoring results (Winter 2022-23)

StaNo	Parameter Permission limit		F 100	PM₁₀ µg/m3			P 60	M₂.₅ µg/m3	
Strino.	AAQ monitoring station	Max	Min	Avg	C98	Max	Min	Avg	C98
A1	Ezhudesam 1	53	38	44.33	52.54	24	17	20.79	24
A2	Ezhudesam 2	45	36	39.92	44.54	21	17	18.79	21
A3	Midalam	53	39	46.38	53	26	18	22.25	26
A4	Alanji	48	36	41.42	47.54	23	17	19.33	23
A5	Helen Nagar	53	41	47.33	52.54	25	19	22.25	25
A6	Simon Colony	55	41	48.08	54.08	26	19	22.88	26
A7	Paloor Vattakkottai	51	39	44.50	51	25	17	21.17	25
A8	Rethapuram	56	40	49.04	55.08	27	18	22.79	26.54
A9	Kollencode	56	40	46.46	54.16	26	19	22.08	25.54
A10	Chemmanvillai	56	41	49.54	55.54	27	19	23.46	26.54

StaNo	Parameter Permission limit		SO₂ 80 µg/r	n3			80	NO _x µg/m3	
Strino.	AAQ monitoring station	Мах	Min.	Avg.	C98	Max.	Min	Avg.	C98
A1	Ezhudesam 1	7.9	5.7	6.72	7.808	17.1	13.9	15.47	17.05
A2	Ezhudesam 2	<5	<5			15.8	12.5	13.80	15.478
A3	Midalam	7.2	5.2	6.34	7.154	16	12.6	14.14	15.862
A4	Alanji	7.7	5.8	6.77	7.7	15.9	12.5	14.10	15.854
A5	Helen Nagar	8.1	5.9	6.91	7.962	16.9	12.9	15.18	16.808
A6	Simon Colony	8.3	5.8	6.89	8.208	17.3	12.9	15.34	17.208
A7	Paloor Vattakkottai	8.3	5.9	7.19	8.254	17.3	13.6	15.31	17.116
A8	Rethapuram	8.8	5.9	7.29	8.754	17.7	13.3	15.48	17.424
A9	Kollencode	8.7	5.8	6.93	8.562	16.9	13.6	15.28	16.808
A10	Chemmanvillai	8.5	6.4	7.38	8.454	17	13.9	15.50	17

StnNo.	Parameter Permission limit		СО 2000 µg/r	m3	
	AAQ monitoring station	Max	Min	Avg	C98
A1	Ezhudesam 1	0.21	0.11	0.15	0.2008
A2	Ezhudesam 2	<0.1	<0.1		
A3	Midalam	0.17	0.11	0.14	0.17
A4	Alanji	0.18	0.11	0.14	0.1754
A5	Helen Nagar	0.21	0.1	0.16	0.21
A6	Simon Colony	0.23	0.11	0.17	0.2254
A7	Paloor Vattakkottai	0.28	0.11	0.15	0.2616
A8	Rethapuram	0.24	0.12	0.15	0.2354
A9	Kollencode	0.19	0.11	0.14	0.1854
A10	Chemmanvillai	0.23	0.12	0.16	0.2208

St. No.	Station Name	Sample-1	Sample-2	Sample-3	Sample-4	Sample-5
A1	Ezhudesam 1	<10	<10	<10	<10	<10
A2	Ezhudesam 2	<10	<10	<10	<10	<10
A3	Midalam	<10	<10	<10	<10	<10
A4	Alanji	<10	<10	<10	<10	<10
A5	Helen Nagar	<10	<10	<10	<10	<10
A6	Simon Colony	<10	<10	<10	<10	<10
A7	Paloor Vattakkottai	<10	<10	<10	<10	<10
A8	Rethapuram	<10	<10	<10	<10	<10
A9	Kollencode	<10	<10	<10	<10	<10
A10	Chemmanvillai	<10	<10	<10	<10	<10

Table 3.12 Results of free silica in respirable dust (µg/m3)

St. No.	Station Name	Sample-6	Sample-7	Sample-8	Sample-9	Sample- 10
A1	Ezhudesam 1	<10	<10	<10	<10	<10
A2	Ezhudesam 2	<10	<10	<10	<10	<10
A3	Midalam	<10	<10	<10	<10	<10
A4	Alanji	<10	<10	<10	<10	<10
A5	Helen Nagar	<10	<10	<10	<10	<10
A6	Simon Colony	<10	<10	<10	<10	<10
A7	Paloor Vattakkottai	<10	<10	<10	<10	<10
A8	Rethapuram	<10	<10	<10	<10	<10
A9	Kollencode	<10	<10	<10	<10	<10
A10	Chemmanvillai	<10	<10	<10	<10	<10

3.10.2.4 Results and Discussions

The summarized results of ambient air quality monitoring are given in Table 3.12. The results when compared with National Ambient Air Quality Standards (NAAQS) of Central Pollution Control Board (CPCB) indicate that values of PM10, PM2.5, SO2 and NOx were found to be well below the prescribed standards at all the stations.

Table 3.13 depicts free silica in range of BDL <10. The summarized results of metals given in Table 3.14 show that for Lead, Arsenic and Nickel, the observed values are well within the National Ambient Air Quality Standards, 2009.

Mineralogical composition

The mineralogical composition was carried out in selected samples for all the ambient air monitoring location for Lead, Nickel and Arsenic.

SI. No.	Parameters	Lead as Pb (µg/m3)	Nickel as Ni (ng/m3)	Arsenic as (ng/m3)
	Norms	1 µg/m3	20 ng/m3	6 ng/m3
A1	Ezhudesam 1	<0.1	<1	<1
A2	Ezhudesam 2	<0.1	<1	<1
A3	Midalam	<0.1	<1	<1
A4	Alanji	<0.1	<1	<1
A5	Helen Nagar	<0.1	<1	<1
A6	Simon Colony	<0.1	<1	<1
A7	Paloor Vattakkottai	<0.1	<1	<1
A8	Rethapuram	<0.1	<1	<1
A9	Kollencode	<0.1	<1	<1
A10	Chemmanvillai	<0.1	<1	<1

Table 3.13 Summarized results of metals

3.10.3 Noise Environment

The assessment of ambient noise levels in the study area have been undertaken considering the various factors like potential damage to hearing, physiological responses, general community responses and annoyance. These monitoring locations were selected based on the following criteria:

Locations, where noise generation is restricted or silence zone (e.g. near hospitals, health centres, and educational institutions)

Locations, where ambient noise levels are affected by existing sources such as commercial activities, public gathering places, and road traffic

Background settings i.e. locations where there are no sources of man-made noise except natural activities. Locations like the proposed site will serve as background ambient noise level for the study area

In order to have an idea about the existing noise levels in the study area, noise monitoring has been carried out at ten locations listed in Table 3.15.

	r	1	
Stn. No.	Location	Latitude	Longitude
N1	Ezhudesam 1	08°16'02.28" N	77°08'35.98" E
N2	Ezhudesam 2	Ezhudesam 2 08°15'54.53" N	
N3	Midalam	08°12'16.76" N	77°12'56.31" E
N4	Alanji	08°11'51.90" N	77°13'58.48" E
N5	Helen Nagar	08°12'53.02" N	77°11'51.34" E
N6	Simon Colony	08°10'35.07" N	77°14'44.88" E
N7	Paloor Vattakkottai	08°14'54.50" N	77°13'36.94" E
N8	Rethapuram	08°11'44.45" N	77°15'04.46" E
N9	Kollencode	08°17'03.38" N	77°07'31.94" E
N10	Chemmanvillai	08°18'09.32" N	77°09'55.44" E

 Table 3.14 Ambient noise monitoring stations

Figure 3.20 Monitoring Locations

hole from Lan	1.400	Email: lab	#4-26257788799, + @abctechnolab.com	/ Web: www.abctechnolab.com	1	TE	- 5770
	(4)-1515 - 90	61,150 _	460).150 4500	1 & ISO 22000 Comfind Co	madhy)		
Accredited by	NARL -de TC-5	770) NACE	T / QCI, Encogniae	d by MoEF&CC, BIS, APECA,	CIPER C. Inc	Soord India	
The The IRI Dep Ma	e General Mana, 21. India Limiter partment of Ato navalakurichi,K	ger and He f mic Energ anyakuma	uad TESTIR y ni District,	EPORT			
Report nu	mber	ABC	TL/IREL/EIA/202	2/12/N1-N10			
Sampled b	¥	ABC	Techno Labs India	Private Limited			
Sample de Project Na	scription ime	Minu -A.B	e Level Monitoring of Atomic Minerals III C and Xullencode A	t at Kombruidalam - A, Midalam All Villages of Killiyoor Taluk (2022	-B, Enayamp I Kanniyakun	rthenthurai, nari district, '	Ezhudesam Tamil Nadu
Date of Re	mpang ceipt	: 02-1	2-2022 10 12-12-	2022			
Report da	te	: 28-1	2-2022				ENV DODA
-	I			L Parts	P	age 1 of 1	
Location Code			Location	2.4	Lday [dB(A)]	[dB(A)]	Leq [dB(A)]
N1	N- 08°16'02.2	ample 1, 5 8" E- 77°0	0 m from St.Judes 8'35.98"	College,	53.1	42.7	51.5
N2	Exhudesam S Muthumarian N+ 08"15'54.5	ample 2, 3 aman Tem 3° E- 77°0	0 m from Nedump ple, 9740.85"	uram Sree	48.3	41.8	42.0
N3	Midalam Sam School Udaya	ple, Karun marthand	gal Midalam Road am N- 08°12'16.7(115 m from Govt.High 3° E- 77"12'56.31"	50.Z	42.5	48.8
N4	Alanji Sample N- 08"11'51.9	30 m fron	n St. Francis Xavie 3'58.48"	Church	49.4	39.8	48.2
85	Helen Nagar S Helen Nagar	Sample 10 N- 08°12'5	m from St, Francis 3.02" E- 77°11'51	Xavier Church Enayam 34"	51.7	43.6	50,3
NG	Simon Colony Judes Church,	Sample, R N- 08*10	(odimunai-Vaniya) 35.07* E- 77*14'44	cudi Road 115 m from St. 1.88″	53.7	44.2	52.2
N7	Paloor Vattak N- 08"14'54.5	kottai, 15 0° E- 77"1	m from Palnor Vat 3'36.94"	takkottai Bui Stand	51,4	41,9	49.9
ાશ	Rethapuram S Road,N- 08"1	Sample, Mi 1'44.45' E	unicipality Office R - 77*15'04.46"	lethapuram Karungal	53.7	43.Z	52.1
/N9	Kollencode Sa -Kanyakumar	imple, 300 ri West Coa	m from St. George ast Road, N- 08*17	Shrine, Pazha Uchakkada '03.38° E-77°07'31.94*	52.8	44.6	S1.4
N10	Chemmanvilla Chemmanvilla	ii Sample, ii, Arudesi	70 m from St. Jude am, N- 08°18'09.3	s Polytechnic College, 2" E- 77°09'55.44"	S4.1	44.1	52.6
Method: I	S; 9989-1981(R	eaff: 2020)-Ambient Ambient N	Inite Standards			
		Zone Class	ification	Lday dB(A)	Loight da	J(A)	
	Industrial Area	1		75	70	Total at	
	Residential An	ea.		55	45		
	Silence Zone			50	40		
9 - FA S.Dhurar Quality Man	d ager			End of report	J Ø	Robson Chi echnical M Authorise	nnadurai anager d Signator

Noise Monitoring

A precision integrating sound level meter (Model 2221, manufactured by Bruel and Kjaer of Denmark) was used to measure the noise levels around the study area. Monitoring was carried out during winter season 2022-23. At each ambient noise monitoring station, Leq noise level was recorded at hourly intervals for 24 hours continuously.

Results and Discussions

The summarized results of ambient noise monitoring are given in Table 3.16. The results have been compared with the standards specified in Schedule III, Rule 3 of Environmental Protection Rules given in Table 3.17.

			Results	
Stn.	Location	Day (0600-	Night (2200-0600	Equivalent
No.	Location	2200 111.)	111.)	
		Lday [dB(A)]	Lnight [dB(A)]	[dB(A)]
N1	Ezhudesam 1	53.1	42.7	51.5
N2	Ezhudesam 2	48.3	41.8	47.0
N3	Midalam	50.2	42.5	48.8
N4	Alanji	49.4	39.8	48.2
N5	Helen Nagar	51.7	43.6	50.3
N6	Simon Colony	53.7	44.2	52.2
N7	Paloor Vattakkottai	51.4	41.9	49.9
N8	Rethapuram	53.7	43.2	52.1
N9	Kollencode	52.8	44.6	51.4
N10	Chemmanvillai	54.1	44.1	52.6

Table 3.15 Summarized results of noise monitoring

Table 3.16 MOEF&CC norms in respect of noise

(As Per Schedule III, Rule 3 of Environment Protection Rules)

Type of Area	Day (0600 - 2200 hrs.)	Night (2200 – 0600 hrs.)
Industrial Area	75	70
Commercial Area	65	55
Residential Area	55	45
Silence Zone	50	40

All Values in dB (A)

The result of Ambient noise level shows that all the values measured in both the day and night time, are well within the prescribed norms of Noise Regulation & Control - Rules, 2000 for Industrial area, commercial area, residential area and Silence zone.

3.10.4 Water Environment

Surface water quality

Surface water sources

The study area is witnessed with two water courses. The Neyyar River, Tamirabharani River and Valliyar are the surface water sources observed at the study area. The Valliyar River is located at 9.6 km in Eastern side of the project area. The Thamirabarani River confluence point is observed very near to Block B about 120 m in East. Whereas, the Neyyar River is located at 6 km in Western side of the project area also AVM canal is found nearby the project boundary.

Water sampling locations

Considering, availability of surface water sources in study area, ten samples were collected, in order to determine the quality of the surface water.

Stn no.	Location Name	Latitude	Longitude
SW1	Tamirabarani River	8°15'45.97"N	77° 9'40.29"E
SW2	Perumkulam (Pond)	8°12'50.21"N	77°12'57.38"E
SW3	Neyyar River	8°18'32.01"N	77° 4'45.94"E
SW4	Arasakulam (Pond)	8°14'29.17"N	77°11'8.83"E
SW5	Nadukulam (Pond)	8°11'10.93"N	77°14'12.04"E
SW6	AVM Canal	8°16'55.00"N	77° 6'53.74"E
SW7	Marauapuram (Pond)	8°17'51.28"N	77°11'33.70"E
SW8	Udappukulam (Pond)	8°20'34.94"N	77° 8'52.87"E
SW9	Vaikundapuram (Pond)	8°15'29.49"N	77°18'5.57"E
SW10	Perumchirai (Pond)	8°15'16.01"N	77°14'4.29"E

Table 3.17 Surface water location

Figure 3.21 Sampling Locations

Martiso 1 400 1 400 1 400 1 4500 1 4 100 1 20000 Camined Computed Accessing by NABL vise IC-5770, NABET / OCI, Recognized by MARRECC, B.S. APEDA, IO/PEC, Teo Board India To: The General Manager and Head IREL India Limited Department of Atomic Energy Manavalakurichi, Kanyakumari District. TEST REPORT rt number : ABCTL/IREL/EIA/2022/12/SW1-SW2					OIL STANDARD	250 Minute Annual	/ Webl-www.apc	technolati.com						
Accessional by MABL vide IC-5770, NABEL / ACL, Recognized by MOERSOCK BEL AFEDA, ROPERC, Teo Board Instr. The: The: General Manager and Head Department of Atomic Energy Manavalakurichi, Kanyakumari District. TEST REPORT rt IREL India Limited Department of Atomic Energy Manavalakurichi, Kanyakumari District. Image: Conductive Conductiv	_		04	150 9001	120 1400	1,150 4506	& ISO 22000	Carrilled Computer)						
The General Manager and Head IREL India Limited Department of Atomic Energy Manavalakurichi, Kanyakumati District. TESTREPORT rt number : ABCTL/IREL/EIA/2022/12/SW1-SW2		Accusting by N	NBL.	vide TC-5770), NABÉT / G	ICI, Rocounieer	s by MOEFSCC;	BIS, APEDA, IOPEPC, Teo Board India						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UTC.	170. The G IREL Depar Manag	ene Ind tine vala	ral Manager ia Limited nt of Atomic kurichi,Kany	and Head Energy akumati Di	TEST R	EPORT							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	epo	ortnumber	l:	ABCTL/IR	EL/EIA/20	22/12/SW1-	SW2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	amj	ple Drawn by	1	ABC Techr	o Labs Ind	la Private Lin	tited							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ant	pling method	1	1S: 3025 P	urt 1 - 198	7 & IS: 1622 -	1981							
Arris - Friez - Mining of Austric Miseralis at Recentini dalam - 8, Ensayamputhenthurai. Eshudesam - A, B & C and Kollencode A & B Villages of Killiyour Taluk in Kanniyakumari district. Tamil Nadu of sampling 1 12-12-2022 of Receipt 1 1 13-12-2022 of Analysis 1 1 13-12-2022 Parameter Volt Results Test procedure Temperature *C 26.3 25.7 ApHA 23** EDN -2550B Colour Hazen 5 4 ApHA 23** EDN -2120 C Odour No Odour Observed Observed Diserved Observed Diserved Observed Diserved Observed Diserved Diserved Diserved Diserved Diserved Diserved Diserved Diserved Diserved Diserved Disolved Solids mg/1 mg/1 1003 244 15: 3025 Part 14- 1984 (Reaff: 2017)	amj	ple description	1	Surface Wa	sw2	Tamirabara	ni River, (Pond)							
Parameter Unit Results Test procedure Odaur : 28-12-2022 Page 1 of 2 Parameter : 28-12-2022 Page 1 of 2 Parameter : 28-12-2022 Page 1 of 2 Parameter : : 28-12-2022 Page 1 of 2 Parameter : : : : : Colour Hazen : : : : : Odour : : : : : : : Odour : : : : : : : : : : Odour : <t< td=""><td colspan="3">Project Name : Mining of Au</td><td>tomic Miner</td><td>als at Keezhm</td><td>dalam -A, Mida</td><td>alam -B, Enayamputhenthurai, Ezhudesam dak in Kampinakumuri district, Tamil Nada</td></t<>	Project Name : Mining of Au			tomic Miner	als at Keezhm	dalam -A, Mida	alam -B, Enayamputhenthurai, Ezhudesam dak in Kampinakumuri district, Tamil Nada							
III-12-2022 Parameter III-12-2022 Page 1 of 2 Parameter Unit Results Test procedure Parameter Unit Results Test procedure Odour No (3dour No 0dour Odour APHA 23*4 EDN -2150 B Odour No (3dour No 0dour Observed Observed APHA 23*4 EDN -2150 B Odour No (3dour No 0dour Observed Ob	-A.B.& C and Date of sampline 12,12,2023			2	e ar pro Aminikes	of Addyons Ta	ter in samply and territory read states							
of Analysis i 13-12-2022 Page 1 of 2 Parameter i 28-12-2022 Page 1 of 2 Parameter Unit Remulti Tent procedure Colour °C 26.3 25.7 APHA 23rd EDN - 2550B Colour Hazen 5 4 APHA 23rd EDN - 2150 B Odear - No Odour Observed No Odour Observed APHA 23rd EDN - 2150 B Pl at 25°C - 6.84 7.09 15: 3025 Part 11 - 1982 (Reaff: 2017) Electrical Conductivy µ5/cm 1735 437 15: 3025 Part 10-1984 (Reaff: 2019) Total Dissolved Solids mg/l 1003 244 15: 3025 Part 10-1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 1003 244 15: 3025 Part 10-1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 106 57 15: 3025 Part 21-1983 (Reaff: 2017) Sulphate as SO4 mg/l 99 51 APHA 23rd EDN - 4500-F B&D Sulphate as SO4 mg/l 99 51 APHA 23rd EDN - 4500-F B&D	Date of Receipt : 13-12-2022			2										
Parameter Unit Results Test procedure Temperature *C 26.3 25.7 APHA 23** EDN -2550B Colour Hazen 5 4 APHA 23** EDN -2120 C Odour Hazen 5 4 APHA 23** EDN -2150 B Odour No Odour No Odour APHA 23** EDN -2150 B PH at 25*C - 6.84 7.09 15 : 3025 Part 11- 1983 (Reaff: 2017) Electrical Conductivity µ5/cm 1735 437 15 : 3025 Part 14- 1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 15 : 3025 Part 16- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15 : 3025 Part 16- 1984 (Reaff: 2017) Total Hardness as CaC03 mg/l 1003 244 15 : 3025 Part 21- 1983 (Reaff: 2019) Total Hardness as CaC03 mg/l 1006 57 15 : 3025 Part 21- 1983 (Reaff: 2019) Total Alkalinity as CaC03 mg/l 106 57 15 : 3025 Part 32- 1986 (Reaff: 2019) Sulphate as S04 mg/l 99 51 APHA 23	Date of Analysis 1 13-12-202			2										
Parameter Unit Results Test procedure Temperature *C 26.3 25.7 APHA 23** EDN +2550B Colour Hazen 5 4 APHA 23** EDN +2550B Odour Hazen 5 4 APHA 23** EDN +2120 C Odour No Odour Observed No Odour Observed APHA 23** EDN +2150 B pH at 25*C - 6.84 7.09 15 : 3025 Part 14 : 1983 (Reaff: 2017) Electrical Conductivity µ5/cm 1735 437 15 : 3025 Part 14 : 1984 (Reaff: 2017) Total Dissolved Solids mg/1 1003 244 15 : 3025 Part 16 : 1984 (Reaff: 2017) Total Dissolved Solids mg/1 1003 244 15 : 3025 Part 16 : 1984 (Reaff: 2017) Total Hardness as CaC03 mg/1 1003 244 15 : 3025 Part 21 : 1983 (Reaff: 2017) Total Hardness as CaC03 mg/1 106 57 15 : 3025 Part 23 : 1986 (Reaff: 2019) Chloride as Cl mg/1 459 62 15 : 3025 Part 32 : 1988 (Reaff: 2019) Sulphate as S04 mg/1 0.22 <t< td=""><td>epo</td><td colspan="3">port date : 28-12-202</td><td>2</td><td></td><td></td><td>Page 1 of 2</td></t<>	epo	port date : 28-12-202			2			Page 1 of 2						
Temperature °C 26.3 25.7 APHA 23** EDN -2550B Colour Hazen 5 4 APHA 23** EDN -2120 C Odour No Odour Observed No Odour Observed APHA 23** EDN -2150 B Odour - 6.84 7.09 15 : 3025 Part 11 : 1983 (Reaff: 2017) Electrical Conductivity µ5/cm 1735 437 15 : 3025 Part 14 : 1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 15 : 3025 Part 10 : 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15 : 3025 Part 16 : 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15 : 3025 Part 21 : 1983 (Reaff: 2017) Total Allcalinity as CaCO3 mg/l 106 57 15 : 3025 Part 21 : 1983 (Reaff: 2019) Total Allcalinity as CaCO3 mg/l 106 57 15 : 3025 Part 32 : 1986 (Reaff: 2019) Chloride as Cl mg/l 459 62 15 : 3025 Part 32 : 1988 (Reaff: 2019) Sulphate as SO4 mg/l 0.22 0.11 APHA 23** EDN - 4500- SO** E Fluoride as F	Ś.	Parameter			Unit	Re	sults	Test procedure						
Temperature 7. 26.3 25.7 APPRA 23** EDN-2330 Colour Hazen 5 4 APPRA 23** EDN-2120 C Odour No Odour No Odour APPRA 23** EDN-2120 C Odour - Observed Observed APPRA 23** EDN-2120 C pH at 25*C - 6.84 7.09 IS : 3025 Part 11- 1983 (Reaff: 2017) Electrical Conductivity µS/cm 1735 437 IS : 3025 Part 14- 1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 IS : 3025 Part 16- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS : 3025 Part 16- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS : 3025 Part 16- 1984 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 404 85 IS : 3025 Part 23- 1986 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 IS : 3025 Part 32- 1986 (Reaff: 2019) Sulphate as SO4 mg/l 99 51 APHA 23** EDN - 4500- SO** E Fluoride as F mg/l 0.22<	lo:			1000	SW1	SW2	ABULE 22-0 COMP. DECOD							
Colour Hazen S A Rotation Odour No Odour No Odour No Odour APHA 23** EDN*2120C pH at 25*C - 6.84 7.09 IS: 3025 Part 11- 1983 (Reaff: 2017) Electrical Conductivity µS/cm 1735 437 IS: 3025 Part 14- 1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 IS: 3025 Part 14- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS: 3025 Part 16-1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS: 3025 Part 16-1984 (Reaff: 2017) Total Alkalinity as CaCO3 mg/l 404 85 IS: 3025 Part 21-1988 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 IS: 3025 Part 23-1986 (Reaff: 2019) Chloride as Cl mg/l 459 62 IS: 3025 Part 32-1988 (Reaff: 2019) Sulphate as SQ4 mg/l 99 51 APHA 23* EDN - 4500- S0* E Fluoride as F mg/l 0.22 0.11 APHA 23* EDN - 4500- NG / B Nitrate as NO1 m	<u>.</u>	Temperature			The state	20.5	25.7	APHA 23** EUN *2320D						
pH at 25°C - 6.84 7.09 15: 3025 Part 11- 1983 (Reaff: 2017) Electrical Conductivity µ5/cm 1735 437 15: 3025 Part 14- 1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 15: 3025 Part 10- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15: 3025 Part 10- 1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15: 3025 Part 10- 1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 404 85 15: 3025 Part 21- 1983 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 15: 3025 Part 23- 1986 (Reaff: 2019) Chloride as Cl mg/l 459 62 15: 3025 Part 32- 1988 (Reaff: 2019) Sulphate as SO4 mg/l 99 51 APHA 23* EDN - 4500- SOe ² E Fluoride as F mg/l 0.22 0.11 APHA 23* EDN - 4500- NOr B Nitrate as NO1 mg/l 3 1 APHA 23* EDN - 4500- NOr B Ammonia as NH ₂ mg/l 0.90 0.25 APHA 23* EDN - 4500- NH ₂ B&C	3	Odour	Odour			No Odour	No Odour	APHA 23 rd EDN -2150 8						
Electrical Conductivity µ5/cm 1735 437 IS: 3025 Part 14-1984 (Reaff: 2019) Turbidity NTU 3.5 2.8 IS: 3025 Part 10-1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15: 3025 Part 16-1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 15: 3025 Part 16-1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 404 85 IS: 3025 Part 21-1983 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 IS: 3025 Part 22-1986 (Reaff: 2019) Chloride as Cl mg/l 459 62 IS: 3025 Part 32-1986 (Reaff: 2019) Sulphate as SO4 mg/l 99 51 APHA 23 rd EDN - 4500- SO4 ² E Fluoride as F mg/l 0.22 0.11 APHA 23 rd EDN - 4500- NO7 B Ammonia as NH ₃ mg/l 0.90 0.25 APHA 23 rd EDN - 4500- NH ₃ B&C Phosphate as PO ₄ mg/l 0.12 0.08 IS: 3025 Part 31-198B (Reaff: 2019)	4	pH #t 25*0				6.84	7.09	15: 3025 Part 11- 1983 (Reaff: 2017)						
Turbidity NTU 3.5 2.8 IS: 3025 Part 10-1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS: 3025 Part 16-1984 (Reaff: 2017) Total Dissolved Solids mg/l 1003 244 IS: 3025 Part 16-1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 404 85 IS: 3025 Part 21-1983 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 IS: 3025 Part 23-1986 (Reaff: 2019) Chloride as Cl mg/l 459 62 IS: 3025 Part 32-1988 (Reaff: 2019) Sulphate as SO4 mg/l 99 51 APHA 23 nd EDN - 4500- SO4 ² E Fluoride as F mg/l 0.22 0.11 APHA 23 nd EDN - 4500- NO4 ² B Nitrate as NO1 mg/l 3 1 APHA 23 nd EDN - 4500- NO4 ² B Ammonia as NH2 mg/l 0.90 0.25 APHA 23 nd EDN - 4500- NH3 B&C Phosphate as PO4 mg/l 0.12 0.08 IS: 3025 Part 31-198B (Reaff: 2019)	5	Electrical Conductivity			µ5/cm	1735	437	15: 3025 Part 14- 1984 (Reaff: 2019)						
Total Dissolved Solids mg/l 1003 244 15 : 3025 Part 16-1984 (Reaff: 2017) Total Hardness as CaCO3 mg/l 404 85 15 : 3025 Part 21-1983 (Reaff: 2019) Total Alkalinity as CaCO3 mg/l 106 57 15 : 3025 Part 23-1986 (Reaff: 2019) Chloride as Cl mg/l 106 57 15 : 3025 Part 32-1988 (Reaff: 2019) Sulphate as SO4 mg/l 99 51 APHA 23 rd EDN - 4500- SO4 ² E Fluoride as F mg/l 0.22 0.11 APHA 23 rd EDN - 4500- NO4 ² B Nitrate as NO1 mg/l 3 1 APHA 23 rd EDN - 4500- NO4 ² B Ammonia as NH2 mg/l 0.90 0.25 APHA 23 rd EDN - 4500- NO4 ² B Phosphate as PO4 mg/l 0.90 0.25 APHA 23 rd EDN - 4500- NH3 B&C	6	Turbidity			NTU	3.5	2.8	IS: 3025 Part 10-1984 (Reaff: 2017)						
Total Hardmess as CaCO3 mg/l 404 85 15: 3025 Part 21: 1988 (Realf: 2019) Total Alkalinity as CaCO3 mg/l 106 57 15: 3025 Part 23: 1986 (Realf: 2019) Chloride as Cl mg/l 459 62 15: 3025 Part 32: 1988 (Realf: 2019) Sulphate as SO4 mg/l 99 51 APHA 23 ^{ad} EDN - 4500- SO4 ² E Fluoride as F mg/l 0.22 0.11 APHA 23 ^{ad} EDN - 4500- FB&D Nitrate as NO1 mg/l 3 1 APHA 23 ^{ad} EDN - 4500- NO4 B Ammonia as NH2 mg/l 0.90 0.25 APHA 23 ^{ad} EDN - 4500- NO4 B Phosphate as PO4 mg/l 0.90 0.25 APHA 23 ^{ad} EDN - 4500- NH3 B&C	7	Total Dissolved	So	lids	mg/1	1003	244	15 : 3025 Part 16-1984 (Realf: 2017)						
Total Advanting as Calcos Ing/1 106 57 15: 30:37 and 27 response of the call of the	8	Total Hardness	45	CHC03	mg/l	404	153	15: 3025 Part 21-1983 (Realt: 2019)						
Sulphate as SO4 mg/l 99 51 APHA 23 rd EDN - 4500- SO4 ² E Fluoride as F mg/l 0.22 0.11 APHA 23 rd EDN - 4500-F B&D Nitrate as NO1 mg/l 3 1 APHA 23 rd EDN - 4500-F B&D Ammonia as NH2 mg/l 0.90 0.25 APHA 21 rd EDN - 4500-NH2 B&C Phosphate as PO4 mg/l 0.12 0.08 15 : 3025 Part 31-19BB (Reaff: 2019)	0	Chloride as Cl			mall	459	62	15 : 3025 Part 32-1988 (Reaff: 2019)						
Fluoride as F mg/l 0.22 0.11 APHA 23 rd EDN - 4500-F B&D Nitrate as NO1 mg/l 3 1 APHA 23 rd EDN - 4500- NO4 B Ammonia as NH3 mg/l 0.90 0.25 APHA 21 rd EDN - 4500- NH3 B&C Phosphate as PO4 mg/l 0.12 0.08 15 : 3025 Part 31-19BB (Reaff: 2019)	1	Sulphate as SO4		mg/l	99	51	APHA 23rd EDN - 4500- 50-2 E							
Nitrate as NO1 mg/l 3 1 APHA 23 rd EDN - 4500- NO1 B Ammonia as NHy mg/l 0.90 0.25 APHA 21 rd EDN - 4500- NH1 B&C Phosphate as PO4 mg/l 0.12 0.08 15 : 3025 Part 31-19BB (Reaff: 2019)	2	Fluoride as F		me/l	0.22	0.11	APHA 23# EDN - 4500-F B&D							
Ammonia as NH ₃ mg/1 0.90 0.25 APHA 21 ^{ad} EDN - 4500- NH ₃ B&C Phosphate as PO ₈ mg/1 0.12 0.08 IS : 3025 Part 31-198B (Reaff: 2019)	3	Nitrate as M().			mall	3		APHA 23* EDN - 4500- NO+ B						
Phosphate as POs mg/l 0.12 0.08 IS : 3025 Part 31-1988 (Reaff: 2019)	d d	Ammonia as NI	1.		mail	0.90	0.25	APHA ZIP EDN - 4500- NH- B&C						
THEY WANT THEY AND THE AND THE AT A PARTY OF	5	Bhombata as 9	hosphate as PO-		hosphate as PO.		iosphate as PO ₆		nosphate as PO.		inder i	0.12	0.09	15: 3025 Part 31-1988 (Reaff: 2019)
S. River on No. mar.H 220. E0. 15.2025 Bart 45.1002/Barth 2010)	2011	Thosphine as t	as PUs		ingeningender Greger in Berner an Na		rm as Na		firm as Na		magy.	320	20	15:20/5 Port 45, 1992(Reaff, 2019)
autominia and mg/) cas bu initiate and an analysis and an	6	Sound as Ma	-		mg/)	25	2.2	153025 Part 45, 1993(Reaff, 2019)						
MORACIUM INC. THE ALL MARKED FILME	6	Potassium as K			14490/1	3.3	200	15:3025 Bart 40, 1001 (Berth 2019)						
Totassium as K mg/1 3.5 2.7 [313025 Part 45-1993(Realf: 2019) Calcium as Ca mg/1 56 23 [35:3025 Part 40-1991(Realf: 2019)	6 7 8	Potassium as K Calcium as Co	Calcium as Ca			56		13.3063 f dit 10 1 2 2 1 1 10 milli 6 0 4 7 1						
Sodium as Na mg/l 230 50 15:3025 Part 45-1993(Reaff: 2019)	1 2 3 4 5	Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Ammonia as NH ₂ Phosphate as PO ₄ Sodium as Na			mg/l mg/l mg/l mg/l mg/l mg/l	99 0.22 3 0.90 0.12 230 35	51 0.11 1 0.25 0.08 50 2.7	APHA 23 rd EDN - 4500- 504 ² E APHA 23 rd EDN - 4500-F B&D APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NO ₃ B APHA 21 rd EDN - 4500- NH ₃ B&C 15: 3025 Part 31-1988 (Reaff: 2019) 15:3025 Part 45-1993(Reaff: 2019) 15:3025 Part 45-1993(Reaff: 2019)						
	1	Potassium as K			mg/1	3.5	2.7	15:2025 Part 40:1001 (Dent. 2019)						
Processium as K mg/1 3.5 2.7 [1513/0.6 Part 45-1993[Real] 2019]	5	Potassium as K			and the second sec	1.44.4		15-2025 Bart 40, 1001/Beatt 2010)						
Processium as R mg/l 3.5 2.7 133025 Part 45-1993 (Realf: 2019) Calcium as Ca mg/l 56 23 15:3025 Part 40-1991 (Realf: 2019)	6	Potassium as K Calcium as Ca	_		mg/l	50	63	13-3063 Care 40-1274 (Ream. 6017)						

S.Dharani **Quality Manager**

Technical Manager

Verified by

Types and conditions: a The test residue where the test is a set of the test is and to percent of a dependent of the test and test residue of the test and test and the test and test

Page | 171

ABC ABC ABC

Authorised Signatory

-	And a support of the second second		mant. thu	Eabctachuoiap.c	om / Web: www.a	actochnolab.com TC - 5770
11/1	18	1120 19901	150	4001, (50 - 40	01 6 60 - 220	70 Certified Campony
	consided by NABL	-de TC-3771), NABE	t / QCL Recogn	sad by MoEFBCK	. BIS, APEDA, IC/FEPC. Teo Sound India
ED 10	The Gens	ral Manager	and He	ud TEST	REPORT	
	IREL Ind	in Limited	44622003		and the second se	
	Departma	ast of Atomic kurichi Kan	- Energy	el Disteict		
	C PROCEDURA PROF	Kurtengeun	Contraction of	CONTRACTOR STOCK		
Dono	et number	ABCTL2	INES /F	14/2022/12/5	101.<02	
Same	ale description	: Surface V	Vater -	SW1 - Tamiral	arani River.	
	1	1 10 10 10 10 1	le la	SW2 - Perumb	ulam (Pond),	
Repo	rt date	: 28-12-2	022			Page 2 of 2
S.	Personator		Holt	Re	sults	Test Procedure
No	· Faratuetos		- Contraction	SW1	SWZ	16 - 202C Puet E2 2002/9 15 20100
20	Manganete as	Mri	mg/1	BDL(<0.02)	BDL(<0.02)	APHA 23rd EDN -3111 B
200	Anionic Surfactants as		in the second se	nni/ chart	801/20.025	A901A 2301 8000 5530 F
44	MBAS		mg/1	nbc(<0.025)	BDL(<0.025)	APHA 23- EDR-3340 C
23	Total Suspende	Total Suspended Solids		5	3	15:3025 Part 17-1984 (Reaff: 2017)
25	Chemical Oxyg	mg/1	20	18	15:3025:Part-58:2006(Reaff: 2017)	
16.0	Bio-Chemical		9.9	2	10,2025, Beet (441092/Beeff: 2010)	
70	Demand @ 27°C for 3 days		aff/1	6.6	6	15:3025:Part+44(1995(Real): 2019)
27	Phenolic compounds as		mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN 5530 B.C.D
29	CaHyOH Comparias Fu		mg/l	BDL(<0.03)	RDL(<0.03)	APHA 23r≢ EDN -3111 B
29	Mercury as Hg		mg/1	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN -3112 B
30	Cadmium as Co		mg/1	BDL(<0.003)	BDL(<0.003)	APHA 23 ⁻⁰ EDN -3111 B
31	Selenium #i Se	1.00.02	THE/1	BDL(<0.01)	BDL(<0.01)	APHA 23rd EDN -3113 H
32	Total Arsenica Cyanide as CN	5'A\$	mg/1	BDL(<0.02)	BDL(<0.01)	APHA 23 rd EDN-4500-CN E
34	Lead as Pb		nuc/1	BDL(<0.01)	BDL(<0.01)	APHA 2314 EDN -3111 B
35	Zinc as Zn	mg/l	0.15	0.05	APHA 23rd EDN -3111 B	
36	Total Chromlum as Cr		mg/1	BDL(<0.03)	BDL(<0.03)	APHA 23* EDN -31118
38	Oil & Groose	Nickel as NI Oil & Groose			BDL(<1)	IS:3025:Part-39:1991(Reaff: 2019)
20	Taral Californi		MPN/	51600	>1600	15 - 1622 1981 (Real) - 20101
39	Tous comorm		100mi	>1000	23000	14 - 1062 - 1701 (Neart - 2019)
40	Faecal Coliforn	i i	MPN/	3700	350	IS - 1622-1981(Reaff - 2019)
DL-B	elow Detection L	mit	Lessenne		A3	
22 2				End of	Report	
		15				
	- Anton	1-103	ES INS			1-000
1.0	S- 338 64	Com	MARIAN			0.9
11.04	S.Dharani	10 00	0000	1	100	A. Robson Chinnadura
Q	uality Manager	(Sala	15	/ 200	虚肌	Technical Manager
		202.00	1 38			1.0.10 (Mar.) - 4.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

	BC Techno La	abs	r F	Ambatt 95 : 491-44-26 mail: lab@ab	ur, Chennai - 600 25 7788 / 99, +1 ctechnolab.com	2 098, Tamilisadu 91 94442 60000 / Web: www.aho	n, INDIA. /95661.87777 :technolab.com TC - 6770
		la	150 : 9001	150 1400	1.40 4900	s iso 22000	0 Certified Company)
	Accredited by Ne	AQL -	nde 1C-577	O, MINISET / C	Q, facogniaed	by NoEFBCC,	BIS, APEDA, ICIPERC, Teo Bourd India
ssue	D TD: The G IREL Depart Manay	ener India Imer alak	al Manager Elimited at of Atomic arrichi,Kany	and Heod Energy vakumari Di	TEST Re	EPORT	
Rep	ort number	f a	ABCTL/I	REL/EIA/20	022/12/SW3-	SW4	
Sam	ple Drawn by	1÷	ABC Tech	no Labs In	ila Private Lir	nited	
Sam	pling method	8	15: 3025	Part 1 - 198	37 & 15: 1622 -	-1981	
Sam	ple description	18	Surface W	ater-SW3-	Neyyar River	Contract	
PLOVA	And Without of the	1.0	Minimum	SW4-	Arasakulam (Pond)	Jalam - R. Snavamputharthurst
Proj	ect Name	1.00	Ezhudesat	п − А,В & С а	nd Kollencade	A &B Villages o	of Killiyoor Taluk in Kanniyakumari
district, To				imil Nadu			
Date of sampling : 12-12-20				22			
Date of Receipt : 13-12-20			22				
Ren	e of Analysis : 13-12-20			22	_		Page 1 of 2
5	AND AND A CONTRACTOR	1100	Long the state	1 - waren	Daia	alts	
No	Parameter	arameter			SW3	-SW4	- Test procedure
1	Temperature		_	°C	25.8	26,1	APHA 23rd EDN -25508
2	Colour	-		Hazen	10	12	APHA 23rd EDN-2120 C
3	Odour			E.	No Odour	No Odour Observed	APHA 23 rd EDN -2150 B
4	pHat 25°C			1 2	7.09	7.59	IS: 3025 Part 11-1983 (Reaff: 2017)
5	Electrical Condu	uctiv	nty	µ5/cm	940	740	1S: 3025 Part 14- 1984 (Reaff: 2019)
6	Turbidity			NTU	1.8	3.7	IS: 3025 Part 10-1984 (Reaff: 2017)
7	Total Dissolved Solids			mg/T	536	422	IS: 3025 Part 16-1984 (Reaff: 2017)
18	Total Hurdness ay CaCO3			mg/l	141	153	IS: 3025 Part 21-1983 (Reaff: 2019)
9	Total Alkalinity as Cal		aCO3	mg/l	127	163	IS: 3025 Part 23- 1986(Reaff: 2019)
10	Chloride as Cl			mg/l	214	137	IS: 3025 Part 32-1988 (Reaff: 2019)
11	Sulphate as SO4			tmg/l	31	18	APHA 23 rd EDN - 4500+ SO ₄ 2- E
12	Fluoride as F	Fluoride as F			0.14	0.21	APHA 23 rd EDN - 4500-F B&D
13	Nitrate as NO ₃			mg/l	8		APHA 23 rd EDN - 4500+ NO ₃ B
14	Ammonia as NI	bj (mg/1	0.25	0.10	APHA 23 rd EDN - 4500- NH ₃ B&C
-	Phosphate as Pi	94		mg/1	0.13	0.23	15 : 3025 Part 31-1988 (Reaffi 2019)
15	Sodium as Na			mg/T	150	110	IS:3025 Part 45-1993(Reaff: 2019)
15 16	Potassium as K			mg/l	3.3	2.7	IS:3025 Part 45-1993(Reaff: 2019)
15 16 17	And the second se			mg/l	32	40	IS:3025 Part 40-1991 (Reaff: 2019)
15 16 17 18	Calcium as Ca					0.2.7	

CHEWINAI GOO DIS

1- yan

A. Robson Chinnadural **Technical Manager**

Authorised Signatory

Varified by

S.Dharani

Quality Manager

There and coefficient :
 The ball results only to be torus torted, * The ball report shall not be septembed in to be written approved in AEOTL.* The ball here will not be related in more than 1 from the disease of ball report to be descendent and the interval in to be writtened for 7 data after the disease of ball report to be and after the results and the ball report to be and after the results and the to be writtened for 7 data after the of ball report to be and after the results and the ball report to be and after the results and the ball report to be and after the results and the to be added to be added

Page | 173

ABC ABC ABC

Considered by NABL	vide (TC=5)	70. NA	BET / QICL Record	International Party Property of				
Pi The Gene				Inised by Motha	LC, BIS, APEDA: IOPEPC; Teo Boote Indio			
The Gene			_		x			
1111111 1	ral Manag	er and I	lead 18	ST REPORT				
Departme	a Limited	ric Ere	Ciril Ciril					
Manavale	kurichi,Ka	nyakun	nari District.					
tnumber	ABCT	L/IRE	/EIA/2022/13	Z/SW3-SW4				
e description	: Surfac	e Wate	r- SW3- Neyya	r River,				
		SW4- Arasakulam (Pond)						
t date	1: 28-12	2-2022			Page 2 of 2			
Parameter		Unit	Re	alts	Test Procedure			
from as Po.		mall	SW3	SW4	15 - 3025 Part 53-2003/Deads 2010)			
Manganese as Mr	ron as Fe Manganese as Mr.		801.(<0.02)	BDL(<0.02)	APRA 23/# EDN -3111 B			
Anionic Surfactants as		CODE 1	10012-00001	tion (second)	Land A she bak. Pran r			
48AS		mg/i	BDE(<0.025)	BDC(<0.023)	AFRA 23** EDIN - 3340 E			
Total Suspended	Solids	mg/i	4	3	15:3025 Part 17-1984(Reaff; 2017)			
Chamical Oxyget	solved Oxygen as Or emical Oxygen Demand		0,1	5.8	15:3025:Part-38:1989(Real: 2019)			
Ho-Chemical Oxygen		mgyi	40	44	13.5025.ru(0.56.2000((0000 2017)			
lemand @ 27°C for 3 days		mg/i	<2	<2	IS:3025:Part-44:1993(Reaff: 2019)			
Phenolic compou	nds as	me/1	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN 5530 B.C.D			
C6H3OH		- at	059 2 -0 023	PDU (<0.02)	ADUA 22rd KINA 2111 B			
Marcury as Ha		mg/1	BDU (<0.001)	801(<0.001)	APPIA 23# EDN -3112 B			
Cadmium as Cit	dmium as Cd		BDL(<0.003)	BDL(<0.003)	APHA 23# EDN -3111 B			
Selenium as Se	etilum as Se mg/		BDL(<0.01)) BDL(<0.01)	APHA 23 rd EDN -3113 B			
Total Arsenic as I	ÚS: (mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 ^H EDN -3111 B			
Cyanide as CN		mg/1	BDL(<0.02)	BDL(<0.02)	APHA 23rd EDN-4500-CN E			
Lead as Pb		mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 ^{at} EDN -3111 B			
ZincasZn	.cowa-	mg/l	0.10	80.0	APHA 23 ^m EDN -3111 B			
Nichal as Ni	dal Ghromium as Gr		BDL(<0.03)	BDL(<0.03)	APBA 23 rd EDN -3111 B			
Oil & Gruzse	Res as res R Grease		mg/l		801(<1)	80((<1)	IS/3025-Part-39:1991(Reaff: 2019)	
Total Colliform		form MPN/		>1600	IS - 1622-1981 (Reaff - 2019)			
22 Victoria	MPN/	280	700	IS - 1622-1981(Realf - 2019)				
Faecal Coliform		the second s	CONTRACTOR AND A DESCRIPTION OF A DESCRI		the second se			
	Departme Manavaia Manavaia e description e description e date Parameter Form as Fe Manganese as Mr Anlonic Surfactar MBAS Total Suspended Dissolved Oxyger Chemical Oxygen Bio-Chemical Composition Bio-Chemical Composition Composition Bio-Chemical Composition Bio-Chemical Composition Bio-Chemical Composition Bio-Chemical Composition Bio-Chemical Chemical	Department of Aton Manavalakurichi,Ka inumber : ABCT e description : Surfac i date : 28e-13 Parameter Form as Fe Manganese as Mn Anlonic Surfactants as MBAS Total Suspended Solids Dissolved Oxygen as O ₂ Chemical Suspended Solids Dissolved Oxygen as O ₂ Chemical Oxygen as O ₂ Chemical Oxygen Bernand Bio-Chemical Oxygen Demand @ 27°C for 3 days Phenolic compounds as GAB30H Copper as Cu Mercury as Hg Cadmium as Cd Selenium as Se Total Arsenic as As Cyanide as CN Lead as Pb Zinc as Zn Total Chromium as Cr Nickel as Ni Oll & Gruase Total Colliform	Department of Atomic Ener Manavalakurichi, Kanyakur inumber : ABCTL/IREI e description : Surface Wate i date : 28-12-2022 Parameter Unit Iron as Fe mg/I Matganese as Mn mg/I Matganese as Mn mg/I Matganese as Mn mg/I Anlonic Surfactants as mg/I Total Suspended Solids mg/I Dissolved Oxygen as O ₂ mg/I Dissolved Oxygen as O ₂ mg/I Chemical Oxygen Demand mg/I Bio-Chemical Oxygen mg/I Bio-Chemical Oxygen mg/I Bio-Chemical Oxygen mg/I Chemical Oxygen mg/I Chemical Oxygen mg/I Chemical Oxygen mg/I CathsOH mg/I CathsOH mg/I Selentum as Cathgring mg/I Selentum as Se mg/I Selentum as Se mg/I Cyanide as CN mg/I Lead as Pb mg/I Cinc as Zn mg/I Total Arsenic as As mg/I Total Chromium as Cr mg/I Nickel as Ni mg/I Oil & Grease mg/I Total Colliform MPN/ Total Colliform MPN/	Department of Atomic Energy Manavalakurichi,Kanyakumari District. inumber : adscription : Surface Water-SW3- Neyya SW4- Arasa) clate : 28-12-2022 Parameter Unit Iron as Fe mg/l Matganese as Mn mg/l Matganese as Mn mg/l Matganese as Mn mg/l Matganese as Mn mg/l Mass mg/l Mass mg/l Disolved Oxygen as O2 mg/l Disolved Oxygen Demand mg/l Bio-Chemical Oxygen mg/l Bio-Chemical Oxygen mg/l Bio-Chemical Oxygen mg/l Bott(<0001)	Department of Atomic Energy Manavalakurichi,Kanyakumari District. intervalue and the second sec			

Page | 174

ABC

		- (4)	-140 (PO),	150 ; 1400	1, ISO - 4500	6 (50 - 2200	0 Certified Company)				
	Accertited by N	۸ <u>m</u>	ide TC-5770	NABET O	CI, Recognition	by motifisite.	MS. APEDA, IGFEPC, Teo ficond Indus				
				-							
SUE	D TO: The G	ene	ral Manager a	ind Head	TEST R	EPORT					
	IREL Denor	Indi tme	a Limited at of Atomic	Energy							
	Mana	vala	kurichi,Kany	akumari Di	strict.						
lepo	ortnumber	14	ABCTL/IR	L/EIA/20	22/12/SW5-	SW6					
Sam	ple Drawn by	12	ABC Techn	o Labs Ind	bs India Private Limited						
Sant	mpling method z 15: 3025 Par mple description - Surface Wat			rt 1 - 198	- 1987 & IS: 1622 - 1981 SWS: Nadukulam (Pand)						
Sample description : Surface wa			SW6-	AVM Canal,	sing)						
roje	ect Name	3	Mining of A	omic Miner	als at Keezhmi	dalam -A, Mida	alam - B, Enayamputhenthurat, Ezhudesam				
Date	-AB&Cant			1 Kollencod 2	t A &B Villages	of Killiyoor Ta	iuk in sanniyakumari district, Tamii Nadu				
Date	ate of Receipt : 13-12-202		2								
Date	of Analysis	÷	13-12-202	2							
Repo	ort date	1	28-12-202	2			Page 1 of 2				
S.	Parameter		Unit	Re	sults	Test procedure					
1.	Temperature			ingt:	26.6	271	APHA 23rd EDN -25508				
2	Colour	lour		Hazen	5	3	APHA 23rt EDN-2120 C				
-10	Odour			-	No Odour	No Odour	APHA 23-1 FUN -2150 B				
	ouou			121	Observed	Observed	In the contract of the second of the second				
9	Electrical Cond	ucti	vity	uS/cm	457	428	15: 3025 Part 14- 1983 (Reaff: 2017)				
10.1	- Bard No. And And - Brought Inc. No. 1.3 4 4 404	nductivity			2.0	2.6	IS : 3025 Part 10-1984 (Reaff: 2017)				
6	Turbidity		14796	NTU	3,2	P#114	the second se				
5 7	Turbidity Total Dissolved	Sol	ida.	NTU mg/l	261	231	IS: 3025 Part 16-1984 (Reaff: 2017)				
3 6 7 8 9	Turbidity Total Dissolved Total Hardness Total Alkalinity	Sol	ids aco3	NTU mg/l mg/l	261 82 46	231 72 40	IS: 3025 Part 16-1984 (Reaff: 2017) IS: 3025 Part 21-1983 (Reaff: 2019) IS: 3025 Part 23- 1986 (Reaff: 2019)				
≥ 6 7 8 9 10	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl	501 #5 (ids laCO3 laCO3	NTU mg/l mg/l mg/l	3,9 261 82 46 115	231 72 40 96	IS: 3025 Part 16-1984 (Reaff: 2017) IS: 3025 Part 21-1983 (Reaff: 2019) IS: 3025 Part 23- 1986(Reaff: 2019) IS: 3025 Part 23- 1986(Reaff: 2019) IS: 3025 Part 32-1988 (Reaff: 2019)				
5 6 7 8 9 10 11	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO4	Sol as (ida JaCO3 JaCO3	NTU mg/l mg/l mg/l mg/l	3,9 261 82 46 115 18	231 72 40 96 14	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23-1986 (Reaff: 2019) IS : 3025 Part 23-1988 (Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SOs ⁴ E				
5 6 7 8 9 10 11 12	Turbidity Total Dissolved Total Hardness Total Abalinity Chloride as Cl Solphate as SO Fluoride as F	Sol as (ids IaCO3 IaCO3	NTU mg/l mg/l mg/l mg/l mg/l	3.9 261 82 46 115 18 0.15	231 72 40 96 14 0.17	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23-1986 (Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500-SO ₄ ² E APHA 23 rd EDN - 4500-F B&D				
5 6 7 8 9 10 11 12 13	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃	Sol as (ida laCQ3 laCQ3	NTU mg/l mg/l mg/l mg/l mg/l mg/l	3.9 261 82 46 115 18 0.15 6	231 72 40 96 14 0.17 3	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23- 1986(Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO4 ^s E APHA 23 rd EDN - 4500-F B&D APHA 23 rd EDN - 4500-F B&D				
5 6 7 8 9 10 11 12 13 14	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO4 Fluoride as F Nitrate as NO3 Ammonia as Ni	Sol as (as (ida 2aCO3 2aCO3	NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l	3,9 261 82 46 115 18 0,15 6 0,14	231 72 40 96 14 0.17 3 0,10	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23- 1986(Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO ₄ ³ E APHA 23 rd EDN - 4500- F B&D APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NO ₃ B				
5 6 7 8 9 10 11 12 13 14 15	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Ammonia as NI Phosphate as P	Sol as (as)	ida SaCO3 SaCO3	NTU mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	3,5 261 82 46 115 18 0,15 6 0,14 0,15	231 72 40 96 14 0.17 3 0.10 0.11	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23- 1986 (Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO ₈ ^d E APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NH ₃ B&C IS : 3025 Part 31-1988 (Reaff: 2019)				
5 6 7 8 9 10 11 12 13 14 15 14	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as CO Fluoride as F Nitrate as NO ₃ Ammonia as NI Phosphate as P Sodium as Na	501 as (as (15	ida 2aCO3 2aCO3	NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	3,5 261 82 46 115 18 0,15 6 0,14 0,15 68	231 72 40 96 14 0.17 3 0.10 0.11 52	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23- 1986 (Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO ₈ ^d E APHA 23 rd EDN - 4500- F B&D APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NH ₁ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019)				
5 6 7 8 9 10 11 12 13 14 15 16 17	Turbidity Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO Fluoride as F Nitrate as NO ₃ Ammonia as Ni Phosphate as P Sodium as Na Potassium as Ki	Sol as (as) la	ida laCO3 laCO3	NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	3,9 261 82 46 115 18 0,15 6 0,14 0,15 68 2	231 72 40 96 14 0.17 3 0.10 0.11 52 1.3	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23- 1986 (Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO ₈ ^{de} E APHA 23 rd EDN - 4500- F B&D APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NH ₃ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019)				
5 6 7 8 9 10 11 12 13 14 15 16 17 18	Turbidity Total Dissolved Total Hardness Total Abalinity Chloride as Cl Sulphate as SO, Fluoride as F Nitrate as NO ₃ Ammonia as NI Phosphate as P Sodium as Na Potassium as K Calcium as Ca	Sol as (as (1) 04	ida laCO3 laCO3	NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	3,9 261 82 46 115 18 0,15 6 0,14 0,15 68 2 14	231 72 40 96 14 0.17 3 0.10 0.11 52 1.3 12 10	IS : 3025 Part 16-1984 (Reaff: 2017) IS : 3025 Part 21-1983 (Reaff: 2019) IS : 3025 Part 23-1986(Reaff: 2019) IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 rd EDN - 4500- SO ₈ st E APHA 23 rd EDN - 4500- F B&D APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NO ₃ B APHA 23 rd EDN - 4500- NH ₃ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019)				

WH. A. Robson Chinnadurai

Page | 175

0	white Parents and	E	mann nac	eeabctechnolab.c	om / wee: www.a	ocreennoiab.com TC = 1770
	11	1,02 1001	199		001 1.150 220	ou caninod Company
ED TC	D The Gens IREL, Ind Departme Manavala	ral Manager ia Limited at of Atomic deurichi,Kanj	and He Energ	ad (1851 y ri District.	REPORT	
Repo	rt number	: ABCTL/	IREL/F	IA/2022/12/9	W5-SW6	
Samr	ole description	: Surface V	Water -	SW5- Nadukula	am (Pond),	
Report date ± 28-12-2			022	SW6- AVM Car	mL.	Page 2 of 2
S.	Deserver		0.25	Re	sults	
No	Parameter		Unit	SW5	SW6	rest Procedure
20	fron its Fe Manganese as I	Mn	mg/1	0.28 BDL(<0.02)	0.13 BDL(<0.02)	IN: 3025 Part 53-2003(Reaff: 2019) APBA 23 ^{al} EDN -3111 B
22	Anionic Surfact	ants as	mg/I	BDL(<0.025)	BDL(<0.025)	APHA 23rd EDN -5540 C
23	MBAS Total Suspende	d Salids	mg/l	5	NICENCER (IS-3025 Part 17-1984(Reaff: 2017)
24	Dissolved Oxyg	en as O ₂	mg/1	6,3	6.5	IS:3025:Part-38:1989(Reaff: 2019)
25	Chemical Oxyge	en Demand	mg/l	18	14	IS:3025:Part-58:2006(Reaff: 2017)
26	Bio-Chemical C Demand @ 27*	Daygen C for 3 days	mg/l	2.1	<2	IS:3025:Part-44:1993(Reaff: 2019)
27	Phenolic compo	ounds as	mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23* EDN 5530 B.C.D
28	Copper as Eu		mell	BDL(<0.03)	BDL(<0.03)	APHA 234 FDN -3111 B
29	Mercury as Hg		mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23* EDN -3112 B
30	Cadmium as Cd		mg/l	BDL(<0.003)	BDL(<0.003)	APHA 23r# EDN -3111 B
31	Selenium as Se	- 40	mg/1	BDL(<0.01)	BDL(<0.01)	APHA 23# EDN -3113 B
33	Cvanide as CN	5-250	me/1	BDL(<0.02)	801(<0.02)	APRA 23* EDN-4500-CN F
34	Lead as Pb		mg/1	BDL(<0.01)	BDL(<0.01)	APBA 23* EDN -3111 B
35	Zinc as Zn		mg/l	0.12	0.06	APHA 23ri EDN -3111 B
36	Total Chromium as Cr		mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23 nd EDN -3111 B
37	Oll & Grease		mg/1	BDL(<0.02)	BDL(<0.0Z)	APHA-23 ^{ad} EDN -3111 B
39	Total Coliform		MPN/	>1600	>1600	IS = 1622 -1981 (Reaff = 2019)
10	Rannal California		100ml MPN/		:000	16 1522 1001/Das# 2010
90	Faecal Conform	20010	100ml	900	500	15 - 1622-1981(kean - 2019)
њ-В	elow Detection Li	miţ		End of I	teport	
Q	S. Fight S.Dharani uality Manager	AS DECK	ABS THENHAL		ie.	J. H. H. A. Robson Chinnadurai Technical Manager

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

1.000

233	C Techno La Judia Private Lutitud Judia Private Lutitud	abs	e Ph Em	Ambatt 1 +91-44-26 سال: العلمية العلمة	ur, Chennul - 680 25 7788 / 99, +9 technolab.com /	1 098, Tamilnadu 91 94442 60000 / Web: www.abc	, INDUA / 95661 877777 Tiestnielak.com			
=		(Din	150 - 9501.	iso 1400	1.850 (4500)	& ISO 22000	Certified Company)			
	According by N	相上	id= 1C-5776	NABET / G	El Recogniand	by MoEFLCC.	BIS, APEIXA, IOPEPC, Teu Bacrol India			
ISUA	D TO: The G IREL Depar Manay	ener India tmen valak	al Manager a i Limited t of Atomic urichi,Kanyi	nd Hend Energy skumari Di	TEST RE	PORT				
Repo	ort number	1	ABCTL/IR	EL/EIA/20	322/12/SW7-	SW8				
Sam	ple Drawn by	1	ABC Tech	no Labs Ins	lia Private Lir	nited				
Sam	pling method	1	IS: 3025 P	art 1 - 196	7 & 15: 1622	1981				
Sam	ple description	Ŧ	SurfaceWa	urfaceWater-SW7- Marauapuram (Pond),						
Proje	ect Name	\$1	Mining of A	ining of Atomic Minerals at Keexhoidalam -A. Midalam -B. Enayamputhenthurai, Ezhodesam -						
Date	of sampling		12-12-202	7	e vi den a malles	of sunybor 14	are of Kalonyokomast district, Tanto Asata			
Date	of Receipt		13-12-202	-12-2022						
Date	of Analysis	1	13-12-207	12-2022						
Repo	ort date	1	28-12-207	2			Page 1 of 2			
S.				Results						
No	Parameter			Unit	5W7 SW8		Test procedure			
1	Temperature			÷C.	26.4	26.7	APHA 23rd EDN -25508			
2	Colour			Hazen	7	- 4	APHA 23rd EDN-2120 C			
3	Odour	Odour			No Odour Observed	No Odour Observed	APHA 23** EDN-2150 B			
4	pH at 25°C			35	7.41	8,04	IS: 3025 Part 11- 1983 (Realf: 2017)			
5	Electrical Cond	ucthy	ity	µS/cm	514	18630	15: 3025 Part 14- 1984 (Reaff: 2019)			
6	Turbidity	Vali	de	NTU	3.2	11770	15:3025 Part 16:1964 (Real): 2017)			
R	Total Hardness	and and	aCO3	mg/f	96	2100	15: 3025 Part 21: 1983 (Reaff: 2019)			
9	Total Alkalinity	as C	aCO3	mit/l	52	188	15: 3025 Part 23- 1986(Reaff: 2019)			
10	Chloride as Cl	cont citi	and the second	ing/1	124	6268	15: 3025 Part 32-1988 (Reaff: 2019)			
11	Sulphate as SO4	8		mg/l	20	840	APHA 2301 EDN - 4500- SO42 E			
12	Fluoride as F			tng/1	0.16	0.82	APHA 23rd EDN - 4500 F B&D			
13	Nitrate as NO1			mg/1	4	1.6	APHA 23 rd EDN - 4500- NO ₃ B			
14	Ammonia as NF	ła –		nug/1		0.10	APHA 23 rd EDN - 4500- NH ₃ 8&C			
15	Phosphate as P	0.		mg/l	0.15	0.10	15: 3025 Part 31-1988 (Reaff: 2019)			
16	Sodium as Na			mg/i	66	3800	IS:3025 Part 45-1993(Reaff: 2019)			
4.60	Potassium as K	5		mg/l	1.7	180	15:3025 Part 45-1993(Reaff: 2019)			
17	Calcium as Ca			mg/l	15	168	IS:3025 Part 40-1991(Reaff: 2019)			
17 18	Calcium as Ca	Magnesium as Mg				a dealer -				

S.Dharani Quality Manager

CIENNA P 12

A. Robson Chinnadurai **Technical Manager**

Authorised Signatory

Verified by

Termina and conditions : * The basic results relate any to the terms tested, • The test report shall not be expressioned in fail or perturbation the written approval of ABCFL • The test inters will be tasked the mixer than 55 lines from the data of source that into Perturbation exception and Perturbation exception built are perturbationed for "Data of the interview of test into the interview of test into the interview of test into the interview of test interview of test into the interview of test into the interview of test interview of test into the interview of test interview of test into the interview of test interview of test interview of test into the interview of test int

ABC ABC ABC

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

ABC Techno Labs*		ABC Techno Labs India Private Lin ABC TOWER #400, 13th Street, SIDCO industrial Estate - North Ph Ambatur, Chennal - 600 698, Tamilnadu, INDIA. Ph:+91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com	nited
	(AH 150	9801, ISO - 14001, ISO - 45001 & ISO - 22000 Centified Co	hipóny)
Asses	lites by NARL ode	TC-5770, NABET / OCI, Recognised by MoEF&CC, EIS, APEOA.1	OFERC Tea Loard Impia
SUED TO	The General N IREL India LI	fanager and Head TEST REPORT	

IREL India Limited Department of Atomic Energy Manavalakurichi, Kanyakomari District.

Repo Samt	et number ale description		ABCTL/ SurfaceW	IREL/I /ater-	IA/2022/12/S SW7- Marauap	W7-SW8 uram (Pond),				
Repo	rt date	÷	28-12-2	022	SWB- Ocappus	ulam (Pond),	Page 2 of 2			
S.	L Parameter			Unit	Re	adia	44 (MI 44 (MI 14 (MI			
No					SW7	SW8	Test Procedure			
20	Iron as Fe			mg/l	0.21	0.11	IS: 3025 Part 53-2003(Reaff: 2019)			
21	Manganese as	Manganese as Mn			BDL(<0.02)	BDL(<0.02)	APHA 23 rd EDN -3111 B			
22	Anionic Surfactants as MBAS			mg/i	BDL(<0.025)	BDL(<0.025)	APHA 23 rd EDN -5540 C			
23	Total Suspended Solids			mg/l	5	5	1S:3025 Part 17-1984(Reaff: 2017)			
24	Dissolved Oxygen as O2			mg/1	6.2	5.7	IS:3025:Part-38:1989(Reaff: 2019)			
25	Chemical Oxygen Domand			mg/l	20	16	IS:3025:Part-58:2006(Reaff: 2017)			
26	Bio-Chemical Oxygen Demand @ 27°C for 3 days			mg/l	2.5	4	IS:3025:Part-44:1993(Reaff: 2019)			
27	Phenolic compounds as C4H-OH			mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23* EDN 5530 8,CD			
28	Copper as Cu			mg/l	BDL(<0.03)	BDL(<0.03)	APEIA 2310 EDN -3111 B			
29	Mercury as Hg			mg/I	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN -3112 B			
30	Cadmium as Co	Cadmium as Cd			BDL(<0.003)	BDL(<0.003)	APHA 23 rd EDN -3111 B			
31	Selenium as Se	Selenium as Se			BDL(<0.01)	BDL(<0.01)	APHA 234 EDN -3113 B			
32	Total Arsenic as As			mg/1	BDL(<0.01)	BDL(<0.01)	APHA 23 ¹⁰ EDN -3111 B			
33	Cyanide as CN	Cyanide as CN			BDL(<0.02)	BDL(<0.02)	APHA 23 ^{nl} EDN-4500-CN E			
34	Lead as Pb	Lead as Pb			BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3111 B			
35	Zinc as Zn	Zinc as Zn			casZn mg/l		mg/l	0.15	0.11	APHA 23 ^{ad} EDN -3111 B
36	Total Chromium as Cr			mg/I	BDL(<0.03)	BD1.(<0.03)	APHA 23 ^{nl} EDN -3111 B			
37	Nickel as Ni	_		mg/1	BDL(<0.02)	BDL(<0.02)	APHA 23 rd EDN -3111.8			
38	Oil & Grease			mg/l	BDL(<1)	BDL(<1)	IS:3025:Part-39:1991(Reaff: 2019)			
39	Total Coliform	2		MPN/ 100ml	>1500	>1600	IS - 1622 -1981 (Reaff - 2019)			
40	Faecal Coliforn	ŧ.		MPN/ 100ml	900	1100	IS - 1622-1981(Reaff- 2019)			

....End of Report....

3. Astrian **木店**店 CHICNNA ROD COS S.Dharani **Quality Manager**

A. Robson Chinnadurai

A. Robson Chinnadura Technical Manager

Authorised Signatory

Verified by

Former and conditions: • The balance model conditions to the parts balance. • The balance part and the separatement in half or part with have been trace effective of the inpart in time. Periodial weights, and is the state of Periodial weights and periodial matching of the infart inpart of the inpart in time. Periodial weights, and is the state of Periodial weights and periodial matching of the infart inpart of the inpart inpart in the inpart inpart of the inpart inparts with its discussion of the infart inparts with its discussion of the information of the inpart of the inpart inparts with its discussion of the information of the inparts with its discussion of the information of the inparts. (in factor part without the written approval of AUGTL σ . The fact the respect to $7\,\rm Mays$ after take of more to on with out he ownersed for encry front 12 th regulation years and a second se

	SC Techno L India Prinan Limital Dallo Personante	abs	ABC T	OWER #400 Ambutt 1 : +91 -44-2(nail: lab@ab	, 13th Street, Sil ur, Chennal - 60 i25 7788 / 99, + ctechnolab.com	0 098, Tamihada 91 94442 60000 / Web: www.ab	tate - North Phase, 1, INDIA / 195651.877777 ttechnolab.com TE - 3720			
		(4)(1	150 9003	150 - 1400	1, ISO , 45001	1,150 22004	D Certifiest Compony			
	Accredited by N	AÐL -	ide 70-5770	NAILT	Ki, netogrinni	d by MORFACC	BIS, AFEDA, IOFEPC, Teo Board India			
SUE	n TO. The G IREL Depar Mana	ener India Imer alak	al Manager a i Limited it of Atomic arichi,Kany	nd Head Energy akuntari D	TEST R	EPORT				
Repo	ortnumber	1.5	ABCTL/IP	/IBEL//FIA/2022/12/SW9-SW10						
Sam	ple Drawn by	E.	ABC Tech	no Labs In	dia Private Li	mited				
Sam	pling method	3	15: 3025 P	art 1 - 190	37 & IS: 1622	-1981				
Sam	ple description	3	Surface W	ater-SW9-	Vaikundapu	um (Pond),				
Project Name :		-	SW10- Perumctural (P080) Mining of Atomic Minerals at Keeshmidalam -A, Midalam -B, Enayamputhenthural, Exhudesam -A,B & C and Kollencode A &B Villages of Killiyoor Taluk in Kanniyakumari district Tarell Node							
Date	of sampling	12	12-12-20	-12-2022						
Date	of Receipt	t.	13-12-202	1-2022						
Date	of Analysis	1	13-12-203	12						
Rept	ort date	1.5	28-12-202	22			Page 1 of 2			
S. No	Parameter			Unit Results SW9 SW10			Test procedure			
1	Temperature			н <u>с</u>	27.3	26.5	APHA 23rd EDN -25508			
2	Colour			Hazen	10	3	APHA 23 rd EDN-2120 C			
3	Odour			7.	No Odour Observed	No Odour Observed	APHA 23 ¹⁰ EDN -2150 B			
	pH at 25°C			(÷	7,99	7.52	15: 3025 Part 11- 1983 (Reaff: 2017)			
4	Electrical Cond	Electrical Conductivity			13100	442	IS: 3025 Part 14- 1984 (Reaff: 2019)			
4 5	Turbidity			NTU	4.6	3.1	15: 3025 Part 10-1984 (Reaff: 2017)			
4 5 6	Turbidity	Total Dissolved Solids			7841	236	15 : 3025 Part 10-1964 (Reaff: 2017)			
4 5 6 7	Total Dissolved	14.11 19.1	1003	mg/1	172	47	15 - 3025 Part 23, 1986(Reaff 2019)			
4 5 6 7 8 9	Total Dissolved Total Hardness Total Alfabete	as C	Total Alkannity as Cat.0.5				Prove and the second se			
4 5 7 8 9	Total Dissolved Total Hardness Total Alkalinity Chloride as Cl	as C as C	anata:	100/1	4364	102	35: 3025 Part 32-1988 (Reaff: 2019)			
4 5 7 8 9 10	Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO-	as C as C	anasa.	mg/1 mg/1	4364	102	IS: 3025 Part 32-1988 (Realf: 2019) APHA 23 ^{ee} EDN - 4500- SO ₄ ² E			
4 5 7 8 9 10 11	Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F	as C as C	4640	mg/1 mg/1 mg/1	4364 610 0.26	102 16 0.21	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 ¹⁰ EDN - 4500- SO ₄ ²¹ E APHA 23 ¹⁰ EDN - 4500-F B&D			
4 5 7 9 10 11 12 13	Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SOs Fluoride as F	as C as C	41443	mg/l mg/l mg/l mg/l	4364 610 0.26 2.6	102 16 0.21 3	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 ¹⁰ EDN - 4500- SO ₄ ² E APHA 23 ¹⁰ EDN - 4500- F B&D APHA 23 ¹⁰ EDN - 4500- F B&D			
4 5 7 9 10 11 12 13 14	Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Ammonia as NI-	as C as C	4.003	mg/1 mg/1 mg/1 mg/1 mg/1	4364 610 0.26 2.6 0.12	102 16 0.21 3 0.10	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 ⁴⁰ EDN - 4500- SO4 ³ E APHA 23 ⁴⁰ EDN - 4500- F B&D APHA 23 ⁴⁰ EDN - 4500- NO ₂ B APHA 23 ⁴⁰ EDN - 4500- NO ₂ B			
4 5 7 8 9 10 11 12 13 14	Tornal Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Ammonia as N 3 Physichate as P	as C as C	at.003	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	4364 610 0.26 2.6 0.12 0.27	102 16 0.21 3 0.10 0.13	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 nd EDN - 4500- SO ₄ ² - E APHA 23 nd EDN - 4500- F B&D APHA 23 nd EDN - 4500- NO ₂ - B APHA 23 nd EDN - 4500- NO ₂ - B APHA 23 nd EDN - 4500- NH ₃ B&C IS : 3025 Part 31-1988 (Reaff: 2019)			
4 5 7 9 10 11 12 13 14 15	Tornally Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Ammonia as NI Phosphate as P	as C as C by	41.003	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	4364 610 0.26 2.6 0.12 0.27 2700	102 16 0.21 3 0.10 0.13 co	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 nd EDN - 4500- SO ₄ ² E APHA 23 nd EDN - 4500- F B&D APHA 23 nd EDN - 4500- NO ₂ : B APHA 23 nd EDN - 4500- NO ₂ : B APHA 23 nd EDN - 4500- NH ₂ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45, 1987/Reaff: 2019)			
4 5 6 7 8 9 10 11 12 13 14 15 16 12	Tornally Total Dissolved Total Hardness Total Alkalinity Chloride as Cl Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Animonia as NI Phosphate as Pi Sodium as Na	as C as C	atat3.	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	4364 610 0.26 2.6 0.12 0.27 2700 110	102 16 0.21 3 0.10 0.13 58	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 ^{ed} EDN - 4500- SO ₄ ²⁺ E APHA 23 ^{ed} EDN - 4500- F B&D APHA 23 ^{ed} EDN - 4500- NO ₂ : B APHA 23 ^{ed} EDN - 4500- NO ₂ : B APHA 23 ^{ed} EDN - 4500- NH ₂ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019)			
4 5 6 7 9 9 10 11 12 13 14 15 16 17 18	Tornally Total Dissolved Total Hardness Total Alkalinity Chloride as G Sulphate as SO ₄ Fluoride as F Nitrate as NO ₃ Animonia as Ni Phosphate as Pi Sodium as Na Potassium as K Calcium as Ca	as C as C	4643	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	4364 610 0.26 2.6 0.12 0.27 2700 110 88	102 16 0.21 3 0.10 0.13 58 1.8 13	IS : 3025 Part 32-1988 (Reaff: 2019) APHA 23 st EDN - 4500- SO ₄ ² - E APHA 23 st EDN - 4500- F B&D APHA 23 st EDN - 4500- NO ₂ - B APHA 23 st EDN - 4500- NO ₂ - B APHA 23 st EDN - 4500- NH ₃ B&C IS : 3025 Part 31-1988 (Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 45-1993(Reaff: 2019) IS:3025 Part 40-1991(Reaff: 2019)			

S.Dharani Quality Manager

HENNA COD 063 0

A. Robson Chinnadurai

Technical Manager

Authorised Signatory

Verified by

Terms and considerent : • The test tends to the term instant, • The test report shall be be operational in faller perturbative entities approve of ASCTL • The test form will be operative to the test form the test of the test form of the test form and per test test for the test form of ABC ABC ABC

						R BIN					
		vo 150 - 90	PT, 190	1.1.4001, ISO: 4	15091 B 1591 - 22	900 Certified Company)					
	Accordited by NAS	L-ide TC-S	76. NA	SET / OCI, Reco	minud by MatFA	CC, IIIS, AFEDA, IOFEPC, Tea Board India					
UED .	10. The Gen IREL in Departm Manuval	eral Manag fia Limited ent of Ator akurichi,Ki	er and l nic Ene myakur	Head TES ney mari District.	ST REPORT						
lepo	rt number	: ABC	ABCTL/IREL/EIA/2022/12/SW9-SW10								
Sample description : Surfa			e Wate	r- SW9-Vaiku	indapuram (Poi	id),					
teno	er data	. 28.1	2.2022	SW10-Pert	unchirai (Pond	Prog 2 of 2					
e po	LC MALE:	131.964-1	012022		endler:	rage 2 or 2					
ð. No	Parameter		Unit	SWO	SW10	Test Procedure					
20	from as Fe	m as Fe		s Fe		as Fe		0.24	0.12	1S: 3025 Part 53-2003(Reaff: 2019)	
21	Manganese as M	h te	mg/l	BDL(<0.02)	BDL(<0.02)	APHA 23 rd EDN -3111 8					
22	Anionic Surfacta	nts as	mg/l	BDL(<0.025)	BDL(<0.025)	APHA 23** EDN -5540 C					
23	Total Suspended	Solids	mg/l	7	3	IS-3025 Part 17-1984/Reaff-2017)					
24	Dissolved Oxyge	Oxygen as O1 mg/l 5.6 6.4 IS:3025:Part-38:1989(Reaff: 2019)		IS:3025:Part-38:1989(Reaff: 2019)							
25	Chemical Oxyger	Demand	mg/1	22	14	15:3025:Part-58:2006(Reaff: 2017)					
26	Bio-Chemical Or Demand # 27°C	mg/l	3.7	<2	1S:3025:Part-44:1993(Reaff: 2019)						
27	Phenolic compose Call=OH	inds as	mg/1	BDL(<0.001)	BUL(<0.001)	APHA 2314 EDN 5530 B.C.D					
28	Copper as Cu		mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23 rd EDN -3111 B					
29	Mercury as Hg		mg/1	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN -3112 B					
30	Cadmium as Cd		mg/1	BDL(<0.003)	BDL(<0.003)	APHA 23 rd EDN -3111 B					
11	Selenium as Se		mg/1	BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3113 B					
3Z.	Total Arsenic as	Ås:	mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 nd EDN -3111 B					
33	Cyanide as CN	_	mg/I	BDL(<0.02)	BDL(<0.02)	APHA 23 ³⁴ EDN-4500-CN E					
5-9	Load an PD		mg/i	804(<0.01)	HDL(<0.01)	APHA 23 th EDN -3111 B					
15	Tetal Chromlem	us Cr	mg/1	801 (<0.03)	801(<0.03)	APHA 23N EDM 3111 B					
17	Nickel us Ni	45.01	molt	BDL(<0.03)	BDL(<0.03) BDL(<0.02)	APHA 23rd FDN -3111 B					
18	Oll & Grease		mg/1	BDL(<1)	BDL(<1)	IS:3025 Part-39:1991(Reaff: 2019)					
19	Total Coliform		MPN/ 100ml	>1600	>1600	15-1622-1981 (Reaff-2019)					
10	Faecal Coliform	MPN/ 100ml	>1600	170	IS-1622-1981(Reaff-2019)						
DL-	Below Detection L	imit			f Report						
				1.200.000	erender ander soller i						
-	ঞ কাহাটি S.Dharani Quality Manager	ha (included)	12 18 20 18			J. Alf L A. Robson Chinnadurai Technical Manager					
	5450 m	Alas	-	S/ 0	HINKE	1.50% (M. MW) 50					

Results and discussions

The collected sample was tested for insitu parameters like pH, dissolved oxygen, TDS & TSS and are preserved with addition of nitric acid for testing metal constituents at laboratory. The collected sample was analyzed in accordance with Indian Standards and the results have been compared with recent CPCB norms for surface water quality criteria for Class A to E, given in Table 3.19. Since, the water is used for drinking water purpose the quality is also compared with IS: 10500. Analytical results for monitoring season are given in Table 3.20.

-					
Parameters	Class A	Class B	Class C	Class D	Class E
1. pH	6.5–8.5	6.5–8.5	6.0-9.0	6.5–8.5	6.0-8.5
2. Dissolved oxygen (as O2), mg/l, min	6	5	4	4	-
3. BOD, 3 days at 27° C, max	2	3	3	-	-
4.Total coliform organism, MPN/100 ml, max	50 or less	500 or less	5000 or less	-	-
5. Free ammonia (as N), mg/l, max	-	-	-	1.2	-
6. Electrical conductivity, at 25° C,μmhos/cm, max	-	-	-	-	2250
7. Sodium absorption ratio, max.	-	-	-	-	26
8. Boron (as B), mg/l, max.	-	-	-	-	2

Class A: Drinking water source without conventional treatment but after disinfection

Class B: Outdoor bathing (organized)

Class C: Drinking water source after conventional treatment and after disinfection

Class D: Propagation of Wild life and Fisheries

Class E: Irrigation, Industrial Cooling, and Controlled Waste Disposal

Below E: Not meeting A, B, C, D & E Criteria

Table 3.19 Results of surface water analysis

ei		Permiss	ible limits *					
No.	Parameter	Desirable limits	Permissible limits	SW1	SW2	SW3	SW4	SW5
1.	Colour, Hazen units, Max	5	15	5	4	10	12	5
2.	Odour	Agreeable	Agreeable	No odour observed				
3.	pH Value	6.5 to 8.5	No Relaxation	6.84	7.09	7.09	7.59	7.41
4.	Turbidity, NTU, Max	1	5	3.5	2.8	1.8	3.7	3.9
5.	Total dissolved solids, mg/l	500	2000	1003	244	536	422	261
6.	Calcium (as Ca), mg/l, max.	75	200	56	23	32	40	14

ei.		Permiss	ible limits *					
51. No.	Parameter	Desirable limits	Permissible limits	SW1	SW2	SW3	SW4	SW5
7.	Chloride (as Cl), mg/l, max.	250	1000	459	62	214	137	115
8.	Copper (as Cu), mg/l, max.	0.05	1.5	<0.03	<0.03	<0.03	<0.03	<0.03
9.	Fluoride (as F), mg/l, max.	1.0	1.5	0.22	0.11	0.14	0.21	0.15
10.	Iron (as Fe), mg/l, max.	0.3	No Relaxation	0.41	0.24	0.18	0.14	0.28
11.	Magnesium (as Mg), mg/l, max.	30	100	64	7	15	13	11.4
12.	Manganese (as Mn), mg/l, max.	0.1	0.3	<0.02	<0.02	<0.02	<0.02	<0.02
13.	Nitrate (as NO3), mg/l, max.	45	No Relaxation	3	1	8	4	6
14.	Phenolic compounds (as C6H5OH), mg/l_max	0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001
15.	Sulphate (as SO4), mg/l, max.	200	400	99	51	31	18	18
16.	Total alkalinity (as CaCO3), mg/l	200	600	106	57	127	163	46
17.	Total hardness (as CaCO3), mg/l, max	200	600	404	85	141	153	82
18.	Zinc (as Zn), mg/l, max.	5	15	0.15	0.05	0.10	0.08	0.12
19.	Cadmium (as Cd), mg/l, max.	0.003	No relaxation	<0.003	<0.003	<0.003	<0.003	<0.003
20.	Cyanide (as CN), mg/l, max.	0.05	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
21.	Lead (as Pb), mg/l, max.	0.01	No relaxation	<0.01	<0.01	<0.01	<0.01	<0.01
22.	Mercury, (as Hg), mg/l, max.	0.001	No relaxation	<0.001	<0.001	<0.001	<0.001	<0.001
23.	Nickel (as Ni), mg/l, max.	0.02	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
24.	Total arsenic (as As), mg/l, max.	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01

ei.		Permiss	ible limits *					
No.	Parameter	Desirable limits	Permissible limits	SW1	SW2	SW3	SW4	SW5
25.	Total chromium (as Cr), mg/l, Max.	0.05	No relaxation	<0.03	<0.03	<0.03	<0.03	<0.03
26.	Total Coliform bacteria, MPN/100ml	-	-	>1600	>1600	>1600	>1600	>1600
27.	Dissolved Oxygen,mg/l, minimum	-	-	6	6.4	6.1	5.8	6.3
28.	BOD, mg/l Max.	-	-	2.2	2	<2	<2	2.1
29.	Electrical Conductivity at 25° C, µmhos/cm, max			1735	437	940	740	457
30.	Free ammonia (as N), mg/l, max			0.90	0.25	0.25	0.10	0.14

*Drinking Water Specification IS: 10500 (2012); ** Requirement (Acceptable limits); *** Permissible limits in the absence of alternate source; #Additional Characteristics as per -Water Quality Criteria as per Central Pollution Control Board

91		Permissi	ble limits *					
No.	Parameter	Desirable limits	Permissibl e limits	SW6	SW7	SW8	SW9	SW10
1.	Colour, Hazen units, Max	5	15	3	7	4	10	3
2.	Odour	Agreeabl e	Agreeable	No odour	No odour	No odour	No odour	No odour
3.	pH Value	6.5 to 8.5	No Relaxation	7.48	7.41	8.04	7.98	7.52
4.	Turbidity, NTU ,Max	1	5	2.6	3.2	2.3	4.6	3.1
5.	Total dissolved solids, mg/l	500	2000	231	276	11778	7841	236
6.	Calcium (as Ca), mg/l, max.	75	200	12	15	168	88	13
7.	Chloride (as Cl), mg/l, max.	250	1000	96	124	6268	4364	102
8.	Copper (as Cu), mg/l, max.	0.05	1.5	<0.03	<0.03	<0.03	<0.03	<0.03
9.	Fluoride (as F), mg/l, max.	1.0	1.5	0.17	0.16	0.82	0.26	0.21
10.	lron (as Fe), mg/l, max.	0.3	No Relaxation	0.13	0.21	0.11	0.24	0.12

Page | 183

<u>e</u> i		Permissi	ble limits *					
No.	Parameter	Desirable limits	Permissibl e limits	SW6	SW7	SW8	SW9	SW10
11.	Magnesiu m (as Mg), mg/l, max.	30	100	10	14	408	301	10
12.	Manganes e (as Mn), mg/l, max.	0.1	0.3	<0.02	<0.02	<0.02	<0.02	<0.02
13.	Nitrate (as NO3), mg/l, max.	45	No Relaxation	3	4	1.6	2.6	3
14.	Phenolic compound s (as C6H5OH), mg/l, max.	0.001	0.002	<0.00 1	<0.001	<0.001	<0.001	<0.001
15.	Sulphate (as SO4), mg/l, max.	200	400	14	20	840	610	16
16.	Total alkalinity(as CaCO3), mg/l	200	600	40	52	188	172	42
17.	Total hardness(as CaCO3), mg/l, max	200	600	72	96	2100	1460	74
18.	Zinc (as Zn), mg/l, max.	5	15	0.06	0.16	0.11	0.14	0.06
19.	Cadmium (as Cd), mg/l, max.	0.003	No relaxation	<0.00 3	<0.003	<0.003	<0.003	<0.003
20.	Cyanide (as CN), mg/l, max.	0.05	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
21.	Lead (as Pb), mg/l, max.	0.01	No relaxation	<0.01	<0.01	<0.01	<0.01	<0.01
22.	Mercury, (as Hg), mg/l, max.	0.001	No relaxation	<0.00 1	<0.001	<0.001	<0.001	<0.001
23.	Nickel (as Ni), mg/l, max.	0.02	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
24.	Total arsenic (as As), mg/l, max.	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01
25.	Total chromium (as Cr), mg/l, Max.	0.05	No relaxation	<0.03	<0.03	<0.03	<0.03	<0.03
26.	Total Coliform bacteria,	-	-	>1600	>1600	>1600	>1600	>1600

91		Permissi	ble limits *					
No.	Parameter	Desirable limits	Permissibl e limits	SW6	SW7	SW8	SW9	SW10
	MPN/100 ml							
27.	Dissolved Oxygen,m g/l, minimum	-	-	6.5	6.2	5.7	5.6	6.4
28.	BOD, mg/l Max.	-	-	<2	2.5	<2	3.7	<2
29.	Electrical Conductivit y at 25° C, μmhos/cm, max			428	514	18630	13100	442
30.	Free ammonia (as N), mg/l, max			0.10	0.16	0.10	0.12	0.10

The surface water quality when compared with water quality criteria as per Central Pollution Control Board (CPCB) meets the criteria specified for Class B, C, D and E. It was observed that the water quality is good for irrigation purpose; outdoor bathing. It can also be used as drinking water source with conventional treatment followed by disinfection. Further, the analytical results are compared with the drinking water quality standards as specified in IS:10500.

The results indicate that the pH is recorded as 8.04, which is well within the range of 6.5 - 8.5 as specified in standard limit. The TDS value is 11778 mg/l which is more than the desirable limit. The Chloride is 6268 mg/l and sulphate is 840 mg/l and the parameters are higher than tolerance limits. The heavy metals content is observed below detectable limits. Dissolved Oxygen was observed as 5.6 to 6.4 and BOD was observed as 2.0 to 3.7 mg/l which indicate the surface water quality is in good quality.

Groundwater quality

Groundwater source

The main source of groundwater recharge in this region is south-west monsoon. A partial contribution for groundwater recharge comes from the north-east monsoon. In this area, ground water is withdrawn by means of tube wells/bore wells. In the absence of surface water sources, groundwater is used for drinking and irrigation purposes.

Water sampling locations

Water samples have been collected during Dec - Feb (2022 – 23) from locations, which are listed in Table 3.21.

Stn.No.	Location Name	Latitude	Longitude
GW1	Ezhudesam 1	08°16'02.28" N	77°08'35.98" E
GW2	Ezhudesam 2	08°15'54.53" N	77°09'40.85" E
GW3	Midalam	08°12'16.76" N	77°12'56.31" E
GW4	Alanji	08°11'51.90" N	77°13'58.48" E
GW5	Helen Nagar	08°12'53.02" N	77°11'51.34" E
GW6	Simon Colony	08°10'35.07" N	77°14'44.88" E
GW7	Paloor Vattakkottai	08°14'54.50" N	77°13'36.94" E
GW8	Rethapuram	08°11'44.45" N	77°15'04.46" E
GW9	Kollencode	08°17'03.38" N	77°07'31.94" E
GW10	Chemmanvillai	08°18'09.32" N	77°09'55.44" E

Table 3.20 Water sampling locations

Results and discussions

The analytical result of analysis of groundwater is given in Table 3.22. The results have been compared with the drinking water quality standards specified in IS: 10500 (2012). The results indicate that the pH ranges from 6.58 to 7.97 which is well within the specified standard limit of 6.5 to 8.5. Total hardness was recorded in the range of 66 to 405 mg/l, except GW2, GW5, GW9 and GW10, all other samples are above acceptable limit (200 mg/l) but are within the permissible limit (600 mg/l). The other general parameters are all within permissible limits. The results show that the ground water quality parameters analyzed meets the prescribed norms and the result values are found to be well within the acceptable limits except the above mentioned parameters.

ssur	According or NA52 D 10: The Generi IREL India Departmen Manavalak	al Ma Lim Lim t of A urich	ited Monic	NABL / 069. and Head	Recognized by A	ADEFRICE, BIS, APEDA, IGPEPC, Ten Boon	d kirilin		
SUE	D 10. The Generi IREL, India Departmen Manavalak	al Ma Lim Lof A urich	nager i ited Atomic	md Head	TEST REPO	Her Arlad American Street House Street			
Rep	D TO The Generi IREL India Departmen Manavalak	al Ma Lim t of A urich	mager a ited Atomic	må Head	TEST REPO				
Rep			i,Kanyı	Energy akumari Distrie	z.	RT			
Sample drawn by 1			ABCTI	/IREL/EIA/2	022/12/GW1-	GW2			
Sam	ple drawn by	1	ABCT	echno Labs In	dia Private Lin	nited			
Sam	pling method	1	15:30	25 Part 1 - 199	87 & IS: 1622 -	1981			
Project Name 2			N. 08°16'02.28° E - 77'00'35.98°. GW2 - Ezhidesam Sample 2, 30 m fram Nedumpuram Sree Muthumariamman Temple. N- 08°15'54.53" E - 77'09'40.85" Mining of Atomic Minerals at Keeshmidalam -A, Midalam -B, Enayamputhenthurai, Ezhidesam -A,&&C						
Date of sampling			and Kullencode A &B Villages of Killiynor Taluk in Kanniyakumari district, Tumil Nadu 12-12-2022						
Date	Date of Receipt :			2022					
Date	of Analysis	14	13-12-	2022					
Rep	ort date		28-12-	2022		Page 1 of 2			
	1	1 COLOR		10 ⁰⁰⁰	ulto	1	Acceptable		
S. No.	Parameter		Unit	GW1	GW2	Test procedure	limit as per 15 10500 - 2012		
1	Colour	_	Haven	21	(C1	15 3025(part 4)1983(RA 2017)	5		
2	Ddour		- smarters	No Odour	ALC: PLAN	The second bar of the same function of the second second			
	Odour			Observed.	Observed	IS 3025(part 8)1984(RA 2017)	Agreeable		
3	Turbidity		NTU	Observed BDL(<0.5)	Observed BDL(<0.5)	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaf: 2017)	Agreeable 1		
3	Turbidity pH at 25 °C		NTU	Observed BDL(<0.5) 7.31	Observed BDL(<0.5) 6.58	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017)	Agreeable 1 6.5-8.5		
3 4 5	Turbidity pH at 25 °C Conductivity at 25 °C		NTU 	Observed BDL(<0.5) 7.31 1118	0buerved BDL(<0.5) 6.58 840	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017)	Agreeable 1 6.5-8:5 Not Specified		
3 4 5 6	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid	S I	NTU - µS/cm ma/l	Observed BDL(<0.5) 7.31 1118 633	No Occur Observed BDL(<0.5)	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017)	Agreeable 1 6.5-8.5 Not Specified 500		
3 4 5 6 7	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended solid	Es da	NTU - µS/cm mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2	No 00001 Obterved BDL(<0.5) 6.58 840 482 <2	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017)	Agreeable 1 6.5-8:5 Not Specified 500 Not Specified		
3 4 5 6 7 8	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO.	is du	NTU - µS/cm mg/l mg/l mg/l	Observed 8DL(<0.5) 7.31 1118 633 <2 353	No Odaur Observed BDL(<0.5) 6.58 840 482 <2 92	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019)	Agreeable 1 6.5-8.5 Not Specified 500 Not Specified 200		
3 4 5 6 7 8 9	Turbidity pH at 25 °C Coaductivity at 25 °C Total dissolved solid Total Suspended solid Total Alkalinity as CaCO ₃ Total Hardness as Ca	is ds sCOy	NTU 	Observed BDL(<0.5) 7.31 1118 633 <2 353 405	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019) IS: 3025 Part 21-2009	Agreeable 1 6,5-8:5 Not Specified 500 Not Specified 200 200		
3 4 5 7 8 9 10	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended solid Total Alkalinity as CaCO ₃ Total Hardness as Ca Calcium as Ca	is ds sCOy	NTU 	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019) IS: 3025 Part 21-2009 IS: 3025 Part 40-1991(Reaff: 2019)	Agreeable 1 6.5-8.5 Not Specified 500 Not Specified 200 200 75		
3 4 5 7 8 9 10 11	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO ₂ Total Hardness as Ca Calcium as Ca Magnesium as Mg	is du iCOy	NTU mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27	No 60001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 21 7	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14-1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS:3025 Part 23-1986(Reaff: 2019) IS:3025 Part 21-2009 IS:3025 Part 40-1991(Reaff: 2019) APHA 23 ^{ad} EDN -3500 Mg B	Agreeable 1 6,5-8.5 Not Specified 500 Not Specified 200 200 200 75 30		
3 4 5 6 7 8 9 10 11 12	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO ₂ Total Hardness as Ca Calcium as Ca Magnesium as Mg Chloride as Cl	is ds sCOy	NTU 	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27 107	No 60001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 7 209	IS 3025 (part 8) 1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14- 1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019) IS: 3025 Part 21-2009 IS: 3025 Part 40-1991(Reaff: 2019) APHA 23 ^{eff} EDN -3500 Mg B IS:3025 Part 32-1988(Reaff: 2019)	Agreeable 1 6,5-8:5 Not Specified 500 Not Specified 200 200 75 30 250		
3 4 5 7 8 9 10 11 12 13	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO ₃ Total Hardness as Ca Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄	is ds sCO ₂	NTU - µS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27 107 60	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 7 209 15	IS 3025 (part 8) 1984 (RA 2017) IS:3025 Part 10-1984 (Reaff: 2017) IS:3025 Part 11-1983 (Reaff: 2017) IS:3025 Part 14- 1984 (Reaff: 2017) IS:3025 Part 16-1984 (Reaff: 2017) IS:3025 Part 17-1984 (Reaff: 2017) IS: 3025 Part 23-1986 (Reaff: 2019) IS: 3025 Part 21-2009 IS: 3025 Part 40-1991 (Reaff: 2019) APHA 23 ^{art} EDN -3500 Mg B IS:3025 Part 32-1988 (Reaff: 2019) APHA 23 ^{art} EDN -4500-S0 (Reaff: 2019)	Agreeable 1 6,5-8:5 Not Specified 500 Not Specified 200 200 75 30 250 200		
3 4 5 6 7 8 9 10 11 12 13 14	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO Total Hardness as Ca Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrato as NO ₃	is da aCO ₂	NTU - mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27 107 60 11	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 7 209 15 7	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14- 1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019) IS: 3025 Part 21-2009 IS: 3025 Part 21-2009 IS: 3025 Part 40-1991(Reaff: 2019) APHA 23 ^{att} EDN -3500 Mg B IS:3025 Part 32-1988(Reaff: 2019) APHA 23 ^{att} EDN -4500-S0 ₄ ° E APHA 23 ^{att} EDN -4500-S0 ₄ ° E	Agreeable 1 6,5-8:5 Not Specified 200 200 200 75 30 250 200 45		
3 4 5 6 7 8 9 10 11 12 13 14 15	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO Total Hardness as Ca Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrate as NO ₃ Iron as Fe	is da	NTU - mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27 107 60 11 BDL(<0.05)	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 7 209 15 7 8DL(<0.05)	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14- 1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS: 3025 Part 23-1986(Reaff: 2019) IS: 3025 Part 21-2009 IS: 3025 Part 40-1991(Reaff: 2019) APHA 23 ^{ad} EDN -3500 Mg B IS:3025 Part 32-1988(Reaff: 2019) APHA 23 ^{ad} EDN -4500-S04 ^a E APHA 23 ^{ad} EDN -4500-N04 ^a B IS:3025(part 53)1987(Reaff: 2019)	Agreeable 1 6,5-8:5 Not Specified 200 200 200 75 30 250 200 45 1		
3 4 5 6 7 8 9 10 11 12 13 14 15 16	Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solid Total Suspended soli Total Alkalinity as CaCO Total Hardness as Ca Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrate as NO ₃ Iron as Fe Manganese as Mn	is ds sCO ₂	NTU - µS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Observed BDL(<0.5) 7.31 1118 633 <2 353 405 118 27 107 60 11 BDL(<0.05) BDL(<0.01)	No 00001 Observed BDL(<0.5) 6.58 840 482 <2 92 82 21 7 209 15 7 8DL(<0.05) BDL(<0.05)	IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 14- 1984 (Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS:3025 Part 23-1986(Reaff: 2019) IS:3025 Part 21-2009 IS:3025 Part 21-2009 IS:3025 Part 40-1991(Reaff: 2019) APHA 23 ^{ad} EDN -3500 Mg B IS:3025 Part 32-1988(Reaff: 2019) APHA 23 ^{ad} EDN -4500-S04° E APHA 23 ^{ad} EDN -4500-N04 B IS:3025(part 53)1987(Reaff: 2019) APHA 23 ^{ad} EDN -3111 B	Agreeable 1 6.5-8.5 Not Specified 200 200 200 75 30 250 200 45 1 0.10		

The loss function of the property is the formal statement, • The best reproduced in further part entroubles wellaging operand within a first wellaging operand wellaging operand within a first wellaging operand within a first wellaging operand within a first wellaging operand wellaging op

ABC

ABO	Techno Labs*	ABC To ABC TOW Philip Entering	echno Lab ER 4400, 13th Stree Ambattur, Chennie 91-44-2525 7788/9 tab@abctechnolab.	s India Pr t, SIDCO Industria - 600 098, Tamih 9, +91 94442 600 com / Web: www.	rivate Limited Estate - North Phase, adu, UNDIA. 100 / 95603 87777 abstechnolab.com	() () () () () () () () () () () () () (
	(An 164	D : 9307, 44	14001,150 -4	001 & ISO - 22	000 CemPed Computer				
	Accredited by NABL vide	TC-5770, N	ABET / QCI. Recog	hised by MaRESO	C. BISCAPEDA: KOPERC, THO BOD	a lindio			
UED 1	 The General I IREI, India I, Department o Manavalakuri 	Manuger and imited f Atomic En ichi,Kanyaki	Head 1135 engy mari District.	T REPORT					
Rep	ort no	10	ABCTL/IREL/EL	A/2022/12/GV	W1-GW2				
Sam	ple description		Ground Water - G N- 08*16 02.28* E GW2 - Ezhudesan Temple, N- 08*15	W1- Ezhudesam - 77°68'35.98', 1 Sample 2, 30 m 54.53'' E- 77°09'	Sample 1, 50 m from 5t Judes Col from Nedumpurant Sree Mathur 40,85°	lege, nartamman			
Date	of report	1	28-12-2022 Page 2 of 2						
	1.1					<u> </u>			
S. No.	Parameter	Unit	GW1	ulti GW2	Test procedure	Acceptable limit as per IS 10500 ; 2012			
18	Sodium as Na	mg/I	70	152	IS: 3025 Part 45-1993 (Reaff:2019)	Not Specified			
19	Potassium a≤ K	ing/l	2.2	3	IS: 3025 Part 45-1993 (Reaff:2019)	Not Specified			
20	Barium as Ba	mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23rt EDN -3111 D	0.7			
21	Residual Free Chlori	ne mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23 ^{at} EDN -4500-Cl B	0:20			
22	Aluminium as Al	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23 rd EDN 3500 AI B	0.03			
23	Cadmium as Cd	mg/1	BDL(<0.003)	BDL(<0.003)	APHA 23 ^{of} EDN -3111 B	0.003			
24	Lead as Pb	mg/1	BDL(<0.01)	BDL(<0.01)	APHA 23 ⁿ⁾ EDN -3113 B	0.01			
25	Copper as Cu	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23 nd EDN -3111 B	0.05			
26	Zinc as Zo	mg/1	80.0	0.05	APHA 23 rd EDN -3111 B	5.00			
27	Total Chromium as C	r mg/l	BDL(<0,03)	BDL(<0.03)	APHA 23 ^{nt} EDN -3111 B	0,05			
28	Arsenic as As	mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 ^M EDN -3113 B	0.01			
29	Cyanide as CN	mg/1	BDL(<0.02)	BDL(<0.02)	APHA 23 th EDN -4500-1.N E	0.03			
30	Selenium as Se	mg/l	BDL(<0.01)	BDL(<0.01)	APHA.23 th CDN+3113 B	0.01			
31	Mercury as Hg	mg/1	HDL(<0.001)	BDL(<0.001)	15 APRA 2.09 EDN -3112 B	0.001			
32	Anionic Surfactants a MBAS	ns mg/l	BDL(<0.025)	HDL(<0.025)	APHA 23** EDN 5540 C	0.20			
33	Phenolic Compounds as Phenol	mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23 ^{ar} EDN 5530 B,C	0.001			
34	Pesticides	mg/l	Absent	Absent	APHA 23 ^{-#} EDN -6630 B, C	Absent			
35	Total Coliforms	MPN/ 100m	<2	<2	IS-1622-1981 (Reaff-2019)	Absent /100ml			
36	E.coli	MPN/ 100m	<2	<2	15-1622-1981 (Reaff-2019)	Absent/100ml			

....End of report....

A. Robson Chinnadural Technical Manager

Authorised Signatory

Verified by

9- Talilar

S.Dharani

Quality Manager

Page | 188

ABC ABC ABC ABC A

Ā	BC Techno Labs*	A	BC ABC 1 P Er	Techno rower #400, 13 Ambattur, h : #91-44-2625 mall lab@ubcoo	Labs Ind th Street, SIDCO I Chennal - 600 098 7788 / 90, 191 94 chnolab.com / We	in Private Limited ndustrial Estate - North Phase, 1, Tamilisadu, 1901A. 1442 60000 / 95661 87777 b: www.abctechnolat.com	FC - 5770				
	- Min	he	9931	1920 14001,1	50 : 4500) ± 1	O : 22000 Carified Company	- 11 -				
	Accordited by NABL V	ide T	0.557770	NABET /\QCI	Recognized by	MoEF&CC, IIIS: AFEDA, IOPENC, Ten Baor	d India				
ssu	ED TO: The Genery IREL India Departmen Manavatak	al M Lin t of J urici	anager i tited Atomic hi,Kany	and Head Energy akumari Distri	TEST REPO	DRT					
Re	portnumber	Ŧ1	ABCTL	/IREL/EIA/2	022/12/GW3-	GW4					
Sample drawn by : ABC Techno Labs India Private Limited											
Sa	mpling method	1	15: 3025 Part 1 - 1987 & 15: 1622 - 1981								
Sample description Ground Water-GW3- Midalam Sample, Karungal Midalam Road, 115 m from Govt.Righ School Udayamarthandam N- 06°12'16.76° E- 77°12'56.31°, GW4 – Alanji Sample 30 m from St, Francis Xavier Church-N- 08°11'51.90° E- 77°13'58.48°							n Govt.High Sample 30 m				
Project Name : Mining of Atomic Mineralu at Keeshinidalam -A. Midalam -R. Enayamputhenthura, Eshudesam -A.B & C and Kallencode A &B Villages of Killiyour Taluk in Kanntyakumari district, Tamil Nadu							idesam -A.8 & ⊂				
Date of sampling : 12-12-2022											
Da	te of Receipt	÷.	13-12-2	2022							
Dp	te of Analysis	\$	13-12-2	1022							
Re	port date	÷	28-12-2	2022		Page 1 of 2					
S. No	Parameter		Unit	Re GW3	sults GW4	Test procedure	Acceptable limit as per				
i.	Colour	-	Hazen	21	<1	(\$ 3025(part 4)1983/RA 2017)	5				
2	Odour			No Odour	No Odour	1S 3025(part 8)1984(RA 2017)	Agreeable				
3	Turbidity		NTU	0.6	BDL(<0.5)	1S:3025 Part 10-1984(Reaff: 2017)	1				
4	pH at 25 "C		1000	7.88	7.18	1S :3025 Part 11-1983(Reaff: 2017)	6.5-8.5				
5	Conductivity at 25 °C		µ5/cm	1085	1290	(S:3025 Part 14- 1984 (Reaff:2017)	Not Specified				
6	Total dissolved solids		mg/l	619	705	IS:3025 Part 16-1984(Reaff: 2017)	500				
7	Total Suspended solid	41	mg/I	<2	~2	IS:3025 Part 17-1984(Reaff: 2017)	Not Specified				
8	Total Alkalinity as CaCO ₄		mg /1	162	141	IS: 3025 Part 23-1986(Reaff: 2019)	200				
9	Total Hardness as Cat	01	mg/î	307	252	IS: 3025 Part 21-2009	200				
10	Calcium as Ca		m <u>g</u> /1	105	-6S	15 : 3025 Part 40-1991 (Reaff: 2019)	75 2				
11	Magnesium as Mg		mg/l	28	21	APHA 23# EDN -3500 Mg B	30				
12	Chloride as Cl		mg/l	158	316	IS:3025 Part 32-1988(Reaff: 2019)	250				
	Sulphate as SO ₆		mg/l	115	33	APHA 23 rd EDN -4500-SO ₄ ^g E	200				
13	THE REAL AND AND AND A REAL PROPERTY OF A REAL PROP		mg/l	6	2	APHA 23 rd EDN -4500- NO ₂ B	45				
13 14	Nitrate as NO ₁		the second se		HARDING WARK T	15 3025/nart 5311987/Reaff-2010)	31				
13 14 15	Nitrate as NO1 Iron ai Fe		mg/l	0.06	800 (<0.02)	15 Spead built political (incum. avia)					
13 14 15 16	Nitrate as NO ₁ Iron as Fe Manganese as Mn	_	mg/l mg/l	0.06 BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3111 8	0.10				

S. Januar S.Dharani Quality Manager

Authorised Signatory

OX.

A. Robson Chinnadurat

Technical Manager

Verified by

Takens and survival to the loss of the los

ABC ABC ABC ABC

_	the SD is	whit 150	10001 150	5001 J. 150 7	2000 Comilied Company	
		AVAL COM				usu ta dise
,	Accredited by NABL vide (C-	977102/NI	VSB1/ Valut, Kocoj	grilled by Moth	SUC; IRS, AFEDA, IOPEFC, 109 DBC	
90 T	O: The General Man IREL India Limits Department of At Manavalakurichi,	iger and sd unic Ens Kanyaku	Head TB rgy mari District.	ST REPORT		
lop	ortido	181	ABCTL/IREL/E	TA/2022/12/0	5W3-GW4	
am	ple description	10	Ground Water- Govt.High Schoo GW4 – Alanji Sa 77"13'58.48"	GW3- Midalam ol Udayamartha mple 30 m fron	Sample, Karungal Midalam Roac ndam: N- 08°12'16,76° E- 77°12 n St, Francis Xavier Church-N- 00	1,115 m from 156,31°, 8°11'51,90° E-
)ate	of report	1.11	28-12-2022			age 2 of 2
1	<u> </u>	1	pas	olta		Acceptable
5. Vα.	Parameter	Parameter Unit		GW4	Test procedure	limit as per IS 10500 : 2012
8	Sodium as Na	mg/l	108	170	IS: 3025 Part 45-1993 (Reaff:2019)	Not Specified
19	Potassium as K	mg/l	2.4	3	IS : 3025 Part 45 -1993 (Realf:2019)	Not Specified
20	Barium as Ba	mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23rd EDN -3111 D	0.7
21	Residual Free Chlorine	mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23rt EDN -4500-CLB	0.20
12	Aluminium as Al	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 237# EDN 3500 ALH	0.03
13	Cadmium as Ed	mg/1	BDL(<0.003)	BDL(<0.003)	APHA 23 ⁴ EDN -3111 B	0.003
4	Lead as Pb	mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23rd EDN -3113 B	0:01
5	Copper as Cu	mg/l	801(<0.03)	8DL(<0.03)	APHA 23 rd EDN -3111 B	0.05
17	Total Cheomium as Cr	mg/1	801.00031	801/~0.03)	APRA 23" EDN -3111 B	0.05
R	Arsenic as As	mall	801/<0.01)	BDL(<0.01)	APHA 225 EDN -3113 B	0.01
0	Examide as CN	mag/)	HUL(<0.02)	800(<0.01)	APHA 22M FON 4500 CN F	0.05
0	Selenium as Se	mp/1	BDL(<0.01)	BDL(<0.01)	APHA 23M EDN -3113 B	0.01
11	Mercury as Hg	mg/l	BDL(<0.001)	BDL(<0.001)	15 APHA 23rd EDN -3112 B	0.001
2	Anionic Surfactants as MBAS	mg/l	BDL(<0.025)	BOL(<0.025)	APHA 23 [™] EDN 5540 C	0.20
3	Phenolic Compounds as Phenol	mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23 ⁻⁴ EDN 5530 B.C	0.001
4	Pesticides	mg/l	Absent	Absent	APHA 23rd EDN -6630 8, C	Absent
5	Total Collforms	MPN/ 100ml	<2	4	IS-1622-1981 (Reaff -2019)	Absent /100ml
6	Ecoli	MPN/ 100ml	<2	<2	IS-1622-1981 (Reaff-2019)	Absent /100ml
BD	C. Adda V	1.10		End of repor	. AL	ol.

The net result of the second s

ABC

Provide Station provided		P EI	Ambattur, h : +91-44-2625 nail: lab@abcte	Chennal - 600 09 7768 / 99, +91 9 chnolab.com / W	8, Tamilisadu, INDIA. 4442 60000 / 95661 87777 eb: www.abctechnislab.com	7C - 5770
(Anii	10. V	561	150 14001.	150 -45001 4 i	SO - 32000 Certified Company)	
According by NABL NR	19 TE-	174	NAUET / QC	. Recognized by	MORF&CC, BIS, APEDA, ICPEPC, Teo Boo	ne innia
SUED TO: The General IREL India Department Manavalaku	Mana Limite of Atc richi, b	iger d imic (any	and Head Energy akumari Distr	TEST REPO	DRT)	
Report number	14	+	ABCTL/IRI	L/EIA/2022/	12/GW5-GW6	
Sample drawn by		121	ABC Techn	o Labs India Pr	rivate Limited	
Sampling method		÷E.	IS: 3025 Pa	rt1-1987 & 1	5: 1622 -1981	
Sample description		Ŧ	Ground Wa Enayam Hel GW6 – Sim Church, N- 0	en Nagar, GW5- H en Nagar, N- 08 on Colony San 8"10"35,07" E-	elen Nagar Sample 10 m from St. Fran *12'53.02" E- 77*11'51.34", nple, Kodimunai-Vaniyakudi Road 115 77*14'44.88"	ncis Xavier Churc i m from St. Jude
Project Name		Ŧ	Mining of Am	mic Minerals at K Kolimcode A & B	eeshmidalam - A, Midalam - B, Enayamputhen Villages of Killiyoor Taluk in Kanniyakamari i	fintrat, Ezbudesatu fintrict, Tamii Nadu
Date of sampling		æ.	12-12-2022			
Date of Receipt		1	13-12-2022			
Date of Analysis		Ŧ	13-12-2022			
Report date		Æ.	28-12-2022		Page 1 of 2	
				The second secon		
S. Parameter	Uni	1	GW5	GW6	Test procedure	Acceptable limit as per IS 10500 : 2012
1 Colour	Haze	m	<1	<1	15 3025(part 4)1983(RA 2017)	5
2 Odour	×		No Odour Observed	No Odour Observed	IS 3025(part 8)1984(RA 2017)	Agreeable
3 Turbidity	NTL	rt-	0.5	BDI.(<0.5)	(S:3025 Part 10-1984(Reaff: 2017)	1
4 pH at 25 °C	1		7.46	6.97	15:3025 Part 11-1983(Reaff: 2017)	6.5-8.5
5 Conductivity at 25 °C	uS/cr	n	315	1440	15:3025 Part 14- 1984 (Reaff:2017)	Not Specified
6 Total dissolved solids	mg	i	166	844	15:3025 Part 16-1984(Reaff: 2017)	500
7 Total Suspended	mg/	P	<2	<2	IS :3025 Part 17-1984(Realf: 2017)	Not Specified
8 Total Alkalinity as CaCO ₂	mg/	1	109	151	IS: 3025 Part 23-1986(Reaff: 2019)	200
9 Total Hardness as	mg/	τ	79.5	310	15 : 3025 Part 21-2009	200
10 Calcium as Ca	mg/	1	20	78	1S:3025 Part 40-1991(Reaff: 2019)	75
11 Magnesium as Mg	mg/	1	7	28	APHA 23rt EDN -3500 Mg B	30
12 Chloride as Cl	mg/	1	21	342	15:3025 Part 32-1988(Reaff: 2019)	250
13 Sulphate as SO ₄	mg/	U	10	88	APHA 23 ^m EDN -4500-SO4 ² E	200
4 Nitrate as NO ₃	mg/	1	1	4	APHA 23 rd EDN -4500- NO ₂ - B	45
15 Iron as Fe	mat/	1 1	BDL(<0.05)	0.05	1\$3025(part 53)1987(Reaff: 2019)	1
16 Manganese as Mn	mg/	1 1	BDL(<0.01)	BDL(<0.01)	APHA 23 th EDN -3111 B	0.10
	in all	1	0.18	0.37	APEIA 2315 EDN -4500-F B&D	1.00

Wrified by

Terms and cardillions : •The test insults middle only to the fit from the date of follow offset reports reportering to the index for y to say deather the test insults of the index for y to say The long apport shaft and have gradient of a fail or part without this section approach directly. The test is index sections and is the case of "environed as samples fail forms with a matter fail of the data data of data is a popular brind of proven with the part part and an annual formation fail of the vestical annual to matter any part of the data of the provent with the part part and the matter failed and the vestical annual to the fail of the data of the provent with the part part of the data of the part of the test of the part of the part part of the part of the part of the data of the part of the test of the test of the test of the part of the part part of the test of the part of the test of the part of the test of test of the test of te other Non-Park exports billing of nue d'anne o' in perregalater d'+ The test reports here the b

00,000

87

2

Authorised Signatory

ABC ABC

The General Man IREL India Limi Department of A Manavalakurich)	uger and ted tomic Er Kanyako	I Head	ST REPORT	2000 Contract Company) 50C, 885, AFEDA, IOREPC, Ted Bol	ind India
The General Man IREL India Limit Department of A Manavalakurichi	uger and ted tomic Er Kanyako	I Head	ST REPORT	SCC: BIS, AFEDA, KOFEFC, Teo Bo	and India
The General Mar IREL India Limit Department of A Manavalakurichi	nger and ted tomic Er Kanyako	l Head	ST REPORT		
na	÷.	ABCTL/IREL/	EIA/2022/12/0	OWS-GW6	
description	10	Ground Water, Church Enayan GW6 – Simon Judes Church, M	GW5- Helen Na n Helen Nagar, N Colony Sample, 4- 08"10'35.07"	agar Sample 10 m from St, Franc - 08°12'53.02" E- 77°11'51.34", Kodimunai-Vaniyakudi Road 11: E- 77°14'44.08"	is Xavier 5 m from St.
report	1.1.1	28-12-2022		Page 2	of 2
Parameter	Unit	Ret GWS	ults GW6	Test procedure	Acceptable limit as per
dium as Na	mg/l	30	202	15 : 3025 Part 45-1993 (Reaff 2019)	Not Specified
stassium as K	mg/l	2.1	4,2	15 - 3025 Part 45 - 1993 (Reaff: 2019)	Not Specified
arium as Ba	mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23 rd EDN -3111 D	0.7
esidual Free Chlorine	mg/1	BDL(<0.1)	BDL(<0.1)	APHA 23rd EDN -4500-CI B	0.20
luminium as Al	mg/1	BDL(<0.03)	801.(<0.03)	APHA 23 rd EDN 3500 AI 8	0.03
admium as Cd	mg/1	BDL(<0.003)	BDL(<0.003)	APHA 23# EDN -3111 8	0.003
rad as Pb	mg/l	BDL(<0.01)	HDL(<0.01)	APHA 23rd EDN -3113 8	0.01
opper as Cu	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23rd EDN -3111 B	0.05
inc as Zn	mg/l	0.02	0.10	APHA 23th EDN +3111 B	5.00
runtie av Av	mg/1	800(<0.03)	804(<0.03)	ABHA 234 EDN -3113 B	0.01
vanide as CN	mg/1	BDL(<0.02)	BDL(<0.02)	APHA 23# EDN -4500-CN E	0.05
slenium as Se	mg/l	BD((<0.01)	801(<0.01)	APHA 230 FDN -3113 R	0.01
fercury as He	min/l	BDL(<0.001)	BDL(<0.001)	IS APHA 23* FDN -3112 B	0.001
nionic Surfactants as BAS	mg/l	BDL(<0.025)	BDL(<0.025)	APHA 23m EDN 5540 C	0.20
henolic Compounds as henol	mg/l	804.(<0.001)	HDL(<0.001)	APHA 23# EDN 5530 B.C	0.001
esticides	mg/l	Absent	Absent	APHA 23 rd EDN -6630 B, C	Absent
and Pallingers a	MPN/	<2	<2	IS-1622-1981 (Reaff -2019)	Absent /100ml
Jua Comortas	100ml MPM/	EAC	2/3	ARCHINGS MERRY DISENSIONS	tion whore all
	Parameter Parameter dlum as Na dassium as Na dassium as K arium as Ba esidual Free Chlorine tuminium as Al admium as Cd nad as Pb opper as Cu nc as Zn otal Chromium as Cr rsenic as As canide as CN denium as Se ercury as Hg nionic Surfactants as BAS tenolic Compounds as tenol	report : Parameter Unit dlum as Na mg/l stassium as K mg/l arium as Ba mg/l esidual Pree Chlorine mg/l tuminium as Al mg/l admium as Cd mg/l admium as Cd mg/l not as Zn mg/l not as Zn mg/l otal Chromium as Cr mg/l resente as As mg/l endia as Se mg/l endia as Se mg/l endia as E mg/l mg/l bilenium as Se mg/l enolic Compounds as penolic Compounds as penolic Compounds as penolic Surfactants as mg/l	Parameter Unit Church Enayan Parameter Unit Res Parameter Unit GWS dlum as Na mg/l 30 stassium as K mg/l 2.1 arium as Ba mg/l BDL(<0.1)	Church Enayam Helen Nagar, N GW6 - Simon Colony Sample, Judes Church, N- 00°10°35.07° report 28-12-2022 Parameter Unit GW5 GW6 dlum as Na mg/l 30 stassium as K mg/l 2.3 stassium as K mg/l 2.4 4.2 arium as Ba mg/l BDL(<0.1)	Church Raayam Helen Nagar, N-08*12'53.02" E-77*11'51.34*, GW6 - Simon Colony Sample, Kodimunai-Vaniyakudi Road 11: Judes Church, N-08*10'35.07" E-77*14'44.88" report i Z8-12-2022 Page 2 Parameter Unit GW5 GW6 Test procedure offum as Na mg/1 30 202 IS : 3025 Part 45-1993 (Reaff:2019) Stassium as Na stassium as K mg/1 2.1 4.2 IS : 3025 Part 45-1993 (Reaff:2019) arium as Ba mg/1 BDL(<0.1)

Ă	BC Techno Labs	АВ (АВ	C HOWER #400, 1 Ambattur Ph : +91-44-262 Email: lab@abct	 L-abs The Lith Street, SIDCC 7, Chennal - 600 0 5 7788 / 99, +91 Schnolab.com / V 	Cha Privale Lamiled Dindustrial Estate - North Phase, 98, Tamihadu, INDIA, 98442 60000 / 95661 87777 Veb: www.abctechnolab.com	YC - 1770				
	160	60 - 90	11,150, 14901	.4500) &	ISO - 22009 Camified Company					
	Accredited by NABL	vid 10-81	70 NABET / GO	I. Recountsed b	Y MOEFBECC, BIS, APEDA, IOPEPC, Teo Bo	dre India				
5509	D TO: The Gener IREL Indi Departmer Manavala	al Manag a Limited at of Aton curichi,Ka	er und Head tie Energy nyakumari Dist	TEST REP	ORT					
Ren	ort Number	ABC	L/IREL/EIA/2	022/12/GW7-	GW9					
Sam	ple drawn by	ABC	Techno Labs In	dia Private Lim	ited					
Sam	pling method	15-30	025 Part 1 - 19	87 & 15: 1622 -1	1981					
Sam	ple description	 Ground Water -GW7-Paloor Vattakkottai, 15 m from Paloor Vattakkottai Bus Stand N- 08"14'54.50" E- 77"13"36.94" GW8-Rethapuram Sample, Municipality Office Rethapuram Karungal Road,N- 06"11'44.45" E- 77"15'04.46" 								
Pro	ect Name	: Minii Ezhu distr	ng of Atomic Mi desam -A.B & (ict, Tamil Nadu	inerals at Keezh I and Kollencod	imidalam – A. Midalam – B. Enayamputl le A &B Villages of Killiyoor Taluk in Ka	ienthucaí, unityakumari				
Date	of sampling	12-1	2-2022							
Data	or Receipt	: 13-1	2-2022							
Date	of Analysis	: 13-1	2-2022			Dame Lof 2				
veb	on date	28-1	1-6U44			rage i tot is				
0			Res	aults		Acceptable				
No.	Parameter	Unit	GW7	GWB	Test procedure	limit as per IS 10500 : 2012				
1	Colour	Hazen	1	<1	15 3025(part 4)1983(RA 2017)	5				
2	Odour	(2)	No Odour Observed	No Odour Observed	IS 3025(part 8)1984(RA 2017)	Agreeable				
3	Turbidity	NTU	BDL(<0.01)	BDL(<0.01)	IS:3025 Part 10-1984(Reaff: 2017)	1				
4	pH at 25 °C		7.97	7,69	15:3025 Part 11-1983(Reaff: 2017)	6,5-8.5				
5	Conductivity at 25 °C	µS/cm	1026	1190	IS:3025 Part 14- 1984 (Reaff:2017)	Not Specified				
6	Total dissolved solids	mg/l	594	672	IS:3025 Part 16-1984(Reaff: 2017)	500				
7	Total Suspended solids	mg/l	<2	<2	IS:3025 Part 17-1984(Reaff: 2017)	Not Specified				
8	Total Alkalinity as CaCO	mg/l	162	172	IS: 3025 Part 23-1986(Reaff: 2019)	200				
9	Total Hardness as CaCO ₁	mg/l	350	380	IS : 3025 Part 21-2009	200				
10	Calcium as Ca	mg/l	83	90	IS:3025 Part 40-1991 (Reaff: 2019)	75				
11	Magnesium as Mg	mg/l	35	37.6	APHA 23th EDN -3500 Mg B	30				
12	Chloride as Cl	mg/l	158	195	15:3025 Part 32-1988(Reaff: 2019)	250				
13	Sulphate as SO ₄	mg/I	129	124	APHA 23rd EDN -4500-SO4# E	200				
14	Nitrate as NO ₃	mg/1	-11	7	APHA 23rd EDN -4500- NO ₇ B	45				
15	Iron as Fe	mg/l	BDL(<0.05)	BDL(<0.05)	IS 3025(part 53)1987(Reaff: 2019)	1				
16	Manganese as Mn	mg/1	BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3111 B	0,10				
17	Fluoride as F	mg/l	0.12	0.22	APHA 23rd EDN -4500-F B&D	1.00				
	S.Dharani Quality Manager	Contact of the second	ENNAN PVI		J - D A A. Rob Tech	Contd son Chinnadurai mical Manager				

nager and ted tomic Er	ABET / OCI, Fact	united in Motto	LCC, EIS, APEDA, IOPEPC, Teo'Boo	nd India
nager and ted tomic Er "Kanyako	Hend TE	ST REPORT	C.C. 515, APEDA, ICHERC, 168 600	10 mais
nager and ted tomic Er "Kanyalo	Head TE	ST REPORT	i	
14019-1040	ergy .mari District.			
1	ABCTL/IREL/	EIA/2022/12/0	GW7-GW8	
Ē	Ground Water Stand N- 08*14/54.50 GW8-Rethapun 08*11'44.45* E	-GW7-Paloor Va " E- 77*13'36.94 am Sample, Mur - 77*15'04.46*	ttakkottai, 15 m from Paloor Va t ^e sicipality Office Rothapuram Kar	ttakkottai Bus ungal Road,N-
18	28-12-2022			age 2 of 2
Unit	Res GW7	ults GW8	Test procedure	Acceptable limit as per as 10500 - 2012
mg/l	90	108	IS : 3025 Part 45-1993 (Reaff:2019)	Not Specified
mg/1	1.7	2.6	IS : 3025 Part 45 -1993 (Reaff:2019)	Not Specified
mg/l	BDL(<0.1)	BDL(<0.1)	APHA 234 EDN -3111 D	0,7
mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23 ⁴⁴ EDN -4500-Cl B	0.20
mg/l	BDL(<0.03)	BDL.(<0.03)	APHA 23 ^{~/} EDN 3500 AI B	0.03
mg/l	BDL(<0.003)	BDL(<0.003)	APHA 23 th EDN -3111 B	0.003
mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN +3113 B	0:01
mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23 ^{nl} EDN -3111 B	0.05
mg/l	0.03	0.05	APHA 23 rd EDN -3111 B	5.00
mg/l	BDL(<0.03)	HDL(<0.03)	APHA 23 ³⁴ EDN -3111 B	0.05
mg/1	HDL(<0.01)	BDL(<0.01)	APHA 23 th EDN -3113 B	0.01
mg/)	BDL(<0.02)	BDL(<0.02)	APRA23º EDN -4500-CN E	0.05
mg/)	BDL(<0.01)	BDF(<0.01)	APHA 23 ^m EDN (3113 B	10.0
mg/l	BDL(<0.001) HDL(<0.025)	BDL(<0.001) BDL(<0.025)	APHA 23* EDN 5540 C	0.001
mg/1	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN 5530 B/C	0.001
mg/l	Absent	Absent	APHA 231 EDN -6630 B, C	Absent
MPN/	<2	<2	IS-1622-1981 (Reaff -2019)	Absent /100ml
100ml				
	: : : : Unit mg/I	: ABCTL/IREL// : Ground Water Stand N- 08*14/54.50 GW8-Rethapur 08*11/44.45* E : 28-12-2022 mg/1 90 mg/1 90 mg/1 8DL(<0.1) mg/1 8DL(<0.1) mg/1 8DL(<0.03) mg/1 8DL(<0.04) mg/1 8DL(<0.04) mg/1 8DL(<0.05) mg/1 8DL(<	: ABCTL/IREL/EIA/2022/12/6 : Ground Water -GW7-Paloor Va Stand N- 08°14'34.50° E- 77°15'04.46° GW8-Rethapuram Sample, Mur 08°11'44.45° E- 77°15'04.46° : 28-12-2022 Unit GW7 GW7 GW8 mg/1 90 mg/1 90 mg/1 1.7 2.6 mg/1 mg/1 BDL(<0.1)	i: ABCTL/IREL/EIA/2022/12/GW7-GW8 i: Ground Water -GW7-Paloor Vattakkottai, 15 m from Paloor Va Stand N + 08°14'34.50° E - 77°13'36.94° GW8-Rethapuram Sample, Municipality Office Rethapuram Kar 08°11'44.45° E - 77°15'04.46° i: 28-12-2022 Imit Results Unit GW7 GW7 GW8 Img/1 90 108 IS : 3025 Part 45-1993 (Reaff:2019) mg/1 90 mg/1 90 117 2.6 S : 3025 Part 45-1993 (Reaff:2019) mg/1 1.7 2.6 IS : 3025 Part 45-1993 (Reaff:2019) mg/1 BDL(<0.1)

Therms and conditions 1 a Data back such as a provided to the probability of the second state of the reproduced of his or part softward the writer approve of ACC11. • The such area will be reproduced to the or Table from the Accord accord to the probability of the reproduced of the or produced of the or part softward the writer approve of ACC11. • The such area will be reproduced for the or Table from the Accord accord to the produced from the probability of the state of the trade are produced for the or the memory of the trade and the to the second to the test of the test of the test reproduced of the produced of the test of test of the test of the test of test of the test of test of the test of t

ABC ABC

Ā	BC Techno Labs*	ABC	Ambattur, Ph:+91-44-2625 Email: lab@abce	L.BDS 1000 Hh Street, 5000 Chennal - 600 09 7798 / 92, +91 5 chenolob.com / W	Ind. FFIVALE LAITHLEO Industrial Estate - North Phane, 9, Tamiliadue, INDIA. 4443 60000 / #5661 87777 eb: www.abctechnolab.com	10-1070	
	IAN I	20 = 900	1, 190 :: 14001;	150 H5001 A1	ISD 22000 Certified Company)		
	According by NABL VI	de TC-57	10 NAUET / GC	Recognised by	MOEFRCIC, BIS AFEOA, ICREPC, Teo Boo	rd Indis	
ssui	D TO The General IREL India Department Manavalaku	l Manage Limited of Atom richi,Ka	r and Head le Energy nyakumari Distr	TEST REPO	TRC		
Ren	net number	ABCI	1./IBEL/ELA/20	22/12/GW9-0	3W10		
Sam	iple drawn by	ABC	Fechno Labs Inc	lia Private Limi	ited		
San	pling method	15:30	25 Part 1 - 198	7 & IS: 1622 -1	981		
Sample description : Ground Water -GW9-Kollencode Sample, 300m from St. George Shrine, Parha Uchakkada Kanyakumari West Coast Road, N- 08°17'03.38° E- 77°07'31.94° GW10- Chemmanvillai Sample, 70 m from St. Judes Polytechnic College, Chemmanvillai, Arudesam, N- 08°16'09.32° E- 77°09'55.44°							
Explodes an -A, B & C and Kollencode A &B Villages of Killiyoor Taluk in Kanniyakumari district, Tantil Nadu							
Date	e of sampling	: 12-13	2-2022				
	e of Receipt	: 13-13	2-2022				
Dat	18.13. fold, A.M. Berger, Vol. 47, march 19.						
Date	e of Analysis	13-12	8-2022				
Dati Dati Top	e of Analysis ort date	13-12 28-12	2-2022 2-2022		Page 1 of 2		
Dati Dati Rep S, No	e of Analysis ort date Parameter	: 13-12 : 28-13 Unit	2-2022 2-2022 Res GW9	alta GW10	Page 1 of 2 Test procedure	Acceptable limit as per 15 10500 2012	
Dati Dati Top S, (o	e of Analysis ort date Parameter Golour	: 13-12 : 28-13 Unit Hazen	2-2022 2-2022 GW9 <1	ulta GW10 <1	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017)	Acceptable limit as per 15 10500 i 2012 5	
Dati Dati Top S, To 1 2	e of Analysis ort date Parameter Colour Odour	: 13-12 : 28-13 Onit Hazen	2-2022 2-2022 GW9 <1 No Odour Observed	ulta GW10 <1 No Odeur Observed	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017)	Acceptable limit as per is 10500 i 2012 S Agrecable	
Jati Jati Top S, (a 1 2 3	e of Analysis ort date Parameter Golour Odour Turbidity	: 13-13 : 28-13 Unit Hazen -	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01)	GW10 GW10 <1 No Odour Observed BDL(<0.01)	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) (5:3025 Part 10-1984(Reaff: 2017)	Acceptable limit as per is 10500 / 2012 5 Agrecable 1	
Jati Jati Jati Jati Jati Jati Jati Jati	e of Analysis ort date Parameter Golour Odour Turbidity pH at 25 °C	: 13-13 : 28-13 Unit Hazen - NTU	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6.73	GW10 <1 No Odour Observed BDL(<0.01) 6.89	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15:3025 Part 10-1984(Reaff: 2017) 15:3025 Part 11-1983(Reaff: 2017)	Acceptable limit as per is 10500 / 2012 5 Agrecable 1 6.5-8,5	
Dati Duti Rop S. No 1 2 3 4 5	e of Analysis ort date Parameter Golour Odour Turbidity pH at 25 °C Conductivity at 25 °C	: 13-13 : 28-13 Unit Hazen - NTU μS/cm	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6.73 382	GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15:3025 Part 10-1984(Reaff: 2017) 15:3025 Part 11-1983(Reaff: 2017) 15:3025 Part 14- 1984 (Reaff: 2017)	Acceptable limit as per 15 10500 / 2012 5 Agrecable 1 6.5-8,5 Not Specified	
Jati Jati Jati Sop S, (o 1 2 3 4 5 6	e of Analysis ort date Parameter Goiour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids	2 13-12 2 28-12 Unit Hazen - NTU μS/cm mg/1	2-2022 2-2022 GW9 <1 Ne Odour Observed BDL(<0.01) 6.73 392 218	GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858 486	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15:3025 Part 10-1984(Reaff: 2017) 15:3025 Part 11-1983(Reaff: 2017) 15:3025 Part 14- 1984 (Reaff: 2017) 15:3025 Part 16-1984(Reaff: 2017)	Acceptable limit as per 15 10500 / 2012 5 Agrecable 1 6.5-8,5 Not Specified 500	
Dati Dati Rep 5. 1 2 3 4 5 6 7	e of Analysis ort date Parameter Colour Odour Turbidity pN at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids	: 13-12 : 28-13 Unit Hazen - NTU - uS/cm mg/1	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6-73 382 218 <2	alhr GW10 <1 Na Odeur Observed BDL(<0.01) 6.89 858 486 <2	Page 1 of 2 Test procedure IS 3025(part 4)1983(RA 2017) IS 3025(part 8)1984(RA 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 11-1983(Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017)	Acceptable limit as per IS 10500 : 2012 S Agrecable 1 6.5-8.5 Not Specified 500 Not Specified	
Dati Dati Rop 5, No. 1 2 3 4 5 6 7 8	e of Analysis ort date Parameter Colour Odour Turbidity pN at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alkalinity as CafO ₃	: 13-12 : 28-13 : 28-13 : 28-13 : 128-12 : 128-12	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6.73 382 218 <2 8 63	dhx GW10 <1 No Odour Observed BDL(<0.01) 6.B9 858 486 <2 101	Page 1 of 2 Test proceduro 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15:3025 Part 10-1984(Reaff: 2017) 15:3025 Part 11-1983(Reaff: 2017) 15:3025 Part 14- 1984 (Reaff: 2017) 15:3025 Part 16-1984(Reaff: 2017) 15:3025 Part 23-1986(Reaff: 2019)	Acceptable limit as per 15 10500 i 2012 5 Agreeable 1 6.5-8,5 Not Specified 500 Not Specified 200	
Dati Dutr Rop 5, No 1 2 3 4 5 6 7 8 9	e of Analysis ort date Parameter Golour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total dissolved solids Total Suspended solids Total Alitalinity as CaCO ₃ Total Hardness as CaCO ₃	: 13-12 28-13 Unit Hazen - NTU - MTU - mg/1 mg/1	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6.73 382 218 <2 63 63 66	alha GW10 <1 No Odeur Observed BDL(<0.01) 6.89 858 486 <2 101 155	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15 3025(part 8)1984(Reaff: 2017) 15 3025 Part 10-1984(Reaff: 2017) 15 3025 Part 11-1983(Reaff: 2017) 15 3025 Part 14- 1984 (Reaff: 2017) 15 3025 Part 16-1984(Reaff: 2017) 15 :3025 Part 17-1984(Reaff: 2017) 15 :3025 Part 23-1986(Reaff: 2019) 15 : 3025 Part 21-2009	Acceptable limit as per 15 10500 i 2012 5 Agrecable 1 6.5-8,5 Not Specified 500 Not Specified 200 200	
1ath 1ath 1ath 1ath 1ath 1ath 1ath 1ath	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total dissolved solids Total Suspended solids Total Alicalinity as CaCO ₃ Total Hardness as CaCO ₃ Calclom as Co	: 13-12 : 28-12 Unit Hazen - NTU uS/cm mg/l mg/l mg/l mg/l	2-2022 2-2022 GW9 <1 No Odour Observed BDL(<0.01) 6.73 392 218 <2 63 66 21	alha GW10 <1 No Odeur Observed BDL(<0.01) 6.89 858 486 <2 101 155 38	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15 3025(part 8)1984(Reaff: 2017) 15 3025 Part 10-1984(Reaff: 2017) 15 3025 Part 11-1983(Reaff: 2017) 15 3025 Part 14- 1984 (Reaff: 2017) 15 3025 Part 16-1984(Reaff: 2017) 15 :3025 Part 17-1984(Reaff: 2017) 15 :3025 Part 23-1986(Reaff: 2017) 15 :3025 Part 21-2009 15 :3025 Part 21-2009 15 :3025 Part 40-1991(Reaff: 2019)	Acceptable limit as per 15 10500 : 2012 5 Agreeable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75	
1ath 1ath 1ath 1ath 1ath 1ath 1ath 1ath	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CaCO ₃ Total Hardness as CaCO ₃ Colcum as Ca Magnesium as Mg	: 13-12 28-13 Unit Hazen - NTU uS/cm mg/l mg/l mg/l mg/l mg/l	2-2022 2-2022 GW9 <1 Ne Odour Observed BDL(<0.01) 6.73 382 218 <2 63 66 21 4	alha GW10 <1 No Odour Observed BDL(<0.01) 6.89 858 486 <2 101 155 38 14	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(RA 2017) 15 3025(part 8)1984(Reaff: 2017) 15 3025 Part 10-1984(Reaff: 2017) 15 3025 Part 11-1983(Reaff: 2017) 15 3025 Part 14- 1984 (Reaff: 2017) 15 3025 Part 16-1984(Reaff: 2017) 15 :3025 Part 17-1984(Reaff: 2017) 15 :3025 Part 23-1986(Reaff: 2017) 15 :3025 Part 23-1986(Reaff: 2019) 15 :3025 Part 21-2009	Acceptable limit as per 15 10500 : 2012 5 Agreeable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75 30	
1ath 1	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CaCO ₃ Total Hardness as CaCO ₃ Calcium as Ca Magnesium as Mg Chloride as Cl	: 13-12 28-12 Unit Hazen - NTU - NTU - mg/l mg/l mg/l mg/l mg/l	2-2022 2-2022 GW9 <1 Ne Odour Observed BDL(<0.01) 6.73 392 218 <2 63 66 21 4 77	alhr GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858 486 <2 101 155 38 14 193	Page 1 of 2 Test procedure 15 3025(part 4)1983(RA 2017) 15 3025(part 8)1984(Ra 2017) 15 3025(part 8)1984(Ra 2017) 15 3025 Part 10-1984(Reaff: 2017) 15 3025 Part 11-1983(Reaff: 2017) 15 3025 Part 14- 1984 (Reaff: 2017) 15 3025 Part 16-1984(Reaff: 2017) 15 :3025 Part 17-1984(Reaff: 2017) 15 :3025 Part 23-1986(Reaff: 2019) 15 : 3025 Part 21-2009 15 :3025 Part 21-2009 15 :3025 Part 40-1991(Reaff: 2019) APHA 23rd EDN -3500 Mg B 15 :3025 Part 32-1988(Reaff: 2019)	Acceptable limit as per 15 10500 i 2012 5 Agreeable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75 30 250	
Jath Jath Jath Jath Jath Jath Jath Jath	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CafO ₃ Total Hardness as CafO ₃ Calclum as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄	: 13-12 : 28-13 : 28-13 Hazen - NTU mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2-2022 2-2022 Res GW9 <1 No.Odour Observed BDL(<0.01) 6.73 392 218 <2 63 66 21 4 77 23	alhr GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858 486 <2 101 155 38 14 193 42	Page 1 of 2 Test procedure IS 3025(part 4)1983(RA 2017) IS 3025(part 8)1984(Ra 2017) IS 3025 Part 10-1984(Reaff: 2017) IS 3025 Part 11-1983(Reaff: 2017) IS 3025 Part 14-1984 (Reaff: 2017) IS 3025 Part 16-1984(Reaff: 2017) IS 3025 Part 23-1986(Reaff: 2017) IS 3025 Part 23-1986(Reaff: 2019) IS 3025 Part 21-2009 IS 3025 Part 21-988(Reaff: 2019) APHA 23 rd EDN -3500 Mg B IS 3025 Part 32-1988(Reaff: 2019) APHA 23 rd EDN -4500-S04 ^s E	Acceptable limit as per 15 10500 i 2012 5 Agrecable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75 30 250 200	
Dati Dati Sep 5. 4 5 6 7 8 9 10 11 12 13	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CafO ₃ Total Hardness as CafO ₃ Calclum as Ca Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrate as NO ₃	: 13-12 : 28-13 : 28-13 Hazen - NTU mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2-2022 2-2022 Res GW9 <1 No.Odour Observed BDL(<0.01) 6.73 382 218 <2 63 66 21 4 77 23 1	alhr GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858 486 <2 101 155 38 14 193 42 7	Page 1 of 2 Test procedure IS 3025(part 4)1983(RA 2017) IS 3025(part 8)1984(Ra 2017) IS 3025 Part 10-1984(Reaff: 2017) IS 3025 Part 11-1983(Reaff: 2017) IS 3025 Part 14-1984 (Reaff: 2017) IS 3025 Part 16-1984(Reaff: 2017) IS 3025 Part 23-1986(Reaff: 2017) IS 3025 Part 23-1986(Reaff: 2019) IS 3025 Part 21-2009 IS 3025 Part 21-988(Reaff: 2019) APHA 23° ^d EDN -3500 Mg B IS 3025 Part 32-1988(Reaff: 2019) APHA 23° ^d EDN -4500-S03 ⁺ E APHA 23° ^d EDN -4500-N03 ⁻ B	Acceptable limit as per 15 10500 2012 S Agrecable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75 30 250 250 200 45	
Dath Bop 5, 7 8 9 10 11 12 13 14 15	e of Analysis ort date Parameter Colour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CaCO ₃ Total Hardness as CaCO ₃ Total Hardness as CaCO ₃ Calclum as Co Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrate as NO ₃ Iron as Fe	: 13-12 : 28-13 Unit Hazen - NTU - NTU mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2-2022 2-2022 Res GW9 <1 No.Odour Observed BDL(<0.01) 6.73 382 218 <2 63 66 21 4 77 23 1 BDL(<0.05)	alhr GW10 <1 Na Odour Observed BDL(<0.01) 6.89 858 486 <2 101 155 38 14 193 42 7 BDL(<0.05)	Page 1 of 2 Test procedure IS 3025(part 4)1983(RA 2017) IS 3025(part 8)1984(Ra 2017) IS 3025(part 8)1984(Reaff: 2017) IS:3025 Part 10-1984(Reaff: 2017) IS:3025 Part 14-1984(Reaff: 2017) IS:3025 Part 16-1984(Reaff: 2017) IS:3025 Part 17-1984(Reaff: 2017) IS:3025 Part 23-1986(Reaff: 2019) IS:3025 Part 21-2009 IS:3025 Part 21-2009 IS:3025 Part 21-2009 IS:3025 Part 21-2009 IS:3025 Part 21-908(Reaff: 2019) APHA 23° EDN -3500 Mg B IS:3025 Part 32-1988(Reaff: 2019) APHA 23° EDN -4500-S0g E APHA 23° EDN -4500-N0g B IS:3025(part 53)1987(Reaff: 2019)	Acceptable limit as per 15 10500 2012 S Agrecable 1 6.5-8.5 Not Specified 500 Not Specified 200 200 75 30 250 250 200 45 1	
Dath Rep 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	e of Analysis ort date Parameter Golour Odour Turbidity pH at 25 °C Conductivity at 25 °C Total dissolved solids Total Suspended solids Total Alicalinity as CaCO ₃ Total Alicalinity as CaCO ₃ Calcium as Co Magnesium as Mg Chloride as Cl Sulphate as SO ₄ Nitrate as NO ₃ Iron as Fe Manganese as Mn	: 13-12 : 28-13 Unit Hazen - NTU - NTU mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2-2022 2-2022 Res GW9 <1 No.Odour Observed BDL(<0.01) 6:73 382 218 <2 63 66 21 4 77 23 1 BDL(<0.05) BDL(<0.01)	ahn GW10 <1 Na Odeur Observed BDL(<0.01) 6.89 858 498 <2 101 155 38 14 193 42 7 BDL(<0.05) BDL(<0.01)	Page 1 of 2 Test proceduro IS 3025(part 4)1983(RA 2017) IS 3025(part 8)1984(Ra 2017) IS 3025(part 8)1984(Ra 2017) IS 3025 Part 10-1984(Reaff: 2017) IS 3025 Part 14-1984(Reaff: 2017) IS 3025 Part 16-1984(Reaff: 2017) IS 3025 Part 16-1984(Reaff: 2017) IS 3025 Part 23-1986(Reaff: 2019) IS 3025 Part 23-1986(Reaff: 2019) IS 3025 Part 21-2009 IS 3025 Part 21-2009 IS 3025 Part 21-2009 IS 3025 Part 21-2009 IS 3025 Part 21-908(Reaff: 2019) APHA 23 rd EDN -3500 Mg B IS 3025 Part 32-1988(Reaff: 2019) APHA 23 rd EDN -4500-NO ₃ B IS 3025(part 53)1987(Reaff: 2019) APHA 23 rd EDN -4500-NO ₃ B	Acceptable limit as per 15 10500 i 2012 5 Agrecable 1 6.5-8,5 Not Specified 500 Not Specified 200 200 75 30 250 250 250 200 45 1 0.10	

Quality Manager

Verified by

Tornis and strettlers

PLAS

Authorised Signatory

ABC ABC ABC

SUED	Accelerated by NABL side TO TO: The General Mai	-5770.1	and the second second	45001 & KG 7	2000 Centified Company	
ven	TO: The General Mar	COLUMN D		Contract of the second		and to draw
urca:	The General Ma			CT OF DAT		dine triterile.
	IREL India Limi Department of A Manavalakurschi	ted tomic Er "Kanyak	ergy umari District.	STREEORT		
Rep	ort no	1	ABCTL/IRELZ	FIA/2022/12/0	W9-GW10	
Sam	ple description	5	Ground Water Uchakkada - Ka GW10- Chemm Chemmanvillai	-GW9-Kollencoe nyakumari Wes anvillal Sample, Arudesam, N-	le Sample, 300m from St. George it Coast Road, N- 08"17"03.38" E 70 m from St. Judes Polytechnic 08"18'09.32" E- 77"09'55.44"	Shrine, Pazha 77*07'31.94" College,
Date	of report	12	28-12-2022	_	1	Page 2 of 2
1.441-1			Ren	ults	1-1-1 NY	Acceptable limit
No.	Parameter	Unit	GW9	GW10	Test procedure	an per 15 10500 : 2012
18	Sodium as Na	mg/l	54	130	IS : 3025 Part 45-1993 (Reaff:2019)	Not Specified
19	Potassium as K	mg/l	1.1	2.2	IS : 3025 Part 45 - 1993 (Reaff: 2019)	Not Specified
20	Barium as Ba	mg/l	BDL(<0.1)	BDL(<0.1)	APHA 23 rd EDN -3111 D	0.7
21	Residual Free Chlorine	mg/l	BDL(<0.1)	8DL(<0.1)	APHA 23rd EDN -4500-Cl B	0.20
22	Aluminium as Al	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23rd EDN 3500 ALB	0.03
23	Cadmium as Cd	mg/l	BDL(<0.003)	BDL(<0.003)	APHA 23 rd EDN -3111 B	0.003
24	Lead as Pb	mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3113 B	0.01
25	Copper as Cu	mg/l	BDL(<0.03)	BDL(<0.03)	APHA 23rd EDN -3111 B	0.05
26	Zinc as Zn	mg/l	0.03	0.07	APHA 23 rd EDN -3111 B	5.00
27	Total Chromium as Cr	_mg/1	BDL(<0.03)	BDL(<0.03)	APHA 23rd EDN -3111 B	0,05
28	Arsenic as As	mg/l	BDL(<0.01)	BDL(<0.01)	APHA 23 rd EDN -3113 B	0.01
29	Gyanide as GN	mg/l	BDL(<0.02)	BDL(<0.02)	APHA 23 rd EDN -4500-CN E	0.05
30	Selemum as Se	mg/1	BDL(<0.01)	804.(<0.01)	APHA 23 rd EDN -3113 B	0,01
31	Mercury as Eig	mg/1	BDL(<0.001)	BDL(<0.001)	IS APHA 23 ^{ee} EDN -3112 B	0.001
32	MBAS	mg/l	BDL(<0.025)	BDL(<0.025)	APHA 23 ¹⁴ EDN 5540 C	0.20
-	rnenose compounds as	mg/l	BDL(<0.001)	BDL(<0.001)	APHA 23rd EDN 5530 B/C	0.001
33:	Phenol	To sector of	Absent	Absent	APHA 23 rd EDN -6630 B, C	Absent
33 34	Phenol Pesticides	mg/l	- Stingeline			Studiate :
33 34 35	Phenol Pesticides Total Coliforms	MPN/ 100ml	<2	52	15~1622-1991 (Realt -2019)	= = 2

Figure 3.22 Sampling Locations

		Permissi	ble Limits					
SI. No.	Parameter s	** Acceptabl e limits	*** Permissibl e limits	GW1	GW2	GW3	GW4	GW5
1.	Colour, Hazen units, Max	5	25	<1	<1	<1	<1	<1
2.	Odour	Agreeable	Agreeable	No odour	No odour	No odour	No odour observe d	No odour observe d
3.	pH Value	6.5 to 8.5	No Relaxation	7.31	6.58	7.88	7.18	7.46
4.	Turbidity, NTU ,Max	1	5	<0.5	<0.5	0.6	<0.5	0.5
5.	Total dissolved solids, mg/l	500	2000	633	482	619	705	166
6.	Aluminium (as Al), mg/l	0.03	0.2	<0.03	<0.03	<0.03	<0.03	<0.03
7.	Calcium (as Ca), mg/l, max.	75	200	118	21	105	65	20
8.	Chloride (as Cl), mg/l, max.	250	1000	107	209	158	316	21
9.	Copper (as Cu), mg/l, max.	0.05	1.5	<0.03	<0.03	<0.03	<0.03	<0.03
10.	Fluoride (as F), mg/l, max.	1.0	1.5	0.26	0.29	0.22	0.41	0.18
11.	Iron (as Fe), mg/l, max.	0.3	No Relaxation	<0.05	<0.05	0.06	<0.05	<0.05
12.	Magnesiu m (as Mg), mg/l, max.	30	100	27	7	28	21	7
13.	Manganes e (as Mn), mg/l, max.	0.1	0.3	<0.01	<0.01	<0.01	<0.01	<0.01
14.	Nitrate (as NO3), mg/l, max.	45	No Relaxation	11	7	6	2	1
15.	Phenolic compound s (as C6H5OH), mg/l, max.	0.001	0.002	<0.00 1	<0.00 1	<0.001	<0.001	<0.001
16.	Sulphate (as SO4), mg/l, max.	200	400	60	15	115	33	10

Table 3.21 Results of groundwater analysis

		Permissi	ble Limits					
SI. No.	Parameter s	** Acceptabl e limits	*** Permissibl e limits	GW1	GW2	GW3	GW4	GW5
17.	Total alkalinity (as CaCO3), mg/l	200	600	353	92	162	141	109
18.	Total hardness (as CaCO3), mg/l, max	200	600	405	82	307	252	79.5
19.	Zinc (as Zn), mg/l, max.	5	15	0.08	0.05	0.10	0.14	0.02
20.	Cadmium (as Cd), mg/l, max.	0.003	No relaxation	<0.00 3	<0.00 3	<0.003	<0.003	<0.003
21.	Cyanide (as CN), mg/l, max.	0.05	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
22.	Lead (as Pb), mg/l, max.	0.01	No relaxation	<0.01	<0.01	<0.01	<0.01	<0.01
23.	Mercury, (as Hg), mg/l, max.	0.001	No relaxation	<0.00 1	<0.00 1	<0.001	<0.001	<0.001
24.	Total arsenic (as As), mg/l, max.	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01
25.	Total chromium (as Cr), mg/L Max	0.05	No relaxation	<0.03	<0.03	<0.03	<0.03	<0.03

* Drinking Water Specification IS: 10500 (2012); ** Requirement (Acceptable limit); *** Permissible limits in the absence of alternate source

51		Permissil	ole limits *	GW6	GW7	GW8	GW9	GW10
No	Paramete r	** Acceptab le limits	*** Permissib le limits	<1	1	<1	<1	<1
1.	Colour, Hazen units, Max	5	25	No odour observ ed	No odour observ ed	No odour observ ed	No odour observ ed	No odour observ ed
2.	Odour	Agreeabl e	Agreeable			Agreeable		
3.	pH Value	6.5 to 8.5	No Relaxation	6.97	7.97	7.69	6.73	6.89
4.	Turbidity, NTU ,Max	1	5	<0.5	<0.01	<0.01	<0.01	<0.01
5.	Total dissolved	500	2000	844	594	672	218	486

0		Permissil	ole limits *	GW6	GW7	GW8	GW9	GW10
51. No	Paramete r	** Acceptab le limits	*** Permissib le limits	<1	1	<1	<1	<1
	solids, mg/l							
6.	Aluminium (as Al), mg/l	0.03	0.2	<0.03	<0.03	<0.03	<0.03	<0.03
7.	Calcium (as Ca), mg/l, max.	75	200	78	83	90	21	38
8.	Chloride (as Cl), mg/l, max.	250	1000	342	158	195	77	193
9.	Copper (as Cu), mg/l, max.	0.05	1.5	<0.03	<0.03	<0.03	<0.03	<0.03
10.	Fluoride (as F), mg/l, max.	1.0	1.5	0.37	0.12	0.22	0.17	0.27
11.	Iron (as Fe), mg/l, max.	0.3	No Relaxation	0.05	<0.05	<0.05	<0.05	<0.05
12.	Magnesiu m (as Mg), mg/l, max.	30	100	28	35	37.6	4	14
13.	Manganes e (as Mn), mg/l, max.	0.1	0.3	<0.01	<0.01	<0.01	<0.01	<0.01
14.	Nitrate (as NO3), mg/l, max.	45	No Relaxation	4	11	7	1	7
15.	Phenolic compound s (as C6H5OH), mg/l, max.	0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001
16.	Sulphate (as SO4), mg/l, max.	200	400	88	129	124	23	42
17.	Total alkalinity(as CaCO3), mg/l	200	600	151	162	172	63	101
18.	Total hardness(as CaCO3), mg/l, max	200	600	310	350	380	66	155

ei		Permissit	ole limits *	GW6	GW7	GW8	GW9	GW10
No	Paramete r	** Acceptab le limits	*** Permissib le limits	<1	1	<1	<1	<1
19.	Zinc (as Zn), mg/l, max.	5	15	0.10	0.03	0.05	0.03	0.07
20.	Cadmium (as Cd), mg/l, max.	0.003	No relaxation	<0.02	<0.02	<0.02	<0.02	<0.02
21.	Cyanide (as CN), mg/l, max.	0.05	No relaxation	<0.01	<0.01	<0.01	<0.01	<0.01
22.	Lead (as Pb), mg/l, max.	0.01	No relaxation	<0.001	<0.001	<0.001	<0.001	<0.001
23.	Mercury,(as Hg), mg/l, max.	0.001	No relaxation	<0.01	<0.01	<0.01	<0.01	<0.01
24.	Total arsenic (as As), mg/l, max.	0.01	0.05	<0.03	<0.03	<0.03	<0.03	<0.03
25.	Total chromium (as Cr), mg/l, Max.	0.05	No relaxation	<0.03	<0.03	<0.03	<0.03	<0.03

3.10.5 Soil Environment

To assess the quality of soil within the study area, soil samples were collected from ten locations. Table 3.23 shows the details of soil sampling locations.

Sample No.	Location	Coord	inates
S1	Ezhudesam 1	08°16'02.28" N	77°08'35.98" E
S2	Ezhudesam 2	08°15'54.53" N	77°09'40.85" E
S3	Midalam	08°12'16.76" N	77°12'56.31" E
S4	Alanji	08°11'51.90" N	77°13'58.48" E
S5	Helen Nagar	08°12'53.02" N	77°11'51.34" E
S6	Simon Colony	08°10'35.07" N	77°14'44.88" E
S7	Paloor Vattakkottai	08°14'54.50" N	77°13'36.94" E
S8	Rethapuram	08°11'44.45" N	77°15'04.46" E
S9	Kollencode	08°17'03.38" N	77°07'31.94" E
S10	Chemmanvillai	08°18'09.32" N	77°09'55.44" E

Table 3.22 List of soil sampling locations

The analyzed results are given in Table 3.24, 3.25, 3.26.

	juni - marine	10001000	E - 90/11 - F5	5 14001 EQ 450014 EQ 22000 CH		M	. Sec. Staroovers
_	, 	n CO		A DET LOCK SHOWING IN ANALYSIC BIT	ADURA INDER	n 2 1 - 11 - 11 -	
issued (ID The Gor IREL Io Departm Manava	neral N dia Lin nent of lakuric	lanager and nited Atomic Er hi,Kanyaki	I Head TEST PEPORT			1127
Report	number	112	ARCT1 /1	REL/EIA/2022/12/SON /S1-S10			
Sample	collected by	114	ABCTec	hno Labs India Private Limited			
Sample	description	3	Soil Anal	ysis			
Project	Name	14	Mining of	Stomic Minerals at Keezinmidalam – A. Midalam	-IL Enzyamputh	enthurai, Exhade	sam -A.B.&.C
Date of	a million	100	and Kollen	code A &B Villagen of Xilliyoor Taluk in Kanniy 22 TO 12, 12, 2022	akumars district.	Tamil Nadu	
Date of	Receipt	116	13-12-20	22			
Date of	Analysis	1.14	14-12-20	22	_		
Report	date	51	28-12-20	22			
Locatio	n of Sampling)it	S1-Ezhu Nedump Road,115	desam Sample 1, 50 m from St.Judes Coll aram Sree Muthumarlamman Temple, , S m from Govt.High School Udayamartha	ege, S2- Ezhud 3- Midalam Sa ndam	esam Sample : mple, Karunga	2,30 m from 1 Midalam
S.No.] Para	meters		Test Methods	181	52	53
1	pH	increase of		IS-2720(Part 26) 1987(RA 2021)	6.70	6.97	7.67
2	Bulk Density, a	/cc		FAO Chapter 3, ABCTL/SOIL/SOP 1	1.39	1.41	1.52
3	Electrical Cond	uctivit	y, mS/cm	IS-14767:2000 (RA 2021)	0.153	0.194	0.265
4	Total Nitrogen.	kg/ha	Constraint.	IS-14684:1999, Reaff:2019	114	132	96
5	Available Phos	ohorou	is, kg/ha	FAO Chapter 3, ABCTL/SOIL/SOP 2	39.7	18,2	23,3
6	Available Potas	síum, l	kg/ha	FAO Chapter 3, ABCTL/SOIL/SOP 7	302	348	274
2	Exchangeable (Ca.m.eq/100g	alciun	1 85	FAO Chapter 3, ABCFL/SOIL/SOP 4	15.6	16,4	12.7
8	Exchangeable M Mg, m.eq/100g	lagnes	สัมหา สร	FAO Chapter 3, ABCTL/SOIL/SOP 5	4.11	5 32	3,98
9	m.eq/100g	adium	an Na.	FAO Chapter 3, ABCTL/SOIL/SOP 6	1.07	1.24	1,37
10	Organic matter	(%)		IS 2720 (Part 22):1972, Reaff:2020	1:58	1.24	0.87
15	Copper as Cu. n	ug/kg	_	EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)
16	Zinc as Zn. mg/	kg		EPA 3050 B & 7000 B	14.1	18.6	10.7
17	Manganese as N	in, m	t∕kg	EPA 3050 B & 7000 B	23.7	32.2	17
18	NICKEI as NI, ma	1/Kg	_	EPA 3050 B & 7000 B	11(<2)	801(<2)	BUL(<2)
20	Lead as Ph. mg/	len .		EPA 3050 B & 7000 B	1017521	BDL/#23	BDL(<1)
21	Cadmium as Cd	me/le	u.	EPA 3050 B & 7000 B	BDL(<2)	BOL(<2)	BDL(<2)
22	Antimony as Sh	mg/le	n	EPA 3050 B & 6020B	BDL(<2)	BDL(<2)	BDL(<2)
23	Arsenic as As, n	ig/kg		EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)
24	Barium as Ba, n	ig/leg		EPA 3050 B & 7000 B	801.(<2)	BDL(<2)	BDL(<2)
25	Molybdenum as	Мо, п	ig/kg	EPA 3050 B & 7000 B	BDL(<5)	BDL(<5)	8DL(<5)
26	Mercury as Hg,	mg/kg		EPA 3050 B & 6020B	BDL(<0.1)	BDL(<0.1)	BDL(<0.1)
27	Boron as B, mit,	log	1	ABCTL/SOP/S/13	2.36	1.70	1.52
	9- 50 Start S.Dharani Quality Manager Verified by	and and a	CHENNA CHENNA CON OFFICE		3	A. Rohson Cl Technical Authorir	ninnadurai Manager sed Signatory

2	C Techno Lab	15	1	mail: lati@abctechnolab.com/	Web: www.obctischinolab.com	free	TALERCHILL
	(An 190 - 9901)	150	14001	150 45001 6 150 22000	Certified Company) Recog	iniend by MoEF8	ICC
UED	TD: The Gen IREL In Departm Manaval	eral N dia Li ent of akuri	danage mited f Atomi chi,Kar	TEST RE r and Head c Energy yakumari District.	PORT		
Rep	ort number	10	ARC	TL/IREL/EIA/2022/12/St	011./\$1-\$10		
Sam	ple collected by	134	ABC	Techno Labs India Private	e Limited		
Sam	ple description	.d	Soil	Analysis			
Proj	ert Name	4	Minit	g of Atomic Mineruls ut Keezhn	tidalam - A. Midalam - B. Enaya	mputheisthurul, Ext	mdesam -AB&C
Dáte	of sampling	3	02-1	2-2022 TO 12-12-2022	you taiur in kantiyaquinan d	menter, ramin kadu	
Date	e of Receipt		13-1	2-2022			
Date	e of Analysis	G.	14-1	2-2022			
Rep	ort date	14	28-1	2-2022			
Loca	ation of Sampling	1	S1-F Nedu Road	zhudesam Sample 1, 50 m impuram Sree Muthumaria ,115 m from Govt High Sch	from St.Judes College, S2- mman Temple, , S3- Midal ool Udayamarthandam	Ezhudesam Samı am Sample, Karu	ale 2, 30 m from ngal Midalam
	(j)	_		and the second state of the second		11	Page 2 of 6
S. No.	Paramet	torn		Test Methods	\$1	SZ	\$3
28	Chromlum as Cr3	+. mj	g/kg	By Calculation	BDL(<2)	8DL(<2)	BDL(<2)
29	Chromium as Cró	+, m;	g/kg	EPA 7196 A	BD1(<2)	8DL(<2)	BDL(<2)
30	Cobalt as Co, mg/	kg		EPA 3050 B & 7000 B	8DL(<2)	801.(<2)	BDL{<2}
31	Fexture Classifica	tion			Sandy Loam	Sandy Loam	Loamy Sand
74	Class (%)	-	_	Robinson Pipette Method	1 55	103	16
34	Silt (%)				23	23.2	17.1
	3. Falin	12	2	ARSAD		J.0A	k
	5.Dharani		Ele	HENNAI		A. Rohsol Techni	n Chinnadurai cal Manager

	Dolla Chasseeine	AntiSC	0001.15	0 14001, ISO : 45001 K.IEO : 22000 Ca	rified Compor	ođ	92. miles
	Accredited by NA	il - ide	TC-5770. N	ABET / QCI, Recognised by MuEFACC, BLS.	AFEDA, IOFER	C. Tes Boomi In	-dia
ISSUED 1	to: The Get IREL In Departn Manava	seral M din Lir sent of lokurie	lanager and nited Atomic En hi,Kanyaki	Head TEST REPORT ergy mari District.			
Report	number	1 2	ABCTL/	REL/EIA/2022/12/SOIL/S1-S10		_	
Sample	collected by	- B	ABC Tech	no Labs India Private Limited			
Sample	description	15	Soil Anal	ysis			
Project	Name	÷	Alining uf / and Kollen	tomic Minerals at Keerfimidalam – A, Midalam code A &H Villages of Sillivoor Tabik to Kapoto:	-B. Enayamputh Journari district	enthurni, Ezhade Tamil Nedu	sam - AB&C
Date of	sampling	- 35	02-12-20	22 TO 12-12-2022	and a state of the		
Date of	Receipt	-31	13-12-20	22			
Date of	Analysis	- 20	14-12-20	22			
Report	date	10	28-12-20	Const. 20 as from Pr. P			111
ricitori	n or samping	8	St, Franci Vaniyaku	s Sample 30 m from 3c, Francis Kavier Ch s Xavier Church Enayam Helen Nagar, Se di Road 115 m from St, Judes Church,	arch, 55- Heie 5- Simon Colo	n wagar samp iy Sample, Koo	limunal-
C No.	Decis			weight aufilian contra	64	Pa	ge 3 of 6
1	nH	meters		15 -2720(Part 26) 1987(EA 2021)	636	7.37	7.65
2	Bulk Density, g	/or		FAO Chapter 3, ABCTL/SOIL/SOP 1	1.39	1.54	1.47
3	Electrical Cond	uctivity	, mS/cm	IS -14767:2000 (RA 2021)	0.078	0.306	0.209
4	Total Nitrogen,	kg/ha		IS-14684:1999, Reaff:2019	118	82	110
5	Available Phos	oharou	s, kg/ha	FAO Chapter 3, ABCTL/SOIL/SOP 2	35,6	22,9	27,1
6	Available Potas	slum, J	g/ha	FAO Chapter 3, ABCTL/SOIL/SOP 7	334	282	294
7)	Exchangeable Ca, m.eq/100g	akian	(4)5	FAO Chapter 3, ABCTL/SOIL/SOP 4	15.7	13.6	14
8	Exchangeable M Mg, m.eq/100g	lagnes	ium as	FAO Chapter 3, ABCTL/SOIL/SOP 5	5.31	4.59	4.36
9	Exchangeable S m.eq/100g	odium	as Na.	FAO Chapter 3, ABCTL/SOIL/SOP 6	0.96	1.17	1.38
10	Organic matter	(%)		IS 2720 (Part 22):1972, Reaff:2020	1.09	1:14	0.85
15	Copper as Cu, n	rg/kg		EPA 3050 B & 7000 B	BDL(<2)	8DL(<2)	BDL(<2)
10	Zinc as Zn, mg/	Ng	Alex	EPA 3050 B & 7000 B	21.3	13.6	14.2
18	Nickel as Ni tre	nn, mg	1.48	EPA 3050 B & 7000 B	#Z	801(<2)	801/<21
19	Iron as Fe, me/	icet		EPA 3050 8 & 7000 B	536	287	335
20	Lead as Pb, mg,	kg	-	EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)
21	Cadmium as Cd	mg/k	g	EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)
22	Antimony as Sh	mg/le	8	EPA 3050 B & 6020B	BD1.(<2)	BD1.(<2)	BDL(<2)
23	Arsenic as As, n	昭/Kg		EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	HDL(<2)
25	Molybdenum	Mo m	og/lag	EPA 3050 B & 7000 B	BDL(<2) BDL(<5)	801(<5)	801(<2)
26	EPA 3050 B & 6	0208	W."B.	EPA 7471 A	BDL(<0.1)	BDL(<0.1)	BDL(<0.1)
27	Boron as B, mg	kg	_	ABCTL/SOP/S/13	2.54	2.05	1.88
1	S. Dharani S.Dharani Quality Manager Aerified by	Name N	CHEMNA CHEMNA 600 098			A. Robson C Technical Authori	Contd hinnadurai Manager sed Signatory

Report number 1 ABCTL/IREL/EIA/2022/12/SOIL/S1-S10 Sample collected by 2 ABC Technol Labs India Private Limited Sample description 2 Soil Analysis Projest Name 2 Mining of Anoide Minerals at Kerchniddalam -A. Midalam -B. Elasyanputbethorat, Ethaulenam -A.B. & C ant Kollencode A.& Villageis of Killyoor Talok in Kontiyakamarl district, Tamil Nado Date of Sampling 1 0.2-12-2022 Date of Accelpt 2 13-12-2022 Date of Analysis 1 14-12-2022 Report date 2 22-12-2022 Location of Sampling 2 54- Alanji Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Francis Xavier Church, S5- Sinon Colony Sample, Kodimunai, Vaniyakudi Road 115 m from St, Judes Church, Yaniyakudi Road 115 m from St, Judes Church, Page 4 of 6 S. Z8 Churomiann as Cr3+, mg/kg By Calculation BDL(<2) BDL(<2) BDL(<2) 29 Chromian as Cr3+, mg/kg BPA 7136 A BDL(<2) BDL(<2) BDL(<2) BDL(<2) 29 Chromian as Cr3+, mg/kg BPA 7136 A BDL(<2) BDL(<2) BDL(<2) BDL(<2) 30 Cohalt as Co, mg/kg BPA 7136 A	SUED	Arr ISO 19001 (Arr ISO 19001 10 The Ger IREL In Departm Manava	ston neral N dia Li ient of lakurie	l 16001 fanager mited 'Atomi thi,Kan	mail Isbeliabetechnolab.com / Web w IEO 45001 S ISO 22000 Centlin TEST REPORT and Head c Energy yakumari District.	ww.abctecheolali.com at Compacty) Recog	nised by MoEF8	.cc
Report number 1 ABC TL/(REL/FIA/2022/12/S0EL/S1-S10 Sample description 2 Soil Analysis Project Name 2 Mining of Monie Nieren's at Keenindalam -A, Midalam -B, Easyanputbenthura, Ethnalesam -A,B & C and Xelencode A& Willager Tialuk in Kanntyakamar (district Tanul Nodo Date of Sampling 1 02-12-2022 TO 12-2022 12-12-2022 Date of Analysis 1 14-12-2022 Report date 1 28-12-2022 Location of Sampling 2 28-12-2022 Location of Sampling 1 28-12-2022 Location of Sampling 2 28-4 Alanji Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Francis Xavier Church, Ensyam Helen Nagar, 56- Simon Colory Sample, Kodimunai- Vaniyakudi Road 115 m from St, Judes Church, Page 4 of 6 S. No Parameters Test Methods S4 S5 S6 20 Chromium as Cr3+, mg/Rg EPA 7196 A BDL(<2) BDL(<2) BDL(<2) BDL(<2) 21 Chromium as Cr6+, mg/Rg EPA 7196 A BDL(<2) BDL(<2) BDL(<2) 31 Testrue Classification Sandy Loam Loamy Sand Loamy Sand Loamy Sand 32								
Sample collected by FARC Techno Labs India Private Limited Sample description Soil Analysis Project Name Mining Monic Minerals at Keephinidalam - A. Midalam - B. Enzyamputbethorit, Echnoleane - A.B. & C. and Kollenode A.& Villages of Killyoor Tahk in Kampyakamari dariet. Tamit Nadu Date of sampling 0.212-2022 TO 12-12-2022 Date of Accelpt 13-12-2022 Report date 2.29-12-2022 Location of Sampling S. Farancis Xavier Church. Stayer Science, Soliton Colory Sample, Kodimunai-Vaniyakadi Road 115 m from St. Judes Church. S. Parameters Test Methods S4 S. Parameters Test Methods BDL(<2)	Repe	ort number	+	ABC	FL/IREL/EIA/2022/12/SOIL/S1	-\$10		
Sample description i Soll Analysis Project Name i Mintug & Monie (Minerals at Keeninddatam -A. Midalam -B, Enayamputbenthurat, Eshuateaam -A,B & E and Kellencode A & Willages of Killyoor Talok in Kannyakamari district, Tamil Nadu Date of Secript i 13-12-2022 TO 12-12-2022 Date of Analysis i 14+12-2022 Report date i 28-12-2022 Location of Sampling S 4- Alani Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Francis Xavier Church: Enayam Helen Nagar, S6- Simon Colony Sample, Kodimunai- Vaniyakudi Road 115 m from St, Judes Church, Page 4 of 6 S 0, Parameters Test Methods S4 S5 S6 29 Chromium as Cr3+, mg/kg By Calculation BDL(<2) BDL(<2) BDL(<2) 31 Testure Classification 32 Sand (%) 33 Clay (%) 33 Clay (%) 33 Clay (%) 34 Silk (%) S.Dharami Quality Manager	Sam	ple collected by	Ť	ABC	Techno Labs India Private Limit	bd		
Date of sampling : 02-12-2022 TO 12-12-2022 Date of Analysis : 14-12-2022 Report date : 29-12-2022 Location of Sampling : S4-Alanji Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Prancis Xavier Church, S5- Helen Nagar Sample 10 m from St, Prancis Xavier Church, S5- Helen Nagar Sample 10 m from St, Vaniyakudi Road 115 m from St, Judes Church, S. Page 4 of 6 No. Parameters Test Methods S4 S. Page 4 of 6 S. Page 4 of 6 S. BDL(<2)	Sam Proj-	ple description ect Name		Soil and E	Analysis g of Atomic Minerals at Keezhwidalam plienende A &I Villages of Killivoor Tab	A. Midalam +B. Enaya de la Kannivakumari d	uputbeathoral, Erin Istricz, Tamil Nadu	ulesim -A,B & C
Date of Receipt : 13-13-2022 Date of Analysis : 14-12-2022 Report date : 29-12-2022 Location of Sampling : : S4-Alanji Sample 30 m from 5t, Francis Xavier Church, 55- Helen Nagar Sample 10 m from 5t, Francis Xavier Church, 55- Molen Nagar Sample 10 m from 5t, Francis Xavier Church, 55- Molen Nagar Sample Rodimunai-Vaniyakudi Road 115 m from 5t, Judes Church, Vaniyakudi Road 115 m from 5t, Judes Church, Page 4 of 6 So S4 S5 S6 28 Chromium as Cr6+, mg/kg By Calculation BDL(<2)	Date	of sampling	- E	02-1	2-2022 TO 12-12-2022	de la constante		
Date of Analysis 1 14-12-2022 Report date 2 29-12-2022 Location of Sampling. 5 54-Alanj Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Francis Xavier Church, S5- Molen Nagar Sample, Kodimunai-Vaniyakudi Road 115 m from St, Judes Church, S2 Xoniyakudi Road 115 m from St, Judes Church, S5 Page 4 of 6 Sono Colony Sample, Kodimunai-Vaniyakudi Road 115 m from St, Judes Church, S5 S6 28 Ehromium as Gr3+, mg/kg By Calculation 29 Chromium as Gr3+, mg/kg BPA 7196 A BDL(<2)	Date	of Receipt	1	13-1	2-2022			
Report date i 28-12-2022 Location of Sampling i St-Alanji Sample 30 m from St, Francis Xavier Church, S5- Helen Nagar Sample 10 m from St, Francis Xavier Church, S5- Simon Colory Sample, Kodimunai-Vaniyakudi Road 115 m from St, Judes Church, Some intervent	Date	of Analysis	:	14-1	2-2022			
Location of sampling 1 S4-Alanji sample 30 m from St, Frances Xavier Church, Sas-Helen Nagar Sample 10 m from St, Frances Xavier Church, Enayam Helen Nagar, S6-Simon Colory Sample, Kodimunai-Vaniyakudi Road 115 m from St, Judes Church, St, Francis Xavier Church, Enayam Helen Nagar, S6-Simon Colory Sample, Kodimunai-Vaniyakudi Road 115 m from St, Judes Church, Page 4 of 6 So, Parameters Test Methods S4 S5 S6 28 Chromium as Cr3+, mg/kg By Calculation BDL(<2)	Rep	ort date	T	29-1	2-2022	Martin of the second	11.1.1.1	and a life of the former
28 Chromium as Cr3+, mg/kg By Calculation BDL(<2) BDL(<2) BDL(<2) 29 Chromium as Cr6+, mg/kg EPA 7196 A BDL(<2) BDL(<2) BDL(<2) 30 Cobalt as Co, mg/kg EPA 3050 B & 7000 B BDL(<2) BDL(<2) BDL(<2) 31 Texture Classification Sandy Loam Loamy Sand Loamy Sand 32 Sand (%) Robinson Pipette Method 69.7 83.6 81.7 33 Chay (%) Robinson Pipette Method 10.8 4.7 3.6 34 Silt (%) Texture Classification 11.7 14.7 34 Silt (%) Contd Contd	S.	Parame	ters	Vanij	vakudi Road 115 m from St. Judes Test Methods	Church, S4	55	Page 4 of 6 56
29 Chromium as Cr6+, mg/kg EPA 7196 A BDL(<2) BDL(<<2) BD	28	Chromium as Gr	5+, mg	/kg	By Calculation	BDL(<2)	BDL(<2)	BDL(<2)
30 Cobalt as Co. mg/kg EPA 3050 8 & 7000 8 BDL(<2) BDL(29	Chromium as Cre	54. mg	/kg	EPA 7196 A	BDL(<2)	8DL(<2)	BDL(<2)
Sandy Loam Loamy Sand Loamy Sand 32 Sand (%) 83.6 81.7 33 Clay (%) 10.8 4.7 3.6 34 Silk (%) 11.7 14.7 Contduct Sandy Loamy Sand Sandy Loamy Sand Carry (%) 34 Silk (%) Sandy Loamy Sand Carry (%) Carry (%) Sandy Loamy Sandy Loamy Sandy Carry (%) Carry (%) Carry (%) Carry (%) Sandy Loamy Sandy Loamy Sandy Carry (%) Carry (%) Carry (%) Carry (%) Carry (%) Carry (%)	30	Cobalt as Co, mg,	log	22 1	EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)
32 Saria (99) Robinson Pipette Method 037.7 033.0 047.7 33 Clay (96) 10.8 4.7 3.6 19.5 11.7 14.7 34 Silt (96) Contd Contd Contd Contd Contd S.Dharani Quality Manager Contd Contd Contd Contd	31	Texture Classific	stion		-	Sandy Loam	Loamy Sand	g1.7
All Gally (Mg) 100 (Mg) 100 (Mg) 14.7 34 Sille (%6) 19.5 11.7 14.7 Contral Contral Contral Contral S.Dharani Quality Manager 1.455 Contral A. Robson Chinnadurai Technical Manager	34	Sand (99)	_		Robinson Pipette Method	10.8	4.7	3.6
S.Dharani Quality Manager	34	Sile (%)			1	19.5	11.7	14.7
		S. Dharani Quality Manager	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C THEORY	LABS TOLAND		J. D.J. A. Robson Technic	∳ 1 Chinnadurai al Manager

A	BC Techn India Prinate L	o Lab	in a	50 - 900	Ambattur, Chennal - 600 098, Tamilhad Ph : +91 44 2625 7788 / 99, +91 94442 6000 Email: lab@abctechnolab.com / Web: www.ab	u, INDIA) / 95661 8777 ctechnolati.cp	7 m	Σ×	5770 5770
-	100-00000	NAME OF TAXABLE	and a	Noolin		Dif ADIDA	inderin Tee	Theory Indian	
	Accusation	els issenti	- 00	10 m> 10	O Reput to the mean time of reset as a	and the second	Pertine into	pomie meso.	
IS5U	ED TO: T II D M	he Gen REL Inc Jepartm Ianaval	eral fia l ent aku	Manage Limited of Atom richl,Kar	r and Head TEST REPORT ie Energy iyakumari District.				
Rec	octnumber	_	1.1	ABCTL	/IREL/ETA/2022/12/SOIL/51-S10				1
San	ple collected a	by:	1	ABC Te	chno Labs India Private Limited				-
San	ple descriptio	n	11	Soil An	alysis				
Pru	ject Name			Mining o	r Atomic Minerals at Koethmidalam -A, Midala anonda A &B Villause of Villause Poletic In	m -B. Enayami Ivalormud di-	nathenthural, F	Ezhudesam - A, he	我後忙
Dut	e of sampling		t:	02-12-2	2022 TO 12-12-2022	and an instant and a	THE PARTY PLAC		
Dat	e of Receipt		1	13-12-2	2022				
Dat	e of Analysis		ţ.	14-12-2	2022				
Rep	ort date		**	28-12-7	2022				
Luc	ation of Samp	ling	8	S7- Pale Municip Shrine, from St.	or Vattakkottai, 15 m from Paloor Vattakk alizy Office Rethapuram Karungal Road, S Pazha Uchakkada –Kanyakomari West Coa Judes Polytechnic College, Chemmanyillai	ottal Bus Sta 9- Kollencode st Road, S10- , Arodesam,	nd, S8- Retha Sample, 300 Chemmanvi	puram Sampl m from St. Ge Bat Sample, 7 Page 2	erge Onn
No	Pa	rumeter	÷.		Test Methods	57	58	59	510
1	pH				IS -2720(Part 26) 1987(RA 2021)	7.77	7.36	6.81	7.60
2	Bulk Density	h #/cc			FAO Chapter 3, ABCTL/SOIL/SOP 1	1.45	1.48	1.29	1.17
3	Electrical Co	nductiv	rity,	mS/cm	(S-14767:2000 (RA 2021)	0.239	0.255	0.086	0.502
4	Total Nitrog	en, kg/l	13		IS -14684:1999, Reaff:2019	108	139	172	198
5	Available Ph	osphor	ous	kg/ha	FAO Chapter 3, ABCTL/SOIL/SOP 2	37.1	25.8	38.8	43.9
6	Available Po	tasslum	a, lep	∖/ha	FAO Chapter 3, ABCTL/SOIL/SOP 7	254	286	348	394
7.	Exchangeabl Ca,m.eq/100	le Calcii Ig	un a	as	FAO Chapter 3, ABCTL/SOIL/SOP 4	13.3	13	18,7	21.6
8	Exchangeabl Mg, m.eq/10	le Magn 10 <u>j</u>	esit	im as	FAO Chapter 3, ABCTL/SOIL/SOP 5	5.02	4:78	5.96	6.74
9	Eschangeabl m.eq/100g	le Sodiu	m a	is Na,	FAO Chapter 3, ABCTL/SOIL/SOP 6	31314	11270	1.58	1.87
10	Organic mat	ter (%)	ĉ.		15 2720 (Part 22):1972, Reaff:2020	0.84	0.51	1.26	1.05
15	Copper as Ca	a, mg/k	ß		EPA 3050 B & 2000 B	BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)
6	Zinc as Zn, m	hg/kg		Los	EPA 3050 B & 7000 B	14.0	10.0	30.2	56.0
10	Nickel ac Ni	in a line line	1187	ng	EPA 3050 B & 7000 B	BD1/e73	801/<21	BDL/<21	BDL(<2)
9	from as Fe. m	ing/len	_		EPA 3050 B & 7000 B	258	307	412	384
20	Lead as Pb. n	ng/kg			EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)
15	Codmium as	Cd, mg	/kg		EPA 3050 B & 7000 B	BDL(<2)	BD1(<2)	BDL(<2)	BDL(<2)
22	Antimony as	Sb, mg	/kg	Q	EPA 3050 B & 6020B	BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)
23	Arsenic as A	s, mg/k	E		EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)
24	Barlum as Ba	z, mg/k	g		EPA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)	BBL(<2)
25	Molybdenun	n as Mo	m	(/kg	EPA 3050 B & 7000 B	BDL(<5)	BDL(<5)	BDL(<5)	BDL(<5)
0	Mercury as I	18_ mg/	Kg		EPA 3050 B & 60208	2.44	1.00	204	2.35
	S.Dhan Quality Ma	122 ani anager	r	CHECK	ABS 400 P	arts.); (, , , , , , , , , , , , , , , , , , ,	Authorised S	ntel nadurai nager Signatory

Reb	and the second for some	10.0	A 11/2011	UNEX PLANA (1.5 ICAL)	101-010			21
Sam	on number	1	ABCTL	chno Labs India Private I	imited			
Sam	ple description	1	Sall An	alysis	inition.			
Proj	oce Name	÷ŧ.	Mining o	Atomic Minerals at Reedonida	ašam – A. Mintačam -	-R, Enayampoth	enthomi, Ezhodes	am-A.8.6 C
Date	of samulas	1	and Kolle	mode A &8 Villages of Killiyon (022 TO 12, 12, 2022	r Taluk in Kaoniya	ikumari distriat.	Tamii Nadu	
Date	r of Receipt	1.4	13-12-2	2022				
Date	e of Analysis	1	14-12-2	022				
Rep	ort date	.±.	28-12-2	022				
_			George Sample,	Shrine, Pazha Uchakkada - 70 m from St. Judes Polyte	arungai Road, S Kanyakumari W schnic College, C	9- Kollencode Vest Coast Roa Bemmanvillai	sample, 300m id, S10- Chemin , Arudesam, Pae	rom st. anvillai re 6 ol 6
S.	Parameter	\$	1	Test Methods	\$7	\$8	\$9	S10
28	Chromium as Celtin	antes a	10 0	Colmitation	801/222	801/-23	808 (~2)	BD1 (c2)
29	Chromium as Cr6+	mil/	KE E	PA 7196 A	801(<2)	BDL(<2)	BDL(<2)	BDL(<2)
30	Cobalt as Co, mg/kg		E	PA 3050 B & 7000 B	BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)
31	Texture Glassificati	an			Loamy	Loamy	Sandy Clay	Clay
22	Sand (%)		20	Julman Disatta Mathad	Sand Ro 7	Sand	Lount	26.0
33	Clay (%)		30	annaan riperre sternoù	7.3	5.9	27.8	55.7
34	Silt (%)				12	8,5	21.1	17,5
	BDL -Below Deta	ction	Limit	ARA V SUBSECT COULDES			1000 AL	0
	S. Jalvarani	~	QUA					t
	S. S. S. S. S. Dharani Quality Manager	~	Line Contraction	as with the second) - () - () A. Robson Ch Technical J	t innadurai danager

Sample No.	Texture	Bulk Density
S1	Sandy Loam	1.39
S2	Sandy Loam	1.41
S 3	Loamy Sand	1.52
S4	Sandy Loam	1.39
S5	Loamy Sand	1.54
S6	Loamy Sand	1.47
S7	Loamy Sand	1.45
S 8	Loamy Sand	1.48
S9	Sandy Clay Loam	1.29
S10	Clay	1.17

Table 3.23 Physical properties of soil

Table 3.24 Chemical properties of soil

Parameters	S1	S2	S3	S4	S5	S6	S7	S 8	S9	S10
pН	6.70	6.97	7.67	6.36	7.37	7.65	7.77	7.36	6.81	7.60
Electrical Conductivity (μS/cm)	0.153	0.194	0.265	0.078	0.306	0.209	0.239	0.255	0.086	0.502

Table 3.25 Available NPK contents in soil

Parameters	S1	S2	S 3	S4	S5	S6	S7	S 8	S9	S10
Available Nitrogen (Kg/ha) & Rating	114	132	96	118	82	110	108	139	172	198
Available Phosphorus (Kg/ha) and Rating	39.7	18.2	23.3	35.6	22.9	27.1	37.1	25.8	38.8	43.9
Organic matter (%)	1.58	1.24	0.87	1.09	1.14	0.85	0.84	0.51	1.26	1.05
Available Potassium (Kg/ha) and Rating	302	348	274	334	282	294	254	286	348	394

Rating based on:

Available Nitrogen	<280 - Low;	280- 560 Medium;	>560 - High
Organic carbon	<0.50 - Low;	0.5-0.75 Medium;	> 0.75 - High
Available Phosphorus	<10 - Low;	10 - 25 Medium;	>25 - High
Available Potassium	<120 - Low;	120 - 280 Medium;	>280 - High

Soil pH plays an important role in the availability of nutrients. Soil microbial activity is also dependent on pH. In the study area the soil pH is slightly basic and varied from 6.36 to 7.77.

Electrical conductivity (EC) of the soil is a measure of the concentration of soluble salts and ionic activity in the soil. In the collected soil samples, the conductivity ranged from 0.078 to $0.306 \ \mu$ s/cm.

Phosphorus and nitrogen are limiting nutrients, especially phosphorus. In the tested soil samples availability of phosphorus was observed to be in high concentration in all the samples except S2, S3 and S5. Potassium varied from medium to high ranges in the soil samples. Organic carbon content is found to vary from low to high ranges in the tested soil.

Parameters	S1	S2	S3	S4	S5	S6	S7	S 8	S9	S10
Calcium (meq/100gm)	15.6	16.4	12.7	15.7	13.6	14	13.3	13	18.7	21.6
Magnesium (meq/100gm)	4.11	5.32	3.98	5.31	4.59	4.36	5.02	4.78	5.96	6.74
Sodium (meq/100gm)	1.07	1.24	1.37	0.96	1.17	1.38	1.14	1.27	1.58	1.87

Table	3.26	Exchangeable	cations
-------	------	--------------	---------

The above results show that among tested soil samples calcium constitute bulk of the exchangeable cations whereas proportion of exchangeable potassium is low as compared to others. Proportion of sodium and magnesium varies from low to medium.

Table 3.27 Available micro-nutrie

Parameters	S1	S2	S3	S4	S5	S6	S7	S 8	S9	S10
Copper	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc	14.1	18.6	10.7	21.3	13.6	14.2	14.6	16.6	19.5	22.7
Iron	248	332	187	536	287	335	258	307	412	384
Manganese	23.7	32.2	17	42	19.6	23.7	27.6	30.6	38.7	56.8

Soil micro-nutrients play an important role in plant growth and can act as limiting nutrients. Soil micro-nutrient analysis can be employed as a diagnostic tool for predicting the possibility of deficiency of a nutrient and the profitability of its application. For this, it is essential to fix the critical limits. The critical limit of micro-nutrient in a soil is that content of extractable nutrient at or below which plantation practiced on it will produce a positive response to its application. The critical limits of copper, zinc and iron are BDL<2, 10.7 - 22.7 mg/kg and 187 - 536 mg/kg, respectively.

3.10.6 Terrestrial Ecology

3.10.6.1 Introduction

An ecosystem is a dynamic complex of plant, animal, and microorganism communities and the non-living environment interacting as a functional unit in a given area. It involves the total nutrient and energy economics of the system as well as the organisms involved. Natural ecosystems are invariably richer in species and more stable than those of artificially developed, due to their many inter-dependencies and inter-relationships.

The plant and animal populations in an area from recognizable associations are called Natural communities. These are characterized by a few species called dominants. Natural communities have structure based on the life forms (e.g. grass) of the species

that make them up. The species composition refers to the kinds of species making up to the community. The variety of species and their relative numbers are referred to as species diversity. A community composed of few species is called simple or one of Low diversity. A community composed of many species is called complex or one of high diversity.

Ecosystems can generally be classified into two classes such as natural and artificial. Artificial ecosystems are natural regions affected by man's interferences. They are artificial lakes, reservoirs, townships, and cities. Natural ecosystems are basically classified into two major types. They are aquatic ecosystem and terrestrial ecosystem. Based on the physical setting and the kind of distribution of flora and fauna, the study area can be classified into crop, terrestrial and aquatic ecosystems.

Ecosystem shows complex inter-relationships between biotic and abiotic components leading to dependence, competition and mutualism. Biotic components comprise both plant and animal communities, interacting not only within and between themselves but also with the abiotic components of the environment. Generally, biological communities are good indicators of climatic and edaphic factors because of their strong relationships with them. The studies on the biological aspects of the ecosystem are important in Environment Impact Assessment studies for the suitability of natural flora and fauna. Information on the impact of environment stress on the community structure serves as an inexpensive and efficient early warning system to check the damage on a particular ecosystem.

A change in the composition of biotic communities under stress is reflected through a change in the distribution pattern, density, diversity, frequency, dominance and abundance of natural species of fauna and flora existing in the ecosystem. These changes over a span of times can be quantified and related to the existing environment.

The area of **1144.0618 Ha** falls in 8 villages viz., Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B in Killiyoor Taluk, Kanniyakumari District, Tamil Nadu. The existing Mineral Separation Plant is in Manavalakurichi Village, Kalkulam Taluk, Kanniyakumari District. The distance between the proposed mining lease area of 1144.0618 ha and the existing Mineral Separation Plant at Manavalakurichi village is 12 to 30 km.

3.10.6.2 Objectives

The objectives of ecological study during the study period of EIA study period may be outlined as follows:

- > To characterize the environmental components like land, water, flora and fauna;
- To understand their present status;
- To understand carrying capacity of the ecosystem;
- To assess present bio-diversity; and
- > To identify susceptible and sensitive areas

3.10.6.3 Regional Biodiversity

Tamil Nadu has a total land area of 1,30,060 sq.km which constitute about 3.96% of the total geographical area of the country.

Physiographically, the State can be divided into four major regions viz Coastal Plains, Eastern Ghats, Central Plateau and Western Ghats. The main rivers of the State are Cauvery, Bhavani, Palar, Vaigai etc. which drain into the Bay of Bengal. Tamil Nadu has a Humid Tropical Climate. Tamil Nadu shares the Western Ghats Biodiversity (one of the 12 Global mega biodiversity Hotspots) with the states of Kerala and Karnataka.

The State is endowed with rich biodiversity, from marine coastal systems in the Gulf of Mannar to the terrestrial evergreen forests in the Western Ghats and temperate forests in the hilly regions. As per the Champion & Seth Classification of Forest Types (1968), the forests in Tamil Nadu belong to nine Forest Group, which are further divided into 39 Forest Types. The Nilgiri Biosphere Reserve represents a unique and threatened ecosystem in the tropics inside the Western Ghats Mountain system and is one of the biodiversity hotspots. Tamil Nadu has been a pioneer State in the biodiversity conservation, particularly in Protected Area management, including conservation of marine fauna. Tamil Nadu is famous for its Teak and Sandalwood forests.

Forest Biodiversity in the State is mainly confined to Western Ghats and Eastern Ghats. Forest Cover of the State is 26,364 km² which is 20.27% of the State's geographical area (GA). In terms of forest canopy density classes, the State has 3,605 km² (2.77% of GA) very dense forest, 11,030 km² (8.48% of GA) moderately dense forest and open forest and 11,729 km² (9.02 % of GA) respectively. There is an increase of 83.02 km² in the forest cover of the state as compared to 2017 assessment (Source: www.forests.tn.gov.in).

The mangrove cover in the State is 44.83 sq.km, which is 0.035% of the State total geographical area. The Very Dense mangrove comprises 1.04 sq.km of the mangrove cover, Moderately Dense mangrove is 27.24 sq.km while open mangroves constitute an area of 16.55 sq.km.

Recorded Forest Area (RFA) in the State is 22,877 sq.km which constitute about 17.59% and 2.99% of the total geographical area of the State and Country respectively, of which 20,293 sq.km is Reserved Forest, 1,782 sq.km is Protected Forest and 802 sq.km is Unclassed Forests. The RFA covers 17.59% of geographical area of the State. The reserved, protected and unclassed forests are 88.70%, 7.79% and 3.51% of the recorded forest area in the State respectively.

Five National Parks, 29 Wildlife Sanctuaries and two Conservation Reserves constitute the Protected Area network of the State covering 4.97% of its geographical area (India State Forest Report, 2019). There are about 3,072 hamlets bordering the forest areas of the state. Tropical dry Deciduous Forest covers an area of 12.23 lakh ha constituting 54.30%, Tropical Thorn Forest covers an area of 5 lakh ha constituting 22.10%, Tropical Moist Deciduous Forest covers an area of 2.60 lakh ha constituting a percentage of 11.10%. The Biodiversity rich forest types are the Tropical Wet Evergreen Forest covering an area of 0.60 lakh ha constituting 1.01%, Subtropical Broad leaved Hill Forest covers an area of 1.14 lakh ha constituting 5.04%, the Tropical Dry Evergreen Forest which is a unique type of Tamil Nadu covers an area of 0.26 lakh ha constituting 1.16%, the mangrove forest covers an area of approximately 0.23 lakh ha constituting 1.01%.

Figure 3.24 Forest Map of Tamil Nadu (Source: Forest Survey of India, 2009)

Habitat fragmentation is the process by which habitats which were once continuous become divided into separate fragments. This mainly happens due to human activities such as agriculture, rural development and urbanization. As cities and civilization grow in size, the fragmentation of habitats causes extinction of many plant and animal species and is the largest threat to biodiversity on earth. Designing with nature can improve the quality of cities for people, plants and animals. In doing so, ecosystem services can be enhanced.

The state's rich biodiversity and the natural resources are facing a serious threat from the growing human encroachments, cattle grazing, collection of fire wood, man-animal conflict, poaching, illicit felling, mass tourism and pilgrimage etc. and from various developmental activities. Biodiversity Conservation has been structured covering the Ecosystem Diversity, Species Diversity and Genetic Diversity. Species Diversity has been structured separately for plants and animals.

Wild plant diversity has been structured on the lines of Red-listed plants, Endemic plants, Medicinal plants, Wild relatives of cultivated plants, allied species of cultivated species and others. Wild Animal diversity has been structured on the lines of Red listed animals, Endemic animals, Flagship species, Keystone species, Pollinators and others. Domesticated species diversity has been structured on the lines of Cultivated Plants and Domesticated animals.

Kanniyakumari District

Kanniyakumari District has a total geographical area of 1672 Sq. km. and has an average elevation of 30 metres. This district has a varied topography with the sea on three sides and the mountains of the Western Ghats bordering the northern side. Except for a small stretch of land to the east of Kanniyakumari town, almost the entire district is sandwiched between the Western Ghats and Sea, the only district in Tamil Nadu state facing the Arabian Sea. Geologically, the landmass of the district is much younger when compared to the rest of the state – faulted as late as 2.5 million years during the Miocene, after which numerous transgressions, as well as regression of sea, had shaped the western coast of the district.

Furthermore, Kanniyakumari is bordered by Tirunelveli district in the east and north side, the Gulf of Mannar in the East, the Indian Ocean in the South, the Arabian Sea in the West, Thiruvananthapuram district (Kerala) in the west and the Laccadive Sea on the southeast, the south and the southwest sides. Kanniyakumari district is often cited as 'Land's End'. The major rivers in this district are Thamirabarani, Valliar, Pazhayar, Ponniavaikal and Paraliyar.

The district's coastal environment forms an interface between land and marine water. This eco-system is valuable to humans from the dawn of civilization. The biological and social needs of human beings are readily met by coastal zone. This district in Tamil Nadu with a land mass of 1672 sq.km has almost all ecosystems; wetlands, forests, freshwater resources, marine, etc. The coastal environment is very important with regard to fish production and fisher folk's employment. The district's coastal ecosystem is 68 Km in length and is studded with forty-four coastal fishing villages. Since this district is located at the extreme south of the Indian subcontinent, the coastline is formed nearly by three seas; the Arabian Sea, the Indian Ocean and the Bay of Bengal while the main part of the coast of Kanyakumari district faces the Arabian Sea.

Of the total district area of 1672 sq. km., government forests occupy an area of 504.86 sq. km. which comes to about 30.2% of the geographical area of the district. The flora and fauna of Kanniyakumari District are vast and diverse. Kanniyakumari district has 4 types of lands except Desert. In which, Forest has a significant place in the district's landscape. The district's forest areas were surrounded by plenty of rivers and falls. Forests also has significant mountainous landscape. The district has forests of 40239.55 Hectares. The district's forests are situated between Kalakkad Mundanthurai Tiger Reserve and Neyyar Forests in Kerala. Kaalikesam, Balamore, Upper Kodayar, Lower Kodayar, Mukkadal are the important places in Forests.

Paddy is the main crop of this district and it is grown in two seasons. While the first crop is sown in April-June, the second crop is raised in the month of September-October. The major crops cultivated in the district are tapioca and oilseeds like

groundnut and coconut apart from the commercial crops like rubber, cashew, fruits and spices.

3.10.6.4 Biogeographic zone, province and Forest type

This study has been carried out during the early January 2023 of study period for the purpose of providing an independent and comprehensive baseline assessment of the flora, terrestrial vertebrate, aquatic fauna and associated habitat values of the site and within 10 km radius area around the project site at villages core and buffer area viz., Near Alanchi, Near Thikkanamcode, Near Paloor, Near Parambu vilai, Near Nithiravilai, Near Kollamkode, Near Kuzhivilai, Near Chadayan kuzhi in Killiyoor Taluk, Kanniyakumari District over an extent of 1144.0618 ha by M/s. IREL (India) Limited (IREL), (A Govt. of India Undertaking – Department of Atomic Energy) and a subsequent assessment of potential ecological impacts.

The study area falls under Western Ghats category as far as the Indian biogeographical zones (Rodger, Panwar, Mathur 2000) are concerned. Under the biogeographical provinces, the study area falls under the category of **8B: Coasts--East Coast**.

The field investigation and satellite imagery data show that the study area is a mixture of forest land, agricultural and get irrigated by the cannals. There are no agricultural lands are located within the Mining Lease area, beyond the Mining Lease area some agricultural lands are seemed used for Ragi and maize. The detailed study shows the dominance of grasses like *Cyperus rotundus, Cyperus difformis, Cyanodon dactylon, Imperata cylindrica. Among the tree species Cocos nucifera, Azadirachta indica, Acacia auriculiformis, Bambusa bambos, Tamarindus indica, Aegle marmelos, etc. are most common.*

The detailed ecological assessment of the study area has been carried out with the following objectives:

- To establish the present status of ecological conditions surrounding the project location;
- > To study the existing anthropogenic stresses on the prevailing ecosystem.
- To identify and predict the likely impacts on the local ecosystem from the proposed activities;
- To list out floral species, terrestrial vertebrate and aquatic flora and fauna present within the study area, and significance status under The Wildlife (Protection) Act, 1972;
- To define ecological/conservation status of each species as per IUCN categories (Red Data List).
- To formulate migratory measures and a sustainable Environmental Management Plan (EMP) basing upon the likely impacts.
- > During survey, following aspects were considered for ecological studies:
- Assessment of present status of flora and fauna;
- Identification of rare and endangered species of plants and animals (if any);
- Identification of ecologically sensitive areas within the study area;
- Assessment of migratory route of wildlife (if any); and
- Assessment of Aquatic Ecology with specific reference to aquatic birds and fishery resources.

Figure 3.25 Map showing the Bio-geographic Provinces of India

3.10.6.5 Methodology

Terrestrial investigations for flora and fauna records were collected by random field survey and a checklist was prepared. During field survey, discussions with the local people were carried-out to collect information related to local biodiversity in and around the villages. The ecological status of the study area has been assessed based on the following methodology:

- Primary field surveys to establish primary baseline of the study area;
- Compilation of secondary information available in published literatures/ forest working plans, etc.
- Site Verification and finalization in consultation with Project proponent, local inhabitants.
- Vegetation analysis through quadrate method using sampling plots of 30m X 30m.
 - 30m X 30m for tree species (record trees >20 cm in GBHOB /species);
 - 5m X 5m [four plots] was laid along diagonals wherein all the shrubs recorded.

• 1m X 1m [five plots], one at the centre and four at one per quadrate] was laid and herbs, grasses in five plots to be noted.

Protocol for Sampling through Quadrate Method

The standard method chosen for the assessment of plant diversity involves the use of square vegetation quadrates ('plots'). These quadrates were used to measure most vegetation attributes in most vegetation types. Quadrate locations marked by pegs or sometimes by grid system.

The study area is demarcated as 10 km from the periphery of mining lease (ML) area based on the MoEF&CC guidelines. After demarcation, the study area is divided into sampling units, i.e. the areas which are approximately true representative of the whole area, and were sampled for the identification of plant and animal species.

A. Floral Study

The assessment of the flora of the study area is done by an extensive field survey of the area of 10 km radius.

- Plants species were identified based on their specific diagnostics characters of family, genus and species using available floral, other related literature.
- Besides the identification of plant species, information was collected on the vernacular names and uses of plants made by local inhabitants.
- Qualitative analysis of vegetation is made by two different methods such as floristic (by simple studying various genera and species of various plant groups i.e. herbs, shrubs, trees etc).

B. Phyto-sociology

A nested quadrates technique was used for sampling the vegetation. All the plots sampled were representative of most common types, sampling 30m X 30m for trees and 5m X 5m for shrubs, 1m X 1m for herbs square meter quadrates were laid. Selection of sites for sampling of vegetation is done by random sampling procedure. However, in general to study the phytosociological attributes, quadrates of 30m X 30m size for tree species are randomly laid out at each site at different elevations. Then the observation on the following parameters is recorded:

- 1. Name of the species.
- 2. Number of the occurrence of each species in each quadrate.

The field data for phytosociological studies was collected in the study area. Vegetation data was quantitatively analyzed for frequency, density and dominance using standard methodologies. The relative values of frequency, density, and dominance of all the recorded species was summed up to represent Importance Value Index (IVI). Not only IVI facilitates comparison between species of a community, but also the data collected on dispersion, number and cover can be profitably used in comparing the vegetation structure of two or more stands or of the same stand over a period of time. Vegetation structure with respect of varying environmental factors can also be studied through such studies in sets of varying environmental conditions. The IVI was determined as the sum of the relative frequency, relative density and relative dominance. It thus incorporates three important parameters that measures of productivity and diversity of every species therefore.

IVI = Relative frequency + Relative density + Relative dominance

C. Faunal Study

Ground surveys are carried out by trekking the study area for identification of important animal groups such as birds, mammals and reptiles for sampling of animals through the following methods.

- For sampling birds/avifauna 'point sampling' along the fixed transects (foot trails) were done to record all the species of birds with the help of binoculars; field guides and photography for more than 1 hour on each transect (n=4).
- For sampling mammals, 'direct count on open width (20 m) transect' were used on the same transects. Besides, information on recent sightings/records of mammals by the locals are also collected from the study areas.
- > 'Reptiles' mainly lizards were sampled by 'direct count on open width transects'.
- Secondary information collected from local villagers, published government data etc.

□ List of the endangered and endemic species as per the schedule of The Wildlife Protection Act, 1972

Emphasis is given to identify avifauna and mammals to determine the presence and absence of Schedule-1 species, listed in The Wildlife Protection Act 1972, as well as in Red List of IUCN. Various methods used for study animals are as follows:

- A. Point Survey Method: Observations were made at each site for 15-20 min duration.
- B. Road Side Counts: The observer travelled by motor vehicles from site to site and all sightings were recorded.

3.10.6.6 Floristic composition within the study area

The ecology and diversity survey were conducted in the 10 km radius in the study area and the surrounding area. It is observed that few human settlements present outside the ML area and within the study area of 10 km radius and many of villages have very high level of plantations. During site assessment several floral species encountered within the 10 km radius area.

The study area does not have any forest land or permanent natural vegetation. The new mining lease area consists mostly of private patta lands. The private patta lands are found with scattered coconut trees. The mining operation over the private lands will be carried out only after obtaining the Consent from the respective land owners and after mining and backfilling, the land will be returned to the respective land owners within 11 months along with payment of Lease Compensation as per the Land Leasing Policy of IREL. On return of land, the land owners predominantly carry out the plantation of Coconut and other fruit bearing trees. The mining would not result in change of ownership of the land. Generally, 70 coconut saplings are planted in one acre of land.

From the primary observation, the tree species recorded outside the ML area in the plantation area were *Cocos nucifera, Azadirachta indica, Acacia auriculiformis, Tamarindus indica, Aegle marmelos, Syzygium cumini* etc. The survey was conducted in the 10 km radius from the ML area and its surroundings. The locations covered

during the present survey were Near Project site (Alanchi), Near Thikkanamcode, Near Musari, Near Parambu Vilai, Near Nithiravilai, Near Kolamkode, Near Kuzhivilai, Near Irenipuram. The following locations were enlisted within the 10 km radius study area during the field visits as given in Table 3.29.

S.No.	Name of Village	Plot No.	Lattitude	Longitude	Туре
1	Near Alanchi	EB1	8°11'43.93"N	77°14'6.60"E	Core
2	Near Thikkanamcode	EB2	8°13'15.01"N	77°16'17.83"E	Buffer
3	Near Paloor	EB3	8°14'27.99"N	77°14'8.34"E	Buffer
4	Near Parambu vilai	EB4	8°13'7.91"N	77°12'17.41"E	Core
5	Near Nithiravilai	EB5	8°16'29.74"N	77° 8'22.98"E	Core
6	Near Kollamkode	EB6	8°17'24.80"N	77° 6'45.03"E	Core
7	Near Kuzhivilai	EB7	8°18'43.21"N	77° 9'40.23"E	Buffer
8	Near Chadayan kuzhi	EB8	8°16'13.33"N	77°12'1.51"E	Buffer

Table 3.28 Details of locations for plot survey

3.10.6.7 Floral Community within Core Area

The project area covering 10 km radial distance reveal that there are no notified/ protected ecologically sensitive area including national park, sanctuary, Elephant and Tiger reserves in the project area covering 10 km radial distance. The results of survey within core area exhibited sparsy vegetation with the existence of 86 terrestrial flora. However, Neem, Acacia and coconut trees are abundant widely distributed away from the study area. The following species were encountered from the study area during the field visits as given in Table 3-30.

e				IUCN
J.	Scientific Name	Local Name	Family	Conservatio
NO.				n Status
		Tree		
1	Azadirachta indica	Vennai	Meliaceae	Least
1	Azadıracına indica	veppai	Mellaceae	Concern
2	Acacia auriculiformis	Katthisavukku	Mimosaceae	Not
2		Ναιιπσανυκκυ	Mintosaceae	assessed
3	Cocos nucifera	Tennai	Arecaceae	Not
5		renna	Arctattat	assessed
4	Acacia catechu	Cenkarungali	Mimosaceae	Not
-		Ochkarungan	Mintosaccac	assessed
5	Borassus flabellifer	Nonkunnanai	Arecaceae	Not
5		Попкаррана	Arctattat	assessed
6	Syzvajum cumini	Naval	Myrtaceae	Least
0	Gyzyglam caniin	Navai	Myntaccac	Concern
7	Phoenix sylvestris	Paereecham	Arecaceae	Not
, ·		1 dereconditi	7110000000	assessed
8	Prosopis iuliflora Vaelikaruvai		Fabaceaae	Not
		Vaolinaravar	1 ababbaab	assessed
9	Tamarindus indica	Puli	Fabaceae	Not
		i di	1 4546646	assessed
10	Acacia leucophloea	Velvelam	Fabaceae	Not
	, louoid louoopillood	Volvolalli	1 4546646	assessed
11	Acacia nilotica	Karuvel	Mimosaceae	Not
				assessed
12	Casuarina	Savukku	Casuarinaceae	Not
	equisetifolia		Cacaaniaccac	assessed
13	Albizia lebbeck	Siridam	Fabaceae	Not
				assessed
14	Annona reticulata	Ramachita	Annonaceae	Not
		randoma		assessed
15	Bambusa arundinacea	Kulav-munkil	Poaceae	Not
				assessed
16	Bauhinia racemosa	Atti	Fabaceae	Not
		,		assessed

Table 3.29 Floristic Diversity in the Core Area

•				IUCN
S.	Scientific Name	Local Name	Family	Conservatio
NO.				n Status
17	Murrava koenigii	Karivenillai	Rutaceae	Not
	Marraya Kocingi	Ranvepilla	Tutaceae	assessed
18	<i>Musa</i> paradisiaca	Vaazhai	Musaceae	Not
				assessed
19	Manilkara zapota	Sapota	Sapotaceae	NOT
		-		Not
20	Morinda tinctoria	Mannanunai	Rubiaceae	assessed
	Leucaena	<u> </u>		Not
21	leucocephala	Subabul	Fabaceaae	assessed
22	Madhuaa lanaifalia	Illunai	Canataaaaa	Not
22	Mauriuca iorigiiolia	iliupei	Sapolaceae	assessed
23	Mangifera indica	Mamaram	Anacardiaceae	Data
		Manaram	7 (1100010100000	Deficient
24	Psidium quaiava	Segappu kovvaa	Mvrtaceae	Least
		511 55	, ,	Concern
25	Phoenix acaulis	Kaattu echam	Arecaceae	INOL
				Not
26	Cassia siamea	Manjalkonrai	Fabaceae	assessed
				Not
27	Ficus hispida	Peyatti	Moraceae	assessed
20	Cmalina arbaraa	Kumalaamaram	Lamiacoco	Least
20	Ginelina arborea	Numaiaamaram	Lamaceae	Concern
29	Tectona grandis	Thekku	Lamiaceae	Endangered
30	Terminalia catappa	Nattuvaduma	Combritaceae	Least
				Concern
31	Ziziphus jujuba	llanthai	Rhamnaceae	Least
				Not
32	Ixora arborea	Koran	Rubiaceae	assessed
		Cemmavir-		Least
33	Delonix regia	konrai	Fabaceae	Concern
24	Concio fictulo	Annai	Caesalpiniace	Least
- 34	Cassia listula	Арраі	ae	Concern
	Γ	Shrub	Γ	T
1	Lantana camara	Unnichedi	Verbenaceae	Not
				assessed
2	Calotropis gigantea	Erukku	Asciepiadacea	Not
			е 	Not
3	Ziziphus nummularia	Narielandai	Rhamnaceae	assessed
			Asclepiadacea	Not
4	Calotropis procera	otropis procera 📔 Vellai Erukku 🏳	e	assessed
L			=	

•				IUCN		
S.	Scientific Name	Local Name	Family	Conservatio		
NO.				n Status		
5	Capparis sepiaria	Kattukkattari	Capparaceae	Not		
		induction	Cappalacouc	assessed		
6	Euphorbia tirucalli	Amman-	Euphorbiaceae	Least		
	,	paccarici		Concern		
7	Hibiscus sabdariffa	Simaikkasuru	Malvaceae	NOT		
				Not		
8	Jatropha curcas	Kattukkottai	Euphorbiaceae	assessed		
				Not		
9	Lawsonia inermis	Maruthani	Lythraceae	assessed		
10		A na li	A	Not		
10	Nerium oleander	Arali	Apocynaceae	assessed		
11	Tecoma stans	Manjarali	Bignoniaceae	Not		
		Manjaran	Dignomaceae	assessed		
12	Vitex neaundo	Nochi	Verbenaceae	Not		
				assessed		
13	Sida cordifolia	Arivalmukku	Malvaceae	Not		
			Casalniniasa	assessed		
14	Cassia auriculata	Avaram	Caesalpiniace			
			ac	Not		
15	Azanza lampas	Kattupparutti	Malvaceae	assessed		
40		0	1	Not		
16	Cierodendrum inerme	Sangam	Lamiaceae	assessed		
17	Datura metel	Umathai	Solanaceae	Not		
17	Datura meter	Datura meter Umathal Solanacea				
		Herb & Grasses	I			
1	Abutilon indicum	Akatam	Malvaceae	Not		
				assessed		
2	Ageratum conyzoides	Aappakkoti	Asteraceae	INOL		
				Not		
3	Acalypha indica	Kuppai-meni	Euphorbiaceae	assessed		
				Not		
4	Solanum nigrum	Manathakkali	Solanaceae	assessed		
_	Til	Vettukkaava-		Not		
5	Tridax procumpens	thalai	Astraceae	assessed		
6	Cynodon daetylon		Poppop	Not		
0		Alugan pullu	гоасеае	assessed		
7	Cyperus rotundus	Panni-korai	Cyperaceae	Not		
				assessed		
8	Achyranthes aspera	Nayuruvi	Amaranthacea	Not .		
-	· · · · · · · · · · · · · · · · · · ·	,	е	assessed		

				IUCN
S.	Scientific Name	Local Name	Family	Conservatio
NO.				n Status
			Amaranthacea	Not
9	Aerva lanata	Ciru-pulai	e	assessed
			Ŭ	Not
10	Boerhavia diffusa	Mukaratte kirai	Nyctaginaceae	assessed
			Caesalniniace	Not
11	Cassia occidentalis	Pei- avarai	ae	assessed
				Not
12	Eclipta prostrata	Karisalanganni	Asteraceae	assessed
- 10		Amanpatchaiaris		Not
13	Euphorbia hirta	i	Euphorbiaceae	assessed
		- · ·	Caesalpiniace	Not
14	Cassia tora	Tagnrai	ae	assessed
45		Ka alawa II	Phyllanthacea	Not
15	Phylianthus amarus	Keelanelli	e	assessed
10	Bhuadia minima	Sodakkuthakkaa	Colonacaa	Not
10	Physalis minima	li	Solanaceae	assessed
17		Karupaaranai	Malyaaaaa	Not
17	Sida acula	Naturicataria	Malvaceae	assessed
10	Chloris harbata	Chowarakupul	Paacaaa	Not
10	Chions barbata	Chevvalakupul	FUACEAE	assessed
10	Vernonia cinerea	Puvamkuruntal	Asteração	Not
19	vernonia cinerea	Fuvanikuruntai	Asieraceae	assessed
20	Digera muricata Thoyya keerai		Amaranthacea	Not
20	Digera maneata	поууа кеста	е	assessed
21	Amaranthus spinosus	Mullukkeerai	Amaranthacea	Not
21		Wallakkeeral	е	assessed
22	Evolvulus alsinoides	Vishnukarandi	Convolvulacea	Not
		Violinakaranar	е	assessed
23	Mimosa pudica	Thottaccurungi	Fabaceae	Least
		Thotaooarangi	1 4640040	Concern
24	Ocimum sanctum	Thulasi	Lamiaceae	Not
			Lannaceae	assessed
		Climbers	1	
1	Bougainvillea	Kakitha poo	Nvctaginaceae	Not
	spectabilis			assessed
2	Clitoria ternatea	Sangu Poo	Fabaceae	Not
				assessed
3	Solena amplexicaulis	Pulivanci	Curcurbitaceae	Not
	, -			assessed
4	Abrus precatorius	Kundumani	Fabaceae	Not
				assessed
5	Coccinia grandis	Kovaikkaai	Cucurbitaceae	Not
5	Coccinia grandis			assessed

S. No.	Scientific Name	Local Name	Family	IUCN Conservatio n Status
6	Ichnocarpus frutescens	Utar-koti	Apocynaceae	Not assessed
7	Ipomoea dissecta	Kakkattan	Convolvulacea e	Not assessed
8	Ipomoea nil	Kotikkakkattan	Convolvulacea e	Not assessed
9	Ipomoea reptans	Vallaikkirai	Convolvulacea e	Not assessed
10	Basella rubra	Pasalakkirai	Basellaceae	Not assessed
11	Tylophora asthmatica	Kalutai-p-palai	Asclepidaceae	Not assessed

The detailed study revealed dominance of *Cocos nucifera, Azadirachta indica, Acacia auriculiformis, Cocos nucifera, Acacia catechu etc.* Totally 34 species of trees are found in the study area along with 17 shrub species, 24 herb species, 11 climers. From the study of core area, *Lantana camara, Calotropis gigantea, Capparis sepiaria, Nerium oleander, Datura metel* are found to be the predominant shrub species. Among the herbaceous species *Cynodon dactylon, Tridax procumbens, Cyperus rotundus, Boerhavia diffusa* etc. found to be abundant.

Phytosociological Analysis

Phytosociological parameters such as, density, frequency and importance value index of individual species were determined in randomly placed quadrats of different sizes in the study area. Relative frequency, relative basal area and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and seedlings, the IVI was calculated by summing up relative frequency, relative density and relative abundance.

Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process. Phytosociological analysis of tree species is shown in Table 3-31.

Table 3.30 Phytosociological Analysis Of Tree Species

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad with sp.	Total No. of quad	Density	Relative Density	Frequency %	Relative Frequency	Abundance	Relative Abundance	IVI
Tree Species																
1	Azadirachta indica	Veppai	1	2	1	2	6	4	4	1.50	6.32	100.0	4.5	1.50	0.06	10.92
2	Acacia auriculiformis	Katthisavukku	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
3	Cocos nucifera	Tennai	2	2	2	2	8	4	4	2.00	8.42	100.0	4.5	2.00	0.08	13.05
4	Acacia catechu	Cenkarungali	1	1	2	1	5	4	4	1.25	5.26	100.0	4.5	1.25	0.05	9.86
5	Borassus flabellifer	Nonkuppanai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
6	Syzygium cumini	Naval	1		1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
7	Phoenix sylvestris	Paereecham	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
8	Prosopis juliflora	Vaelikaruvai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
9	Tamarindus indica	Puli	1	1		1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
10	Acacia leucophloea	Velvelam	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
11	Acacia nilotica	Karuvel	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
12	Casuarina equisetifolia	Savukku	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
13	Albizia lebbeck	Siridam	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
14	Annona reticulata	Ramachita	1	1	1		3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
15	Bambusa arundinacea	Kulay-munkil	1			1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
16	Bauhinia racemosa	Atti	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
17	Murraya koenigii	Karivepillai	1		1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
18	Musa paradisiaca	Vaazhai	1	1		1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
19	Manilkara zapota	Sapota	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
20	Morinda tinctoria	Mannanunai		1	1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
21	Leucaena leucocephala	Subabul		1			1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
22	Madhuca longifolia	Illupei		1	1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad with sp.	Total No. of quad	Density	Relative Density	Frequency %	Relative	Abundance	Relative Abundance	IVI
23	Mangifera indica	Mamaram		1			1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
24	Psidium guajava	Segappu koyyaa			1	1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
25	Phoenix acaulis	Kaattu echam			1		1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
26	Cassia siamea	Manjalkonrai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
27	Ficus hispida	Peyatti		1			1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
28	Gmelina arborea	Kumalaamara m		1	1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
29	Tectona grandis	Thekku				1	1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
30	Terminalia catappa	Nattuvaduma			1		1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
31	Ziziphus jujuba	llanthai		1	1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
32	Ixora arborea	Koran			1		1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
33	Delonix regia	Cemmayir- konrai				1	1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
34	Cassia fistula	Appai				1	1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
	Total		21	23	27	24	95	88	136							
				-	Sh	rub S	pecies									
1	Lantana camara	Unnichedi	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
2	Calotropis gigantea	Erukku	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
3	Ziziphus nummularia	Narielandai	1	1		1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
4	Calotropis procera	Vellai Erukku	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
5	Capparis sepiaria	Kattukkattari	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
6	Euphorbia tirucalli	Amman- paccarici	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad with sp.	Total No. of quad	Density	Relative Density	Frequency %	Relative Frequency	Abundance	Relative Abundance	IVI
7	Hibiscus sabdariffa	Simaikkasuru	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
8	Jatropha curcas	Kattukkottai	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
9	Lawsonia inermis	Maruthani	1			1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
10	Nerium oleander	Arali	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
11	Tecoma stans	Manjarali	1			1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
12	Vitex negundo	Nochi			1	1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
13	Sida cordifolia	Arivalmukku		1			1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
14	Cassia auriculata	Avaram		1		1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
15	Azanza lampas	Kattupparutti		1		1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
16	Clerodendrum inerme	Sangam		1	1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
17	Datura metel	Umathai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
	Total		12	10	11	11	44	44	68						0.46	
					He	erb S	pecies									
1	Abutilon indicum	Akatam	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
2	Ageratum conyzoides	Aappakkoti	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
3	Acalypha indica	Kuppai-meni	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
4	Solanum nigrum	Manathakkali	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
5	Tridax procumbens	Vettukkaaya- thalai	1	2	1	2	6	4	4	1.50	6.32	100.0	4.5	1.50	0.06	10.92
6	Cynodon dactylon	Arugam pullu	4	4	3	3	14	4	4	3.50	14.74	100.0	4.5	3.50	0.15	19.43
7	Cyperus rotundus	Panni-korai	1	1	2	1	5	4	4	1.25	5.26	100.0	4.5	1.25	0.05	9.86
8	Achyranthes aspera	Nayuruvi	1	2	1		4	3	4	1.00	4.21	75.0	3.4	1.33	0.04	7.66
9	Aerva lanata	Ciru-pulai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad with sp.	Total No. of quad	Density	Relative Density	Frequency %	Relative Frequency	Abundance	Relative Abundance	IVI
10	Boerhavia diffusa	Mukaratte kirai	1	1	1	2	5	4	4	1.25	5.26	100.0	4.5	1.25	0.05	9.86
11	Cassia occidentalis	Pei- avarai	1	1	1	1	4	4	4	1.00	4.21	100.0	4.5	1.00	0.04	8.80
12	Eclipta prostrata	Karisalangan ni	1	1		1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
13	Euphorbia hirta	Amanpatchai arisi	1	1		1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
14	Cassia tora	Taghrai	1	1	1	2	5	4	4	1.25	5.26	100.0	4.5	1.25	0.05	9.86
15	Phyllanthus amarus	Keelanelli	1		1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
16	Physalis minima	Sodakkuthakk aali	1		1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
17	Sida acuta	Karuncaranai	1		1	1	3	3	4	0.75	3.16	75.0	3.4	1.00	0.03	6.60
18	Chloris barbata	Chevvarakup ul		1	1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
19	Vernonia cinerea	Puvamkurunt al		1		1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
20	Digera muricata	Thoyya keerai			1	1	2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
21	Amaranthus spinosus	Mullukkeerai	1				1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
22	Evolvulus alsinoides	Vishnukarandi			1		1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
23	Mimosa pudica	Thottaccurun gi				1	1	1	4	0.25	1.05	25.0	1.1	1.00	0.01	2.20
24	Ocimum sanctum	Thulasi		1	1		2	2	4	0.50	2.11	50.0	2.3	1.00	0.02	4.40
	Total		21	22	22	23	88	72	96						0.93	

The interpretation vegetation study results of the study area are presented in the following Table 3-32.

Relative density	Relative density is found to be maximum for <i>Cocos nucifera</i> about 8.42	Density of the primary species is found to be much higher in comparison with the other species.				
Relative frequency	Maximum RF found to be 4.5 in case of <i>Cocos nucifera.</i>	Vegetation community is heterogenous in nature				
Relative Abundance	Maximum value observed in case of <i>Cocos nucifera</i> about 0.08	<i>Cocos nucifera</i> the most common species found in the area.				
Importance Value Index (IVI)	The maximum IVI value observed in case of <i>Cocos nucifera</i> is about 13.05	The dominant species are <i>Cocos nucifera</i>				

Table 3.31 Interpretation of Vegetation Results in the Core Area

Biodiversity Indices

Biodiversity index is a quantitative measure that reflects how many different type of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species are equally abundant. Interpretation of Vegetation results in the study area is given in Table 3-33.

	Bi	odiversity indices	
Community	Shannon-Wiener Index (H)	Simpson Diversity Index (1/D)	Species Evenness
Tree	3.37	0.97	0.39
Shrub	1.64	0.95	0.29
Herb	2.84	0.95	0.40

From Table 3.33, it can be interpreted that tree community has higher diversity. While the shrub community shows less diversity. It is also observed that most of the quadrates have controlled generation of plant species with older strands. Higher tree species diversity can be interpreted as a greater number of successful species and a more stable ecosystem where more ecological niches are available and the environment is less likely to be hostile, environmental change is less likely to be damaging to the ecosystem as a whole.

3.10.6.8 Floral Community within Buffer Area

The project area covering 10 km radial distance reveal that there are no notified/ protected ecologically sensitive area including national park, sanctuary, Elephant and Tiger reserves in the project area covering 10 km radial distance. The results of survey within buffer area exhibited moderate vegetation with the existence of 211 terrestrial flora. However, Neem, Acacia and coconut trees are abundant widely distributed away

from the study area. The following species were encountered from the study area during the field visits as given in Table 3-34.

S.	Scientific Name	Local Name	Family	IUCN Conservatio				
No.		Local Mame	i anny	n Status				
		Tree Species						
1	Acacia auriculiformis	Katthisavukku	Mimosaceae	Not assessed				
2	Ailanthus excels	Perumaram	Simaroubacea e	Not assessed				
3	Albizia amara	Arappumaram	Fabaceae	Not assessed				
4	Albizia lebbeck	Siridam	Fabaceae	Not assessed				
5	Bombax ceiba	Sittan	Malvaceae	Not assessed				
6	Borassus flabellifer	Nonkuppanai	Arecaceae	Not assessed				
7	Bridelia retusa	Mullu-Vengai	Phyllanthacea e	Not assessed				
8	Buchanania lanzan	Charam	Anacardiaceae	Not assessed				
9	Butea monosperma	Palasam	Fabaceae	Not assessed				
10	Acacia catechu	Cenkarungali	Mimosaceae	Not assessed				
11	Acacia leucophloea	Velvelam	Fabaceae	Not assessed				
12	Acacia nilotica	Karuvel	Mimosaceae	Not assessed				
13	Aegle marmelos	Vilvam	Rutaceae	Near Threatened				
14	Carica papaya	Pappali	Caricaceae	Not assessed				
15	Ixora arborea	Koran	Rubiaceae	Not assessed				
16	Kydia calycina	Vattakannu	Malvaceae	Not assessed				
17	Annona reticulate	Ramachita	Annonaceae	Not assessed				
18	Artocarpus heterophyllus	Palaa	Moraceae	Not assessed				
19	Azadirachta indica	Veppai	Meliaceae	Least Concern				
20	Bambusa arundinacea	Kulay-munkil	Poaceae	Not assessed				
21	Bauhinia purpurea	Nilattiruvatti	Fabaceae	Not assessed				
22	Albizia saman	Thoongumoonji maram	Fabaceae	Not assessed				
23	Anacardium occidentale	Mundiri	Anacardiaceae	Not assessed				
24	Ficus benjamina	Vellal	Moraceae	Not assessed				
25	Ficus hispida	Peyatti	Moraceae	Not assessed				
26	Ficus racemosa	Atthi	Moraceae	Least Concern				
27	Ficus religiosa	Arasamaram	Moraceae	Not assessed				
28	Gardenia gummifera	Sirukkambil	Rubiaceae	Least Concern				

Table 3.33 FLORISTIC DIVERSITY IN THE BUFFER AREA

S.	Scientific Name Local Name		Family	IUCN Conservatio				
No.				n Status				
29	Gmelina arborea	Kumalaamaram	Lamiaceae	Least Concern				
30	Guazuma tomentosa	Kattu	Sterculiaceae	Least				
		Kaavalakkamara		Concern				
31	Drypetes sepiaria	m	Putranjivaceae	Not assessed				
32	Erythrina variegata	Kalyana murungai	Fabaceaae	Least Concern				
33	Eucalyptus Ieptophylla	Neelagiri thailam	Myrtaceae	Not assessed				
34	Ficus benghalensis	Alai	Moraceae	Not assessed				
35	Leucaena leucocephala	Subabul	Fabaceaae	Not assessed				
36	Moringa oleifera	Murungai	Moringaceae	Not assessed				
37	Morus alba	Kambli chedi	Moraceae	Not assessed				
38	Murraya koenigii	Karivepillai	Rutaceae	Not assessed				
39	Pongamia pinnata	Pungam	Fabaceaae	Least Concern				
40	Terminalia bellirica	Thandri	Combritaceae	Not assessed				
41	Wrightia tinctoria	Paalai	Apocynaceae	Not assessed				
42	Hibiscus tiliaceus	Nirpparutti	Malvaceae	Not assessed				
43	Bauhinia racemosa	Atti	Fabaceae	Not assessed				
44	Carissa carandas	Kalakkai	Apocynaceae	Not assessed				
45	Cassia fistula	Appai	Caesalpiniace ae	Least Concern				
46	Prosopis juliflora	Vaelikaruvai	Fabaceaae	Not assessed				
47	Psidium guajava	Segappu koyyaa	Myrtaceae	Least				
48	Mimusops elengi	Magizhamboo	Sapotaceae	Least				
				Least				
49	Terminalia catappa	Nattuvaduma	Combritaceae	Concern				
50	Terminalia chebula	Kadukkai	Combritaceae	Not assessed				
51	Terminalia tomentosa	Marutham	Combretaceae	Not assessed				
52	Trema orientalis	Yerralai	Ulmaceae	Not assessed				
53	Morinda citrifolia	Nuna	Rubiaceae	Not assessed				
54	Cassia siamea	Manjalkonrai	Fabaceae	Not assessed				
56	Catunaregam spinosa	Madkarai	Rubiaceae	Not assessed				
58	Cocos nucifera	Tennai	Arecaceae	Not assessed				
59	Dalbergia sissoo	Shisham	Fabaceae	Not assessed				

S. No.	Scientific Name	Local Name	Family	IUCN Conservatio n Status				
60	Delonix elata	Perungondrai	Fabaceae	Least Concern				
61	Delonix regia	Cemmayir-konrai	Fabaceae	Least Concern				
62	Diospyros chloroxylon	Karuvakkanai	Ebenaceae	Not assessed				
63	Diospyros ferrea	Irumbili	Ebenaceae	Not assessed				
64	Diospyros melanoxylon	Karundumbi	Ebenaceae	Not assessed				
65	Ziziphus jujuba	llanthai	Least Concern					
66	Ziziphus mauritiana	Elandhai	Rhamnaceae	Not assessed				
67	Prosopis cineraria	Vanni	Fabaceaae	Not assessed				
68	<i>Musa</i> paradisiaca	Vaazhai	Musaceae	Not assessed				
69	Neolamarckia cadamba	Vellaikkatampu	Rubiaceae	Not assessed				
70	Odina wodier	Oti	Anacardiaceae	Not assessed				
71	Sapindus emarginatus	Ponnankottai	Sapindaceae	Not assessed				
72	Limonia acidissima	Vilamaram	Rutaceae	Not assessed				
73	Madhuca longifolia	Illupei	Sapotaceae	Not assessed				
74	Mangifera indica	Mamaram	Anacardiaceae	Data Deficient				
75	Manilkara zapota	Sapota	Sapotaceae	Not assessed				
76	Melia azedarach	Kattu vembhu	Meliaceae	Not assessed				
77	Parkinsonia aculeata	Sinia tumana	Fabaceaae	Not assessed				
78	Phoenix acaulis	Kaattu echam	Arecaceae	Not assessed				
79	Phoenix sylvestris	Paereecham	Arecaceae	Not assessed				
81	Salvadora oleoides	Peru-kalarva	Salvadoraceae	Not assessed				
82	Mesua ferrea	Nagamaram	Calophyllacea e	Not assessed				
83	Phyllanthus emblica	Nelli	Euphorbiacea e	Least Concern				
84	Pithecellobium dulce	Kodukkappuli	Fabaceaae	Least Concern				
85	Plumeria rubra	Nela sampangi	Apocynaceae	Not assessed				
86	Polyalthia longifolia	Nettilinkam	Annonaceae	Not assessed				
87	Tecomella undulata	Malampuluvan	Bignoniaceae	Not assessed				
88	Tectona grandis	Thekku	Lamiaceae	Endangered				
89	Terminalia arjuna	Marutham	Combritaceae	Not assessed				
90	Morinda tinctoria	Mannanunai	Rubiaceae	Not assessed				
91	Sesbania sesban	Sithagathi	Fabaceae	Not assessed				

•				IUCN				
S.	Scientific Name Local Name		Family	Conservatio				
NO.				n Status				
92	Strychnos potatorum	Thethankottai	Loganiaceae	Not assessed				
93	Svzvajum cumini	Naval	Myrtaceae	Least				
	Gyzygiain oaniin		Mynaccac	Concern				
94	Tamarindus indica	Puli	Fabaceae	Not assessed				
		Shrub Species	1					
1	Ammannia baccifera	Kalluruvi	Lythraceae	Least Concern				
2	Annona squamosa	Sitapalam	Annonaceae	Not assessed				
3	Clerodendrum inerme	Sangam	Lamiaceae	Not assessed				
4	Datura metel	Umathai	Solanaceae	Not assessed				
5	Dodonaea viscosa	Virali	Virali Sapindaceae					
6	Thevetia peruviana	Ponnarali	Apocynaceae	Least Concern				
7	Vitex negundo	Nochi	Verbenaceae	Not assessed				
8	Xanthium strumarium	Marul-umattai	Asteraceae	Not assessed				
9	Ziziphus nummularia	Narielandai	Rhamnaceae	Not assessed				
10	Ziziphus oenoplia	Suraimullu	Rhamnaceae	Not assessed				
11	Hibiscus rosa- sinensis	Chemparuththi	Malvaceae	Not assessed				
12	Hibiscus sabdariffa	Simaikkasuru	Malvaceae	Not assessed				
13	Jatropha curcas	Kattukkottai	Euphorbiacea e	Not assessed				
14	Jatropha gossypiifolia	Siria Amanakku	Euphorbiacea e	Not assessed				
15	Euphorbia tirucalli	Amman-paccarici	Euphorbiacea e	Least Concern				
16	Glycosmis pentaphylla	Kattukkonci	Rutaceae	Not assessed				
17	Capparis decidua	Cirakkoli	Capparaceae	Not assessed				
18	Capparis sepiaria	Kattukkattari	Capparaceae	Not assessed				
19	Azanza lampas	Kattupparutti	Malvaceae	Not assessed				
20	Balanites aegyptiaca	Nanchundan	Zygophyllacea e	Not assessed				
21	Oxalis corniculata	Paliakiri	Oxalidaceae	Not assessed				
22	Parthenium hysterophorus	Vishachedi	Asteraceae	Not assessed				
23	Ricinus communis	Amanakku	Euphorbiacea e	Not assessed				
24	Sida cordifolia	Arivalmukku	Malvaceae	Not assessed				
25	Solanum incanum	Karimulli	Solanaceae	Not assessed				
26	Solanum torvum	Sundaikkai	Solanaceae	Not assessed				

S. No.	Scientific Name	Local Name	Family	IUCN Conservatio n Status				
27	Calotropis gigantea	Erukku	Asclepiadacea e	Not assessed				
28	Calotropis procera	Vellai Erukku	Asclepiadacea e	Not assessed				
29	Citrus limon	Elumicchai	Rutaceae	Not assessed				
30	Cassia auriculata	Avaram	Caesalpiniace ae	Not assessed				
31	Cereus pterogonus	Sippaai kathaalai	Cactaceae	Not assessed				
32	Lantana camara	Unnichedi	Verbenaceae	Not assessed				
33	Lawsonia inermis	Maruthani	Lythraceae	Not assessed				
34	Nerium oleander	Arali	Apocynaceae	Not assessed				
35	Ochna squarrosa	Kalkuruvi	Ochnaceae	Not assessed				
36	Tarenna asiatica	Tharani	Rubiaceae	Not assessed				
37	Tecoma stans	Manjarali	Bignoniaceae	Not assessed				
		Herb Species						
1	Abutilon indicum	Akatam	Malvaceae	Not assessed				
2	Acalypha indica	Kuppai-meni	Euphorbiacea e	Not assessed				
3	Achyranthes aspera	Nayuruvi	Amaranthacea e	Not assessed				
4	Acorus calamus	Vashambu	Acoraceae	Not assessed				
5	Aerva lanata	Ciru-pulai	Amaranthacea e	Not assessed				
6	Ageratum conyzoides	Aappakkoti	Asteraceae	Not assessed				
7	Argemone mexicana	Eliyotti	Papaveraceae	Not assessed				
8	Amaranthus spinosus	Mullukkeerai	Amaranthacea e	Not assessed				
9	Cyperus rotundus	Panni-korai	Cyperaceae	Not assessed				
10	Digera muricata	Thoyya keerai	Amaranthacea e	Not assessed				
11	Eclipta prostrata	Karisalanganni	Asteraceae	Not assessed				
12	Andrographis paniculata	Nilavempu	Acanthaceae	Not assessed				
13	Apluda mutica	Moongil pul	Poaceae	Not assessed				
14	Commelina benghalensis	Kanang-karai	Comllinaceae	Not assessed				
15	Cymbopogon citratus	Karppurappul	Poaceae	Not assessed				
16	Cynodon dactylon	Arugam pullu	Poaceae	Not assessed				
17	Cyperus exaltatus	Wara-pullu	Cyperaceae	Not assessed				
18	Aristida setacea	Thudaippam pul	Poaceae	Not assessed				
19	Asystasia gangetica	Miti-kirai	Acanthaceae	Not assessed				
20	Boerhavia diffusa	Mukaratte kirai	Nyctaginaceae	Not assessed				

				IUCN				
S. No	Scientific Name	Local Name	Family	Conservatio				
NO.				n Status				
21	Cassia occidentalis	Pei- avarai	Caesalpiniace	Not assessed				
			ae					
22	Cassia tora	Taghrai	Caesalpiniace ae	Not assessed				
23	Catharanthus roseus	Nithyakalyani	Apocynaceae	Not assessed				
24	Cenchrus biflorus	Kollukattai pul	Poaceae	Not assessed				
25	Chloris barbata	Chevvarakupul	Poaceae	Not assessed				
26	Coleus aromaticus	Karpurvalli	Lamiaceae	Not assessed				
27	Ocimum basilicum	Sweet basil	Lamiaceae	Not assessed				
28	Ocimum sanctum	Thulasi	Lamiaceae	Not assessed				
29	Leucas cephalotes	Thumbai	Lamiaceae	Not assessed				
30	Mimosa pudica	Thottaccurungi	Fabaceae	Least Concern				
31	Mirabilis jalapa	Andhi mandhaarai	Nyctaginaceae	Not assessed				
32	Momordica charantia	Pagarkkai	Cucurbitaceae	Not assessed				
33	Physalis minima	Sodakkuthakkaali	Solanaceae	Not assessed				
34	Oxalis corniculata	Pulivayilai	Oxalidaceae	Not assessed				
35	Parthenium hysterophorus	Gajar ghas	Asteraceae	Not assessed				
36	Phyla nodiflora	Poduthalai	Verbenaceae	Least Concern				
37	Phyllanthus amarus	Keelanelli	Phyllanthacea e	Not assessed				
38	Aloe vera	Katrazhai	Liliaceae	Not assessed				
39	Alternanthera sessilis	Ponnanganni	Amaranthacea e	Not assessed				
40	Amaranthus viridis	Kuppaikkirai	Amaranthacea e	Not assessed				
41	Solanum pubescens	Kaattu sundai kaai	Solanaceae	Not assessed				
42	Tephrosia purpurea	Kolinchi	Fabaceae	Not assessed				
43	Tribulus lanuginosus	Nerungi	Zygophyllacea e	Not assessed				
44	Trichodesma indicum	Kavizh-thumbai	Boraginaceae	Not assessed				
45	Tridax procumbens	Vettukkaaya- thalai	Astraceae	Not assessed				
46	Vernonia cinerea	Puvamkuruntal	Asteraceae	Not assessed				
47	Sida acuta	Karuncaranai	Malvaceae	Not assessed				
48	Sida rhombifolia	Chitramutti	Malvaceae	Not assessed				
49	Solanum nigrum	Manathakkali	Solanaceae	Not assessed				
50	Euphorbia hirta	Amanpatchaiarisi	Euphorbiacea e	Not assessed				

S. No.	Scientific Name	Local Name	Family	IUCN Conservatio n Status				
51	Evolvulus alsinoides	Vishnukarandi	Convolvulacea e	Not assessed				
52	Gomphrena globosa	Vadamalli	Amaranthacea e	Not assessed				
53	Hemidesmus indicus	Nannaari	Asclipadaceae	Not assessed				
54	Indigofera oblongifolia	Avuri	Fabaceae	Not assessed				
		Climbers						
1	Abrus precatorius	Kundumani	Fabaceae	Not assessed				
2	Aristolochia bracteolata	Aduthinnarppalai	Aristolochiace ae	Not assessed				
3	Bougainvillea spectabilis	Kakitha poo	Nyctaginaceae	Not assessed				
4	Cissus quadrangularis	Perandai	Vitaceae	Not assessed				
5	Citrullus colocynthis	Kumatti	Cucurbitaceae	Not assessed				
6	Luffa cylindrica	Peerkankai	Cucurbitaceae	Not assessed				
7	Pergularia daemia	Velipparuthi	Apocynaceae	Not assessed				
8	Pueraria tuberosa	Nilapoosani	Fabaceae	Not assessed				
9	Coccinia grandis	Kovaikkaai	Cucurbitaceae	Not assessed				
10	Cyclea peltata	Pon-mucuttai	Menispermace ae	Not assessed				
11	Clitoria ternatea	Sangu Poo	Fabaceae	Not assessed				
12	Ipomoea nil	Kotikkakkattan	Convolvulacea e	Not assessed				
13	Ipomoea obscura	Siruthalai	Convolvulacea e	Not assessed				
14	Ipomoea pes-caprae	Attukkal	Convolvulacea e	Not assessed				
15	lpomoea reptans	Vallaikkirai	Convolvulacea e	Not assessed				
16	Gloriosa superba	Sengandhal	Liliaceae	Not assessed				
17	Hemidesmus indicus	Nannari	Apocynaceae	Not assessed				
18	lchnocarpus frutescens	Utar-koti	Apocynaceae	Not assessed				
19	Ipomoea dissecta	Kakkattan	Convolvulacea e	Not assessed				
20	Basella rubra	Pasalakkirai	Basellaceae	Not assessed				
21	Solena amplexicaulis	Pulivanci	Curcurbitacea e	Not assessed				
22	Tragia involucrata	Kanchori	Euphorbiacea e	Not assessed				

S. No.	Scientific Name	Local Name	Family	IUCN Conservatio n Status
23	Trichosanthes cucumerina	Pudalankaai	Curcurbitacea e	Not assessed
24	Tylophora asthmatica	Kalutai-p-palai	Asclepidaceae	Not assessed
25	Tylophora indica	Nachchuruppam	Asclipedaceae	Not assessed
26	Tylophora asthmatica	Kalutai-p-palai	Asclepidaceae	Not assessed

The detailed study revealed dominance of *Cocos nucifera, Azadirachta indica, Acacia auriculiformis, Leucaena leucocephala, etc.* Totally 94 species of trees are found in the study area along with 37 shrub species, 54 herb species, 26 climers. From the study of core area, *Lantana camara, Calotropis gigantea, Calotropis procera, Hibiscus rosa-sinensis, Datura metel, Tecoma stans* are found to be the predominant shrub species. Among the herbaceous species *Cynodon dactylon, Tridax procumbens, Cyperus rotundus, Commelina benghalensis, Vernonia cinerea, Sida acuta, Digera muricata, Argemone Mexicana,* etc. found to be abundant.

Phytosociological Analysis

Phytosociological parameters such as, density, frequency and importance value index of individual species were determined in randomly placed quadrats of different sizes in the study area. Relative frequency, relative basal area and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and seedlings, the IVI was calculated by summing up relative frequency, relative density and relative abundance.

Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process. Phytosociological analysis of tree species is shown in Table 3-35.

Table 3.34 Phytosociological Analysis of Tree Species

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	M
	Tree Species															
1	Acacia auriculiformis	Katthisavukku	1	1	1	1	4	4	4	1.00	2.60	100.0	2.7	1.00	0.03	5.29
2	Ailanthus excelsa	Perumaram	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
3	Albizia amara	Arappumaram	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
4	Albizia lebbeck	Siridam	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
5	Bombax ceiba	Sittan	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
6	Borassus flabellifer	Nonkuppanai	1	1			2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
7	Bridelia retusa	Mullu-Vengai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
8	Buchanania lanzan	Charam		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
9	Butea monosperma	Palasam	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
10	Acacia catechu	Cenkarungali		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
11	Acacia leucophloea	Velvelam	1	1	1		3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
12	Acacia nilotica	Karuvel		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
13	Aegle marmelos	Vilvam	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
14	Carica papaya	Pappali		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
15	Ixora arborea	Koran	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
16	Kydia calycina	Vattakannu		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
17	Annona reticulata	Ramachita			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
18	Artocarpus heterophyllus	Palaa		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
19	Azadirachta indica	Veppai	1	1	2	1	5	4	4	1.25	3.25	100.0	2.7	1.25	0.03	5.95
20	Bambusa arundinacea	Kulay-munkil	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
21	Bauhinia purpurea	Nilattiruvatti		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
22	Albizia saman	Thoongumoonji maram	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
23	Anacardium occidentale	Mundiri		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
24	Ficus benjamina	Vellal			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	M
25	Ficus hispida	Peyatti	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
26	Ficus racemosa	Atthi		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
27	Ficus religiosa	Arasamaram		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
28	Gardenia gummifera	Sirukkambil				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
29	Gmelina arborea	Kumalaamaram		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
30	Guazuma tomentosa	Kattu Utharaksham	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
31	Drypetes sepiaria	Kaayalakkamaram		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
32	Erythrina variegata	Kalyana murungai			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
33	Eucalyptus leptophylla	Neelagiri thailam	1	1			2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
34	Ficus benghalensis	Alai		1	1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
35	Leucaena leucocephala	Subabul	1	1	1	1	4	4	4	1.00	2.60	100.0	2.7	1.00	0.03	5.29
36	Moringa oleifera	Murungai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
37	Morus alba	Kambli chedi			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
38	Murraya koenigii	Karivepillai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
39	Pongamia pinnata	Pungam			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
40	Terminalia bellirica	Thandri				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
41	Wrightia tinctoria	Paalai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
42	Hibiscus tiliaceus	Nirpparutti		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
43	Bauhinia racemosa	Atti			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
44	Carissa carandas	Kalakkai				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
45	Cassia fistula	Appai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
46	Prosopis juliflora	Vaelikaruvai		1	1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
47	Psidium guajava	Segappu koyyaa	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
48	Mimusops elengi	Magizhamboo		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
49	Terminalia catappa	Nattuvaduma			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
50	Terminalia chebula	Kadukkai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	Z
51	Terminalia tomentosa	Marutham	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
52	Trema orientalis	Yerralai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
53	Morinda citrifolia	Nuna			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
54	Cassia siamea	Manjalkonrai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
55	Catunaregam spinosa	Madkarai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
56	Cocos nucifera	Tennai	1	1	2	2	6	4	4	1.50	3.90	100.0	2.7	1.50	0.04	6.60
57	Dalbergia sissoo	Shisham			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
58	Delonix elata	Perungondrai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
59	Delonix regia	Cemmayir-konrai	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
60	Diospyros chloroxylon	Karuvakkanai			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
61	Diospyros ferrea	Irumbili		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
62	Diospyros melanoxylon	Karundumbi	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
63	Ziziphus jujuba	llanthai		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
64	Ziziphus mauritiana	Elandhai				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
65	Prosopis cineraria	Vanni	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
66	<i>Musa</i> paradisiaca	Vaazhai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
67	Neolamarckia cadamba	Vellaikkatampu		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
68	Odina wodier	Oti				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
69	Sapindus emarginatus	Ponnankottai			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
70	Limonia acidissima	Vilamaram	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
71	Madhuca longifolia	Illupei			1	1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
72	Mangifera indica	Mamaram		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
73	Manilkara zapota	Sapota	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
74	Melia azedarach	Kattu vembhu		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
75	Parkinsonia aculeata	Sinia tumana				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
76	Phoenix acaulis	Kaattu echam			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	Ā
77	Phoenix sylvestris	Paereecham	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
78	Salvadora oleoides	Peru-kalarva			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
79	Mesua ferrea	Nagamaram		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
80	Phyllanthus emblica	Nelli				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
81	Pithecellobium dulce	Kodukkappuli			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
82	Plumeria rubra	Nela sampangi	1	1			2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
83	Polyalthia longifolia	Nettilinkam			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
84	Tecomella undulata	Malampuluvan				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
85	Tectona grandis	Thekku		1		2	3	2	4	0.75	1.95	50.0	1.3	1.50	0.02	3.30
86	Terminalia arjuna	Marutham			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
87	Morinda tinctoria	Mannanunai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
88	Sesbania sesban	Sithagathi				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
89	Strychnos potatorum	Thethankottai	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
90	Syzygium cumini	Naval	1	1	1		3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
91	Tamarindus indica	Puli	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
	Total		34	42	46	32	154	150	364							
			-	Shr	ub S	pecie	S									
1	Ammannia baccifera	Kalluruvi	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
2	Annona squamosa	Sitapalam	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
3	Clerodendrum inerme	Sangam	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
4	Datura metel	Umathai	1	1	2	2	6	4	4	1.50	3.90	100.0	2.7	1.50	0.04	6.60
5	Dodonaea viscosa	Virali	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
6	Thevetia peruviana	Ponnarali		1			1	2	4	0.25	0.65	50.0	1.3	0.50	0.01	1.99
7	Vitex negundo	Nochi	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
8	Xanthium strumarium	Marul-umattai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
9	Ziziphus nummularia	Narielandai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	N
10	Ziziphus oenoplia	Suraimullu		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
11	Hibiscus rosa-sinensis	Chemparuththi	1		2	2	5	3	4	1.25	3.25	75.0	2.0	1.67	0.03	5.28
12	Hibiscus sabdariffa	Simaikkasuru		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
13	Jatropha curcas	Kattukkottai	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
14	Jatropha gossypiifolia	Siria Amanakku		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
15	Euphorbia tirucalli	Amman-paccarici	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
16	Glycosmis pentaphylla	Kattukkonci		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
17	Capparis decidua	Cirakkoli	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
18	Capparis sepiaria	Kattukkattari			1	1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
19	Azanza lampas	Kattupparutti		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
20	Balanites aegyptiaca	Nanchundan	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
21	Oxalis corniculata	Paliakiri	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
22	Parthenium hysterophorus	Vishachedi		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
23	Ricinus communis	Amanakku		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
24	Sida cordifolia	Arivalmukku	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
25	Solanum incanum	Karimulli		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
26	Solanum torvum	Sundaikkai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
27	Calotropis gigantea	Erukku	1	1	1	1	4	4	4	1.00	2.60	100.0	2.7	1.00	0.03	5.29
28	Calotropis procera	Vellai Erukku	1	2	1	1	5	4	4	1.25	3.25	100.0	2.7	1.25	0.03	5.95
29	Citrus limon	Elumicchai			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
30	Cassia auriculata	Avaram	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
31	Cereus pterogonus	Sippaai kathaalai	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
32	Lantana camara	Unnichedi	2	2	2	2	8	4	4	2.00	5.19	100.0	2.7	2.00	0.05	7.91
33	Lawsonia inermis	Maruthani		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
34	Nerium oleander	Arali		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
35	Ochna squarrosa	Kalkuruvi	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	Σ
36	Tarenna asiatica	Tharani		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
37	Tecoma stans	Manjarali	1	1	1	1	4	4	4	1.00	2.60	100.0	2.7	1.00	0.03	5.29
	Total		23	21	23	24	91	83	148						0.59	
				He	rb Sp	pecies	5	-		-						
1	Abutilon indicum	Akatam	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
2	Acalypha indica	Kuppai-meni	1	1			2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
3	Achyranthes aspera	Nayuruvi	1		1	1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
4	Acorus calamus	Vashambu	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
5	Aerva lanata	Ciru-pulai	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
6	Ageratum conyzoides	Aappakkoti	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
7	Argemone mexicana	Eliyotti	1	1	1	1	4	4	4	1.00	2.60	100.0	2.7	1.00	0.03	5.29
8	Amaranthus spinosus	Mullukkeerai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
9	Cyperus rotundus	Panni-korai		2	1	2	5	3	4	1.25	3.25	75.0	2.0	1.67	0.03	5.28
10	Digera muricata	Thoyya keerai	2	1		1	4	3	4	1.00	2.60	75.0	2.0	1.33	0.03	4.62
11	Eclipta prostrata	Karisalanganni		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
12	Andrographis paniculata	Nilavempu	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
13	Apluda mutica	Moongil pul	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
14	Commelina benghalensis	Kanang-karai	1	1	2	1	5	4	4	1.25	3.25	100.0	2.7	1.25	0.03	5.95
15	Cymbopogon citratus	Karppurappul		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
16	Cynodon dactylon	Arugam pullu	3	3	4	2	12	4	4	3.00	7.79	100.0	2.7	3.00	0.08	10.54
17	Cyperus exaltatus	Wara-pullu		2	2		4	2	4	1.00	2.60	50.0	1.3	2.00	0.03	3.96
18	Aristida setacea	Thudaippam pul	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
19	Asystasia gangetica	Miti-kirai		1	2		3	2	4	0.75	1.95	50.0	1.3	1.50	0.02	3.30
20	Boerhavia diffusa	Mukaratte kirai	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
21	Cassia occidentalis	Pei- avarai		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
22	Cassia tora	Taghrai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	M
23	Catharanthus roseus	Nithyakalyani		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
24	Cenchrus biflorus	Kollukattai pul				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
25	Chloris barbata	Chevvarakupul		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
26	Coleus aromaticus	Karpurvalli	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
27	Ocimum basilicum	Sweet basil		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
28	Ocimum sanctum	Thulasi			1	1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
29	Leucas cephalotes	Thumbai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
30	Mimosa pudica	Thottaccurungi		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
31	Mirabilis jalapa	Andhi mandhaarai			1	1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
32	Momordica charantia	Pagarkkai	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
33	Physalis minima	Sodakkuthakkaali		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
34	Oxalis corniculata	Pulivayilai	1			1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
35	Parthenium hysterophorus	Gajar ghas			1		1	4	4	0.25	0.65	100.0	2.7	0.25	0.01	3.32
36	Phyla nodiflora	Poduthalai		1		1	2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
37	Phyllanthus amarus	Keelanelli	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
38	Aloe vera	Katrazhai			2		2	1	4	0.50	1.30	25.0	0.7	2.00	0.01	1.98
39	Alternanthera sessilis	Ponnanganni		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
40	Amaranthus viridis	Kuppaikkirai	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
41	Solanum pubescens	Kaattu sundai kaai			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
42	Tephrosia purpurea	Kolinchi	1				1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
43	Tribulus lanuginosus	Nerungi			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
44	Trichodesma indicum	Kavizh-thumbai		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
45	Tridax procumbens	Vettukkaaya-thalai	2	2	2	3	9	4	4	2.25	5.84	100.0	2.7	2.25	0.06	8.57
46	Vernonia cinerea	Puvamkuruntal	1	2	1	1	5	4	4	1.25	3.25	100.0	2.7	1.25	0.03	5.95
47	Sida acuta	Karuncaranai	1		2	1	4	3	4	1.00	2.60	75.0	2.0	1.33	0.03	4.62
48	Sida rhombifolia	Chitramutti		2	1		3	2	4	0.75	1.95	50.0	1.3	1.50	0.02	3.30

S. No.	Scientific Name	Local Name	Q1	Q2	Q3	Q4	Total No.	Total no. of quad	Total No. of quad	Density	Relative Density	Frequen cy %	Relative	Abunda nce	Relative Abunda	Σ
49	Solanum nigrum	Manathakkali		1			1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
50	Euphorbia hirta	Amanpatchaiarisi	1	1		1	3	3	4	0.75	1.95	75.0	2.0	1.00	0.02	3.97
51	Evolvulus alsinoides	Vishnukarandi	1		1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
52	Gomphrena globosa	Vadamalli		1	1		2	2	4	0.50	1.30	50.0	1.3	1.00	0.01	2.65
53	Hemidesmus indicus	Nannaari				1	1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
54	Indigofera oblongifolia	Avuri			1		1	1	4	0.25	0.65	25.0	0.7	1.00	0.01	1.32
	Total		32	35	42	27	136	115	216						0.88	

The interpretation vegetation study results of the study area are presented in the following Table 3-36.

Relative density	Relative density is found to be maximum for <i>Cocos</i> <i>nucifera</i> about 3.9	Density of the primary species is found to be much higher in comparison with the other species.
Relative frequency	Maximum RF found to be 2.7 in case of <i>Cocos nucifera.</i>	Vegetation community is heterogenous in nature
Relative Abundance	Maximum value observed in case of <i>Cocos nucifera</i> about 0.04	<i>Cocos nucifera</i> the most common species found in the area.
Importance Value Index (IVI)	The maximum IVI value observed in case of <i>Cocos nucifera</i> is about 6.6	The dominant species are <i>Cocos nucifera</i>

Table 3.35 Interpretation of Vegetation Results in the Buffer Area

Biodiversity Indices

Biodiversity index is a quantitative measure that reflects how many different type of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species are equally abundant. Interpretation of Vegetation results in the study area is given in Table 3-37.

	В	iodiversity indices	
Community	Shannon-Wiener Index (H)	Simpson Diversity Index (1/D)	Species Evenness
Tree	4.38	0.99	0.29
Shrub	2.17	0.98	0.21
Herb	3.45	0.98	0.25

 Table 3.36 Interpretation of Vegetation results in the Core Area

From Table 3.37, it can be interpreted that tree community has higher diversity. While the shrub community shows less diversity. It is also observed that most of the quadrates have controlled generation of plant species with older strands. Higher tree species diversity can be interpreted as a greater number of successful species and a more stable ecosystem where more ecological niches are available and the environment is less likely to be hostile, environmental change is less likely to be damaging to the ecosystem as a whole.

3.10.6.9 Economically important Flora of the study area

Agricultural crops: Major crops cultivated in the study area are coconut trees, fruit crops like mango, banana, jack and aonla, vegetables like tomato, brinjal, bhendi and tapioca, spices and plantation crops like areca nut and cashew and flowers like jasmine, pitchi and crossandra.

Medicinal plant species: The nearby area is also endowed with the several medicinal plants which are commonly available in the shrubs and waste lands. The common medicinal plants of the region are *Azadirachta indica* (Neem), *Withania somnifera,* etc.

3.10.6.10 Faunal Communities

Both direct (sighting) and indirect (evidences) observations methods were used to survey the faunal species around the study area. Additionally, reference of relevant literatures (published/ unpublished) and dialogues with local villagers were also carried out to consolidate the presence of faunal distribution in the area (*Smith 1933-43, Ali and Ripley 1983, Daniel 1983, Prater 1993, Murthy and Chandrasekhar 1988).*

Mammals: No wild mammalian species was directly sighted during the field survey. But conversation with local villagers around the study area confirm presence of some wild animal in that area. Bonnet Macaque, Common Grey Langur, Five striped squirrel, Three stripped Palm Squirrel, Nilgai, Short nosed fruit bat, Chital, Large bandicoot Rat, Indian Grey Mongoose, Indian Field Mouse, Indian Hare, Common house Rat, Indian Crested Porcupine, Small India civet, House Shrew, Common otter, Home mouse, Indian Wild Boar, Indian Fox, Mole rat etc. were observed during primary survey. No Schedule 1 Mammals recorded within study area.

Avifauna: Since birds are considered to be the indicators for monitoring and understanding human impacts on ecological systems (*Lawton, 199*6) attempt was made to gather quantitative data on the avifauna by walk through survey within the entire study area and surrounding areas. From the primary survey, a total of 81 species of avifauna were identified and recorded in the study area. The diversity of avifauna from this region was found to be quite high and encouraging.

Others: The tree lizard and common garden lizards are also seen. Variety of butterflies (like Bright babul blue, Common Pierrot, Forget-me-not, Indian Sunbeam, Common tiger, Red-spot Jezebel, Common crow, Small Grass Yellow, Green-spotted triangle, Common Banded Awl, Great Eggfly, Danaid eggfly, Chestnut Bob, Common bushbrown, Common sailor, Crimson rose, Lime butterfly, Common Mormon, Indian Skipper, Indian Palm Bob, Southern birdwing, Dark Grass Blue) is spotted in abundance in the study zone.

List of animals present in the study area are given in Table 3-38.

Table 3.37Fauna Recorded from the Primary Survey in the Study Area and theirConservation Status

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
		Mammals			
1	Semnopithecus entellus	Common Grey Langur	II	Least Concern	DS
2	Funambulus pennantii	Five striped squirrel		Least Concern	DS
3	Funambulus palmarum	Three stripped Palm Squirrel		Least Concern	DS
4	Boselaphus tragocamelus	Nilgai	Appendix III	Least Concern	DS
5	Canis aurens	Jackal	Appendix III	Least Concern	NS
6	Cynopterus sphinx	Short nosed fruit bat		Least Concern	DS
7	Axis axis	Chital	II	Least Concern	DS
8	Bandicota indica	Large bandicoot Rat		Least Concern	DS
9	Herpestes edwardsii	Indian Grey Mongoose	Appendix III	Least Concern	DS
10	Mus booduga	Indian Field Mouse		Least Concern	DS
11	Lepus nigricollis	Indian Hare	II	Least Concern	DS
12	Rattus rattus	Common house Rat		Least Concern	DS
13	Viverricula indica	Small India civet	Appendix III	Least Concern	DS
14	Suncus murinus	House Shrew		Least Concern	DS
15	Mus musculus	Home mouse		Least Concern	DS
16	Sus scrofa	Indian Wild Boar	II	Least Concern	NS
17	Vulpes bengalensis	Indian Fox	Appendix III	Least Concern	NS
18	Bandicota bengalensis	Mole rat		Least Concern	DS
		Birds			
1	Acridotheres tristis	Common myna	II	Least Concern	DS
2	Ardeola grayii	Pond heron	II	Least Concern	DS
3	Artamus fuscus	Ashy swallow shrike	II	Least Concern	DS
4	Athene brama	Southern Spotted owlet	II	Least Concern	DS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
5	Bubulcus ibis	Cattle egret	II	Least Concern	DS
6	Centropus sinensis	Crow pheasant	II	Least Concern	DS
7	Ceryle rudis	Pied Kingfisher	П	Least Concern	DS
8	Charadrius dubius	Little ringed plover	II	Least Concern	DS
9	Charadrius leschenaultii	Large sand plover	II	Least Concern	DS
10	Chlidonias hybrida	Indian whiskered tern	II	Least Concern	DS
11	Acrocephalus dumetorum	Blyth's reed warbler	II	Least Concern	DS
12	Alcedo atthis	Small blue kingfisher	II	Least Concern	DS
13	Amaurornis phoenicurus	White-breasted waterhen	II	Least	DS
14	Anas poecilorhyncha	Indian spot-billed duck	II	Least	DS
15	Anastomus oscitans	Asian open billed stork	II	Least	DS
16	Anthus hodgsoni	Tree pipit	11	Least	DS
17	Apus apus	Common swift	II	Least	DS
18	Ardea alba	Large egret	II	Least	DS
19	Ardea cinerea	Grey heron	II	Least	DS
20	Ardea intermedia	Intermediate egret	II	Least	DS
21	Ardea purpurea	Purple heron	II	Least Concern	DS
22	Columba livia	Blue rock pigeon		Least	DS
23	Cuculus canorus	Cuckoo	II	Least	DS
24	Cuculus micropterus	Indian cuckoo	II	Least Concern	DS
25	Dendrocitta leucogastra	Southern tree pie	II	Least	DS
26	Elanus caeruleus	Black-winged Kite	II	Least	DS
27	Eudynamys scolopaceus	Indian koel	11	Least	DS
28	Ficedula albicilla	Red-throated flycatcher	11	Least	DS
29	Francolinus pondicerianus	Grey Francolin	11	Least Concern	DS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
30	Gallinula chloropus	Common Moorhen	II	Least Concern	DS
31	Dicaeum agile	Thick-billed flowerpecker	II	Least Concern	DS
32	Dicrurus adsimilis	Fork-tailed drongo	II	Least Concern	DS
33	Coracias benghalensis	South Indian roller	Ш	Least Concern	DS
34	Corvus macrorhynchos	Indian jungle crow	Ш	Least Concern	DS
35	Corvus splendens	House crow		Least Concern	DS
36	Dicrurus macrocercus	Black drongo	II	Least Concern	DS
37	Dryocopus javensis	Great black woodpecker	II	Least Concern	DS
38	Ducula aenea	Green imperial pigeon	II	Least Concern	DS
39	Egretta garzetta	Little egret	II	Least Concern	DS
40	Egretta intermedia	Intermediate egret	II	Least Concern	DS
41	Nectarinia minima	Small sunbird	II	Least Concern	DS
42	Nectarinia zeylonica	Indian Purple rumped sunbird	II	Least Concern	DS
43	Milvus migrans	Common pariah kite	Ш	Least Concern	DS
44	Oriolus chinensis	Black naped oriole	Ш	Least Concern	DS
45	Hirundo rustica	Common eastern swallow	II	Least Concern	DS
46	Hydrophasianus chirurgus	Pheasant-tailed Jacana	II	Least Concern	DS
47	Lanius cristatus	Brown shrike	II	Least Concern	DS
48	Lanius schach	Long-tailed Shrike	II	Least Concern	DS
49	Megalaima zeylanica	Brown-headed barbet	II	Least Concern	DS
50	Merops orientalis	Small green bee-eater	II	Least Concern	DS
51	Tringa ochropus	Green sandpiper	II	Least Concern	DS
52	Gallus sonneratii	Grey jungle fowl	Appendix II	Least Concern	DS
53	Monticola solitarius	Blue rock thrush	II	Least Concern	DS
54	Nectarinia asiatica	Purple sunbird	II	Least Concern	DS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
55	Nectarinia lotenia	Loten's sunbird	II	Least Concern	DS
56	Turdoides caudatus	Common babbler	II	Least Concern	DS
57	Turdoides striatus	Jungle Babbler	II	Least Concern	DS
58	Vanellus indicus	Red-wattled lapwing	II	Least Concern	DS
59	Pycnonotus cafer	Red-vented bulbul	11	Least Concern	DS
60	Saxicoloides fulicata	Indian robin	11	Least Concern	DS
61	Nycticorax nycticorax	Night heron	II	Least Concern	DS
62	Halcyon smyrnensis	White-breasted kingfisher	II	Least Concern	DS
63	Streptopelia chinensis	Spotted dove	II	Least Concern	DS
64	Surniculus lugubris	Drongo Cuckoo	II	Least Concern	DS
65	Tachybaptus ruficollis	Little grebe	II	Least Concern	DS
66	Oriolus oriolus	Golden oriole	II	Least Concern	DS
67	Orthotomus sutorius	Tailor bird	II	Least Concern	DS
68	Parus major	Great Tit	II	Least Concern	DS
69	Pellorneum ruficeps	Spotted babbler	II	Least Concern	DS
70	Perdicula asiatica	Jungle bush quail	II	Least Concern	DS
71	Phalacrocorax niger	Little cormorant	II	Least Concern	DS
72	Pitta brachyura	Indian pitta	II	Least Concern	DS
73	Ploceus philippinus	Baya weaver bird	11	Least Concern	DS
74	Pluvialis squatarola	Grey plover	II	Least Concern	DS
75	Psittacula krameri	Rose-ringed parakeet	11	Least Concern	DS
76	Tephrodornis pondicerianus	Common wood shrike	11	Least Concern	DS
77	Tringa glareola	Spotted sandpiper	11	Least Concern	DS
78	Tringa hypoleucos	Common sandpiper	Ш	Least Concern	DS
		Reptiles & Amphibian	S		

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
1	Ahaetulla nasuta	Green whip snake		Least Concern	DS
2	Boiga dightoni	Pirmad Cat Snake		Not assessed	DS
3	Bungarus caeruleus	Common krait		Not assessed	DS
4	Naja naja	Common cobra	Appendix II	Not assessed	NS
5	Macropisthodon plumbicolor	Green keel back		Not assessed	NS
6	Calotes rouxii	Roux's forest lizard		Least Concern	DS
7	Calotes versicolor	Common Garden Lizard		Least Concern	NS
8	Cnemaspis littoralis	Coastal day gecko		Data Deficient	NS
9	Hemidactylus flaviviridis	House Gecko		Not assessed	DS
10	Hemidactylus frenatus	Common house gecko		Least Concern	DS
11	Hemidactylus giganteus	Giant Gecko		Least Concern	DS
12	Polypedates maculatus	Tree frog		Least Concern	NS
13	Duttaphrynus melanostictus	Common toads		Least Concern	DS
14	Euphlyctis cyanophlyctis	Skipper frog	II	Least Concern	DS
		Butterflies			
1	Azanus ubaldus	Bright babul blue		Not assessed	DS
2	Castalius rosimon	Common Pierrot		Not assessed	DS
3	Catochrysops strabo	Forget-me-not		Not assessed	DS
4	Curetis thetis	Indian Sunbeam		Not assessed	DS
5	Danaus genutia	Common tiger		Not assessed	DS
6	Delias descombesi	Red-spot Jezebel		Not assessed	DS
7	Euploea core	Common crow		Least Concern	DS
8	Eurema brigitta	Small Grass Yellow		Not assessed	DS
9	Graphium agamemnon	Green-spotted triangle		Not assessed	DS
10	Hasora chromus	Common Banded Awl		Not assessed	DS
11	Hypolimnas bolina	Great Eggfly		Not assessed	DS
12	Hypolimnas misippus	Danaid eggfly		Least Concern	DS
13	lambrix salsala	Chestnut Bob		Not assessed	DS
14	Mycalesis perseus	Common bushbrown		Not assessed	DS
15	Neptis hylas	Common sailor		Not assessed	DS
16	Pachliopta hector	Crimson rose		Not assessed	DS
17	Papilio demoleus	Lime butterfly		Not assessed	DS
18	Papilio polytes	Common mormon		Not assessed	DS
19	Spialia galba	Indian Skipper		Not assessed	DS

S. No.	Scientific Name	English Name	Schedule of Wildlife Protection Act	Status as per IUCN Red Data List	Method
20	Suastus gremius	Indian Palm Bob		Not assessed	DS
21	Troides minos	Southern birdwing		Least Concern	DS
22	Zizeeria karsandra	Dark Grass Blue		Least Concern	DS

From the above diagramme, it is evident that avifauna found to be abundant (55%) within the study area and less number of mammals (26%) and reptiles/amphibians (11%) observed during field study.

Apart from agriculture locals of the villages were involved in livestock keeping and each of the individual had a substantial number of cattle. Livestock like cattle, goat, poultry, duck are reared for dairy products, meat, egg and for agriculture purpose. Majority of cattle are of local variety. Backyard poultry farms are mostly common in this area; however, some commercial poultry farms are also recorded in the study area.

None of the sighted animal species can be assigned endemic species category of the study area. The study area is marked with moderate population of flora and fauna. With reference to the Wildlife Protection Act 1972 (Last Updated 1-4-2023) total number of wildlife tabulated in this study can be characterized as given in the Table 3-39.

S. No.	Schedule of Wildlife Protection Act 1972	No. of species	Remark
1	Schedule I	0	-
2	Schedule II	80	-
3	Appendix I	0	-
4	Appendix II	2	-
5	Appendix III	5	-

Table 3.38 Characterization of Fauna In The Study Area (As Per W.P Act, 1972; Last Updated 1-4-2023)

The detailed interpretation of flora and fauna identified within 10 km radius of the project site are tabulated in Table 3-40.

Table 3.39 Description of Flora and Fauna

S. No.	Type of Species	Scientific Name	Common Name
		Flora	
1	Endengered energies	Tectona grandis	Thekku
1	Endangered species	Borassus flabellifer	Nonkuppanai
2	Threatened species	None	-
3	Near Threatened species	Aegle marmelos	Vilvam
4	Vulnerable species	None	-
		Fauna	
1	Endangered species	None	-
2	Threatened species	None	-

S. No.	Type of Species	Scientific Name	Common Name
3	Near Threatened species	Lutra lutra	Common otter
4	Vulnerable species	None	-
5	Migratory Corridors & Flight Paths	No corridors & flight paths	-
6	Breeding & Spawning grounds	None	-

A comprehensive Central Legislation namely Wild Life (Protection) Act was enforced in 1972 to provide protection to wild animals. Schedule-I of this act contains the list of rare and endangered species, which are completely protected throughout the country. The list of faunal species and their conservation status as per Wild Life Protection Act 1972 (Last Updated 1-4-2023) presented in Table 3-39 reveals that 80 species belongs to Schedule-II, 2 species belongs to Appendix-II and 5 species belongs to Appendix-III.

3.10.7 Marine Environment

3.10.7.1 Bed Sediment Quality

Sediment samples were collected from 10 locations within 10 Km radius of the project site and securely sealed for further analysis. The location of the sediment collection given in following Table 3-41.

Location	Geographic	cal location
Code	Latitude	Longitude
MS1	08°15'23.20"N	77° 07'27.67E
MS2	08°11'41.83"N	77° 12'13.46 E
MS3	08°16'39.78"N	77° 04'25.12E
MS4	08°13'49.34"N	77° 07'54.26"E
MS5	08°12'22.61"N	77° 09'49.30"E
MS6	08°09'14.27"N	77° 14'11.88"E
MS7	08°14'51.11"N	77° 04'34.30"E
MS8	08°13'39.67"N	77° 06'19.54"E
MS9	08°11'13.81"N	77° 09'21.90"E
MS10	08°09'14.14"N	77° 12'13.42"E

Table 3.40 Bed sediment sampling locations

3.10.7.2 Results & Observations

The collected Marine sediment samples were analyzed and results of sediment analysis are given in Table 3.42.

- **PH**: The pH value of all Marine sediment samples ranges from 7.68 to 8.15.
- > **Texture:** Texture is clay and silty clay for all the samples.
- Total Organic Carbon: Total Organic Carbon content in Marine sediment samples ranges from 2.74 to 5.22 %.
- Phosphorus: Phosphorus content in Marine sediment samples ranges from 148 to 334 mg/kg.

- > Iron: Iron content in Marine sediment samples ranges from 378 to 612 mg/kg.
- > **Zinc:** Zinc content in Marine sediment samples ranges from 64 to 114 mg/kg.
- Manganese: Manganese content in Marine sediment samples ranges from 84 to 216 mg/kg.

Cadmium, Nickel, Mercury, Selenium, Total Arsenic, Total Petroleum Hydrocarbon in all IT sediment samples were found below detection limit (BDL).

Figure 3.26 Sampling Locations

N	BC Techno Labs		ASC TOWER #40 Ambia Ph : +91-44-2 Email: lab@at	3, 13th Streat, 5 tor, Chennai - 0 625 7788 / 99, actechnolab.co	8DCO industrial 800 098, Tamilio +91 94442 600 m / Web. www.	l Estate - North adu, INDIA. IOQ / 95661 877 abctechnolob.c	Phase,
	(An ISH) : 9001.3	SO 14	001, 15O + H5Ø0	1 & 150 - 320	00 Centified C	Tempony) Rec	egnited by MoEF&CC
				TEST	REPORT		
(res	a to: The Gene IREL Ind Departme Manavala	ral Man ia Limit nt of At kurichi,	ager and Head ed omic Energy Kanyakumari I	District.			
ži÷r	ort number	To D	ABCTL/JREL/	EIA/2022/1	2/MS1-MS10)	
an	nple Drawn by	2	ABC Techno L	abs India Pri	vate Limited		
San	npling method	1	APHA 23rd Ed	tion			
an	nple description	14	Marine Sedim	ent Analysis		A MARINE	B Decommentantheory
Project Name		14	Mining of Atom Ezhodesam -A, district, Tamil M	ic Minerals at B & C and Kol ladu	Recode A & B \	u -n. sudalam Villages of Kill	iyoor Taluk in Kanniyakumari
Dut	e of sampling	ΠŒ.	15-12-2022	Infinition.			
Dat	e of Receipt	1	17-12-2022	_		_	
Dist	e of Analysis	14	18-12-2022			_	thread and a
ler	port date	1 11 11 11 11	28-12-2022	1'41 DT"N 77	12'53 A6 F	MS1-089163	9 78"N 77" 04'25 12E
NS NS	4- 08°13'49 34"N 77	07:54	26E	* 41.00 Pt.77	10.17.00.01	100 103	
				Re	ults		and a sub-strate state
in .	Parameter	Unit	M31	MSZ	MS3	MS4	Test procedure
1	pH	±1	7.68	7.87	7.93	8.11	IS-2720(Part 26)1987(RA 2021)
2	Texture	94	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Robinson Pipette Method
3	Total Organic Carbon as C	36	3.11	2.74	3,18	3.48	15 2720 (Part 22):1972 (RA 2020)
4	Phosphorous an	mg/kg	170	148	164	202	EPA 3050 B & FAO Chapter 3/ ABCTL/SOIL SOP02
5	Iron as Fe	mg/kg	438	511	378	456	USEPA 3050B & USEPA 7000B
6	Zinc an Zn	mg/kg	72	96	69	102	USEPA 3050B & USEPA 7000B
7	Manganese as Mn	mg/kg	132	84	118	148	USEPA 3050B & USEPA 7000B
0	Lead as Pb	mg/kg	4.78	6.32	7.13	0.11	USEPA 30508 & USEPA 70008
9	Cadmium as Cd	thE/ki	(BDL(<2)	HUL(<2)	107	15.9	USEPA 30508 & USEPA 70000
0	Chromium as Cr	mg/kt	DDV (= 20	13.1	100	100	USEPA 30508 & USEPA 70008
14	NERGEASINE	mg/xg	S BUL(<k)< td=""><td>nuu(<4)</td><td>DIA(54)</td><td>and and</td><td>DEEDA 3050B & DEEDA 7000B</td></k)<>	nuu(<4)	DIA(54)	and and	DEEDA 3050B & DEEDA 7000B
1	Copper as Cu	mg/kj	20,6	255.9	34.8	91.0	HERBA SOCRE & HEEDA 74710
1	Mercury as Hg	mg/kg	BDL(<1)	BDL(<1)	BDL(<1)	nnr(<1)	USERA SUSUB & USERA 74715
1 2 3	Selenium as Se	mg/)q	(BDL(<2)	BDL(<2)	BDL(<2)	BDL(<2)	USEPA 3050B & USEPA 7000B
1 2 3 4	As	mg/kg	BDL(<z)< td=""><td>BDL(<2)</td><td>BDL(<2)</td><td>BDL(<2)</td><td>USEPA 3050B & USEPA 7000B</td></z)<>	BDL(<2)	BDL(<2)	BDL(<2)	USEPA 3050B & USEPA 7000B
1 2 3 4 5	Total Petroleum	mg/lq	BDL (<0.05)	BDL (<0.05)	801.	8DL (<0.05)	ABCTL/INS/SOP/31
1 2 3 4 5 6	Hydrocarbon	Limit				a sea e cartera	Contd
1 2 3 4 5 6	Hydrocarbon DL - Below Detection		CHHO L				J. Q.J.L. A. Robson Chinnadurai
11 12 13 14 15 16 8	Hydrocarbon DL - Below Detection S.Dharani Quality Manager	, in the second s		9 L	田台		Technical Manager

VEST RE VEST R	Conflied C PORT MS1-MS10 e Limited Keezhmida encode A & I Nadu '11.88E, M ts MS7 7.94	amony Re alam - A. Mi 28 Villages (S7- 08°14'5 MS8	dalamB, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11°N, 77° 04'34.30E Test procedure
VEST RE U22/12/M lla Privata dysis terals at y and Kolle ict, Tamil N, 77" 14" Result MS6 7.71 Jay	PORT MS1-MS20 e Limited Encode A 8 I Nadu '11.88E, M ts MS7 7.94	ilam – A. Mi 28 Villages (S7- 08°14'5 MS8	dalam -B, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11°N, 77° 04'34.30E Test procedure
122/12/M lla Privats dysis terals at 9 and Kolle ict, Tamil 'N, 77" 14 Resalt MS6 7.71 Jay	VISI-MS10 e Limited Keezhmida encode A 8 i Nadu '11.88E, M ts MS7 7.94	ilam – A. Mi 28 Villages (S7- 08°14°5 MS8	dalamB, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11"N, 77° 04'34.30E Test procedure
lla Privata lysis terals at k and Kolle ict, Tamil 'N, 77" 14' <u>Resalt</u> MS6 7,71 Jay	e Limited Keezhmida encode A 8 i Nadu '11.88E, M ts MS7 7.94	ilam – A, Mi 28 Villages S7- 08°14'5 MS8	dalamB, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11°N, 77° 04'34.30E Test procedure
lysis and Kolle ict, Tamil 'N, 77" 14' <u>Resalt</u> MS6 7.71 Jay	Keezhmida encode A 8 i Nadu '11.88E, M ts MS7 7.94	alam – A. Mi 28 Villages S7- 08°14'5 MS8	dalam -B, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11°N, 77° 04'34.30E Test procedure
lysis terals at y and Kolle ict, Tamil 'N, 77" 14' <u>Resalt</u> MS6 7,71 Jay	Keezhmida encode A 8 I Nadu "11.88E, M ts MS7 7.94	ilam – A. Mi 28 Villages S7- 08°14'5 MS8	dalam -B, Enayamputhenthurai, of Killiyoor Taluk in Page 2 of 3 1.11°N, 77° 04'34.30E Test procedure
N, 77" 14 Result MS6 7.71 Jay	recode A 8 i Nadu '11.88E, M ts MS7 7.94	MS8 MS8	Page 2 of 3 1.11"N, 77" 04'34.30E Test procedure
N, 77" 14 Resalt MS6 7.71 Day	*11.88E, M ts MS7 7.94	\$7- 08°14'5 M\$8	Page 2 of 3 1.11"N, 77" 04'34.30E Test procedure
"N, 77" 14 Result MS6 7.71 Day	*11.88E, M ts MS7 7.94	\$7- 08°14'5 M\$8	Page 2 of 3 1.11"N, 77" 04'34.30E Test procedure
N, 77" 14 Result MS6 7.71 Day	'11.88E, M3 ts MS7 7.94	\$7- 08°14'5 MS8	Page 2 of 3 1.11"N, 77" 04'34.30E Test procedure
N, 77" 14 Result MS6 7.71 Day	11.88E, M ts MS7 7.94	87- 08°14'5 M58	1.11"N, 77" 04'34.30E Test procedure
Result MS6 7.71 Jlay	ts MS7 7.94	M58	Test procedure
Resalt MS6 7.71 Day	ts MS7 7.94	MS8	Test procedure
7.71 Ilay	7.94		
llay.	the second se	8.06	IS -2720 (Part 26) 1987 (RA 2021)
	Clay	Clay	Robinson Pipetta Method
613	5:07	4.71	IS 2720 (Part 22):1972 (RA 2020)
278	362	264	ABCTL/SOIL SOP02
396	451	612	USEPA 30508 & USEPA 70008
104	91	64	USEPA 3050B & USEPA 7000B
216	168	152	USEPA 3050B & USEPA 7000B
5,08	4.11	6.36	USEPA 30S0B & USEPA 7000B
L(<2)	BDF(<\$)	BDL(<2)	USEPA 3050B & USEPA 7000B
11000	11.0	ROLLET	USEPA 30508 & USEPA 70008
4(52)	put(<2)	pun(<2)	UCCUA 200201 E UCCUA 2000B
1.0	42	31.9	USERA JOSAD & USERA TOUGE
u(<1)	RDF(<1)	801(<1)	USBPA 3050B & USEPA 7471B
L(<z)< td=""><td>RDF(<3)</td><td>BDL(<2)</td><td>USEPA 30508 & USEPA 70008</td></z)<>	RDF(<3)	BDL(<2)	USEPA 30508 & USEPA 70008
L(<2)	BDL(<2)	B0L(<2)	USEPA 3050B & USEPA 7000B
0.05)	(<0.05)	(<0.05)	ABCTL/INS/SOP/31
	78 96 04 16 008 (<2) 7.1 .(<2) 3.6 .(<1) .(<2) .(<2) 0L. 0.05)	78 302 96 451 04 91 16 168 08 4.11 (<2)	78 302 264 96 451 612 04 91 64 16 168 152 08 4.11 6.36 (<2)

-	Dealing Consequentian	0.14	Lo	nail: lab@abctechno	lab.com / Web: ww	wabstechnolab.com			
	Interior Town In	Sellina	Sectors.	PM LITENCI SKIPA		Construction of the second s			
UED	TO The Group	d Mar	-	und Hand	EST REPORT				
	IREL India Departmen	Limit	ted	Energy					
	Manavalax	uncai	Kany	acompri District.					
tepu	ortnumber	1.	ABCI	L/IREL/EIA/20	22/12/MS1-MS1	0			
ami	ple brawn by	10	APH	2 2 3 of Edition	a Private Limite	a			
am	ple description	11	Marin	e Sediment Anal	ysis				
ruje	ect Name	382	Miniu Ezhu	ng of Atomic Min desam ~A,B & Ca	erals at Keezhmi ind Kollencode A	dalam -A, Midalam -B, Enayamputhenthurai, 1 &B Villages of Killiyoor Taluk in			
late	of sampling	: 15-12-2022							
late	of Receipt	1	17-1	2-2022					
ate	of Analysis	1.1	1 18-12-2022						
tepo	ort date	t 29-12-2022 Page 3 of 3							
(S9-	08*11*13.81"N, 77" 0	19721.5	90E, M	1510-08"09'14.14	"N, 77" 12'13.42E				
Mac	Barounatore	1.11	an I	Res	rults	Test opposition			
	A ALCONDUCTOR	1.045		MS9	MS10	A mark by Argentine			
1	pH		-	7,94	8,15	IS -2720(Part 26)1987(RA 2021)			
6	Total Oceanie		Me	LIAY	Liay	Robinson Piperte Method			
3	Carbon as C	3	Sec.	5.22	4.82	IS 2720 (Part 22):1972 (RA 2020)			
÷)	Phosphorous as P	mg	/kg	311	270	EPA 3050 B & FAO Chapter 3/ ABCTL/SOIL SOP02			
6	Iron us Fe	mg	123	410	604	USEPA 30508 & USEPA 70008			
7	Zincias Zn Manuanara as Mo	mg	168	101	84	USEPA 30508 & USEPA 70008			
R R	Lead as Ph	mg	(1986) //exp	536	4.33	USEPA 30508 & USEPA 70008			
9	Cadmium as Cd	mg	/kg	BDL(<2)	BDL(<2)	USEPA 30508 & USEPA 70008			
0	Chromium as Cr	mug	/log	10.1	12.8	USEPA 30508 & USEPA 2000B			
1	Nickel as Ni	mg	/kg	BDL(<2)	BDL(<2)	USEPA 3050B & USEPA 7000B			
2	Copper as Co	mg	/kg	24.8	37.8	USEPA 30508 & USEPA 7000B			
3	Mercury as Hg	mg	/kg	BDL(<1)	BDL(<1)	USEPA 3050B & USEPA 7471B			
4	Selenium as Se	mg	/kg	BDL(<2)	BDL(<2)	USEPA 30508 & USEPA 7000B			
5.	Total Arsenic as	mp	Not	8DL(<2)	8DL(<2)	USEPA 30508 & USEPA 7000B			
47	As Total Patroloum			BDL	BDI				
6	Hydrocarbon	mg/	l'ke,	(<0.05)	(<0.05)	ABCTL/INS/SOP/31			
BDL	S. S. C. S.	nit (kaji an	12 0 2 0	(<0.05)	d of Report	J A. Robson Chinnadural Technical Manager Authorised Signatory			

SI. No	Parameters	Unit	Test Method	MS1	MS2	MS3	MS4	MS5	MS6	MS7	MS8	MS9	MS10
1	pН	-	IS -2720(Part 26)1987(RA 2016)	7.68	7.87	7.93	8.11	7.81	7.71	7.94	8.06	7.94	8.15
2	Texture	%	Robinson Pipette Method	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Clay	Clay	Clay	Clay	Clay	Clay
3	Total Organic Carbon as C	%	IS 2720 (Part 22):1972 (RA 2015)	3.11	2.74	3.18	3.48	4.56	4.13	5.07	4.71	5.22	4.82
4	Phosphorous as P	mg/kg	EPA 3050 B & FAO Chapter 3/ ABCTL/SOIL SOP02	170	148	164	202	334	278	302	264	311	270
5	Iron as Fe	mg/kg	USEPA 3050B & USEPA 7000B	438	511	378	456	505	396	451	612	410	604
6	Zinc as Zn	mg/kg	USEPA 3050B & USEPA 7000B	72	96	69	102	77	104	91	64	114	84
7	Manganese as Mn	mg/kg	USEPA 3050B & USEPA 7000B	132	84	118	148	178	216	168	152	181	142
8	Lead as Pb	mg/kg	USEPA 3050B & USEPA 7000B	4.78	6.32	7.13	6.11	8.13	5.08	4.11	6.36	5.36	4.33
9	Cadmium as Cd	mg/kg	USEPA 3050B & USEPA 7000B	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
10	Chromium as Cr	mg/kg	USEPA 3050B & USEPA 7000B	11	13.1	10.7	15.8	13.3	17.1	11.5	9.3	10.1	12.8
11	Nickel as Ni	mg/kg	USEPA 3050B & USEPA 7000B	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
12	Copper as Cu	mg/kg	USEPA 3050B & USEPA 7000B	20.6	25.4	32.8	41.6	35.6	23.6	42	31.4	24.8	37.8
13	Mercury as Hg	mg/kg	USEPA 3050B & USEPA 7471B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
14	Selenium as Se	mg/kg	USEPA 3050B & USEPA 7000B	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
15	Total Arsenic as As	mg/kg	USEPA 3050B & USEPA 7000B	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
16	Total Petroleum Hydrocarbon	mg/kg	ABCTL/INS/SOP/31	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Table 3.41 Marine Sediment Quality Results

3.10.7.3 Sea and Harbour Water Quality

Temperatures, Salinity, DO, BOD, Nitrate, Nitrite, Ammonia, Total Nitrogen, Inorganic Phosphate were monitored. All parameters were estimated following standard methods. Biological variables have also been studied and this includes planktons (both Phyto and Zooplankton), productivity and benthos (macro & meio). Marine water samples were collected from 10 locations within 10 Km radius of the project site. The collected samples were securely stored and analyzed in laboratory for various parameters (Table 3.43).

Location	Geographica	al location
Code	Latitude	Longitude
MW1	08°15'23.20"N	77° 07'27.67E
MW2	08°11'41.83"N	77° 12'13.46 E
MW3	08°16'39.78"N	77° 04'25.12E
MW4	08°13'49.34"N	77° 07'54.26"E
MW5	08°12'22.61"N	77° 09'49.30"E
MW6	08°09'14.27"N	77° 14'11.88"E
MW7	08°14'51.11"N	77° 04'34.30"E
MW8	08°13'39.67"N	77° 06'19.54"E
MW9	08°11'13.81"N	77° 09'21.90"E
MW10	08°09'14.14"N	77° 12'13.42"E

Table 3.42 Marine water sampling locations

Source: ABC Techno Labs India Pvt. Ltd.

3.10.7.4 Results:

The collected marine water samples were analyzed and results of marine water analysis are given in Table 3.44.

Physical Parameters

- Salinity: Salinity in marine water samples ranges from 33.1 ppt to 35.6 ppt.
- Turbidity: The turbidity of marine water samples was found in the range 1.3 to 3.3 NTU.
- > **pH:** The pH value of all marine water samples ranges from 8.11 to 8.31.
- > Total Suspended Solids: TSS in marine water samples ranges from 2 to 6 mg/l.

Chemical Parameters

- > Nitrite: Nitrite content in marine water samples ranges from 0.05 mg/l to 0.10 mg/l.
- > Nitrate: Nitrate content in marine water samples ranges from 1.5 mg/l to 3.2 mg/l.
- Phosphate: Phosphate content in marine water samples ranges from 0.07 mg/l to 0.21 mg/l.
- > Iron: The iron content in all marine water sample found to be BDL (<0.05) mg/l.
- > Zinc: Zinc content in all marine water samples found to be 0.08 mg/l to 0.16 mg/l.
- Dissolved Oxygen (DO): The DO level of the marine samples found to be in the range between 6.4 mg/l to 6.6 mg/l.
- Bio-chemical Oxygen Demand (BOD): The BOD level of the marine samples found to be <2 mg/l.</p>

Other Parameters

Manganese, Lead, Cadmium, Nickel, Chromium, Copper, Mercury, Selenium, Total Arsenic, Cyanide, Total Petroleum Hydrocarbon in all Marine water samples were found below detection limit (BDL).

SUE	(Art 15Q11.9001) 15	a 140	STATES CONTRACTOR STREET	internation of a water	www.abctechno	hab,com
süet		A CALCULATION OF A CALCULAR	01, ISO - 45001 (61	50 22000 Cer	fied Company)	Recognised by MoEF&CC
	0 10: The Gener IREL India Departmen Manavalak	ul Mana, 1 Limites at of Ato 2 urichi, K	ger and Head d mic Eaergy anyakumari Distri	TEST REPO	RT	
Ren	ort sumber	A	BCTL/TTDC/ETA/2	1023/04/MW1.5	10/3	
San	ple Drawn by	A	BC Techno Labs 1	ndia Private Li	nited	
San	pling method	: 13	5: 3025 Part 1 - 1	987 & IS: 1622	1981	
San	ple description	: M	arine Water Ana	lysis		
Pro	lect Name	12 M 単 面	ining of Atomic Mi zhudesam – A,B & C istrict, Tamil Nadu	nerals at Keezhn and Kollencode	idatam -A, Mida A &B Villages of	tam -B, Enayamputhenthoral, Killiyoor Taluk in Kanniyakumari
Dat	e of sampling	1 4	5-12-2022			
Date	e of Receipt	5 1	7-12-2022			
Ren	ort date	1 2	8-12-2022			Page 1 of 6
MW	1- 08°15'23.20"N, 77°	07 27.6	7E, MW2- 08*11'4	1.83"N, 77" 12'1	3.46 E, MW3- 0	8°16'39.78"N, 77° 04'25.12E,
S.	Parameter	ji.	10	Results		Test specadure
No	A MININGUET,	0	MWI	MW2	MW3	rest procedure
1	Temperature	_	°C 26.6	26.1	26,9	APHA 23 ¹⁰ Edn -2550B
2:	Salinity	P	pt 33.6	33.1	34.1	APHA 23 ^{at} Edn-Electrometric Method
3	pH		- 8.11	8.21	8.26	(S: 3025 Part 11-1983 (Reaff: 2017)
4	Solids	m	g/l 6	<u>(</u> #)	3	IS:3025 Part 17-1984(Reaff:2017)
5	Turbidity	m	g/I 2.8	3:3	2.5	IS: 3025 Part 10-1984 (Reaff: 2017)
6	Dissolve Oxygen as	02 mj	g/l 6.5	6.5	(6,4	IS:3025:Part-38:1989(Reaff: 2019)
7	Bio-Chemical Oxyge Demand	a m	g/1 <2	2	<2	IS:3025:Part-44:1993(Realf: 2019)
8	Nitrite as NO ₂	m	g/1 0.05	0,06	0.10	APHA 23 rd Edn - 4500-NO ₇ -B.
9.	Nitrate as NO ₂	m	y/1 1.8	2.2	1.8	APHA 23 rd Edn -4500-NO3- B
10	Phosphate as PO ₄	Int	g/1 0.11	0,17	0.21	1S:3025:Part-31:1988 (Reaff:2019)
11	Total Nitrogen as N	m	t/1 3	3.1	2.8	APHA 23 rd Edn -4500- Norg B
12	Iron as Fe	m	//I BDL(<0.05)	BDL(<0.05)	BDL(<0.05)	APHA 23 rd Edn -3111 B
13	Zinc as Zn	mg	1 0.13	0.16	0.08	APHA 22 ^{ad} Edn -3111 B
14	Manganese as Mn	ाम्	g/1 BDL(<0.02)	BDI.(<0.02)	BDL(<0.02)	APHA 23 rd Edn -3111 B
15	Lead as Pb	mg	1/1 BDL(<0.01)	BDL(<0.01)	BDL(<0.01)	APHA 23 rd Edn -3111 B
16	Cadmium as Cd	mg	/1 BDL(<0.01)	BDL(<0.01)	BDL(<0.01)	APHA 23 rd Edn -3111 B
	S.Dharani Quality Managor	Sal DEN	NO LANDARD	ARM		A Robson Chinnadural Technical Manager

• the first tweatly reads any to the form indicat. • The first equal shall not be reproduced in hid or part without the arran approach of AUCL. • The net Horn of parts on reason for the data that the data is associated in the mark to the first equal shall not use of the back of the shall be readed by a read without the arran approach of AUCL. • The net Horn of parts on reason for the data that the data is associated in the mark to the first equal shall not use of the back of the shall be readed at the tread of the data at the da

SC (A	Techno Lubw	ABCT ABCT P	TECHTIO LA OWER #400, 13th S Ambattur, Cher 1: 491-44-2625 778 will lab@abcachno	RDS 111018 1 treet, SIDCO Industr nnai - 600 098, Tanil 8 / 99, +91 94442 6 lab.com / Web: ww	ial Estate - North Ph Inada, INDIA. 2000 / 95061 87777 w.abctechnolab.com	
Í	(An ISQ 9901,/50	: 14001, 1	SCI - 45001 IL ISC	22000 Certified	Company Rocag	nised by MoEF&CC
			(E	EST REPORT		
0.7	O: The Genera IREL India Department Manavalaki	Manager Limited of Atomic richi,Kany	and Head Energy zakumari District	Ū.		
en	ort number		ABCTL	REL/ELA/2022	/12/MW1-MW3	
in	ple description		: Marine	Water Analysis	- Performance and a substance	
ep	ort date		: 28-12-2	1022		Page 2 of 6
0	Parameter	Unit	MW1	Results MW2	MW3	Test Procedure
2	Nickel as Ni	mg/l	BDL (<0.02)	BDL (<0.62)	BDL (<0.02)	APHA 23 rd Edn -3111 B
8	Chromium as Cr	mg/l	BDL(<0.03)	BDL(<0.03)	BDL(<0.03)	APHA 23 ^m Edn +5111 B
8	Copper as Cu	mg/l	BDL(<0.03)	BDL(<0.03)	BDL(<0.03)	APHA 2314 Edn -3111 B
)	Mercury as Hg	mg/l	BDL(<0.001)	BDL(<0.001)	BDL(<0.001)	APHA 23rd Edn -3112 B
1	Selemium as Se Total Accentous As	mg/l	BDL(<0.01)	BDL(<0.01)	BDL(<0.01)	APHA 23 ⁻⁴ Edn -3113 B
2	Cyanide as CN	mg/l	BDL(<0.02)	BDL(<0.02)	BDL(<0.02)	APHA 23rd Edn -4500-CN E
3	Total Petroleum Hydrocarbon	ing/l	BDL(<0.001)	BDL(<0.001)	8DL(<0.001)	APHA 23 ²⁴ Edn +6440 B
ы.÷	overow overceasin talke	Ny				Contd
			T			

(An 15C) 900	i ISO I 1	Em	all lab@abcteche	ennai - 600 098, T 88 / 99, +91 9444 solab.com / Web:	amilnadu, INDIA. 12.60000 / 55663. www.abstechnol/	87777 and and a second se
		4001, 15	içi : 45001 a 15	0 -22000 Certi	fied Company] F	lecognised by MoEF&CC
			10	TEST REPOR	т	
IREL I Depart Manay	noral Ma ndia Lim ment of A alakurich	nager a ited tomic i i,Kanyt	nd Head Energy kumari District			
Report number	198	ABCT	/TTDC/EIA/20	23/04/MW4-M	Nő	
ample Drawn by	-415	ABC 1	echno Labs In	dia Private Lin	rited	
ampling method	1	15:30	25 Part 1 - 19	37 & IS: 1622 -	1981	
ample description	1.65	Marin	e Water Analy	sis.	tolom A Midal	am - R. Enavamnuthenthurst
roject Name	UE:	Ezhud	esam – A.B & C a t, Tamil Nadu	nd Kollencode A	&B Villages of)	Giliyoor Taluk in Kanniyakumari
Date of sampling	₽ ⁵	15-12	-2022			
Date of Receipt	12	17-12	-2022			
Report date		28-12	-2022			Page 3 of 6
W4-08"13'49.34"N	77" 07'5	4.26E, 1	4W5-08*12*22.	61"N, 77° 09'49	30E, MW6-08	09'14.27"N, 77° 14'11.88E
S. n.		Weite		Results		Test procedure
No		oun	MW4	MW5	MW6	
1 Temperature		°C	26.1	27.1	347 Milita	APHA 23 ^m Edn-25508
2 Salinity		ppt	34.6	34.8	35.1	Method
3 pH		- <u>2</u>	8.19	6.24	8.31	15: 3025 Part 11-1983 (Reaff. 2017)
4 Total Suspende Solids	d	mg/l	з	20	2	(S:3025 Part 17-1984(Reaff:2017)
5 Turbidity		mg/1	2,2	2.1	1.7	15: 3025 Part 10-1984 (Reaff: 2017)
6 Dissolve Gxyge	118.02	mg/1	6.6	6,5	6.6	IS:3025:Part-38:1989(Reaff: 2019)
9 Bio-Chemical O	xygen	mg/1	<2	<2	<2	15:3025:Part-44:1993(Reaff: 2019)
Demand		mg/I	0.05	0.06	0.09	APHA 23rd Edn - 4500-NO2-B.
Demand Nitrite as NO ₂			1.8	1.9	2.2	APHA 23rd Edn -4500-NO3- B
Demand Nitrite as NO ₂ Nitrate as NO ₂ Nitrate as NO ₃		mg/l		0.08	0.10	15:3025:Part-31:1988 (Reaff:2019)
Demand 8 Nitrite as NO ₂ 9 Nitrate as NO ₁ 10 Phosphate as P	04)	mg/l mg/l	0.09	1 11220 1		Contraction of the second s
Demand 8 Nitrite as NO2 9 Nitrate as NO3 10 Phosphate as P 11 Total Nitrogen	04 is N	mg/l mg/l mg/l	0.09 2.5	30) (30)	2.7	APHA 23rd Edn -4500- Norg B
Demand 8 Nitrite as NO ₂ 9 Nitrate as NO ₂ 9 Nitrate as NO ₃ 10 Phosphate as P 11 Total Nitrogen 12 Iron as Fe	04. is N	mg/l mg/l mg/l mg/l	0.09 2.5 BDL(<0.05)	3 BDI,(<0.05)	2.7 BDL(<0.05)	APHA 23 rd Edn -4500- Norg B APHA 23 rd Edn -3111 B
Demand Nitrite as NO ₂ Nitrate as NO ₂ Nitrate as NO ₃ Phosphate as P Total Nitrogen iz Iron as Fe Zinc as Zn	04. is N	mg/l mg/l mg/l mg/l	0.09 2.5 BDL(<0.05) 0.07	3 BDL(<0.05) 0.10	2.7 BDL(<0.05) 0.08	APHA 23 rd Edn -4500- Norg B APHA 23 rd Edn -3111 B APHA 22 rd Edn -3111 B
Demand Demand Nitrite as NO ₂ Nitrate as NO ₃ Nitrate as NO ₄ Phosphate as P Total Nitrogen Iz fron as Fe I3 Zinc as Zn Manganexe as M	04 15 N	mg/l mg/l mg/l mg/l mg/l	0.09 2.5 BDL(<0.05) 0.07 BDL(<0.02)	3 BDI.(<0.05) 0,10 BDL(<0.02)	2.7 BDL(<0.05) 0.08 BDL(<0.02)	APHA 23 rd Edn -4500- Norg B APHA 23 rd Edn -3111 B APHA 22 rd Edn -3111 B APHA 23 rd Edn -3111 B
 Demand Nitrite as NO₂ Nitrate as NO₃ Phosphate as P Total Nitrogen Iron as Fe Zinc as Zn Manganese as M Lead as Pb 	04 is N fn	mg/l mg/l mg/l mg/l mg/l mg/l	0.09 2.5 BDL(<0.05) 0.07 BDL(<0.02) BDL(<0.01)	3 BDI.(<0.05) 0.10 BDL(<0.02) BDL.(<0.01)	2.7 BDL(<0.05) 0.08 BDL(<0.02) BDL(<0.01)	APHA 23 rd Edn -4500- Norg B APHA 23 rd Edn -3111 B

B	C Techno Labs	ABC	IDWER #400, 13th Ambattur, Ch h : +91-44-2625 77 mail: lab@abctechn	Street, SiOCO Indust ennal - 600 095, Tam 88 / 09, +91 94442 i olab.com / Web: wy	rial Estate - North P Ilnadu, INDIA. 30000 / 95661 8777 vw abstechnolah.co	hete,
	(An ISO . 980), ISO	14001,	150 - 45001 & ISO	0 i 22000 Çirtifin	t Company! Reco	gnited by MoEF&CC
ED)	to The General IREL India L Department o Manavalakur	Manager Imited If Atomic Ichi,Kany	and Head Energy akumari District.	TEST REPORT	0	
			ADOTT	100 10 A 100 A		i
eep San	ore number	_	: ABCTL/	Water Analysis	/12/MW4-MW6	
tep	ort date		: 28-12-7	2022		Page 4 of 6
\$	Instances in	T-mark		Remitte		Vier Co-Ministration 1
ło	Parameter	Unit	MW4	MWS	MW6	Test Procedure
7	Nickel as Ni	mg/l	BDL (<0.02)	BDL (<0.02)	BDL (<0.02)	APHA 23 ^{ol} Edn -3111 B
8	Chromium as Cr	mg/l	BDL(<0.03)	BDL(<0.03)	BDL(<0.03)	APHA 23 rd Edn -3111 B
18	Copper as Cu	mg/l	BDL(<0.03)	BDL(<0.03)	BDL(<0.03)	APHA 23rd Edn -3111 B
9	Mercury as Hg	mg/l	BDL(<0.001)	BDL(<0.001)	BDL(<0.001)	APHA 23rd Edn -3112 B
0:	Selenium as Se	mg/l	BDL(<0.01)	BDL(<0.01) BDL(<0.01)	BDL(<0.01) BDL(<0.01)	APHA 23 rd Edn -3113 B
2	Cyanide as CN	mg/l	BDL(<0.02)	BDL(<0.02)	BDL(<0.02)	APHA 23rd Edn -4500-CN E
3	Total Petroleum	mazi	BDL(<0.001)	BDL(<0.001)	BDL(<0.001)	APHA 23 rd Edn -6440 B
	9 - ATRASA	190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190	C LASS WELLS) - DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	Second Comparison	1	GIT S	THE?		a secondaria and an an and

Ā	BC Techno Lak	s	ABC TOWER #40 Amba Ph:+91-44 Email: lab@a	TO LADS I 30, 13th Street, Sil ttur, Cleminal - 6D 2625 7788 / 99, + loctechnolab.com	TIGHA ITTIV DCO Industrial Est D 058, Tamiloadu, 91 94442 60000 / / Web: www.abc	ATE LATTI ate - North Phase (195651 87777 technolab.com	
	(An ISO - 9001,	150 - 1	4001, 150 450	01.5.150 2200	0 Caniliad Com	wany) Recogni	sed by MoEFBCC
ssu	ED TO The Gen IREL Inc Departm Manaval	eral Ma lia Lim ent of A akurich	nager and Head ned stomic Energy i,Kanyakumari I	TEST R	EPORT		
No.	an and the state for the state of	71.47	ARCTI (TTOC)	F24/2023/04/5	W7.MW10		
tep iam	ort number	1	ABC Techno I	abs India Priv	ate Limited		
an	pling method	1 1	IS: 3025 Part	1 - 1987 & IS:	1622 -1981		
an	ple description	() (Marine Water	Analysis		Weather the second	PRANTILE AND A DAMAGE AND A
ro	ject Name	8	Mining of Atom Ezhudesam – A. district, Tamil I	tic Minerals at K B & C and Koller Nadu	eezhmidalaen -7 1code A &B Villa), Midalam -B, E iges of Killiyoor	nayampathenthural, Taluk in Kanniyakumari.
lab	e of sampling	12	15-12-2022				
at	e of Receipt	-	17-12-2022				
iati Iori	r of Analysis	- E.	28-12-2022				Page 5 of 6
4W 4W	7- 08°14'51.11"N, 77 10-68°09'14.14"N, 77	04'34. 12'13	30E, MW8- 08*1 42E	13'39.67"N, 77"	06*19.54E, MW	9-08*11'13.81	"N, 77" 09'21.90E,
2	Parameter	Unit	MINT	Res	MWR	MW10	Test procedure
<u>60</u>			MVV /	371	96.2	273	APHA 2 mt Edn. 25508
2	Salinity	ppt	34.9	34.8	35	35.6	APHA 23 rd Edn-Electrometric Method
3	pH	10	8.24	8.22	8.31	8.29	IS: 3025 Part 11-1983 (Reaff: 2017)
4	Total Suspended Solids	nig/7	3	2	2	3	15:3025 Part 17- 1984(Reaff:2017)
5	Turbidity	mg/1	1.7	13	2.2	3	2017)
6	Dissolve Oxygen as 02	nsg/l	6.5	6.4	6.4	6.6	IS:3025:Part-38:1989(Reaffi 2019)
ý.	Bio-Chemical	mg/l	<2	<2	<2	<2	2019)
8	Nitrite as NO2	mg/l	0.05	0.05	0.07	0.08	APHA 23** Edn - 4500-NO2-B.
9	Nitrate as NOs	mg/l	3.2	21	1.5	2.9	APHA 23 ⁻⁴ Edn -4500-NO3- B
a	Phosphate as PO ₂	mg/l	0.08	0.07	0,07	0,10	(S:3025:Part-31:1988 (Reaff:2019)
1	Total Nitrogen as N	mg/l	3.1	1.9	2.2	:3.4	APHA 23** Edn -4500- Norg B
2	Iron as Fe	mg/1	HD1.(<0.05)	BDL(<0.05)	BDL(<0.05)	BDL(<0.05)	APHA 23 rd Edn +3111 B
3	Zinc as Zn	mg/1	0.08	0.10	0.09	0.11	APHA 22 rd Edn -3111 B
4	Manganese as Mn	mg/l	HOL(<0.02)	BDL(<0.02)	BDL(<0.02)	BDL(<0.02]	APHA-23r# Edn+3111 B
5	Lead as Pb	mg/l	HDL(<0.01)	BDL(<0.01)	BDL(<0.01)	BDL(<0.01)	APHA-23** Edn +3111 8
fi	Cadmium as Cd	mg/l	HDL(<0.01)	BDL(<0.01)	BDL(<0.01)	BDL(<0.01)	APHA-23** Edn -31118
	S. Falty S.Dharani Quality Manager	in l	A States	ACRE -			A. Robson Chinnadural Technical Manager Authorized Signatory

Figure 3.27 Sampling Locations

S. No	Parameters	Unit	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8	MW9	MW10
1	Temperature	°C	26.6	26.1	26.9	26.1	27.1	27	26.6	27.1	26.2	27.3
2	Salinity	ppt	33.6	33.1	34.1	34.6	34.8	35.1	34.9	34.8	35	35.6
3	pН	-	8.11	8.21	8.26	8.19	8.24	8.31	8.24	8.22	8.31	8.29
4	Total Suspended Solids	mg/l	6	4	3	3	2	2	3	2	2	3
5	Turbidity	NTU	2.8	3.3	2.5	2.2	2.1	1.7	1.7	1.3	2.2	3
6	Dissolve Oxygen	mg/l	6.5	6.5	6.4	6.6	6.5	6.6	6.5	6.4	6.4	6.6
7	Bio-Chemical Oxygen Demand	mg/l	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8	Nitrite as NO2	mg/l	0.05	0.06	0.10	0.05	0.06	0.09	0.05	0.05	0.07	0.08
9	Nitrate as NO3	mg/l	1.8	2.2	1.8	1.8	1.9	2.2	3.2	2.1	1.5	2.9
10	Phosphate as PO4	mg/l	0.11	0.17	0.21	0.09	0.08	0.10	0.08	0.07	0.07	0.10
11	Total Nitrogen as N	mg/l	3	3.1	2.8	2.5	3	2.7	3.1	1.9	2.2	3.4
12	Iron as Fe	mg/l	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
13	Zinc as Zn	mg/l	0.13	0.16	0.08	0.07	0.10	0.08	0.08	0.10	0.09	0.11
14	Manganese as Mn	mg/l	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02
15	Lead as Pb	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
16	Cadmium as Cd	mg/l	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
17	Nickel as Ni	mg/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
18	Chromium as Cr	mg/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
19	Copper as Cu	mg/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
20	Mercury as Hg	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
21	Selenium as Se	mg/l	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
22	Total Arsenic as As	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
23	Cyanide as CN	mg/l	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
24	Total Petroleum Hydrocarbon	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Table 3.43 Results for marine water analysis

3.11 Marine Ecology and Biodiversity

3.11.1 Introduction

Evaluation of the biological impulses on potential coastal development site is an integral part of an environmental impact assessment as the consequences of perturbations in the environment ultimately may affect the habitat. Development zones should be selected avoiding areas of intense breeding/nursery grounds of economically important living resources. Though organisms have evolved to withstand the change within certain limits, they may not be well adapted to manmade stresses. Thus, the monitoring programme should sufficiently target the entire potential at risk. Critical biological variables covering productivity at different trophic levels should be identified. Biological productivity has to be evaluated on the basis of phytoplankton pigments/cell counts as a measure of renewable primary resources; zooplankton standing stock in terms of biomass and population density and community structure; benthic population, biomass and group diversity at intertidal and sub tidal zones to evaluate benthic productivity associated with the sediment; information on larval stages of fish to evaluate probable occurrence of breeding grounds of economically important fish species and microbial examination to investigate the extent of contamination by pathogens as a measure of human influence.

While considering assessment of aquatic pollution and its implications, it must be realized that, despite many changes in the physico-chemical properties of the water body and seabed sediment, the ultimate consequences of pollutants may be reflected inevitably on the biological system. Hence, the investigations of an ecosystem and particularly of its communities constitute an integral part of any ecological assessment. This can be achieved by selecting a few reliable parameters from a complex community structure. The parameters considered have phytoplankton (cell count, and generic diversity), zooplankton (standing stock i.e., faunal groups), macro benthos (population and faunal groups) and status of fishery and mammals as well as birds. The first two reflects the productivity of a water column at the primary and secondary levels, respectively. Benthic organisms being sedentary animals associated with the seabed, provide information regarding the integrated effects of stress, if any, and hence serve as good indicators of early warnings of potential damages. Ultimate commercial interest being fisheries, the status of the exploitable fishery resources was assessed. Information on larval stages of fishes and decapods was used to evaluate probable occurrence of spawning and breeding grounds of economically important species.

To assess the planktonic profile of Phytoplankton and Zooplankton, 4 water samples from estuary region, intertidal zone and coastal water were collected at sub surface level. The marine ecological study was conducted in different water bodies of the study area and the flora and fauna was recorded.

The biological parameters considered in the present study are chlorophyll, primary production, abundance of phytoplankton, abundance of zooplankton and macro and meio benthic population. Phytoplankton and zooplankton reflect the productivity of a water column at primary and secondary levels. Benthic organisms being associated with the seabed, provide information regarding the integrated effects of stress due to disturbances, if any, and hence are good indicators of early warning of potential damage.

Location	Geographic	al Location	Distance from Brainet Site
Code	Latitude	Longitude	Distance from Project Site
		Marine Water	
MR1	8°11'5.27"N	77°13'35.24"E	0.6
MR2	8°12'50.47"N	77°11'5.12"E	0.55
MR3	8°15'6.35"N	77° 8'45.01"E	0.5
MR4	8°16'35.54"N	77° 6'42.23"E	0.7

3.11.2 Macrophytes

The macrophytes observed within the study area are tabulated in Table 3-46. **Table 3.45 Description of Macrophytes**

S. No.	Scientific Name	Common Name	Туре
1	Azolla pinnata	Mosquito Fern	Free floating pterophyte
2	Cyperus articulates	Jointed flatsedge	Emergent Hydrophytes
3	Eichhornia crassipes	Common water hyacinth	Free floating hydrophytes
4	Enhydra fluctuans	Water Cress	Marshy amphibious hydrophytes
5	Hydrilla verticillata	Hydrilla	Submerged hydrophytes
6	Ipomea aquatic	Water Morning Glory	Marshy amphibious hydrophytes
7	Ipomoea carnea	Bush Morning Glory	Marginal Hydrophytes
8	Najas indica	Waternymph	Submerged hydrophytes
9	Nelumbo nucifera	Lotus	Floating hydrophytes
10	Nymphaea nouchali	Star lotus	Floating Hydrophytes
11	Nymphoides cristata	Crested Floatingheart	Floating Hydrophytes
12	Pistia stratiotes	Water lettuce	Free floating hydrophytes
13	Polygonum barbatum	Knot gras	Marshy amphibious hydrophytes
14	Trapa natans	Water caltrop	Floating Hydrophytes
15	Typha angustifolia	Lesser Bulrush	Emergent hydrophytes
16	Vallisneria spiralis	Tapegrass	Submerged hydrophytes
$ \begin{array}{r} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 2 7 $	Hydrilla verticillataIpomea aquaticIpomoea carneaNajas indicaNelumbo nuciferaNymphaea nouchaliNymphoides cristataPistia stratiotesPolygonum barbatumTrapa natansTypha angustifoliaVallisneria spiralis	Hydrilla Water Morning Glory Bush Morning Glory Waternymph Lotus Star lotus Crested Floatingheart Water lettuce Knot gras Water caltrop Lesser Bulrush Tapegrass	NydrophytesSubmerged hydrophytesMarshyamphibioushydrophytesMarginal HydrophytesSubmerged hydrophytesFloating hydrophytesFloating HydrophytesFloating HydrophytesFree floating hydrophytesMarshyamphibioushydrophytesFloating HydrophytesEmergent hydrophytesEmergent hydrophytesSubmerged hydrophytes

Source: ABC Techno Labs India Pvt. Ltd.

3.11.3 Primary productivity

Marine primary production plays an important role in food web dynamics, in biogeochemical cycles and in marine fisheries. Primarily, phytoplankton depends on carbon dioxide, sunlight

and nutrients for growth, but some other factors such as water depth, water temperature, wind and grazers also play a significant role. Primary productivity varies from freshwater to estuarine and from estuarine to marine water bodies. Its major components are net and gross primary production.

The results indicate that the area is moderately productive, and the values varied from 422 to 473 mgC/m³/day (Table 3-47).

Statio n	Gross Photosynthetic activity	Net Photosynthet ic activity	Primary production mgC/m³/day
S1	1.6	1.12	455
S2	1.7	0.91	465
S3	1.5	0.72	426
S4	1.8	0.83	473

Table 3.46 Primary productivity and chlorophyll concentration

Source: ABC Techno Labs India Pvt. Ltd.

3.11.4 Chlorophyll

Chlorophyll, in various forms, is bound within the living cells of algae and other phytoplankton found in surface water. Chlorophyll-containing organisms are the first step of production in the most food chains, and the health and abundance of these primary producers affect the integrity of the other trophic levels. It is a key biochemical component in the molecular apparatus that is responsible for photosynthesis, the critical process in which the energy from sunlight is used to produce life-sustaining oxygen. In the photosynthetic reaction below, carbon dioxide is reduced by water, and chlorophyll assists this transfer. The results indicate that the area is moderately productive, and the values of Chlorophyll-a varied from 2.98 to 3.45 mg/m³, Chlorophyll-b varied from 1.76 to 1.92 mg/m³ and Chlorophyll-c varied from 1.77 to 2.25 mg/m³. (Table 3-48).

Table 3.47 Chlorophyll Concentration

S.	Chlorphyll (mg/m3)	Sample Location Code				
No.		PP 1	PP 2	PP 3	PP 4	
1	Chl-a	3.21	3.26	2.98	3.45	
2	Chl-b	1.92	1.85	1.76	1.82	
3	Chl-c	2.22	1.77	2.11	2.25	
	Total Chlorophyl	7.35	6.88	6.85	7.52	

Source: ABC Techno Labs India Pvt. Ltd.

3.11.5 Plankton

3.11.5.1 Phytoplankton

Phytoplankton is the major primary producers of organic matter in the aquatic ecosystem and especially oceans whose 90% productivity is from the planktons. Phytoplankton samples were collected without filtering the water. To preserve, 0.3 mL lugol's solution was added to 100 ml sample. Subsequently, phytoplankton were concentrated by centrifugation and analysed microscopically in laboratory. Identification of phytoplankton was done using standard taxonomic keys.

The Lackey Drop (microtransect) method (Lackey 1938) is a simple method for obtaining counts of considerable accuracy (APHA 2017).

Chemicals/reagents used: Lugol's iodine

Equipments used: Centrifuge tubes of 15ml capacity, cover slips, glass slides, dropper, plastic bottles (100 ml capacity)

Instruments used: Centrifuge and Microscope.

• Shannon Wiener Diversity index

The most commonly accepted index in past few decades have been Shannon and Wiener equation which is based on both the number of taxon present and the relative abundance of each taxon. The Shannon Wiener diversity index is usually used to calculate species diversity but comparisons are also made using the different taxonomic levels (Hellawell 1978). This index (H) is a useful measure of community diversity.

H = Sum [(*Pi*) x In (*Pi*)]

Sum: Summation Pi: proportion of total samples represented by species- i In: Log of Pi

Species composition - A total of 48 species of phytoplankton belonging to 22 species of class Bacillariophyceae, 7 species of class Chlorophyceae, 6 species of class

Cyanophyceae and 5 species of class Dinophyceae were identified during the net haul. The phytoplankton density varies from 0.163 to 0.194 No/1000 ml species at sampling area (stns. PP1 to PP4). Bacillariophyceae (Diatoms) formed the major group followed by Dinophyceae (Dinoflagellates) and Cyanophyceae (blue green algae). Phytoplankton species composition in coastal waters is given in Table 3-49.

S.	Species	Class	Phyto P	lankton C	ount (No.	*10^2/L)
No.			PP 1	PP 2	PP 3	PP 4
1	Achnanthes sp.	Bacillariophyceae	6	6	7	8
2	Anabaena sp.	Cyanophyceae	3	4	3	3
3	Anacystis sp.	Cyanophyceae	13	12	12	12
4	Ankistrodesmus	Chlorophyceae	6	11	12	17
	spiralis					
5	<i>Asterionella</i> sp.	Bacillariophyceae	2	4	2	4
6	<i>Azolla</i> sp.	Polypodiopsida	3	3	1	1
7	Bacillaria paxillifer	Bacillariophyceae	1	3	3	3
8	Bellerochea malleus	Bacillariophyceae	13	15	16	12
9	Ceratium furca	Dinophyceae	3	3	2	8
10	Ceratium macroceros	Dinophyceae	1	2	3	2
11	Chaetoceros sp.	Bacillariophyceae	12	15	16	11
12	Chlamydomonas sp.	Chlorophyceae	14	12	12	8
13	Chlorella vulgaris	Trebouxiophyceae	6	11	12	11
14	Chlorococcum sp.	Chlorophyceae	2	2	2	12
15	Coscinodiscus	Bacillariophyceae	3	3	1	3
	centralis					
16	Coscinodiscus	Bacillariophyceae	4	3	1	2
	subbulliens					
17	<i>Cyclotella</i> sp.	Bacillariophyceae	2	5	3	5
18	Cylindrospermum sp.	Cyanophyceae	1	1	0	0
19	Dinophysis caudate	Dinophyceae	1	1	0	1
20	<i>Ditylum</i> sp.	Bacillariophyceae	1	1	1	1
21	<i>Gloeotrichia</i> sp.	Cyanophyceae	2	2	2	2
22	<i>Gracilaria</i> sp.	Rhodophyceae	12	15	16	3
23	<i>Navicula</i> sp.	Bacillariophyceae	14	12	12	2
24	<i>Nitzschia</i> sp.	Bacillariophyceae	6	11	12	5
25	Odontella mobiliensis	Bacillariophyceae	1	1	0	0
26	<i>Oocystis</i> sp.	Trebouxiophyceae	1	1	0	1
27	Pediastrum duplex	Chlorophyceae	4	3	1	2
28	Pediastrum simplex	Chlorophyceae	2	5	3	2
29	Phormidium sp.	Cyanophyceae	1	1	0	1
30	Planktoniella sol	Bacillariophyceae	1	1	0	0
31	Pleurosigma	Bacillariophyceae	1	1	1	0
	elongatum					
32	Pleurosigma sp.	Bacillariophyceae	1	1	1	2

Table 3.48 Analysis Result of Phytoplankton

S.	Species	Class	Phyto Plankton Count (No.*104			*10^2/L)
No.			PP 1	PP 2	PP 3	PP 4
33	Prorocentrum micans	Dinophyceae	1	2	2	2
34	Protoperidinium sp.	Dinophyceae	2	3	1	2
35	Rhizosolenia alata	Bacillariophyceae	2	5	3	5
36	<i>Rhizosolenia</i> sp.	Bacillariophyceae	1	1	0	0
37	Skeletonema costatum	Bacillariophyceae	1	1	0	1
38	<i>Synedra</i> sp.	Bacillariophyceae	1	1	1	1
39	<i>Tabellaria</i> sp.	Fragilariophyceae	1	1	1	1
40	<i>Tetrastrum</i> sp.	Chlorophyceae	1	2	0	1
41	Thalassiosira subtilis	Bacillariophyceae	3	2	2	1
42	Thalassiothrix	Bacillariophyceae	4	2	1	2
	frauenfeldii					
43	<i>Triceratium</i> sp.	Bacillariophyceae	1	1	0	0
44	<i>Trichodesmium</i> sp.	Cyanophyceae	2	0	0	0
45	<i>Ulothrix</i> sp.	Ulvophyceae	1	1	0	1
46	<i>Volvox</i> sp.	Chlorophyceae	0	0	0	1
47	<i>Westella</i> sp.	Chlorophyceae	1	0	0	1
48	<i>Zygnema</i> sp.	Zygnematophyceae	0	1	0	0
	TOTAL		165	194	168	163
	Density (No/100	0.165	0.194	0.168	0.163	

Source: ABC Techno Labs India Pvt. Ltd.

3.11.5.2 Zooplankton

Zooplankton plays a key role in marine food web dynamics and biogeochemical cycling. Spatial distribution of zooplankton is an important factor in determining the fish stock. Hence, any decline in zooplankton population may affect ecosystem functioning. Zooplankton dynamics is largely controlled by different environmental factors. Hence, any change in ambient water quality significantly affect zooplankton population, which in turn can affect larval survival and in turn fishery. Seasonal plankton succession is a process mainly regulated by temperature and salinity conditions. Copepods constitute a major composition of zooplankton in most of regions of the world ocean. The result of the zooplankton analysis is tabulated in Table 3-50.

S.	Species	Class	Zoo Plankton Count (No.*10^2			10^2/L)
No.			ZP1	ZP2	ZP3	ZP4
1	Acartia danae	Maxillopoda	1	1	1	1
2	Acartia erythraea	Copepoda	1	1	1	0
3	Acartia spinicauda	Maxillopoda	2	1	0	0
4	Acrocalanus sp.	Copepoda	3	2	0	0
5	Aspidisca sp.	Spirotrichea	2	2	0	1
6	Brachionus sp.	Monogononta	2	1	0	0
7	Centropages	Copepoda	3	2	0	0
	furcatus					

 Table 3.49 Analysis Result of Zooplankton

S.	Species	Class	Zoo Pla	ankton Co	ount (No.*	10^2/L)
No.			ZP1	ZP2	ZP3	ZP4
8	Corycaeus catus	Copepoda	2	2	0	1
9	Cyclops sp.	Maxillopoda	2	1	0	1
10	<i>Daphnia</i> sp.	Branchiopoda	3	2	0	1
11	Dictyocha sp.	Dictyochophyceae	2	2	0	1
12	<i>Eucalanus</i> sp.	Copepoda	2	1	0	0
13	<i>Euterpina</i> sp.	Copepoda	3	2	0	1
14	<i>Evadne</i> sp.	Branchiopoda	2	1	0	2
15	<i>Epinebalia</i> sp.	Malacostraca	3	2	0	2
16	<i>Favella</i> sp.	Oligotrichea	2	2	0	1
17	Keratella	Monogononta	2	1	0	2
	cochlearis					
18	<i>Lucifer</i> sp.	Malacostraca	3	2	0	2
19	Microsetella sp.	Copepoda	2	1	0	0
20	<i>Monostyla</i> sp.	Monogononta	3	2	0	0
21	Oithona sp.	Copepoda	2	2	0	2
22	Oithona similis	Copepoda	2	1	0	2
23	Paracalanus	Maxillopoda	3	2	0	1
	parvus					
24	Penilia avirostris	Branchiopoda	2	2	0	0
25	<i>Philodina</i> sp.	Bdelloidea	3	2	0	0
26	Proales sp.	Monogononta	2	2	0	1
27	Sagitta sp.	Sagittoidea	1	1	2	0
28	Temora discaudata	Copepoda	1	1	1	0
29	Trichocerca sp.	Monogonta	2	0	0	1
30	Diaptomus sp.	Copepoda	2	0	0	1
31	<i>Euglena</i> sp.	Euglenoidea	1	0	1	1
32	<i>Moina</i> sp.	Branchiopoda	1	0	2	2
33	Chydorus	Branchiopoda	1	1	0	0
	sphaericus					
34	Alona pulchella	Branchiopoda	1	1	1	1
	TOTAL		69	46	9	28
Density (No/1000 ml)		0.069	0.046	0.009	0.028	

Source: ABC Techno Labs India Pvt. Ltd.

Diversity indices of Plankton

Community	Biodiversity indices				
	Shannon-Wiener Index (H)	Simpson Diversity Index (1/D)	Species Evenness		
Phytoplankton	3.344	1.000	0.864		
Zooplankton	3.487	0.998	0.989		

Table 3.50 Plankton Biodiversity Indices results

Source: ABC Techno Labs India Pvt. Ltd.

Conclusion

In general, it may be mentioned that the values of the Index <1.0, 1.0-2.0 and > 2.0 indicate maximum impact of pollution, medium impact of pollution and lowest impact of pollution respectively.

12 major groups of zooplankton, namely, Maxillopoda, Copepoda, Spirotrichea, Monogononta, Branchiopoda, Dictyochophyceae, Malacostraca, Oligotrichea, Sagittoidea, Euglenoidea etc. were found to inhabit the water bodies. The Shannon Wiener Index was found to be 3.334 for phytoplankton and 3.487 for Zooplankton. The diversity of phytoplankton indicates about lowest impact of pollution level in all the sampling locations and as result zooplankton diversity found to be high. The diversity value of the water is an illustration of the level of pollution of water which is measured by the content of nutrients and pollutants. Increasing nutrient content to the estuary area of the river can lead to phytoplankton blooms which result in increased water turbidity. However, sufficient nutrient content will increase phytoplankton productivity. Increasing phytoplankton productivity will support increased productivity of other organisms that have higher trophic levels. Each type of organism will occupy certain aquatic and its existence is determined by the waters quality, namely the physical properties and chemical properties of the waters.

3.11.6 Benthos

The macrobenthic organisms can be analyzed from a high index of biological diversity. These are represented by a large number of animalphyla, while dominated groups are represented by polychaetes, crustaceans, mollusk and echinodermata. Macrobenthos in marine sediments play an important role in ecosystem processes such as mineralization, promoted and mixing of sediments, the flux of oxygen into sediments, nutrients cycling, dispersion and burial and secondary production. It is providing key linkage between primary producers and higher tropic levels.

Sediment samples were collected from the sampling and reference stations using a van Veen grab (0.1 m^2 area). The meiobenthic samples were collected using a plastic core (10 cm length; 4.5 cm dia.) and sieved through 0.045 mm mesh sieve. The meiobenthic organisms were preserved in 5% Rose Bengal formalin solution. The macrobenthic samples were sieved through a 0.5 mm mesh sieve and preserved in 5% Rose Bengal-formalin solution. Biomass (wet weight) of macrofauna was determined on an electronic balance and is expressed as $g.m^{-2}$. The taxonomic composition of both meio and macrofauna were

analysed in the laboratory under stereo-zoom microscope and the meiofauna is expressed as No. $(10 \text{ cm}^2)^{-1}$ and macrofauna as No.m⁻².

S.	Groups	Types	Population Density (No./m ²)			o./m²)
No.			MW1	MW2	MW3	MW4
1	Foraminifera	Macrobenthos	3	2	4	8
2	Bivalves	Macrobenthos	4	2	2	4
3	Ampharetide	Macrobenthos	2	2	3	6
4	Pilargidae	Macrobenthos	2	1	2	2
5	Onuphidae	Macrobenthos	1	2	3	2
6	Sabellidae	Macrobenthos	2	1	4	5
7	Capitellidae	Macrobenthos	1	3	2	5
8	Spionidae	Macrobenthos	2	3	5	1
9	Fish eggs	Macrobenthos	2	2	6	3
10	Polycheates Larvae	Macrobenthos	2	1	2	2
11	Crustacean eggs	Macrobenthos	4	4	5	5
	Total		25	23	38	43
1	Nematodes	Meiobenthos	14	14	18	22
2	Copepoda	Meiobenthos	11	15	14	16
3	Amphipods	Meiobenthos	10	12	15	18
4	Diatom	Meiobenthos	11	9	16	14
5	Gastrotrich	Meiobenthos	12	8	15	15
6	Pseudocella	Meiobenthos	14	12	21	16
7	Enopluils	Meiobenthos	12	10	21	18
8	Oncholaimu	Meiobenthos	14	9	14	12
9	Laimella	Meiobenthos	8	8	8	7
10	Comesoma	Meiobenthos	10	8	9	9
	Total		116	105	151	147

Table 3.51 Sub tidal and inter tidal benthic population

3.11.7 Fish & Other Marine Community

The fish and other marine species reported from the study area are tabulated in Table 3-53. **Table 3.52 Fish and Marine Species reported**

S. No.	Scientific Name	Common Name	Family
1	Channa gachua	Dwarf snakehead	Channidae
2	Channa marulius	Great snakehead	Channidae
3	Channa punctata	Green snakehead	Channidae
4	Etroplus maculatus	Orange chromide	Cichlidae
5	Euthynnus affinis	Mackerel tuna	Scombridae
6	Gambusia affinis	Western mosquitofish	Poecilidae
7	Garra mullya	Mullya garra	Cyprinidae
8	Heteropneustes fossilis	Stinging catfish	Heteropneustidae
9	Lepturacanthus savala	Ribbon fish	Trichiuridae
10	Lepidocephalichthys guntea	Guntea loach	Cobitidae
11	Megalaspis cordyla	Torpedo scad	Carangidae
12	<i>Mugil</i> sp.	Flathead mullet	Mugilidae
13	Mystus bleekeri	Day's mystus	Bagaridae
14	Mystus vittatus	Striped Dwarf Catfish	Bagaridae
15	<i>Nemipterus</i> sp.	Threadfin bream	Nemipteridae
16	Notopterus notopterus	Asiatic knifefish	Notopteridae
17	Oreochromis mossambicus	Mozambique tilapia	Cichlidae
18	Osphronemus goramy	Giant gourami	Osphronemidae
19	Platycephalus biomacula	Flat head fish	Platycephalidae
20	Puntius amphibius	Scarlet-banded barb	Cyprinidae
21	Puntius arenatus	Arenatus barb	Cyprinidae
22	Puntius conchonius	Rosy barb	Cyprinidae
23	Puntius filamentosus	Black-spot barb	Cyprinidae

S. No.	Scientific Name	Common Name	Family
24	Puntius sarana	Olive barb	Cyprinidae
25	Puntius sophore	Pool barb	Cyprinidae
26	Puntius ticto	Ticto Barb	Cyprinidae
27	Puntius vittatus	Greenstripe barb	Cyprinidae
28	Rasbora daniconius	Black-line rasbora	Cyprinidae
29	Rastrelliger kanagurta	Indian mackerel	Scombridae
30	Salmostoma bacaila	Large razorbelly minnow	Cyprinidae
31	Sardinella sp.	Ray-finned fish	Clupeidae
32	Scomberomorus sp.	Ray-finned bony fish	Scombridae

3.11.8 Seaweeds and Sea Grasses

Sea grasses: During the survey period, absence of sea grass around the 10 km radius.

Sea weeds: Apart from the patchy occurrences of *Gracilaria Salicornia* and *Polysiphonia brodiei*, no major seaweed communities were observed in the coastal stretch in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B in Killiyoor Taluk, Kanniyakumari District, Tamil Nadu.

3.11.9 Mangroves

No major Mangroves patches have been reported at the project region.

3.11.10 Corals

No corals have been reported at the project region.

3.11.11 Marine protected area

The project region is devoid of marine protected area.

3.11.12 Marine mammals

Apart from the occasional sightings of *Stenella longirostris* and *Lutrogale perspicillata* in the coastal waters and open waters, no other marine mammals are noticed in the region.

3.11.13 Endangered species

No endangered species were reported around the 10 km radius of the project region.

3.12 Traffic Scenario

Traffic density analysis has been carried at two (2) strategic locations namely Nithiravilai (T1) and Midalam (T2).

3.12.1.1 Traffic Density analysis frequency

Monitoring was carried out once during study period. At each traffic density analysis location, traffic density was recorded at hourly intervals for 24 hours during a week day & week end for assessing the average traffic volume.

Results

For assessing the baseline status, the traffic survey based on Indian Road Congress-IRC: 106-1990 guidelines were carried out at Midalam Road and Nithravilai Road Junctions. The existing traffic volume at Nithiravilai was found to be 5017 PCU/day and at Midalam 4441 PCU/day i.e. 209 PCU/hr. at Nithiravilai and 185 PCU/hr. at Midalam near MSP with average 197 PCU/hr.

The observation of traffic density analysis near Nithiravilai (T1) is given in Table 3.54 and that of near Midalam (T2) is given in Table 3.55.

	Towar	ds Sep	aration F	Plant	Towards Block B				
Time (Hours)	Two wheeler	LMV	HMV	PCU	Time (Hours)	Two wheeler	LMV	HMV	PCU
00 - 01	25	40	15	98	00 - 01	28	43	17	108
01 - 02	79	49	25	164	01 - 02	68	31	22	131
02 - 03	77	56	20	155	02 - 03	42	42	18	117
03 - 04	33	50	23	136	03 - 04	26	43	26	134
04 - 05	35	48	13	105	04 - 05	37	23	17	93
05 - 06	86	35	19	135	05 - 06	62	31	28	146
06 - 07	90	60	21	168	06 - 07	57	49	13	117
07 - 08	62	25	22	122	07 - 08	68	33	9	94
08 - 09	52	18	28	128	08 - 09	62	14	27	126
09 - 10	30	9	21	87	09 - 10	43	11	24	105
10 - 11	36	7	28	109	10 - 11	29	3	15	63
11 - 12	10	4	29	96	11 - 12	13	6	30	103
12 - 13	0	4	12	40	12 - 13	0	4	14	46
13 - 14	0	8	17	59	13 - 14	0	3	28	87
14 - 15	0	7	19	64	14 - 15	0	12	23	81
15 - 16	2	11	9	39	15 - 16	3	13	11	48
16 - 17	17	29	18	92	16 - 17	15	19	15	72
17 - 18	86	41	20	144	17 - 18	43	27	23	118
18 - 19	88	47	17	142	18 - 19	62	35	25	141
19 - 20	79	43	18	137	19 - 20	52	48	11	107
20 - 21	62	32	10	93	20 - 21	59	30	15	105
21 - 22	69	40	16	123	21 - 22	63	41	9	100
22 - 23	21	38	18	103	22 - 23	18	40	11	82
23 - 00	37	37	13	95	23 - 00	26	32	8	69
Max.	90	60	29	192	Max.	68	49	30	173
Min.	0	4	9	31	Min.	0	4	8	28
Avg.	45	31	19	111	Avg.	37	27	19	103
Total	1076	738	451	2629	Total	876	633	439	2388

Table 3.53 Traffic Density near Nithiravilai (T1) during Study period

Classified traffic volume count observed at survey location T1 reveals that the traffic density is maximum for Two Wheeler (1952 per day), followed by LMV (1371 per day) and HMV (890 per day).

	Toward	ds Sepa	ration P	lant		Towards I	Block A		
Time (Hours)	Two wheeler	LMV	HMV	PCU	Time (Hours)	Two wheeler	LMV	нмν	PCU
00 - 01	48	40	20	124	00 - 01	49	28	18	107
01 - 02	50	48	18	127	01 - 02	31	43	23	128
02 - 03	21	44	20	115	02 - 03	23	26	21	101
03 - 04	27	36	11	83	03 - 04	25	28	16	89
04 - 05	43	50	21	135	04 - 05	41	39	24	132
05 - 06	53	21	18	102	05 - 06	40	23	7	64
06 - 07	46	18	28	125	06 - 07	39	13	27	114
07 - 08	31	10	20	86	07 - 08	48	9	23	102
08 - 09	22	9	25	95	08 - 09	23	13	12	61
09 - 10	25	8	29	108	09 - 10	17	5	20	74
10 - 11	7	6	31	103	10 - 11	15	3	29	98
11 - 12	0	4	12	40	11 - 12	0	4	14	46
12 - 13	0	6	15	51	12 - 13	0	4	26	82
13 - 14	0	8	21	71	13 - 14	0	11	23	80
14 - 15	0	15	11	48	14 - 15	2	17	11	51
15 - 16	5	29	18	86	15 - 16	8	19	15	68
16 - 17	40	40	20	120	16 - 17	20	47	22	123
17 - 18	47	45	18	123	17 - 18	41	35	23	125
18 - 19	50	44	18	123	18 - 19	30	46	11	94
19 - 20	42	33	10	84	19 - 20	42	24	15	90
20 - 21	39	30	16	98	20 - 21	48	33	10	87
21 - 22	17	25	20	94	21 - 22	14	28	12	71
22 - 23	15	31	13	78	22 - 23	27	27	8	65
23 - 00	18	35	13	83	23 - 00	20	37	17	98
Max.	53	50	31	170	Max.	49	47	29	159
Min.	0	4	10	34	Min.	0	3	7	24
Avg.	27	27	19	98	Avg.	26	24	18	91
Total	646	635	446	2296	Total	603	562	427	2145

Table 3.54 Traffic Density near Midalam (T2) during study period

At T2 also the traffic density is maximum for Two-wheeler (1249 per day), followed by LMV (1197 per day) and HMV (873 per day). The traffic carrying capacity of two-way undivided arterial road is 2400 PCU/hr as per IRC 106-1990.

Level of Service (LOS): Capacity Standards of Roads are fixed in relation with the LOS which is commonly designated from 'A' (best operating condition) to 'F' (forced or breakdown flow). Normally LOS-C will be adopted for smooth traffic flow in Urban/Rural Areas (Table 3.56). Ratio of existing Volume of PCU on road (V) and its Capacity (C) with corresponding LOS and their performance is given in Table 3.57.

Table 3.55 Level of Service & Performance of a Road (IRC:64-1990 Norms)

Volume/Capacity Ratio	Level of Service	Performance of the Road
0-0.2	A	Excellent
0.2-0.4	В	Very Good
0.4-0.6	С	Good/Average/Fair
0.6-0.8	D	Poor
0.8-1.0	E	Very Poor

Propsed Traffic:

The proposed transportation of 5000 TPD one way by 30T Tippers – 167 trucks one way, 334 trucks per day in two ways which is about 735 PCU/day i.e. 31 PCU/hr. It is worked to be only 16% volume addition to the existing traffic volume.

able 3.56 Predicted	I Traffic Scenario	at the Junction
---------------------	--------------------	-----------------

Road	Volume PCU/hr	Capacity of the Road PCU/hr	V/C Ratio	Level of Service	Performance of the Road		
Existing							
Midalam Road	197	2400	0.08	A	Excellent		
Proposed							
Midalam Road	228	2400	0.095	А	Excellent		

The Volume/Capacity (V/C) ratio for existing and proposed traffic volume is found to be 0.08 and 0.095 and the Level of Service (LOS) is found to be "A" – Excellent. Hence, the existing highway is adequate to handle the proposed volume due to the proposed project.

3.13 Socio – Economic Study

Mining projects have always been matter of concern for the environmental and social experts because of huge socio economic impact. Mining projects bring handful of benefits to the people in the form of employment, skill up-gradation, development of infrastructure etc. Nevertheless, the possibility of some adverse impact cannot be ruled out. Overall impact of a mining project may be marginal or non-marginal depending on the extent of change caused by the project to alter the existing equilibrium of the socio economic system. The project is expected to have significant impact with respect to social and economic dimensions in the study area. With this background, the present socio economic impact assessment of the project has been carried out with respect to the following objectives:

- To assess the impact of the project on the agricultural situation
- To assess the impact of the project on the pattern of demand
- To estimate employment and income effects of the project
- To ascertain the impact of the project on the consumption behaviour
- To explore the impact of the project on educational status in the locality
- To analyse peoples' perception regarding the project

3.13.1 Demographic pattern

The mining lease area of IREL is located at Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages, Killiyoor Taluk, Kanniyakumari District, Tamilnadu.

3.13.2 Demographic pattern of district

Kanniyakumari District ranks 19th place in terms of population size among the districts. The district has recorded second largest urban population of 82.3% to the total population among the districts.

According to the 2011 Census, Kanniyakumari had population of 1,870,374 of which male and female were 926,345 and 944,029 respectively. In 2001 census, Kanniyakumari had a population of 1,676,034 of which males were 832,269 and remaining 843,765 were females.

SI.no	Description	2011	2001
1.	Population	18,70,374	16.76,034
2.	Male	9,26,345	8,32,269
3.	Female	9,44,029	8,43,765
4.	Population Growth	11.60%	4.73%
5.	Area Sq.km	1,672	1,672
6.	Density/sq.km	1,111	995
7.	Proportion to Tamil nadu population	2.59%	2.69%
8.	Sex ratio (1000)	1019	1014
9.	Child Sex ratio (0-6 age)	964	968
10.	Average literacy	91.75	87.55
11.	Male literacy	93.65	90.37
12.	Female literacy	89.90	84.79
13.	Total Child population (0-6 age)	1,82,350	1,81,719

Table 3.57 Population within 5 km Radius

Village	Distance in Km	Population
Kurumpanai	0.4 Km	9500
Midalam	Within the Project Site	2000

Village	Distance in Km	Population	
Melmidalam	Within the Project Site	2200	
Helan Nager	Within the Project Site	1900	
Enayam	0.2 Km	9500	
Alanchi	Within the Project Site	8500	
Thoothur	Within the Project Site	6500	
Ezhudesam	Within the Project Site	11000	
Kollencode	Within the Project Site	17500	

Table 3.58 Population within 10 km radius

SI.No.	Village Name	Population	Male	Female	Literacy Rate	SC/ST
1.	Poovar	35,21,153	17,67,859	17,53,294	93.02%	3,758
2.	Colachel	23,227	11,767	11,460	80.52%	5,485
3.	Thingal Nagar	13,567	6,729	6,838	93.36%	3,252
4.	Thikkanamcod	14,086	7,031	7,055	92.7%	2,485
5.	Vattavilai	13,582	6,758	6,824	92.50%	1,583
6.	Karungal	16,691	8,030	8,661	91.99%	1,826
7.	Arumanoor	3,482	1,758	1,724	84.98%	120
8.	Palliyadi	15,720	7,819	7,901	89.62	1,958
9.	Marthandam	29,741	14,690	15,051	91	1,622
10.	Puthukadai	9,909	4,862	5,047	91.12%	175
11.	Kappukadu	18,263	9,023	9,240	89.35	2,569
12.	Kuzhithurai	21,307	10,539	10,768	94.07%	308
13.	Pedndhalmoodu	19,538	9,603	9,935	93.64%	294
14.	Nadaikavu	8,727	4,369	4,358	92.87%	133
15.	Kadukavilai	15,625	7,753	7,872	90.65 %	226
16.	Valliyur	4,319	2,092	2,227	92.94%	98
17.	parasalu	6,931	3,474	3,457	91.80%	286
18.	Cheruvarakkonam	6,241	3,087	3,154	91.70%	254

SI.No.	Village Name	Population	Male	Female	Literacy Rate	SC/ST
19.	Kollencode	38,385	19,273	19,112	86.72%	683
20.	Medhukammal	19,417	9,513	9,904	91.47%	297
21.	Kulathoor	32,394	16,017	16,377	86.36%	2,281
22.	Keezhamakkam	13,097	6,650	6,447	88.21%	955
23.	Arudesam	2,383	1,158	1,225	94.92%	260
24.	Mandaikadu	13,317	6,611	6,706	90.03%	234
25.	Thengapatnam	4,361	2,112	2,249	91.23%	243
26.	Karode	31,918	15,651	16,267	89.43%	2,311
27.	Uchakada	9,413	4,605	4,808	93.30%	723
28.	Pozhiyur	17,785	8,719	9,066	92.87%	456

Nearest Habitations:

Pozhiyoor- 3.04 km (NW) Poovar- 6.21 km (NW) Kanjiramkulam- 10.61 km (NW) Parassala-6.48 km (NNE) Karungal-3.58 km (NNE) Thuckalay-10.23 km (ENE) Nirugudi-0.99 km (ENE) Colachel-3 km (SE) Kaliyakkavilai-7.06 km (NNE)

The mining lease area is well connected by tar road. The amenities such as Schools, Communications facilities, commercial centers are already available in the mining lease area as well as in the area adjacent to the mining lease area.

Schools/ Colleges:

- Govt. High school at Udayamarthandam
- St. Joseph Primary at Midalam
- St. Bernadette's Higher Secondary School at Mangalakkuntu
- > C.S.I primary School at Devikodu.
- > Don Bosco Matric Higher Secondary School at Midalacadu.
- > CBSC School at Amanattantheri at Melmidalam.
- St. Judes College at Thoothur
- St. Antony's Nursing College Holy Angel's School at Chentharai.
- > Bethlehem School at Karingal
- > Bethlehem Engineering College at Velliyavilai (on Karungal Colachel Road)
- > St. Alphonsa's Arts College at Kakkavilai (on Karingal- Kurumbanai Road).

Public Places (Workships/Hospitalls, etc.):

- Churches at Alanchi, Midalam, Melmidalm, Helan Nager Devicode, Puthurai, Enayam, Eraviputhendurai and Devicode.
- > Temples at Thoppuvilai, Enayamputhendurai, Karungal
- Government Hospital at Killiyoor
- > Government Hospital at Thengapattinam
- Government Hospital at Karungal
- > Dr. Gunam Hospital at Palapallam
- > Pushpavin Hospital at Alanchi
- Bala Hospital at Enayam
- Bus Stop at Alanchi, Midalam, Melmidalm, Helan Nager Devicode, Puthurai, Enayam, Eraviputhendurai, Devicode, etc.,

Govt. Offices/Institutes

- Colachel and Kollencode municipality office
- > Keezhkulam, Karungal, Palapallam Town Panchayat
- Midalam, Thoothur Panchayats.

3.14 Radioacitivity – Background Status

Comprehensive Radiological Monitoring and Mapping: The Terms of References set by the MoEF&CC require grid based study of the proposed areas. Radiological monitoring was carried out by Health Physics Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre during March, April and May 2023 months. Entire Report is annexed and Excerpts from the Report are appended below:

Digital map of these areas were generated and monitoring grid patterns with dimension 1 x 1 km were developed using ArcGIS Version:10 software. The Block A was divided into 12 grids whereas Block B was divided into 11 grids. An accessible location near the centre of each grid was chosen as preferred reference spot for radiological monitoring. Similarly, the buffer areas with dimension 5 x 5 km were demarcated around core zone and sampling locations were identified at the centre of each grid.

The radiological monitoring carried out at core blocks and buffer areas include (1) Ambient outdoor gamma dose rate (2) Air activity measurements of long lived (²³²Th) radio nuclides (3) Air activity measurements of Radon (²²²Rn), Thoron (²²⁰Rn) and progenies (4) Gross dust load in air (5) Gross alpha and gross beta activity in ground water (6) Measurement of Uranium and Thorium concentration in ground water (7) Measurement of thorium and uranium activity in the soil (8) measurement of gross alpha and gross beta activity in foodstuff (9) estimation of external dose received by general public and (10) Conventional water quality parameters like i) TDS ii) pH iii) Arsenic & Fluoride. All measurements were carried using calibrated instruments and standard protocols.

External dose due to gamma photons emitted from thorium and uranium daughter products present in the soil is the major dose contributor in the proposed study area. The ambient outdoor external dose rate [denoted as Hp(10)] at selected outdoor locations were measured using BARC make INERTS Survey Meter and Mirion RDS-31 Survey meter.

The maps of sampling points are shown below.

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

Ten readings at one metre height from ground were taken from each location and average value in μ Svh-1 was taken as the representative data for that area. The minimum detection limit (MDL) of the system used for the dose rate measurement is 0.01 μ Sv h-1. Ambient outdoor external dose rate [Hp (10)] at Block A and Block B tabulated month wise is given below.

Dlask	Ambient ou	itdoor external	dose rate [Ĥp	(10)] μSvh ⁻¹
BIOCK	March	April	May	Range
Al	9.5 - 12.7	9.7 - 11.5	9. 5- 12.7	9.5 - 12.7
A2	9.8 - 12.9	10.4 - 12.9	10.1 - 13.0	9.8 - 13.0
A3	9.7 - 12.8	10.5 -12.8	10.2 - 12.7	9.7 - 12.8
A4	4.5 - 7.3	4.8 - 7.3	4.9 - 7.1	4.5 - 7.3
A5	4.7 - 6.2	4.9 -6.4	4.8 - 6.1	4.7 - 6.4
A6	3.9 - 5.2	3.9 - 5.5	3.9 - 5.5	3.9 - 5.5
A7	5.5 - 8.2	5.9 - 8.4	5.8 -8.1	5.5 - 8.4
A8	5.7 - 8.2	6.1 - 7.8	6.1 -8.0	5.7 - 8.2
A9	10.5 - 13.7	11.1 -13.7	11.5 - 13.2	10.5 - 13.2
A10	9.7 - 13.1	10.5 - 13.4	10.2 - 13.1	9.7-13.4
A11	1.8 - 3.1	1.8 - 3.4	2.1 - 4.8	1.8 - 4.8
A12	6.8 - 8.1	6.6 - 8.5	6.4 - 8.5	6.4 - 8.5

Table 3.59 Ambient Outdoor External Dose Rate [Hp(10)], μSv h⁻¹ at Block A

GIS based Dose rate profile / contour of the block A is displayed below.

Table 3.60 Ambient Outdoor External Dose Rate [Hp(10)], µSv h⁻¹ at Block B

Dial	Ambient ou	itdoor external	dose rate [Hp	(10)] µSvh ⁻¹
BIOCK	March	April	May	Range
B1	1.1 - 2.0	1.1-2.1	1.1 - 2.1	1.1 - 2.1
B2	0.9 -1.8	0.9-1.5	1.1 - 1.6	0.9 - 1.8
B3	1 - 1.8	1.2 - 1.8	1.1 - 1.8	1.0-1.8
B4	7.7 - 9.5	7.5 -9.6	7.8 - 9.5	7.5 - 9.6
B5	1.8 - 2.7	2 - 2.7	1.8 - 3.5	1.8 - 3.5
B6	1 - 1.8	1.2 - 1.8	1.4 - 1.8	1.0 - 1.8
B7	3.4 - 4.4	3.1 - 4.4	3.4 - 4.4	3.1-4.4
B8	0.4 - 1.5	0.4 - 1.4	0.4 - 1.5	0.4 - 1.5
B9	5.7 - 7.5	5.7 - 7.5	6 - 7.5	5.7 - 7.5
B10	1 - 1.6	1.1 - 1.6	1 - 1.6	1.0-1.6
B11	0.3 - 0.7	0.4 - 0.8	0.4 - 0.7	0.3 - 0.8

GIS based dose rate profile/ contour map was made with slightly modified legends to accommodate all data points.

Ambient dose rate at different locations within buffer zone was measured and tabulated below:

Dlask	Ambient of	outdoor external	dose rate [Hp(1	0)] μSvh ⁻¹
BIOCK	March	April	May	Range
BU 1	0.2 - 0.3	0.3 - 0.5	0.3 -0.4	0.2 - 0.5
BU 2	0.2 - 0.4	0.2 - 0.5	0.2 - 0.4	0.2 - 0.5
BU 3	0.8 - 4.8	0.8 - 4.9	0.8 - 4.5	0.8 - 4.9
BU 4	0.1-0.2	0.2 - 0.3	0.2 - 0.3	0.1 - 0.3
BU 5	0.2 - 0.4	0.2 - 0.4	0.2 -0.4	0.2 - 0.4
BU 6	0.2 - 0.6	0.2 -0.7	0.2 - 0.8	0.2 - 0.8
BU 7	0.2 - 0.6	0.2 - 0.5	0.2 - 0.5	0.2 - 0.6
BU 8	0.2 - 0.3	0.2-0.3	0.2 - 0.3	0.2 - 0.3
BU 9	0.1 - 0.2	0.1 - 0.2	0.2-0.3	0.1 - 0.3
BU 10	0.2 -0.3	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4
BU 11	0.6 - 0.8	0.7 - 1.0	0.6 - 0.9	0.6 - 1.0
BU 12	0.1 - 0.4	0.1-0.4	0.2 - 0.5	0.1 - 0.5
BU 13	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2
BU 14	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2
BU 15	0.1 -0.2	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2
BU 16	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2
BU 17	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4
BU 18	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4
BU 19	0.1 - 0.3	0.1 - 0.3	0.1 - 0.3	0.1 - 0.3
BU 20	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4	0.2 - 0.4
BU 21	0.5 - 1.6	0.5 - 1.6	0.5 - 1.6	0.5 - 1.6
BU 22	0.4 - 1.8	0.4 - 1.8	0.4 - 1.8	0.4 - 1.8

Table 3.61 Ambient Outdoor External Dose Rate [Ḧp(10)], μSv h⁻¹ – Buffer Zone

Table 3.62 Comparison of estimated external dose rate at mined and un-mined locations

Location of the residence			Dose ra	te µSvh ⁻¹	Annual	Mining
Village	Latitude	Longitude	Indoor	Outdoor	dose mSvy ⁻¹	status
Chinnavilai	8°08'38.267"	77°18'09.367"	3.63	6.61	37.02	Un-mined
Chinnavilai	8°08'38.098"	77°18'12.323"	3.65	5.54	35.28	Un-mined
Chinnavilai	8°08'38.094"	77°18'12.708"	0.32	0.42	2.98	Mined out
Chinnavilai	8°08'38.141"	77°18'12.658"	0.41	0.53	3.80	Mined out
Pillayarkovil	8°09'04.039"	77°18'05.814"	1.70	3.88	18.71	Un-mined
Pillayarkovil	8°08'58.470"	77°18'05.814"	0.45	0.62	4.23	Mined out

In addition to grid survey points, 27 beach location points along intertidel zone of western coast were surveyed for dose rate and values are tabulated below :

Table 3.63 Ambient outdoor external dose rate at intertidal regions along westerncoast of Kanyakumari

S.No	Location	Latitude (N)	Longitude (E)	Dose rate (µSvh ⁻¹)
1	Valliyar river mouth	8° 08' 18.682"	77° 18' 13.705"	30 ± 14
2	Chinnavilai(Cruzparai)	8° 08' 26.905"	77° 18' 11.664"	0.6 ± 0.3
3	Chinnavilai	8° 08' 38.598"	77° 18' 05.083"	0.3 ± 0.1
4	Periavilai	8° 08' 58.322"	77° 17' 46.183"	1.30 ± 0.5
5	Puthoor cemetery area	8° 09' 29.289"	77° 17' 06.871"	2.4 ± 0.9
6	Kootumangalam	8° 09' 26.838"	77° 17' 06.021"	2.8 ± 1
7	Mandaikadu	8° 09' 40.086"	77° 16' 41.728"	1.8 ± 0.7
8	Vetumadai	8° 09' 50.223"	77° 16' 26.086"	2.7 ± 1.2
9	Kottilpadu	8° 10' 09.458"	77° 15' 46.976"	0.3 ± 0.1
10	Colachel	8° 10' 21.248"	77° 15' 19.699"	0.15 ± 0.1
П	Simancolony	8° 10' 33.146"	77° 14' 37.712"	0.25 ± 0.1
12	Kurumpanai Village	8° 11' 18.135"	77° 13' 46.833"	0.35 ± 0.1
13	Kurumpanai mining area 1	8° 11' 43.944"	77° 13' 28.236"	9.0 ± 2
14	Kurumpanai mining area 2	8° 11' 49.708"	77° 13' 24.781"	5.5 ± 1
15	Kurumpanai mining area 3	8° 11' 49.927"	77° 13' 24.691"	20.0 ± 5
16	Midalam	8° 12' 10.915"	77° 12' 52.722"	11.0 ± 3.6
17	Melmidalam	8° 12' 31.042"	77° 12' 16.693"	1.5 ± 0.5
18	Melmidalam	8° 12' 00.424"	77° 12' 08.938"	4.2 ± 1.6
19	Helan nagar	8° 12' 51.865"	77° 11' 38.922"	0.50 ± 0.1
20	Enayam	8° 13' 00.192"	77° 11' 22.111"	0.75 ± 0.1
21	Ramanthurai	8° 13' 47.665"	77° 10' 37.779"	0.30 ± 0.1
22	Thengapattinam	8° 14' 11.018"	77° 10' 18.764"	0.25 ± 0.1
23	Eramyanthurai	8° 14' 54.045"	77° 09' 27.216"	0.45 ± 0.1
24	Eraviputhanthurai	8° 16' 03.147"	77° 07' 56.751"	0.21 ± 0.1
25	Vallavilai	8° 16' 45.418"	77° 06' 55.429"	0.25 ± 0.1
26	Eeordi	8° 17' 20.094"	77° 06' 07.815"	0.25 ± 0.1
27	S.Kollancode	8° 17' 52.357"	77° 05' 26.322"	0.10 ± 0.1

GIS based dose rate profile/ contour map was made for buffer zone. The data include survey results from core A, core B, buffer zone and intertidel region.

Ambient outdoor external dose rate in Block A & B is above general background in other areas due to the presence of extraordinary rich deposits of monazite mineral. A few locations within Buffer Zone are also showing above normal radiation field indicating the presence of Monazite. An order of difference in radiation level variation has been observed in Block B indicating the heterogeneous characteristics of the presence of monazite. These areas are ideal for mining for recovering Monazite. Both intertidal zones as well as hinterland shows high monazite content. This region is generally considered NHBRA of Manavalakurichi.

Air activity measurements of long lived (²³²Th) Radionuclide:

Monazite contains 8 to 9% Th along with about 0.3% U besides the rare earth elements. ²²⁸Th and ²³²Th are two isotopes that occur in natural thorium mineral. Both are alpha emitters and have half-life of 1.91 y and 1.41x10¹⁰ years, respectively. ²³²Th has the lowest specific activity (among Th isotopes) of 4.07x103 Bqg⁻¹.

Air samples are collected from each location using electricity operated air sampler of flow rate 50 litre per minute (lpm). Gross air-borne dust containing radioactive particles is collected on a glass fiber filter paper. Approximately 1m3 of ambient air is sampled through the air sampler mounted at 1.5m above ground. The filter paper with deposited air borne dust is subjected for a delay counting for 30 days for removal of shortlived elements. Gross alpha activity is measured using ZnS (Ag) based scintillation counter with known counting efficiency. The efficiency has been deduced using the standard alpha electroplated source of 1215 Bq of ²⁴¹Am source.

Block	March	April	May	Average (Bqm ⁻³)
A1	0.015	0.023	0.027	0.022 ± 0.005
A2	0.023	0.028	0.033	0.028 ± 0.005
A3	0.008	0.011	0.016	0.012 ± 0.002
A4	0.011	0.015	0.021	0.016 ± 0.003
A5	0.031	0.036	0.041	0.036 ± 0.005
A6	0.034	0.038	0.046	0.039 ± 0.006
A7	0.008	0.015	0.022	0.015 ± 0.004
A8	0.008	0.011	0.015	0.011 ± 0.004
A9	0.023	0.029	0.036	0.029 ± 0.005
A10	0.008	0.015	0.023	0.015 ± 0.004
A11	0.013	0.021	0.029	0.021 ± 0.003
A12	0.015	0.019	0.026	0.020 ± 0.001

Table 3.64 Long lived gross alpha air activity at Block A locations

Gross beta was found less than MDA hence not mentioned in the report

Table 3.65 Long lived gross alpha air activity at Block B locations

Block	March	April	May	Average (Bqm ⁻³)
B1	0.015	0.023	0.028	0.022 ± 0.005
B2	0.015	0.023	0.029	0.022 ± 0.005
B3	0.023	0.036	0.041	0.033 ± 0.005
B4	0.015	0.023	0.03	0.023 ± 0.005
B5	0.008	0.015	0.023	0.015 ± 0.008
B6	0.015	0.021	0.023	0.020 ± 0.009
B7	0.008	0.019	0.022	0.016 ± 0.001
B8	0.019	0.031	0.036	0.029 ± 0.006
B9	0.008	0.021	0.023	0.017 ± 0.009
B10	0.023	0.045	0.048	0.039 ± 0.008
B11	0.015	0.028	0.031	0.025 ± 0.004

Gross beta was found less than MDA hence not mentioned in the report

Monazite being heavier and denser mineral as compared with silica sand, monazite content in airborne dust is significantly lower than typical soil of study area. Therefore, the long-lived alpha activity is not significantly high which is the case in NHBRA due to Monazite. Among the sampling locations, BU4 (Kudukachivilai, Mathicode Panchayat) is showing comparatively elevated long-lived alpha among other locations in Buffer Zone and, the same is attributed to resuspension of dust particles due to anthropogenic activities.

Monazite is a heavy mineral of high strength and grain integrity. Typical radon & thoron emanation rate from monazite sand is less than 1%. Outdoor locations in NHBRA have slightly higher levels of radon and thoron concentrations in air as compared to other locations. However, presence of natural ventilation also influences radon and thoron concentrations at outdoor locations. The values observed at Block A, Block B and Buffer Zones are within range of readings characteristic to monazite rich areas.

Dust load in air for most of the study locations of Block A, Block B and Buffer Zone are higher than 0.1 mg m-3, standards set by the Central Pollution Control Board. This is due to resuspension of dust. The values obtained are comparable to the dust load in air in this region.

Water sampling and radiochemical analysis of ground water at core and buffer zone locations were done. Though the entire study area consists of thorium and uranium rich mineral deposits, the gross alpha and gross beta activity in ground water is comparable to other locations in the areas outside the study area and significantly lower than the WHO drinking water limits of 0.5 Bql⁻¹ for gross alpha activity and 1Bql⁻¹ for gross beta activity.

The soil at study area contains thorium and uranium bearing minerals. However, none of our ground water samples indicated any significant level of these two naturally occurring radioactive elements. The levels are comparable to levels outside the study area. The values obtained for uranium were much lower than the WHO recommended Guidelines of 30 ppb (μgl^{-1}) or AERB recommended Guideline of 60 ppb (μgl^{-1}) or for drinking water.

Though the soil contains higher levels of thorium as compared to uranium, thorium content in ground water is again significantly lower than uranium. This is due to low leachability and solubility of thorium compounds under the given environmental conditions. The associated chemistry is unfavourable for the dissolution of thorium and the levels are far less than that of the uranium (one to two orders of magnitude lower). Uranium dissolution in the environmental conditions is greatly influenced by the physicochemical conditions such as pH, redox positional, complexation behaviour and role of ions.

The study locations are a part of the identified NHBRA of Manavalakurichi with higher content of Monazite that is a thorium rich mineral. Some hinterland locations have monazite content in the soil up to 10%. The measured values of thorium and uranium are well within the range observed in the NHBRA locations.

Though the study area consists of monazite and zircon rich locations, no significant uptake of thorium and its progeny or uranium and its progeny were observed in the locally grown

foodstuffs. Gross alpha activity in the most common foodstuff that is coconut is comparable with those specimens grown in areas outside the study area. However, since the studied biota, coconut seed is rich in potassium, significant contribution from ⁴⁰K is observed in gross beta activity. For better understanding of distribution of radioactivity in biota, a few samples were collected from selected locations from Kerala and Tamil Nadu.

Comparison of dose received by the residents at entire study area with USCEAR reported world average shows that, residents of Block A, Block B and Buffer Zone receive higher doses as compared with average dose for the world population.

Comparison of Estimated external dose to the Residents with USCEAR reported world average

Non-Radiological Measurements - estimation of TDS, pH, fluoride and arsenic in ground water

Apart from monitoring of major environmental radiological parameters, other water quality parameters like total dissolved salts (TDS), pH, arsenic and fluoride in ground water also monitored. Arsenic and fluoride in ground water were measured at accredited private laboratories. None of the locations showed Arsenic above MDL value of 0.1 mgl⁻¹. The resultsfor Block A locations are tabulated below.

Disale	Ma	arch	April		April May		Average	
BIOCK	Arsenic	Fluoride	Arsenic	Fluoride	Arsenic	Fluoride	Arsenic	Fluoride
A1		0.36		0.45		0.36		0.39 ± 0.05
A2		0.29		0.36		0.23		0.29 ± 0.07
A3		0.35		0.20		0.51	1	0.35 ± 0.16
A4		0.72		0.76		0.35		0.61 ± 0.23
A5	[0.50		0.21		0.23		0.31 ± 0.16
A6	AIDI	0.37	AND	0.23	AUDI	0.22	AUDI	0.27 ± 0.08
A7	< MDL	0.15	< MDL	0.23	SMDL	0.26	<mdl< td=""><td>0.21 ± 0.06</td></mdl<>	0.21 ± 0.06
A8		0.50		0.31	1	0.22		0.34 ± 0.14
A9		0.26		0.44		0.59		0.43 ± 0.17
A10]	0.47		0.81		0.30		0.53 ± 0.26
A11		0.22		0.34		0.31	1	0.29 ± 0.06
A12		0.37		0.34		0.25		0.32 ± 0.06

Table 3.66 Estimation of Arsenic and Fluoride in ground water (mg I⁻¹) at Block-A

Table 3.67Estimation of Arsenic and Fluoride in ground water (mg I⁻¹) at Block-B

Disale	Ma	irch	A	oril	M	lay	A	erage
BIOCK	Arsenic	Fluoride	Arsenic	Fluoride	Arsenic	Fluoride	Arsenic	Fluoride
B1		0.24		0.27		0.25		0.25 ± 0.02
B2		0.21	Ľ	0.37		0.30		0.29 ± 0.08
B3		0.33		0.66		0.26		0.42 ± 0.21
B4		0.20		0.15		0.20		0.18 ± 0.03
B5		0.21		BDL		0.16		0.19 ± 0.04
B6	<mdl< td=""><td>0.23</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.28</td><td><mdl< td=""><td>0.21 ± 0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.23	<mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.28</td><td><mdl< td=""><td>0.21 ± 0.08</td></mdl<></td></mdl<></td></mdl<>	0.12	<mdl< td=""><td>0.28</td><td><mdl< td=""><td>0.21 ± 0.08</td></mdl<></td></mdl<>	0.28	<mdl< td=""><td>0.21 ± 0.08</td></mdl<>	0.21 ± 0.08
B7		0.41		0.28		0.37		0.35 ± 0.07
B 8		0.25		0.36		0.31		0.31 ± 0.06
B9		0.29		0.39		0.21		0.30 ± 0.09
B10		0.22		0.51		0.25		0.33 ± 0.16
B11		0.37		0.45		0.27		0.36 ± 0.09

From the observations of parametres, outdoor gamma dose rate in Block A varied from 1.8 to 13.7 μ Svh⁻¹ and in Block B it was 1.0 to 9.6 μ Svh⁻¹ whereas in the Buffer Zone it was 0.1 to 4.9 μ Svh⁻¹ only. Gamma dose rate mapping was also conducted in 27 locations along the intertidal regions of western coast of Kanyakumari and the highest levels of 20 μ Svh⁻¹ was observed in Kurumpanai mining area.

Long lived air activity based on gross- α measurements was 0.008 to 0.034 Bqm⁻³(0.015 Bqm⁻³) at Block A, 0.008 to 0.030 Bqm⁻³ (0.016 Bqm⁻³) in Block B and 0.008 to 0.031 Bqm⁻³

(0.011 Bqm⁻³) in Buffer Zone locations. Outdoor air activity levels of Radon were 7 to 37 Bqm⁻³ (21 Bqm⁻³) for Block A locations, 8 to 20 Bqm⁻³ (12 Bqm⁻³) for Block B locations, 7 to 17 Bqm⁻³ (11 Bqm⁻³) for Buffer Zone locations. Outdoor air activity levels of Thoron were 21 to 100 Bqm⁻³ (47 Bqm⁻³) for Block A locations, 13 to 40 Bqm⁻³ (23 ± 7 Bqm⁻³) for Block B locations, 12 to 33 Bqm⁻³ (19 Bqm⁻³) for Buffer Zone locations. Dust load levels were 0.53 to 1.47 mgm⁻³ (0.97 mgm⁻³) for Block A locations, 0.53 to 1.20 mgm⁻³ (0.85 mgm⁻³) for Block B locations, 0.40 to 1.33 mgm⁻³ (0.88 mgm⁻³) for Buffer Zone locations.

Gross alpha and gross beta activity in ground water samples on radiochemical analysis were in the range of 0.009 to 0.066 Bql-1 (0.018 Bql-1) & 0.063 to 0.152 Bql-1 (0.088 Bql-1) at Block A while 0.003 to 0.046 Bql-1 (0.020 Bql-1) & 0.047 to 0.108 Bql-1 (0.076 Bql-1) at Block B locations where as in Buffer Zone locations they were 0.008 to 0.031 Bql-1(0.012 Bql-1) and 0.01 to 0.10 Bql-1 (0.03 Bql-1) respectively. Measurements of Uranium and Thorium in soil was carried out using gamma spectrometry and were found to be in the range of 5.2 to 24.7 Bqkg-1 (16.7 Bqkg-1) & 0.52 to 2.48 Bqkg-1 (1.65 Bqkg-1) at Block A locations while 1.2 to 16.6 Bqkg-1 (5.2 Bqkg-1) & 0.12 to 1.72 Bqkg-1 (0.54 Bqkg-1) at Block B locations where as in Buffer Zone locations the observed values were 0.3 to 9.6 Bqkg-1 (1.3 Bqkg-1) and 0.02 to 1.05 Bqkg-1 (0.13 \pm 0.19 Bqkg-1) respectively.

The inner flesh of mature Coconut (Cocos nucifera) that is widely consumed and locally grown was analysed for Gross Alpha and Gross Beta activity and the results were in the range of 0.04 to 0.13 Bqkg-1 (0.06 Bqkg-1) & 9.2 to 15.9 Bqkg-1 (11.4 Bqkg-1)at Block A while 0.04 to 0.10 Bqkg-1 (0.05 Bqkg-1) & 9.9 to 13.2 Bqkg-1 (11.2 Bqkg-1) at Block B locations where as in Buffer Zone locations they were 0.04 to 0.10 Bqkg-1 (0.07 Bqkg-1) & 3.2 to 17.2 Bqkg-1 (13.4 Bqkg-1) respectively.

Measurements of Uranium in ground water (in ppb) by laser fluorimetry were found to be in the range of 0.50 to 1.15 ppb (0.64 ppb) at Block A locations while 0.51 to 2.50 ppb (0.90 ppb) in Block B Locations whereas in Buffer Zone locations they were 0.50 to 3.15 ppb (0.94 ppb) respectively. A few water samples collected from selected Block A and Block B locations (six locations in each Block) were subjected for Thorium estimation using Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) and the levels were 0.01 to 0.08 ppb (0.03 ppb).

Among all radiological measurements, dose estimation for residents of study area is of high importance and hence indoor and outdoor gamma radiation field were measured (μ Svh-1) and the annual external dose in mSvy-1 to the residents were estimated using the standard protocols. The external dose to the residents in mSvy-1as indoor, outdoor and total were found to be in the range of 0.40 to 10.60 mSvy-1 (2.94 mSvy-1), 0.40 to 19.90 mSvy-1 (8.21 mSvy-1) & 7.44 to 87.16 mSvy-1 (29.10 mSvy-1) at Block A locations while the same in Block B Locations were 0.25 to 1.40 mSvy-1 (2.68 mSvy-1), 0.40 to 9.50 mSvy-1 (2.74 mSvy-1) & 4.80 to 21.67 mSvy-1 (9.18 mSvy-1) where as in Buffer Zone locations they were 0.103 to 1.50 mSvy-1 (0.35 mSvy-1), 0.12 to 4.90 mSvy-1 (0.70 mSvy-1) & 1.17 to 16.35 mSvy-1 (3.56 mSvy-1) respectively. The annual average effective dose from all sources of natural background radiation is approximately 2.4 millisieverts (mSv) worldwide and since the entire studied region are at NHBRA of south-west India, the external dose itself is, on an average five to ten times greater than world average.

4.0 Anticipated Environmental Impact and Mitigation Measures

4.1 Identification of Impacts

Anleashing Valu

Environmental Impacts are categorized as Primary and Secondary Impacts. Primary Impacts are those which are attributed directly to the project and Secondary Impacts are those which are indirectly induced by the Project. Any Project would create impact on the environment in two distinct phases viz. Construction Phase which may be regarded as temporary & short term and Operation Phase which would have long term effects. Identification of all potential environmental impacts due to the Proposal are critically examined and major impacts (both Beneficial & Adverse) are studied.

4.2 Construction Phase

The proposed project does not involve any major establishment or construction. Thus, Construction Phase Impacts are not there for Impact Assessment and Environmental Management Plan (EMP).

Cost-benefit analysis of a separate Mineral Separation Plant (MSP) at the site: -

Due to lack of raw material source, existing MSP at Manavalakurichi is being operated for <40% of its installed capacity for last 10 years or so. To support the Plant (with all required infrastructures) at Manavalakurichi, the New Lease has been proposed. Thus, having a dedicated MSP near the new Lease will not be feasible on techno-economical & environmental angle. Increasing the continued supply of Raw Material to the existing MSP will enhance uninterrupted supply of strategic Minerals to DAE for its operations

4.3 Impact and Mitigation Measures During Operation Phase

The identified impacts due to mining activities throughout the operational and post closure phases have been studied in detail covering the following components:

- Land Environment.
- Traffic Volume.
- \succ Air Quality.
- > Noise Levels.
- > Water Environment.
- Biological Environment.
- Socio-economics.

4.3.1 Land Environment

Anticipated Impacts: Non-Conventional Mining activities, with no Drilling and Blasting, will be carried out in available/consented pocket lands in the Mining Lease Area of 1144.0618 Ha. Thus, no vibration impact due to mining. Also, there is no Solid Waste generation and thus, no Waste Dump in the Mining Lease area.

After mining, the backfilling would be carried out and surface profile would be maintained at its original RL level (w.r.t. nearest Bench Mark) + 5 to 10% more for compaction. It is an ongoing activity upto life of the mine.

Since this process is an ongoing activity, if any sand deficit occurs in the conceptual stage, appropriate measures will be adopted to backfill the mined out area to the base level. Over and above, if any information is received from the land owners requiring for additional

tailings, IREL will transport the tailings and backfill to the base level. Additional tailings sand will be provided from the tailings generated from the beach washing collection. In the existing mining lease, same method is followed and no sand deficit has been experienced in the mined out and backfilled areas. Also, it is to be highlighted that, backfilling material is tailings (sand) only and hence, compaction is stable unlike clay materials.

About 106.50 Ha is required for Mining during the Plan Period which will be mined out, back filled and handed over to the Land Owners. At the Conceptual Stage, 834.1296 Ha will be the mined out and back filled area. Backfilled area will be used for plantation of Coconut trees and fruit bearing trees and other activities by the respective land owner. Thus, the original landscape will be restored after the mining.

Mitigation Measures

- > Mined-out area are to be backfilled simutanoeusly to restore the topography.
- > Plantation are to be carried out in the mined-out areas after backfilling.
- Reclaimed Land will be used for plantation and other activities including construction and thereby ensuring Eco-friendly and Sustainable mining.

4.3.2 Traffic Volume

Anticipated Impacts Mined out mineral from Blocks A & B will be transported by 25/30 Tons Tippers to the existing Mineral Separation Plant (MSP) at Manavalakurichi, which is aerially located at 8.4 km from Block-A and 19.4 km from Block-B in the southeast (road distance 12-17 km from Block-A and 30-35 km from Block-B). MDR and SH-179 will be the Ore Transportation Route from the Mining Lease to MSP at Manavalakurichi which is passing through the Lease area and accessible from both northern as well as southern pockets of Lease Area.

<u>Mineral Transportation</u>: As MDR and SH-179 covers >90% of the transportation route, the RoM transportation from Blocks-A&B to MSP will be through MDR/SH-179. For balance area coverage, vacant land within the Lease will be utilized as Haulage Road to reach the nearest point of MDR/SH-179 and further to MSP. Thus, Mineral transportation will not have any impact on the village roads.

For assessing the baseline status, a detailed traffic assessment was carried out, in compliance with IRC 106-1990 guidelines, at Midalam Road & Nithravilai Road Junctions. The existing traffic volume at Nithiravilai was found to be 5017 PCU/day and at Midalam 4441 PCU/day i.e. 209 PCU/hr. at Nithiravilai and 185 PCU/hr. at Midalam near MSP with average 197 PCU/hr (Table 3.54 & 3.55). The traffic carrying capacity of two-way undivided arterial road is 2400 PCU/hr as per IRC 106-1990.

In the Post-Project Scenario, there will be an addition of 334 Vehicle (in 2 ways) due to due to the Project. Cumulatively, the traffic volume in the Project vicinity will be 31 PCU/hr. It is worked to be only 16% volume addition to the existing traffic volume. The existing Roads/SH are adequate to handle the proposed traffic volume due to the Project. Thus, the traffic impact due to the Proposal will be minimum to the existing traffic volume in its vicinity. The Volume/Capacity (V/C) ratio for existing and proposed traffic volume is found to be 0.08 and

0.095 respectively and the Level of Service (LOS) is found to be "A" – Excellent. Hence, the existing highway is adequate to handle the proposed volume due to the proposed project.

Figure 4.1 Mineral Transportation through the Lease Area

Carbon Emission & Climate Change

Greenhouse gases include carbon dioxide, methane, nitrous oxides, and water vapour. The proposed quarrying and transporting activities will utilise about 7.5 Lakhs Litres HSD/year. By considering the Transport Emission Factors for Medium & Heavy Duty Trucks viz. 0.997 kg CO₂/km, 0.012 g CH4/km and 0.008 g N2O/km [as per US EPA 2014 emission factors for Green House Gases (GHGs) Inventories], the gaseous emissions will be as follows:

HSD consumption	: 7.5 LLPA
Total CO ₂ Emissions	: 0.012 Tons/Annum
CO ₂ -e for CH4 Emissions	: 0.004 Tons/Annum
CO ₂ -e for N2O Emissions	: 0.029 Tons/Annum.

Thus, total CO₂ Emission due to the Proposal will be 0.045 Tons/Annum.

Mitigating Measures

As an EMP measure, periodical wetting of haul roads with mobile water tankers will be undertaken by IREL to control the emissions due to transportation. Adequate Green Belt will be developed after the Mine closure for carbon sequestration. Carbon sequestration is the long-term storage of carbon in oceans, soils, vegetation (especially forests) and geologic

formations. As trees grow, they store carbon in woody tissues and soil organic matter. Through the process of photosynthesis, plants assimilate carbon and return some of it to the atmosphere through respiration. The carbon that remains as plant tissue is then consumed by animals or added to the soil as litter when plants die and decompose. The primary way that carbon is stored in the soil is as soil organic matter (SOM). SOM is a complex mixture of carbon compounds, consisting of decomposing plant and animal tissue, microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals. It will be ensured that Plant operations do not result in loss of soil biological properties and nutrients. Soil amendments as required will be caried out to improve soil heath. Bio remediation using micro organisms will be carried out to restore the soil environment to enable carbon sequestration.

Adequate parking area is provided in the Mine Area. Facilities for drivers (rest room, toilet, etc.) are also provided. Other mitigating Measures are:

- All Tippers are to be fully covered with Tarpaulin to avoid any spillage during transportation.
- Restriction of over loading of Tippers shall be enforced.
- Speed restrictions shall be enforced.
- Restriction of Truck parking in the Highway and Public Roads shall be enforced.
- Regular and preventive maintenance of transport vehicles are to be ensured.
- Compliance to 'Pollution under Control' Certification has to be ensured and to be checked periodically.

4.3.3 Air Quality

Commercial mobile lighting towers will be provided from 7.5 kVA for lighting 30-50 LUX intensity at the working areas for during night operation. The engine capacity will be 16-20 BHP. 2 Nos. of Mobile tower lights backed with 2 x 125 kVA DG sets will be utilized in the mining area for illumination purpose. The DG sets will have acoustic enclosures to control the noise levels. The stack height will be as per CPCB norms to comply with emission norms.

Emissions from Mines: Mining, Loading and Transporting activities would generate both fugitive dust emissions and smoke from HEM Machineries/Equipments & Transporting Tippers. Fugitive emissions are predicted by using standard equations given in 'Indian Mine and Engineering Journal' and suggested by USEPA (Emission Factors as referred in AP-42) for Mining & Allied activities.

Activity	Equation
Excavation of Ore	23.6 kg/hr particulate matter for every 1,000 Tonnes per hour material handling.
Ore transportation	0.2 kg/vehicle/km.

The equations for various activities are:

Accordingly, the computed values of PM Emission for various activities (other Pollutants are in insignificant levels from Mining activities) are:

PM Emissions, g/sec	
Excavation	0.0000005
Loading	0.0000006

0.00006596

Ore Haulage

As site specific mixing heights were not available, mixing heights based on CPCB publication, "Spatial Distribution of Hourly Mixing Depth over Indian Region", PROBES/88/2002-03 has been considered (appended below).

Maximum Mixing Height (meter) with Standard Deviation over Indian Region

Name of Station	Seasons					
	Wi	nter	Pre-mo	onsoon	Post-m	onsoon
Chennai	Mixing Ht.	Std. Dev.	Mixing Ht.	Std. Dev.	Mixing Ht.	Std. Dev.
	1063.75	153.92	1274.45	111.79	1010.5	109.39

Prediction Modelling: AERMOD View Software is used for Predicting the maximum Ground Level Concentrations (GLCs) including Transportation Impact. Model Inputs and Outputs are appended. The predicted GLCs are given in Table 4.5.

Table 4.1 PM 2.5 – Input Data

Source Pathway - Source Inputs

										AERMO
\rea Sources										
Source Type	Source ID	X Coordinate [m]	Y Coordinate [m]	Base Elevation (Optional)	Release Height [m]	Emission Rate [g/ (s-m^2)]	Length of X Side [m]	Length of Y Side [m]	Orientation Angle from North [deg]	Initial Vertical Dim.[m]
AREA	MLBA	745520.65	906804.66	64.00	1.50	2.16E-8	100.00	50.00	0.00	
		ML Block A								
AREA	MLBB	734989.10	915153.27	33.00	1.50	4.50E-7	100.00	50.00	0.00	
		ML Block B								

Table 4.2 PM 2.5 – Output data

Results Summary

C:LakesWERMOD View/IREL NewMine/IREL NewMine.isc

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	0.72595	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	21-02-2023, 24
24-HR	2ND	0.67804	ug/m*3	734995.42	916072.71	34.00	0.00	34,00	26-01-2023, 24
24-HR	3RD	0.53076	ug/m*3	734995.42	916072.71	34.00	0.00	34.00	29-01-2023, 24
24-HR	4TH	0.43892	ug/m=3	734995.42	916072.71	34.00	0.00	34.00	23-02-2023, 24
24-HR	5TH	0.39787	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	19-02-2023. 24
24-HR	6TH	0.36315	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	08-02-2023, 24
24-HR	7TH	0.32914	ug/m*3	736495.42	916072.71	34.00	0.00	34,00	30-12-2022, 24
24-HR	8TH	0.32483	ug/m*3	736495.42	916072.71	34,00	0.00	34.00	10-02-2023, 24
24-HR	9TH	0.31671	ug/m=3	736495.42	916072.71	34.00	0.00	34.00	20-12-2022, 24
24-HR	10TH	0.31643	ug/m=3	736495.42	916072.71	34.00	0.00	34.00	11-01-2023. 24
PERIOD		0.11286	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	

Table 4.3 PM 10 - Input data

Source Pathway - Source Inputs

Source Type	Source	X Coordinate [m]	Y Coordinate [m]	Base Elevation (Optional)	Reisase Height JmJ	Emission Rate [g/ (s-m*2)]	Length of X Side [m]	Length of Y Side [m]	Orientation Angle Rum North [deg]	Initial Vertical Dim [84]
AREA	MLBA	745520.65 ML Block A	906804.66	64.00	1.50	2.16E-7	100.00	50.00	0.00	
AREA	ML6B	734989.10 ML Block B	915153.27	33.00	1.50	4.50E-6	100.00	50.00	0.00	

Table 4.4 PM 10 – Output Data

Results Summary

C Lakes'AERMOD ViewUREL NM PM 10UREL NM PM 10.Isc

PM10 - Concentration	- Source Group: ALL

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	7.25954	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	21-02-2023.24
24-HR	214D	6.78037	ug/m*3	734995.42	916072.71	34.00	0.00	34.00	26-01-2023, 24
24-HR	3RD	5.30761	ug/m*3	734995.42	916072.71	34.00	0.00	34.00	29-01-2023.24
24-HR	4TH	4.38919	ug/m*3	734995.42	916072.71	34.00	0.00	34.00	23-02-2023, 24
24-HR	5TH	3.97872	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	19-02-2023, 24
24-HR	6TH	3.63155	ug/m*3	736495.42	916072.71	34.00	0.00	34:00	08-02-2023, 24
24-HR	7TH	3.29137	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	30-12-2022, 24
24-HR	67 H	3.24826	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	10-02-2023.24
24-HR	9TH	3.16710	ug/m×3	736495.42	916072.71	34.00	0:00	34.00	20-12-2022, 24
24-HR	10TH	3.16430	ug/m*3	735495.42	916072.71	34.00	0.00	34.00	11-01-2023, 24
PERIOD		1.12860	ug/m*3	736495.42	916072.71	34.00	0.00	34.00	

Table 4.5 Predicted GLCs

SI. No	Pollutant	Background Concentration (24-hly. Avg.), μg/m ³	Max. Predicted Ground Level Concentration, μg/m ³	Distance from the Plant (max.), km	Total Concentration, ug/m3	Revised NAAQ Norms ug/m3	Buffer Available in the Atmosphere (%)
1.	PM 2.5	21.60	0.73	0.8	22.33	60	62.78
2.	PM 10	45.70	7.26	0.8	52.96	100	47.04

The predicted maximum GLC-PM2.5 & PM10 for cumulative operation of Mining activities are 22.33 ug/m³ & 52.96 ug/m³ respectively and found to be confined locally i.e. within 0.8 km radius from the boundaries. Also, adequate Buffer Level available (47-63%) in the Air Environment for the Proposal.

Predicted GLCs for PM2.5 and PM10 are given in Figs. 4.2 & 4.3.

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

Figure 4.2 Predicted GLCs – PM 2.5

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

Figure 4.3 Predicted GLCs – PM 10

Mitigating Measures: As mitigative measure to control air pollution, the following measures are to be implemented effectively:

- > Water sprinkling on loading point and Haul Roads are to be carried out.
- > Covering of Trucks/Tippers with tarpaulin shall be ensured during Ore transportation.
- > Over loading of Tippers has to be avoided to control the spillages during transportation.
- Periodical maintenance and replacement of worn out accessories in the mining equipments are to be carried out.
- > 'Pollution under Control' Certification has to be ensured and to be checked periodically.
- > Periodical monitoring of Ambient Air Quality has to be carried out.

4.3.4 Noise Levels

The mining operations are to be carried out by fully mechanized method with the help of Excavators and Tipper combination. No drilling and blasting is involved. The noise level due to Mining Equipments during operation, is to be maintained at <90 db(A) at a distance of 1.5 m from the sources. In general, noise generated by these sources is to be within the limit of 90 dB(A) as prescribed by the Director General of Mines Safety (DGMS). The work force is exposed to <85 dB(A) levels during the 8-hours Shift.

Equipment	Location	Noise Level (Leq), dB(A)		
Excavator	Operator's Position	80-85		
Tipper	Operator's Position	70		
Tipper	Operating 10 m away	85-90		

Table 4.6 Source Noise Levels - Mine Machineries

Ambient Noise Levels (Leqs) will be <55 dB(A) during day time and <45 dB(A) during night time at the boundaries in compliance with MoEF&CC Norms for residential areas.

2 Nos. of Mobile tower lights backed with 2 x 125 kVA DG sets will be utilized in the mining area for illumination purpose.

Mitigating Measures:

The noise generated due to use of machineries can be kept well within the limits. Noise level at the nearest Mining Lease boundary will be <55 dB(A) during day time and <45 dB(A) during night time and which will be within the MoEF&CC Norms for Residential and Rural Areas.

- > Deployment of mining equipments shall be with in-built mechanism for reducing noise.
- > Providing ear muffs/ear plugs to the workers in high noise zones.
- Operation of the mobile van will be complying the MoEF&CC noise norms of <45 dB(A) during night time for residential areas.</p>

4.3.5 Water Environment

Anticipated Impacts on Surface Water

The mining activities involve the mining of Atomic Minerals (BSM Ore) from the inland deposits. Block-B is does not contain waterbody or stream and there are 2 Nos. streams in Block-A. As described in the approved mining plan, adequate safety barriers will be

maintained at both sides of the nalla course till the end of the mine life. Natural runoff water would not be disturbed due to the mining activity.

As the mined-out areas would be backfilled simultaneously, no surface Runoff generation from the Mining Lease and Pre-Project & Post-Project Runoffs will remain same. Also, there will not be any disturbance due to the mining on the natural drains and rivers in the vicinity. Thus, no impact is anticipated on the surface water bodies due to the mining activities.

Anticipated Impacts on Ground Water

The average working depth in Block – A and Block – B is 6 m only and the maximum depth will be 9 m BGL. The groundwater level in the mining lease area and vicinity is ranging between 10 - 15m BGL as evidenced from the Tamil Nadu Water Supply and Drainage Board (TWAD) and CGWB data base. Thus, the mining activity will not intersect the groundwater table at both the blocks A and B. If the mining is found to be intersecting the water table, further mining activities will not be carried out at that location.

With no permanent facilities proposed in the Mining Lease area and with the moving population of worker/employees during the mining, water demand will be 2.5 KLD which will be sourced from the permitted quantity of 4500 KLD from Valliyar River for the existing MSP at Manavalakurichi. Also, the requirement will be managed through local Drinking Water suppliers. Sewage generation of 2.2 KLD will be biologically treated in a mobile Bio-Toilets and the sludge will be used as manure for the Green Belt development. No Workshop is proposed and thus no trade effluent generation from the Mine. No mine pit will be there and thus no mine drain is envisaged. No impact is anticipated on the ground water sources in the Mining Lease vicinity.

Mitigation Measures

- > Natural drains shall be maintained as such.
- Adequate safety barriers will be maintained at both sides of the nalla course in the Lease till the end of the mine life.
- > No ground water drawl in the Mining Lease Area as well as CRZ area for the project.
- > Periodical monitoring of water table levels and water quality are to be carried out.

4.3.6 Biological Environment

Anticipated Impacts

There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed) within 10 km from the Mining Lease Area. Kanniyakumari Wildlife Sanctuary is at 25 km (shortest) distance in northeast.

The study area does not involve any forest land. The private patta lands are found with scattered coconut trees. The major crops cultivated in the study area are coconut trees, fruit crops like mango, banana, jack and aonla. Only domesticated fauna is recorded in the Study Area.

Mitigation measures

- Backfilled areas will be afforested with native tree species.
- > Adequate Green Belt will be developed wherever possible.

Green Belt development: The mining will be limited to vacant land available in the mining lease area. Out of total mining lease area of 1144.0618 Ha, the vacant land available for mining of atomic minerals is 834.1296 Ha only. Also, the mining will be carried out in the consented pocket lands given on lease for 11 months by the land owners. After the mining, such pocket lands will be backfilled to its original level and handed over to the land owners. Thus, the land will be in possession of IREL for a short duration of 11 months only and after that the land ownership will not be with IREL. The same scenario would prevail for the entire lease area. IREL will not have any surface right nor land ownership in the entire mining lease area.

In view of this, Greenbelt development in the mining lease area by IREL may not be possible as the ownership of the land vest with land owners. However, IREL will incorporate a clause in the land lease agreement to plant and develop coconut or any other suitable tree plantation @70 Trees per acre in the mined out area (**Table 4-7**).

Towards compensatory afforestation programme, IREL would contribute an amount of Rs. 50 Lakhs to the District Forest Officer (DFO) to develop and maintain 25,000 trees at suitable place near the lease area.

Plan Period	Area, Ha	No.of. Trees (Coconut)
I	103.5	17,700
II	106.5	18,000
III	106.5	18,000
IV	106.5	18,000
V	106.5	18,000
VI	106.5	18,000
VII	106.5	18,000
VIII	91.62	16,000
Total	834.12	1,41,700

Table 4.7 Green Belt Development

In addition to the above, the following native species will also be suitably planted in the available areas:

Acacia nilotica (Babul) Acacia leucophloea Aegle marmelos Azadirachta indica Cassia fistula Casuarina equisetifolia Coccus nucifera Ficus bengalensis Ficus religiosa Mangifera indica Zizyphus jujuba

Green belt development will be undertaken in consultation with State Forest/Horticulture Department.

4.3.7 Occupational Health and Safety

Anticipated Impacts

Radiation: The coastal areas in Kanniyakumari District including the mining lease area of 1144.0618 ha are having high natural background radiation in the range of 1 to 4 μ Svh-1 due to presence of Monazite in the BSM Ore. Monazite is a radioactive mineral containing Uranium and Thorium.

On removal of the BSM ore (Run of Mines) containing Monazite and backfilling the minedout areas with tailings (after removal of minerals), the background radiation in the mined-out area is brought down to 0.2 to 0.4 μ Svh-1. In other words, there has been 8 to 10-fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining does not affect either environment or people and makes the area free from high background radiation.

IREL will provide and continually improve the occupational health and safety performance. Personal Protective Equipments will be provided to the mine employees. All the workers will be provided with Internal Dosimetry and Medical Surveillance. Maintenance of Pre, during & Post Employment Records will be done. Duly qualified Radiological Safety Officer (RSO) will be appointed. External Radiation Monitoring will be carried out periodically by Health Physics Division, BARC. All the workers will be trained and instructed in radiation safety.

Mitigation measures

Commitment Towards Occupational Health Facilities: The following activities are being carried out by IREL at present also and the same will be followed.

Radiation Monitoring:

Personal Monitoring: Persons working in the mines will be provided with Thermo-Lumiesent Dosimeter (TLD). The TLD will be issued on quarterly basis and it will be evaluated by the Nuclear Fuel Complex (NFC), Hyderabad. The dose level will be calculated and the same will be recorded and monitored as per the AERB guidelines.

Work place monitoring: Radiation level survey in work place will be carried out by Radiation survey meter and Radiation survey will be conducted once in a month. Medical examination: All persons to be employed would undergo Initial Medical Examination as per the Mines Act, 1952 and the Atomic Energy (Radiation Protection) Rules, 2004.

Periodical Medical examination will be carried out (i) once in 5 years for persons below the age of 45 years (ii) Once in 3 years for the persons above the age of 45 years and (iii) Once in a year for persons to be deployed in the mining site.

Compulsory Medical examination will be carried out for the persons before 30 days of their retirement.

All the data related to medical will be digitally maintained.

First Aid room will be provided in the mining site and the same will be maintained as per the Mines Act, 1952.

4.3.8 Soil & Agriculture

Anticipated impacts

Loss of agricultural land is not involved as backfilling of mined out voids carried out simultaneously and reclaimed. Also, there will be no mine seepage water disposal or any effluent discharge from the Mining Lease area. No impact will be there due to mining on ground water & surface water sources. Fugitive emissions due to the mining of Atomic Minerals will be Nil/ or insignificant. ROM and tailings transportation will be mainly on the State Highway. Thus, there will be no impact on the Soil as well as Agricultural activities in the vicinity.

4.3.9 Socio Economics

Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to displacement of people. Thus, no Rehabilitation & Resettlement (R&R) issue due to the Proposal. Also, there is no Litigation against the Proposal.

The Mine will be operated with the required Statutory Officials and Competent Persons mandatorily appointed as per the provisions of the Mines Act, 1952, Atomic Mineral Concession Rules (AMCR), 2016 and Mineral Conservation Development Rules (MCDR), 2017. Project will employ about 155 persons directly and 250 persons indirectly.

The Project Cost is Rs.31.25 Crores. Royality, DMF and NMET will be remitted as per the statutory requirement. Adequate CER Budget, as per OM F.No.22-65/2017-IA.III dated 20.10.2020, will be allocated for the benefits of local villages in the Mine vicinity, after taking into account of the concerns raised during Public Hearing.

IREL spends about Rs. 3.00 – 5.00 Crore for CSR activities in the region (Table 4.8)

		CSR Ar	nount Spe	nt (Rupees	s in lakhs)	hs)					
CSR Component	2020-21	2021-22	2022-23	2023-24	2024-25 Allocated	Total					
Health & Nutrition	15.77	76.76	59.39	134.45	127.50	413.87					
Education	5.41	3.92	21.77	89.56	166.50	287.16					
Rural Development Projects	49.84	28.77	37.64	89.54	150.00	355.79					
Promoting Environment		11.79	36.78	15.68	45.00	109.25					
Women Empowerment		17.96				17.96					
Skill Development			4.06	6.85		2.15					
Sports				4.72	11.00	15.72					
Total	71.02	139.20	159.64	340.80	500.00	1210.66					

Table 4.8 CSR Activities in the Region by IREL

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

CSR Activities by IREL - MK Unit

<

Shri N. Selvarajan, CGM & Head, MK handed over cheque of Rs.14 lakhs and Rs.4.50 lakhs to the Sub-Collector, Padmanabhapuram towards Fishermen Village Development Fund and Medical Assistance Fund respectively on 14.09.2022

Shri H.R. Koushik, Sub-Collector, Padmanabhapuram

IREL handed over 4 nos. of vehicles to Kollencode & Colachel Municipalities, Ezhuthesam Town Panchayat and Thoothoor Village Panchayat in the presence of Shri N. Selvarajan, Chief General Manager & Head and Trade Union Representatives on 13.01.2023 for handling Solid waste in the Municipalities/Panchayat.

The processed mineral products, apart from its usage for strategic purpose in Nuclear Energy, Defence, Space, etc., finds application in number of commercial sectors such as aerospace industry, infrastructure development, ceramics, foundries, oil industries etc., while Rare Earths (RE) are used in niche applications such as consumer electronics, renewable energy, EVs, etc.

The project will generate revenue in terms of royalty and taxes etc. to the state of Tamil Nadu in addition to make available of strategic material. The project will also generate employment to the people and ancillary industries around the area. All these minerals and RE provides input for other industries and plays vital role in global economy. Hence, the project is of utmost importance for the country and the region.

Mitigation measures

- > Development of Infrastructure Facilities in the Region.
- > Conducting medical camps and extending medical facilities.
- > Contribution to Education and skill development.
- Providing drinking water supply.

5.0 Analysis of alternatives (Technology and site)

5.1 Technological alternatives

The method of mining will be **Non-Conventional Opencast Mechanized Mining** by Excavator-Tipper combination with no Drilling & Blasting.

The mineable reserves estimated in the mining lease area of 1144.0618 Ha is 59.88 Million Tonnes. Mineral content in the deposit varies between 10.0% and 22.6% with an average 14.5%.

It is proposed to mine out Atomic Minerals (BSM Ore) @ 5000 Tonnes per day (TPD) ROM and 1.50 Million Tonnes ROM per Annum. Mining operation will be carried out at an average depth of 6 m and a maximum depth of 9 m depending upon the location and mineralization. **No ground water-table intersection** is envisaged.

5.2 Site Options

As the mining is site specific in nature, alternate site for mine is not applicable.

6.0 Environmental Monitoring Programme

6.1 Environment Cell and Compliances

IREL has EMP Monitoring Cell. The quality of air, noise, water, soil, etc. will be monitored periodically at the identified locations as per the MoEF&CC, AMD and TNPCB Norms by appointing an accreditated external agency. The Status Reports will be submitted to the Authorities periodically viz. TNPCB monthly, AMD Quarterly and MoEF&CC Monitoring Cell as Half Yearly Status Reports.

6.2 Post Project Monitoring

Radioactivity Monitoring as per AERB Norms and periodical monitoring of Ambient Air Quality (3 locations), Fugitive emissions/Workzone Air Quality (4 locations), Ambient & Workzone Noise Levels (4 locations), Water (4 Surface & 4 Ground waters along with Mine Pit water) and Soil Quality (3 Locations) shall be undertaken and reported to the Authorities. The monitoring details are given in Table 6.1.

		Environmen	tal Component				
	Ambient Air Quality	Fugitive Emissions	Noise Levels	Water Quality	Soil Quality		
No. of Locations	3 (in & around Mine- Upwind & Downwind directions)	4 (Excavation area, Loading Area, Haul Road & Pit Edge	Ambient-3 Workzones-4	Surface waters-4 Ground waters- 4	3		
Frequency	24-hourly once in fortnight continuousl y for whole year	Two 8-hourly samples, once in a week for 2 weeks in a Season	Once in a month	Surface & Ground Waters-Once in a Season - Monthly once	Once in a Season		
No. of Samples	72	64	84	32+12	12		
Parameters	All 12 Parameters	PM10, SPM, SO2, NOx & CO	Day & Night Leq Noise levels dB(A	Physicochemic al & Trace Metals	Physicoche mical & Nutrients		
Norms to be Complied	NAAQ Norms	AMD Norms	MoEF&CC and DGMS Norms	CPCB/ IS:10500 & TNPCB Norms	Soil Fertility		
Budget Allotted		Rs.10.50 Lakhs/Annum					

Table 6.1 Post Project Monitoring Schedule

7.0 Additional Studies

7.1 Hazards Identification & Risk Assessment

Hazards Identification & Risk Assessment (HIRA) is the Tool to identify the potential Hazards due to the proposed activities and assessment of the Risks to formulate the Emergency Preparedness Plan (EPP). There is no storage of Hazardous Chemicals in the Mining lease area and thus, no Modelling is required. The Potential Hazards that could have an impact during Operation Phase are given in Table 7.1.

Potential Hazard	Probable Impacts
Manmade:-	
Accident due to Mining Activities	Can occur at any time during the Mining
Natural:-	
Natural Calamities	Can occur at any time.
Others:-	
Medical Emergency	Can occur at any time during the Operational Phase.

Table 7.1 Potential Hazards due to Proposal

7.2 Emergency Preparedness Plan

The hazard scenarios were risk ranked using the Risk Matrix (R) are shown in Table 7.2.

Detential	Risk				
Severity	Low (1)	Medium (2)	High (3)	Continous (4)	
Major (4)	2.5	3.0	3.5	4.0	
Moderate (3)	2.0	2.5	3.0	3.5	
Minor (2)	1.5	2.0	2.5	3.0	
Negligible (1)	1.0	1.5	2.0	2.5	

Table 7.2 Risk Matrix (R)

The Mining operations are ranked in Low-Major Risks with Score of 1-4. It shall be ensured that Personnel engaged are made aware of the Hazards involved and are trained in responding to the Disasters. First Aid Kits and Medical Supplies will be maintained at the Mining site. All personnel will use Personal Protective Equipment (PPEs) like Safety Shoes, Helmets, etc. They will be trained in Safety Procedures to ensure that accidents and injuries are prevented. Hospitals in the vicinity will be used for any Medical Emergencies.

7.3 Disaster Management Plan

IREL is having an effective Disaster Management Plan (DMP)/Emergency Preparedness Plan (EPP) in their Plant and Mines. The same procedure will be adopted/in place for the Proposed Project also. The general scope includes:

- a. Institutionalize of disaster management system
- b. Facilitate culture of disaster preparedness
- c. Vulnerability reduction and disaster mitigation through better planning, training and preparedness

- d. Strengthen mechanism to handle unprecedented events
- e. Facilitate quick response, effective communication & decision making in the event of occurrence of disasters
- f. Better coordination of all line departments (internal/external) in disaster management
- g. Regular update of resources available within organization and outside.

The following organization structure is for responding to any event.

Role of key persons:

Works Main Controller (WMC):

WMC is the Head of the Unit at works and is generally available in the plant except on tour/after office hours. On emergency, he can reach work site at any odd hours within 30 minutes time. In his absence, the Official authorised by him to take over his charge, shall take up the responsibility as Works Main Controller.

On being informed of an incident, he has to:

- a. Rush to the emergency site, collect all information from Site Incident Controller (SIC) and reach Emergency Operating Centre (EOC).
- b. Assess the gravity and decide if emergency is to be declared. Accordingly, advise Site incident Controller (SIC).

- c. Advise Auxiliary Team Leader (ATL) to have the siren blown by security conforming to appropriate code for declaration of emergency.
- d. Through Auxiliary Team Leader (ATL) communicate to the statutory authorities.
- e. If required, the Auxiliary Team Leader (ATL) seeks assistance from mutual aid partners.
- f. Keep the statutory authorities updated through ATL.
- g. Maintain continuous communication with Site Incident Controller (SIC) to review the situation and assess the possible course of action for emergency operations.
- h. Declare normalcy at the end of operation. Security is directed through ATL to blow siren as per the siren code.
- i. Record maintenance in the chronological order of its happening.
- j. Ensure that evidence is preserved for enquiries to be conducted by statutory authorities.
- k. Conduct post disaster analysis and evaluation

Siren code for various emergencies:

Hazard	Siren code		
Fire Hazards	Intermittent ON /OFF for the electrical		
Explosion	stren which can be heard 2 km surrounding.		
Tsunami/flood/cyclone			
Collapse of building, etc			
All clear siren (at the end of operation)	Siren is operated continuously once		

Site Incident Controller (SIC):

He is available at the factory or within 20 km at any point of time and on being informed about an accident, he has to:

- a. Intimate WMC and rush to the site.
- b. Take inputs from STL. Assess situation and call RTL and ATL.
- c. He will manage the activities until WMC arrives.
- d. Keep updating WMC at regular intervals and whenever required.
- e. Take necessary steps and provide guidance to the Combat Team, the Rescue Team, and Auxiliary Team Leaders for handling the emergency situation.
- f. Examine major emergency shutdown operation activities, decide safe escape routes and announce the evacuation to the Assembly Point.

Auxiliary Team Leader (ATL):

He is the communication manager for the crisis management. On being informed of the emergency, he should proceed to Emergency Operation Centre (EOC) and:

a. Keep communication channel live with WMC and SIC.

- b. Inform the Statutory Authorities and District Administration, if required after consulting WMC.
- c. Communicate to Mutual Aid Partners, if required after consulting WMC.
- d. Inform Fire service stations, Hospitals, Police Stations, etc, if required in consultation with WMC.
- e. Inform the relatives of causalities and send them to their residence or hospital as the case may be.
- f. Take care of visit of the authorities to the Emergency site.
- g. Keep update WMC/SIC about status with respect to his areas of activities.

Services Team Leader (STL):

To arrive at the site and coordinate the activities of the Electrical, Water and Civil Service Groups

Electrical Services Group:

- a. Ensure operability of DG sets.
- b. Ensure emergency lighting system with DG.

Water Supply & Civil Engineering Group:

- a. Ensure a minimum of 400 m³ of water is kept in the ground water reservoir. If necessary, curtail water supply to all the plants.
- b. The required numbers of food packs are to be arranged by the team.
- c. Inspect all drainage systems at the plant site and arrange for their de-clogging and proper maintenance.
- d. The required quantity of food packets may be arranged by the group.

Medical Services Group:

- a. Assess the affected persons and render First Aid.
- b. Arrange to send the affected personnel to various referral hospitals.
- c. Supply medicines and kits as per requirement.
- d. Coordinate with HoD (HRM).
- e. The Ambulance and drivers are to be kept ready all the time.

Rescue Team Leader (RTL):

RTL is the person who conducts the rescue operations. On receiving information about the incident, he has to:

- a. Rush to the site of emergency through the safest route.
- b. Ensure presence of all his team members, required implements and gadgets. Take necessary action to arrest/control/mitigate the emergency situation.
- c. Arrange for the safe escape of entrapped persons.
- d. Make necessary arrangements to send the affected persons for immediate medical attention to the hospital as per the advice of the medical officer.
- e. Search for missing persons.
- f. Update SIC on a continuous basis.

Silent Command structure:

The period or the Timing from 4 PM to 8 AM is considered as silent hours. (Sunday is full day). During silent hours, the Shift In charge of the main plant will be responsible for handling the emergency till the main command personnel arrive. Most of the key persons of the main command structure reside within a radius of 25 km.

Plan Management:

Responsible persons by position to prepare, maintain, revise, review following documents:

Disaster Management Plan (Natural calamities & accidents): In charge (Safety) Fire Emergency Plan: In charge (Fire Protection).

Disaster due to Terrorist, Public unrest, etc.: In charge (Security)

HRVA (Hazard, Risk, Vulnerability Analysis)

A cross functional team for HRVA (Hazard, Risk, Vulnerability Analysis) is at place. The Objectives of the HRVA Cell are:

- a. Conduct and regularly update the HVRA of the unit
- b. Conceptualize and implement early hazard warning systems
- c. Create and maintain the disaster database of the unit
- d. Assess the resource requirement to meet credible disaster conditions
- e. Recommend disaster risk reduction methods
- f. Recommend areas of strengthening through trainings, etc.
- g. Identify areas of vulnerability from the perspective of Disaster Recovery and suggest remedial measures.

The members of the HVRA team consists of representatives from

- a. Mining
- b. Production
- c. Maintenance
- d. Safety
- e. Any other department as decided.

One among the above will be the Coordinator of the committee.

History of disasters

The plant lies in the tropical region on the coast of Arabian Sea. High humidity is felt all round the year, aggressive summer and a good seasonal rainfall characterize the climate of the region. The summer season (March-May) is very hot (to some extent moderated by the sea) followed by Southwest Monsoon, which lasts, from the 1st week of June to the end of August. The Northeast Monsoon in the months of October and November is known as "retreating monsoon period". Winter is not felt. Maximum annual temperature is around 42° C while the minimum temperature is 20° C.

West coast of South India, on which the Manavalakurichi Unit (MK plant) is located, is less frequently prone to cyclonic storms compared to the east coast but the storms are not totally absent.

- A severe cyclone crossed over Kanyakumari area of Tamil Nadu on 14th November 1992 after a gap of 30 years and resulted in very heavy rains and flash floods. There was no damage to the plant.
- On December 26, 2004, a Tsunami struck the sea coast adjacent to the Plant due to severe earthquake of the order of 9.1 Richter scale off the Sumatran coast of Indonesia. Boundary wall on the sea side collapsed and sea water entered inside some of the sections (stores, mechanical workshop). No other damage occurred.
- On 30th November, 2017, the cyclone Ockhi struck the district of Kanyakumari. Few roof sheets were only damaged.

Hazard risk and vulnerability mapping:

Sl. No.	Type of Hazard (with respect to Disaster)	Probable areas/ persons affected.	
1.	Inundation during heavy Flood/Tsunami	HUS, raw sand godown, Main Stores	
2.	Threat by terrorists via sea	Plant and employees.	
3.	Agitation by nearby locals in case of local problems.	Plant and employees.	
4.	Fire in the Plant	MSP/HUS/Diesel Yard/ FO Yard/ LPG storage bank	

Area/Plant where different types of emergency situation can arise:

Most credible Disaster scenarios identified from the potential hazards:

Credible scenario – A	: Pool of fire from HSD tank
Credible scenario – B	: Pool of fire from FO tank
Credible scenario – C	: Explosion from LPG cylinders
Credible scenario – D	: Explosion and fire from FBDs/SDs
Credible scenario – E	: Collapse of buildings and structures
Credible scenario – F	: Fire
Credible scenario – G	: Flood/Cyclone/Earth Quake
Credible scenario – H	: Tsunami
Credible Scenario – I	: Electrocution
Credible Scenario – J	: Mine wall collapse
Credible scenario – K	: a combination of the above

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

SI. No	Area	Type of Emergency	Consequences
1	Mining sites	Ingress of Sea Water	 Inundation Injury/Loss of life Destruction of asset
2	Mining sites	Open pit mine collapse	 Injury/Loss of life Destruction of nearby buildings Burial of people and assets under sand
3	Mining sites/plant sites	Lightening	 Electrocution. Injury/Loss of life Destruction of asset Fire
4	Mining sites/plant sites	Tsunami	 Inundation Damage to buildings Injury/Loss of life Building collapse Land/water pollution
5	Mining sites	Fall of Mining equipments	 Damage to equipment Injury/Loss of life
6	Mining sites/plant sites	Cyclone	 Falling objects Inundation Collapse of building, trees Land/water pollution
7	Plant sites/godowns/	Fire (can be assisted by FO/HSD/LPG/	BurnInjury/Loss of life
	Canteen	Grease/Acetylene)	 Collapse of buildings Flying objects/explosion Land/water pollution
8	Plant sites	Earthquake	 Collapse of buildings Injury /loss of life Fire Electrocution Explosion Land/water pollution Fuel spillage
9	Plant sites	Explosion/fire from driers	 Injury/loss of life Severe burn Flying objects Fire Collapse of buildings

Mitigation

Monitoring of Hazards and Threats:

Perceived threats: The level of threat from the cyclone is perceived based on the guidance from warning system adopted in the nearby Colachel port which can be contacted over phone. Security related threats will be perceived based on intelligence input from local police etc.,

Assess the hazard: Based on the above the information, the severity and impact to our plant will be assessed.

Select control Strategy: Disaster Management committee will decide the strategy to be followed on case to case basis.

Control Hazard: The Hazard will be controlled using the available resources.

Monitor Hazard: Monitoring of the situation and hazard using detectors and other datas.

Prevention & Mitigation

Analyzing the hazard: A comprehensive risk assessment not only evaluates the magnitude and likelihood of potential losses but also provides full understanding of the causes and impact of those losses. Risk assessment, therefore, is an integral part of decision and policymaking processes and requires close collaboration among various stakeholders. As per UNDP (United Nations Development Programme), a comprehensive risk assessment consists of the following steps:

- **Step 1:** Understanding current situation, needs and gaps to assess whatever already exists, avoids duplication of efforts, and builds on existing information and capacities. This is done through a systematic inventory and evaluation of existing risk assessment studies, available data and information, and current institutional framework and capabilities
- **Step 2:** Hazard assessment to identify the nature, location, intensity and likelihood of major hazards prevailing in a community or society.
- **Step 3:** Exposure assessment to identify population and assets at risk and delineate disaster prone areas.
- **Step 4:** Vulnerability analysis to determine the capacity (or lack of it) of elements at risk to withstand the given hazard scenarios.
- **Step 5:** Loss/impact analysis to estimate potential losses of exposed population, property, services, livelihoods and environment, and assess their potential impacts on society.
- **Step 6:** Risk profiling and evaluation to identify cost-effective risk reduction options in terms of the socio-economic concerns of a society and its capacity for risk reduction.
- **Step 7:** Formulation or revision of DRR strategies and action plans that include setting up priorities, allocating resources (financial or human) and initiating disaster risk reduction (DRR) programmes.

Determine Prevention Action:

- 1. Carry out site inspection and take appropriate action to eliminate the potential hazard.
- 2. Carry out regular housekeeping and maintenance to secure the buildings and surrounding areas.
- 3. Installation of automatic fire detection and fire alarms system.
- 4. Special precautions during the building renovation, periodical maintenance, rainy season etc.,

Determine Public warning:

Considering the severity, the warning will be extended to the plant employees and if required to the neighborhood.

Determine Prevention Action Implementation Plan: The preventive actions will be Carried out by In-Charge of Safety and In-Charge of Civil section. Fire protection system will be ensured by In-Charge of Fire section.

Public Warning

Determine the message content: Message content will be determined by the Convener of the Disaster Management Committee in consultation with the concerned members. Any of the following warning system will be adopted.

- 1. Public address system in MSP and HUS. And converting the office as control room in the respective location.
- 2. Intermittent ON/ OFF for the electrical siren.
- 3. Manual Bell warning at the main gate

Disseminate public warning: After getting approval from the Chairman of the Committee, In-charge Security will disseminate the warning.

Identification of Risk

Unit Head will constitute the cross functional team to evaluate and analyze the hazard and risk. The team evaluates the risks and classifies them according to the risk intensity, probability, severity, etc. and prioritize. Appropriate management programs are also made for dealing with such situations.

Coordination - Horizontal and Vertical structure of Manavalakurichi Unit has a wellestablished coordination plan in accordance with disaster management plan.

Coordination with State Government during any emergency situation developing within the unit. The Emergency operations Control Room (EOC) facility will coordinate with the Responsible Officer /Incident Controller of the affected areas at the local level for implementing response measures in the affected areas. In case of Radiological emergency, the Emergency Response Centre in Manavalakurichi unit will coordinate and take corrective actions.

Budgetary Provisions

Annual budget for DM plan for implementation & management, In-charge (Safety) prepares the annual budget for various activities covered including those on training, mock drill, etc.

The budget is prepared by In-charge by in consultation with other departments and approval is obtained.

Contact Details of Emergency Response Centre:

DAE Unit /	Name	Tel No./	Residence/
STD Code	CGM & Head, MK	Fax No.	Mobile
IREL /	Shri N Selvarajan	[04651	
Manavalakurichi	head-mk@irel.co.in	537255- 58]	
DAE Unit /	Name	Tel No./	Residence/
STD Code	DAE-ERC Coordinator	Fax No.	Mobile
Manavalakurichi IREL 04651	K. Sree kumar oic.hpu-mk@irel.co.in ksreekumar@barc.gov.in	[04651 296103]	[8547631752/9443124274]
DAE Unit /	Name	Tel No./	Residence/
STD Code	DAE-ERC Alternate Coordinator	Fax No.	Mobile
Manavalakurichi	Shri. N. Nagaraj	[04651	[9486758556/9629374656]
IREL	n.nagaraj@irel.co.in	296103]	
1) A		5-	

8.0 Project Benefits

Social Benefits

Commencement of mining operation over the mining lease area of 1144.06.18 ha will result in overall development of the region in its own way like provision of direct & indirect employment, improvement in the general living standards and knowledge sharing, improved wage level and the living standard of the local people and continual improvements in the amenities and infrastructure facilities for the local populace.

As per the IREL's policy, neither land acquisition nor purchase of land would be done for the project. The Mininig operations will be carried out over the private patta lands after obtaining the consent from the respective land owners on lease basis. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation. Mining in the lease hold areas will not result in any displacement nor change in the ownership of the land. The payment of lease compensation results in significant improvement in quality of life for local populace and economical growth in the region.

Environmental Benefits

The coastal areas in Kanniyakumari District including the mining lease area of 1144.0618 ha are having high natural background radiation in the range of 1 to 4 μ Svh⁻¹ due to presence of Monazite in the BSM Ore. Monazite is a radioactive mineral containing Uranium and Thorium.

On removal of the BSM Ore (Run of Mines) containing Monazite and backfilling the minedout areas with tailings (after removal of minerals), the background radiation in the mined-out area is brought down to 0.2 to 0.4 μ Svh⁻¹. In other words, there has been 8 to 10 fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining makes the area free from radioactivity and improving the living condition of people.

Financial Benefits

IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value-added products. The Zircon produced from Manavalakurichi Unit is directly sent to the Nuclear Fuel Complex (NFC), Department of Atomic Energy for strategic applications.

The processed mineral products, apart from its usage for strategic purpose in Nuclear Energy, Defence, Space etc., finds application in number of commercial sectors such as aerospace industry, infrastructure development, ceramics, foundries, oil industries etc., while Rare Earths are used in niche applications such as consumer electronics, renewable energy, EVs, etc., and also has excellent contribution for sustenance of industries in the value chain of its mineral & rare earth products. The project will generate revenue in terms of royalty and taxes etc. to the state of Tamil Nadu in addition to make available of strategic material. All these minerals and Rare Earth's provides input for other industries and plays a vital role in global economy.

9.0 Environmental Cost Benefits Analysis

The proposed project does not involve any Forest land and it is not applicable.

10.0 Environmental Management Plan

Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to the various attributes of environment due to the proposed mining operations.

10.1 EMP for Construction Phase

There will be no Construction Phase for the Project.

10.2 EMP for Operation Phase

Mining operations will be carried out scientifically as per approved Mining Plan, stipulated EC & CTO Conditions, DGMS Norms, etc. EMP Measures for Operation Phase are proposed below:

10.2.1 Land Environment

- > Mined-out area are to be backfilled simutanoeusly to restore the topography.
- > Plantation are to be carried out in the mined-out areas after backfilling.
- Reclaimed Land will be used for other activities including construction and thereby ensuring Eco-friendly and Sustainable mining.
- Carbon sequestration is the long-term storage of carbon in oceans, soils, vegetation (especially forests) and geologic formations. Adequate Green Belt will be developed around the project for carbon sequestration. As trees grow, they store carbon in woody tissues and soil organic matter.

10.2.2 Traffic Impact

- > RoM transportation from Blocks-A&B to MSP will be through Major District Road/SH-179.
- All Tippers are to be fully covered with Tarpaulin to avoid any spillage during transportation.
- Restriction of over loading of Tippers shall be enforced.
- Speed restrictions shall be enforced.
- > Restriction of Truck parking in the Highway and Public Roads shall be enforced.
- Regular and preventive maintenance of transport vehicles are to be ensured.
- Compliance to 'Pollution under Control' Certification has to be ensured and to be checked periodically.

10.2.3 Air Environment

- The DG sets will have acoustic enclosures to control the noise levels. The stack height will be as per CPCB norms to comply with emission norms.
- > Water sprinkling on loading point and Haul Roads are to be carried out.
- > Covering of Trucks/Tippers with tarpaulin shall be ensured during Ore transportation.
- > Over loading of Tippers has to be avoided to control the spillages during transportation.
- Periodical maintenance and replacement of worn out accessories in the mining equipments are to be carried out.
- > 'Pollution under Control' Certification has to be ensured and to be checked periodically.
- Periodical monitoring of Ambient Air Quality has to be carried out.

10.2.4 Noise Levels

- > Deployment of mining equipments shall be with in-built mechanism for reducing noise.
- Operation of the mobile van will be complying the MoEF&CC noise norms of <45 dB(A) during night time for residential areas.</p>
- > Providing ear muffs/ear plugs to the workers in high noise zones.
- > Periodical Noise Monitoring shall be carried out and Reports submitted to the Authorities.

10.2.5 Water Environment

- > Natural drains shall be maintained as such.
- Adequate safety barriers will be maintained at both sides of the nalla course in the Lease till the end of the mine life.
- > No ground water drawl in the Mining Lease Area as well as CRZ area for the project.
- > Periodical monitoring of water table levels and water quality are to be carried out.

10.2.6 Biological Environment

- IREL will incorporate a clause in the land lease agreement to plant and develop coconut or any other suitable tree plantation @70 Trees per acre in the mined out areas.
- Towards compensatory afforestation programme, IREL would contribute an amount of Rs. 50 Lakhs to the District Forest Officer (DFO) to develop and maintain 25,000 trees at suitable place near the lease area.

10.2.7 Social Measures

- > The Project Cost is Rs.31.25 Crores.
- Royality, DMF and NMET will be remitted as per the statutory requirement. Adequate CER Budget, as per OM F.No.22-65/2017-IA.III dated 20.10.2020, will be allocated for the benefits of local villages in the Mine vicinity, after taking into account of the issues raised during Public Hearing.
- IREL spends about Rs. 3.00 5.00 Crore for CSR activities in the region which will be continued.

10.2.8 Occupational Health Measures

- > All employees undergo check-up on recruitment and periodically during employment.
- > Maintenance of Pre, during & Post Employment Records.
- > Provision of all Personal Protective Equipments for the employees at Mines
- > Work comfort and its periodic review by a committee.
- Provision of Rest Shelter at mines.

10.2.9 Plastic Waste Management

There will be ban on one-time use and throw away Plastic usage in the Mining site. Encourage the use of eco friendly alternatives such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

10.3 EMP Budget

The Project Cost is Rs.31.25 Crores. An amount of Rs. 20.00 Lakhs is earmarked as Capital EMP Budget and Rs10.50 Lakhs per Annum is Operating Cost towards EMP measures including Environmental Monitoring. Also, an amount of Rs.10.00 Lakhs per Annum has been earmarked for Occupational Health & Safety Measures. Also, budget for the Corporate

Environmental Responsibility (CER) Budget will be allocated in compliance with guidelines of MoEF&CC.

10.4 Environmental Policy of IREL

IREL has well laid 'Quality, Environment, Occupational Health & Safety' Policy. There is a hierarchy system established in the Unit to deal with Environmental issues. Any non-compliance will be reported to the Unit Head who will direct the Environment Cell to address the issue and place the action plan report. IREL will ensure the compliance of all Environmental Norms.

IRELMK/ENV-08/2021

Date: 11.05.2021

The Environment Management Cell is hereby reconstituted with the following officials, with immediate effect.

S. No.	Name (S/Shri)	Designation/ Function
L	N. Selvarajan	General Manager & Head, MK -Chairman
2	K.J.M.Babu	HoD (Elec., Stores & Purchase)
3	S.Jayachand	HoD (Mining) & I/c S&T-Member Secretary
4	P.M. Madhu	HoD (Maint.)
5	D. D. Sahu	HoD (QC and R&D)
6	P. J. Biju	HoD (Prodn.)
7	A. Sivaraj	HoD (Res.)
8	K. Ajith Kumar	CM (Elec.)
9	S. P. Ganesan	SM (Maint.)
10	Dr.T. Raja	DM (Medical)
11	K. Sreekumar	OIC-HPU
12	Deepesh K.G	DM (Mining)-Convenor

(N.Selvarajah)

General Manager & Head, MK

IRELMK/ENV-08/2024

Date: 27.02.2024

The Environment Management Cell is hereby reconstituted with the following officials, with immediate effect.

S. No.	Name (S/Shri)	Designation/ Function
U.	N. Selvarajan	Chief General Manager & Head, MK - Chairman
2	K.J.M. Babu	HoD (Stores & Purchase)
3	S. Jayachand	HoD (Mining) & I/e S&T- Member Secretary
4	M. Prasnd	HoD (HRM)
5	P.J. Biju	HoD (Prodn. & Civil)
6	D. D. Sahu	HoD (QC and R&D)
7	A. Sivara)	HoD (Res.)
8	K.Ajith Kumar	HoD (Maint.)
. 92	Niranjan Sabata	Chief Manager (Prodn.) - Convener
10	S. P. Ganesan	Chief Manager (Civil & EME)
11	Dr.T. Raja	Manager (Medical)
12	K. Sreekumar	OIC - HPU

This has the approval of Competent Authority.

(SJayachand) Dy. General Manager (Mining & Safety)

Same

Table 10.1 EMP with Monitoring Matrix

	Environmental Aspect/Issue	Management Measures		Responsibility		
SI.No.				Supervision/ Monitoring		
I.	Construction Stage	There will be no Construction Phase for the Project				
I	Operation Stage	9				
1	Land Environment	 Mined-out area are to be backfilled simultaneously to restore the topography. Plantation are to be carried out in the mined-out areas after backfilling. Reclaimed Land will be used for other activities including construction and thereby ensuring Eco-friendly and Sustainable mining. Carbon sequestration is the long-term storage of carbon in oceans, soils, vegetation (especially forests) and geologic formations. Adequate Green Belt will be developed around the project for carbon sequestration. As trees grow, they store carbon in woody tissues and soil organic matter. 	IREL	Environmental expert/Qualified person		
2	Traffic Impact	 RoM transportation from Blocks-A&B to MSP will be through MDR/SH-179. All Tippers are to be fully covered with Tarpaulin to avoid any spillage during transportation. Restriction of over loading of Tippers shall be enforced. Speed restrictions shall be enforced. Restriction of Truck parking in the Highway and Public Roads shall be enforced. Regular and preventive maintenance of transport vehicles are to be ensured. Compliance to 'Pollution under Control' Certification has to be ensured and to be checked periodically. 	IREL	Environmental expert/Qualified person		

	Environmontal	wironmontal		Responsibility		
SI.No.	Aspect/Issue	Management Measures	Agency	Supervision/ Monitoring		
3	Air Environment	 The DG sets will have acoustic enclosures to control the noise levels. The stack height will be as per CPCB norms to comply with emission norms. Water sprinkling on loading point and Haul Roads are to be carried out. Covering of Trucks/Tippers with tarpaulin shall be ensured during Ore transportation. Over loading of Tippers has to be avoided to control the spillages during transportation. Periodical maintenance and replacement of worn out accessories in the mining equipments are to be carried out. 'Pollution under Control' Certification has to be ensured and to be checked periodically. Periodical monitoring of Ambient Air Quality has to be carried out. 	IREL	Environmental expert/Qualified person		
4	Noise Levels	 Deployment of mining equipments shall be with in-built mechanism for reducing noise. Operation of the mobile van will be complying the MoEF&CC noise norms of <45 dB(A) during night time for residential areas. Providing ear muffs/ear plugs to the workers in high noise zones. Periodical Noise Monitoring shall be carried out and Reports submitted to the Authorities. 	IREL	Environmental expert/Qualified person		

	Environmontal	tal Management Measures		Responsibility		
SI.No.	Aspect/Issue			Supervision/ Monitoring		
5	Water Environment	 Natural drains shall be maintained as such. Adequate safety barriers will be maintained at both sides of the nalla course in the Lease till the end of the mine life. No ground water drawl in the Mining Lease Area as well as CRZ area for the project. Periodical monitoring of water table levels and water quality are to be carried out. 	IREL	Environmental expert/Qualified person		
6	Biological Environment	 IREL will incorporate a clause in the land lease agreement to plant and develop coconut or any other suitable tree plantation @70 Trees per acre in the mined out areas. Towards compensatory afforestation programme, IREL would contribute an amount of Rs. 50 Lakhs to the District Forest Officer (DFO) to develop and maintain 25,000 trees at suitable place near the lease area. 	IREL	Environmental expert/Qualified person		
7	Social Measures	 The Project Cost is Rs.31.25 Crores. Royality, DMF and NMET will be remitted as per the statutory requirement. Adequate CER Budget will be allocated for the benefits of local villages in the Mine vicinity, after taking into account of the issues raised during Public Hearing. IREL spends about Rs. 3.00 – 5.00 Crore for CSR activities in the region which will be continued. 	IREL	Environmental expert/Qualified person		
8	Occupational Health Measures	 All employees undergo check-up on recruitment and periodically during employment. Maintenance of Pre, during & Post Employment Records. Provision of all Personal Protective Equipments for the employees at Mines Work comfort and its periodic review by a committee. Provision of Rest Shelter at mines. 	IREL	Environmental expert/Qualified person		

11.0 Summary Environmental Impact Assessment Report

11.1 Introduction

11.2 Project Proponent

M/s. IREL (India) Limited is a Multi-Unit-Multi-Product Central Public Sector Enterprise (CPSE) incorporated under the Companies Act 1913 and wholly owned by the Government of India, under the Administrative Control of the Department of Atomic Energy. IREL was established in August 1950 and entered into the activities of mining, mineral beneficiation and refining of atomic minerals.

Atomic Minerals (BSM Ore) are suite of 7 minerals viz., Monazite, Zircon, Ilmenite, Sillimanite, Rutile, Leucoxene and Garnet. These seven minerals occur together in nature by virtue of their formation along with coastal stretches/ inland areas near to the shore and in Teri deposits in varying grades in India. IREL is the only CPSE in the country being authorized to mine and handle the **Prescribed Substance**, **Monazite** and its value-added products.

IREL, Manavalakurichi Unit in Kanniyakumari District of Tamil Nadu has been in operation since 1970, before Environmental Impact Assessment (EIA) & Coastal Regulation Zone (CRZ) Notifications came into force in the Country. The Unit is harnessing Monazite & Zircon along with other associated minerals and supplying the same to the Department of Atomic Energy and other downstream industries in the value chain. The Unit is being operated for an annual consented production capacity of 1,14,600 Tonnes of Atomic Minerals (HM).

IREL has been initially granted with 3 Mining Leases in Kanniyakumari District by the Government of Tamil Nadu. The First Mining Lease granted for 7.06 Ha vide G.O. Ms.No.3707 dated 01.11.1968 (renewed vide GO 3(D) No.6 dated 28.01.2000 & extended vide GO Ms.No.327 dated 01.12.2021) with validity till the mineral is exhausted. The Second Mining Lease granted vide G.O.Ms.No.1085 dated 21.09.1977 was executed on 15.10.1979. The Third Mining Lease for an extent of 141.2269 Ha has been granted vide G.O.Ms.No.1114 dated 12.08.1981 and extended vide G.O.Ms.No.73 dated 11.02.2021 with validity till the mineral is exhausted. The BSM Ore mined out from these Leases are transported and separated for individual atomic minerals at the existing Mineral Separation Plant (MSP) at Manavalakurichi.

Address for correspondence of project proponent:

Shri N. Selvarajan,
Chief General Manager & Head,
IREL (India) Limited,
Manavalakurichi,
Kanniyakumari District - 629 252
04651-237220
04651-237325
head.mk@irel.co.in
www.irel.co.in

11.3 Project Profile

In order to ensure uninterrupted supply of strategic materials i.e., Monazite and Zircon to the Department of Atomic Energy, Defense, Space etc., DAE vide Letter No.3/10(21)/2015-PSU/11010 dated 13.08.2015 sought the concurrence of the Government of Tamil Nadu for reservation of Monazite rich area of 1144.0618 Ha in Kanniyakumari District for the purpose of mining of Atomic Minerals by IREL. Upon concurrence given by the Government of Tamil Nadu vide letter No.12503/MMD.2/2015-12 dated 15.04.2021, the Ministry of Mines, Government of India issued a Notification vide G.S.R.399(E) dated 11.06.2021 reserving the area of 1144.0618 Ha for mining by IREL under section 17A (1A) of the Mines and Minerals (Development and Regulation) Act, 1957. The Government of Tamil Nadu, after obtaining prior approval from the Ministry of Mines, Government of India, issued a Letter of Intent (LOI) No.12503/MMD.2/2015-19 dated 28.06.2022 for mining of Atomic Minerals over an extent of 1144.0618 Ha. The New Mining Lease area of 1144.0618 Ha, in two Blocks A&B, is located in:

- (i) Resurvey Nos. 16-19, 45-54, 55p, 56p, 57p, 58-61, 69-81, 82p, 83p, 84-88, 89p, 90p, 91p, 92-95, 96p, 97-110, 123-124, 126-129,136-140, 141p in Keezhmidalam-A village (204.0652 Ha).
- (ii) Resurvey Nos. 80,82-101,105-112, 113p, 114, 115p, 116-162, 163p, 166p, 167-169, 170p, 173-175, 176p, 177p, 178p, 179p, 180p, 182p, 183-194, 196, 203 in Midalam-B village (202.9686 Ha).
- (iii) Resurvey Nos. 494p, 495, 496, 529-537, 541-567, 578, 581-582, 585, 587, 588-634 in Enayamputhenthurai village (137.0350 Ha).
- (iv) (Resurvey Nos. 374p, 402-404, 407-413, 448-453, 455-458, 488, 490 in Ezhudesam-A village (41.1000 Ha).
- (v) Resurvey Nos. 139, 146, 149-154, 157, 169-174, 175p, 186-187, 192-207 Ezhudesam-B village (82.9000 Ha).
- (vi) Resurvey Nos. 208-221, 225-226, 228-229, 246-256, 258-259, 261-283, 294-
- 296, 319-320, 322, 327-348, 351-355, 359p in Ezhudesam-C village (275.8280 Ha). (vii) Resurvey Nos. 347-348, 354p, 355-358, 362-365 in Kollencode-A village (28.3950 Ha).
- (viii) Resurvey Nos. 585-591, 595-596, 601-621, 623p, 651-652, 655-689 in Kollencode-B village (171.7700 Ha).

of Killiyoor Taluk in Kanniyakumari District, Tamil Nadu (Fig. 1-1). Mining Lease Plan is given as Fig. 1.2 and part of the Lease areas are shown in Fig. 1-3.

Existing Mineral Separation Plant located at Manavalakurichi is aerially located at 8.4 km from Block A and 19.4 km from Block-B in the southeast (road distance: Block A-12 km & Block B- 30 km). Out of the total area of 1144.0618 Ha, 353.4876 Ha area falls under CRZ-I(B), II and III categories. The estimated mineable reserve is 59.88 Million Tonnes. Heavy Mineral (HM) content in the deposit varies between 10.0% and 22.6% with an average HM content of 14.5%. Thus, the New Mining Lease will feed the Manavalakurichi Plant sustainably for 40 Years period @ 1.5 million tonnes per annum (MTPA) RoM.

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

IREL has formulated a Policy i.e., Concession Option Scheme for taking possession of the Private Patta land on lease for mining. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation. Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to involuntary displacement of people. Thus, **no Rehabilitation & Resettlement (R&R) is involved in the Proposal**.

The method of mining will be **Non-Conventional Opencast Mechanized Mining** by Excavator-Tipper combination with no Drilling & Blasting. Also, there will be no Developmental activities like Top Soil & Over Burden removal. Thus, there will be **no Dump** in the Mining Lease. It is proposed to mine out Atomic Minerals (BSM Ore) @ 5000 Tonnes per day (TPD) ROM and 1.50 Million Tonnes ROM per Annum.

The mining operation will consist of two-layer operation. The mineralisation occurs from the surface. First, the surface layer up to 2.5-3.0 m from surface is excavated by Tipper & Excavator combination and followed by the excavation in bottom layer. While excavating the bottom layer, backfilling of the mined-out voids by the Tailings from MSP will be carried out simultaneously. Thus, there will be **no bench** formation and **no Mine Pit** in the Mining Lease. Ore: Waste Ratio will be 1:0.

Mining operation will be carried out at an average depth of 6 m and a maximum depth of 9 m depending upon the location and mineralization. **No ground water-table intersection** is envisaged as ground water-table level in the Mining Lease Area ranges between 10-15 m BGL. If the mining is found to be intersecting the water table, further mining activities will not be carried out at that location.

ROM from the new mining lease will be transported and separated for individual atomic minerals at existing Mineral Separation Plant at Manavalakurichi. In the MSP, the ROM is fed to Heavies Upgradation Section (HUS) and subsequently separated using its physical properties viz., Specific Gravity, Conductivity and Magnetic Susceptibility.

In the production quantity of 15.00 Lakhs TPA ROM & with about 70% recovery, the feed to the Mineral Separation Plant can have mineral production of 1,52,250 TPA (Table 1-1. The generation of tailings (after removal of Minerals-Quartz) will be about 13,47,750 Tons per annum which will be transported to the mined-out voids and backfilled. Mining and backfilling will be carried out simultaneously.

Description	Area/Capacity
Total Mining Lease area	1144.0618 ha.
Total Mineable Quantity	59.88 Million Tonnes
Annual Production	1.5 Million Tonnes @ 5000 TPD (Max)
No of working days	300 days (3 Shifts)
Life of the Mine	40 Years
	Open cast (without drilling & blasting) – No topsoil & No OB –
	Excavator and tipper combination upto a maximum depth of 9
Method of Mining	m (average 6 m)
	No ground water intersection involved.
	No R&R issue due to the proposal

Table 1-1 Mine Profile

During the Plan Period, 7.50 Million Tonnes of ROM @ 1.50 MTPA will be mined out and the tailings - Quartz (after removal of Minerals) will be generated from the MSP to the tune of 6.738 Million Tonnes @ 1.347 MTPA, which will be transported back to the Mining Lease Area to backfill the mined-out voids. This process would continue till the Conceptual Stage (Tables 1-2 & 1-3).

:	15,00,000 Tonnes @ 5,000 TPD
:	1:0
:	300
:	3
:	40 years
	: : : :

Mining activity is limited to only in mineral deposit area. Hence, ultimate pit limit lies on the mineral deposit area only. The Project Cost is Rs.31.25 Crores.

Table 1-2 Development & Production - Plan Period & Subsequent Periods

			Mineral Rejects, Tons	ROM Pro	oduction,	Anticipated	Wastes
Year	Top Soil, Tons	Over Burden, Tons		cu. m	Tonnes	Atomic Minerals Production in Tonnes	(Quartz) from MSP for Backfilling Mined out Voids, Tons
First Plan / B	lock Pe	eriod:		·			
l Year	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
II Year	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
III Year	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
IV Year	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
V Year	0	0	0	9,37,500	15,00,000	1,52,250	13,47,750
Total	0	0	0	46,87,500	75,00,000	7,61,250	67,38,750
Subsequent	Plan / E	Block Peri	ods :				
2 nd Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
3 rd Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
4 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
5 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
6 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
7 th Block Period	0	0	0	46,87,500	75,00,000	7,61,250	6,738,750
8 th Block Period (4 Years only)	0	0	0	46,12,500	73,80,000	7,49,070	66,30,930
Grand Total	0	0	0	3,74,25,000	5,98,80,000	60,77,820	5,38,02,180

Table 1-3 Plan Period Production & Expected Mineral Production from ROM

Year ROM, Tonnes	DOM	Anticipated Atomic	Expected Individual Mineral Production, Tonnes				es	
	ROM, Tonnes	Minerals Production in Tonnes	Monazite	Zircon	Ilmenite	Rutile	Sillimanite	Garnet
I	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762
II	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762
	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762
IV	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762
V	15,00,000	1,26,349	7182	5563	92352	2772	11718	6762
Total	75,00,000	6,31,745	35,910	27,815	4,61,760	13,860	58,590	33,810

The Proposal requires prior EC as per EIA Notification under SI. No.1(a)-Category 'A' as well as under CRZ Notification 2011, as amended. Accordingly, IREL has submitted application to MoEF&CC on 28.12.2022 to obtain the Terms of Reference (ToR) for carrying out the EIA Study. The Proposal was deliberated in 53rd Expert Appraisal Committee (EAC) – Nuclear & Defense (ND) meeting held on 27th January 2023. ToR has been awarded vide F. No. IA-Z-11013/10/2023-IA-I dated 22.02.2023.

Baseline Data (BLD) collected during December 2022-February 2023 representing Winter 2022-23 Season has been utilised for the EIA Study in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017. EIA Report has been prepared in compliance with awarded ToRs and is submitted as per generic structure proposed in Appendix-III of EIA Notification, 2006.

For obtaining TNSCZMA recommendations for the proposal, IREL has submitted the CRZ application to DCZMA, Kanniyakumari on 08.03.2024 and the same is under their perusal. Being a parallel activity, the SCZMA recommendation will be obtained and submitted to the Ministry for awarding the EC.

The EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 15.07.2024). The ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2024. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The Proposal was deliberated in the 61st EAC (N&D) Meeting held on 23.04.2024 as Agenda SI. No. 3.1. The Hon'ble Committee advised to review the request of exemption from Public Hearing in alignment with other such projects wherein Public Hearing was undertaken as deliberated during the meeting. Accordingly, the additional details sought by the committee are addressed in this Report and submitted for Public Consultation & Public Hearing with Summary EIA reports in English and Tamil languages.

11.4 Description of the Environment

11.4.1 Environmental Setting

The study area falls in the Survey of India Topo Sheet No. 58H/3, 58H/4, 58H/7 and 58H/8. Topo map of 10km radius is shown in Fig 2.1. The mining area is accessible by SH-179 (West Coast Road-WCR). Block-A is connected to SH 179 (Kanniyakumari - Pazhaya Uchakada Road) by a series of Major District Roads (MDRs) and Block-B is connected by SH- 179 which is passing through the site.

The ML Block-A is located 08°11'19.78" to 08°13'33.12" North Latitudes and 77°11'13.13" to 77°14'08.82" East Longitudes and Block-B is located between 08°15'17.31" to 08°17'32.23" North Latitudes and 77°06'50.15" to 77°09'34.63" East Longitudes. There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed) within 10 km from the Mining Lease Area.

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

Kanniyakumari Wildlife Sanctuary is at 25 km (shortest) distance in northeast. River Valliar drains the eastern parts of the Study Area and River Thamirabarani drains the central parts of the Study Area which flows adjacent to the Block-B at 0.12 km in the northeast and 4.5 km from Block-A in the northwest. Arabian Sea and its coastline are in southern parts.

Tamil Nadu-Kerala State Boundary is at 1.5 km in the west from Block-B & 12.4 km from Block-A and General Condition applies to this Mining Project. There is no major industry in the Study Area. The mining area does not fall Critically Polluted Areas /Industrial Clusters identified by CPCB. The project area (ML Area) does not fall in the Aravali Range. Part of the Mining Lease Area falls in Coastal Regulation Zone Area and thus, attracts Clearance under CRZ Notification, 2011.

The State Highway SH-179 runs parallel and through the Mining Lease area. Nagercoil-Thiruvananthapuram Section of Southern Railway BG Line runs at a distance of 6.5 - 7.0 km in the north. Nagercoil Junction is at 23 km from the Mining Lease in the east. The nearest airport is Thiruvananthapuram at 28 km in the northwest. Thengapattinam Port is at 2 km in the southeast from Block-B and Colachel Port is at 2.0 km in the southeast from Block-A.

Moderately populated villages such as Kurumpanai, Alanchi, Midalam, Melmidalam, Pallapallam, Enayamputhenthurai, Karungal, Puthukadai, Manavalakurichi, Monday Market, Neyyoor, Kalingarajapuram, Nithiraivilai, Poothurai along with Hospitals, Schools, Churches,

Temples, Mosques, Community Halls, recreation clubs etc. are located within the study area. Municipal Corporations of Colachel and Kollencode are located near the Mining Lease. Kanniyakumari District Head Quarters Nagercoil is at 23 km in the east from Block-A.

There is no litigation, directions or any order passed by any Court of Law or pending against the project.

11.5 Baseline Environmental Status

The environmental components studied and the methodologies followed for the preparation of EIA report are given in Table 2-1 (Fig. 2-2).

Table 2-1 Environmental components and methodologies

SI.No.	Environmental Components	Area	Parameters	Methodology	Frequency
	Air	10 locations	Meteorology	Field	Continuous for 3 months
1		in Core zone & Buffer zone	Ambient Air Quality (all 12 parameters of NAAQ Norms	monitoring/ secondary data	24 hourly- Twice a week for 4 weeks in the season
2	Water	10	Water Quality Surface & Ground (parameters as per IS:10500) Ground water regime (hydrogeology)	Field Monitoring	Once in season
3	Soil	10	Soil Quality – Physical, Nutirents & Trace Metals	Field monitoring	Once in season
4	Noise	10	Noise levels	Field monitoring	Once in season
5	Ecological Features	Core zone & Buffer zone	Flora & fauna	Field study/ Secondary data	Once in season
6	Socio- economic Features	Core zone & Buffer zone	Parameters related to socio- economic aspects	Field Study (Public Consultation by questionnaire survey)/ Secondary Data	Once in season
7	Traffic Survey	3	Traffic volume in project site	Field Monitoring	Once in season
8	Land Use	Core & Buffer zones	Land cover categories based on satellite image	Satellite image processing	Once in season

The summary of baseline status is given in **Table 1.5**.

Envl. Component	Main Parameters	Minimum	Maximum	Mean	Desirable Norms
	PM2.5	17	27	22	60
Ambient Air Quality,	PM10	36	56	42	100
ug/m ³	SO ₂	5	8.8	6.9	80
	NOx	12.5	17.7	15.1	80
Ambient Noise,	Leq-Day	48.3	54.1	51.8	55
dB(A)	Leq-Night	39.8	44.6	42.8	45
Surface Waters	TDS, mg/l	244	1003	623.5	500/2100
Ground Waters	TDS, mg/l	218	844	531	500/2000
Soil Status	EC, mmhos/cm	0.078	0.502	0.29	0.2-0.5

 Table 11-5 Environmental Baseline Status

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10- Particulate Matter size less than 10 um; SO2-Sulphur dioxide; NOx-Oxides of Nitrogen; Leq-Day & Leq-Night - Equivalent Noise Levels during Day & Night Times; TDS-Total Dissolved Solids; EC-Electrical Conductivity & SAR-Sodium Absorption Ratio.

The findings of baseline environmental status of the study area are summarized below:

- The collected meteorological data during this season represented the local weather phenomena.
- The monitored ambient air quality in the study area was found to be in compliance with the National Ambient Air Quality (NAAQ) 24-hourly Norms for Industrial, Residential, Rural and other areas.
- Monitored Ambient Noise Levels (Leq) during day and night times were found to be well within the MoEF&CC Norms.
- The water quality of surface water was found to be in compliance with CPCB/BIS Norms.
- The ground water quality was found to be in compliance with the BIS:10500-2012 Norms.
- > The soil in the study area would very well support for vegetation.
- > The area is moderately populated and basic amenities are available in all villages.

Thus, there is **adequate buffer** for the proposed Proposal in the physical, biological and edaphic environments of the study area.

11.6 Anticipated Environmental Impacts

Any Project would create impact on the environment in two distinct phases viz. Construction Phase which may be regarded as temporary & short term and Operation Phase which would have long term effects. Identification of all potential environmental impacts due to the Proposal are critically examined and major impacts (both Beneficial & Adverse) are studied.

Due to lack of raw material source, existing MSP at Manavalakurichi is being operated for <40% of its installed capacity for last 10 years or so. To support the Plant (with all required infrastructures) at Manavalakurichi, the New Lease has been proposed. Thus, having a dedicated MSP near the new Lease will not be feasible on techno-economical & environmental angle. Increasing the continued supply of Raw Material to the existing MSP will enhance uninterrupted supply of strategic Minerals to DAE for its operations

The proposed project does not involve any major establishment or construction. Thus, Construction Phase Impacts are not there for Impact Assessment and Environmental Management Plan (EMP). The identified impacts due to mining activities throughout the operational and post closure phases have been studied in detail.

Land Environment: Non-Conventional Mining activities, with no Drilling and Blasting, will be carried out in available/consented pocket lands in the Mining Lease Area of 1144.0618 Ha. Thus, no vibration impact due to mining. Also, there is no Solid Waste generation and thus, no Waste Dump in the Mining Lease area. After mining, the backfilling would be carried out and surface profile would be maintained at its original RL level (w.r.t. nearest Bench Mark) + 5 to 10% more for compaction. It is an ongoing activity upto life of the mine.

Since this process is an ongoing activity, if any sand deficit occurs in the conceptual stage, appropriate measures will be adopted to backfill the mined out area to the base level. Over and above, if any information is received from the land owners requiring for additional tailings, IREL will transport the tailings and backfill to the base level.

About 106.50 Ha is required for Mining during the Plan Period which will be mined out, back filled and handed over to the Land Owners. At the Conceptual Stage, 834.1296 Ha will be the mined out and back filled area. Back filled areas will be used for plantation and other purposes by the land owners. Thus, there will not be any significant change to Land Environment due to the Proposal.

Traffic Volume: Mined out mineral from Blocks A & B will be transported by 25/30 Tons Tippers to the existing Mineral Separation Plant at Manavalakurichi, which is aerially located at 8.4 km from Block-A and 19.4 km from Block-B in the southeast (road distance 12-17 km from Block-A and 30-35 km from Block-B). MDR and SH-179 will be the Ore Transportation Route from the Mining Lease to MSP at Manavalakurichi which is passing through the Lease area and accessible from both northern as well as southern pockets of Lease Area.

As SH-179 & MDR covers >90% of the transportation route, the RoM transportation from Blocks-A&B to MSP will be through MDR/SH-179. For balance area coverage, vacant land within the Lease will be utilized as Haulage Road to reach the nearest point of MDR/SH-179 and further to MSP. Thus, Mineral transportation will not have any impact on the village roads.

A detailed traffic assessment has been carried out in compliance with IRC 106-1990 guidelines. It is assessed that the traffic volume at Nithiravilai was found to be 5017 PCU/day and at Midalam 4441 PCU/day i.e. 209 PCU/hr at Nithiravilai and 185 PCU/hr at Midalam with average 197 PCU/hr. The traffic carrying capacity of two-way undivided arterial road is 2400 PCU/hr as per IRC 106-1990. The proposed transportation of 5000 TPD one way by 30T Tippers – 167 trucks one way, 334 trucks per day in two ways which is about 735 PCU/day i.e. 31 PCU/hr. It is worked out to be only 16% volume addition to the existing traffic volume.

The Volume/Capacity (V/C) ratio for existing and proposed traffic volume is found to be 0.08 and 0.095 respectively and the Level of Service (LOS) is found to be "A" – Excellent. Hence, the existing highway is adequate to handle the proposed volume due to the proposed project.

Air Quality: Mining, Loading and Transporting activities would generate both fugitive dust emissions and smoke from HEM Machineries/Equipments & Transporting Tippers. Fugitive emissions are predicted by using standard equations given in 'Indian Mine and Engineering Journal' and suggested by USEPA (Emission Factors as referred in AP-42) for Mining & Allied activities.

Accordingly, the computed values of PM Emission for various activities (other Pollutants are in insignificant levels from Mining activities) are:

PM Emissions, g/sec

Excavation	0.0000005
Loading	0.0000006
Ore Haulage	0.00006596

AERMOD View Software is used for Predicting the maximum Ground Level Concentrations (GLCs) including Transportation Impact (Table 3-1).

SI. No	Pollutant	Background Concentration (24-hly. Avg.), µg/m ³	Max. Predicted Ground Level Concentration, µg/m ³	Distance from the Plant (max.), km	Total Concentration, ug/m3	Revised NAAQ Norms ug/m3	Buffer Available in the Atmosphere (%)
1.	PM 2.5	21.60	0.73	0.8	22.33	60	62.78
2.	PM 10	45.70	7.26	0.8	52.96	100	47.04

Table 3-1 Predicted GLCs

The predicted maximum GLC-PM2.5 & PM10 for cumulative operation of Mining activities are 22.33 ug/m3 & 52.96 ug/m3 respectively and found to be confined locally i.e. within 0.8 km radius from the boundaries. Also, adequate Buffer Level available (47-63%) in the Air Environment for the Proposal.

2 Nos. of Mobile tower lights backed with 2 x 125 kVA DG sets will be utilized in the mining area for illumination purpose. The DG sets will have acoustic enclosures to control the noise levels. The stack height will be as per CPCB norms to comply with emission norms.

Noise Levels: The mining operations are being carried out by fully mechanized method with the help of Excavators and Tipper combination. No Drilling and Blasting. The noise level due to Mining Equipments during operation, is being maintained at <90 db(A) at a distance of 1.5 m from the sources. In general, noise generated by these sources is within the limit of 90 dB(A) prescribed by Director General of Mines Safety (DGMS). The work force is exposed to <85 dB(A) levels during the 8-hours Shift. Ambient Noise Levels (Leqs) will be <55 dB(A) during day times and <45 dB(A) during night times at the boundaries in compliance with MoEF&CC Norms for Residential Areas. Operation of the mobile van will be complying the MoEF&CC noise norms of <45 dB(A) during night time for residential areas.

Water Environment: The mining activities involve the mining of Atomic Minerals (BSM Ore) from the inland deposits. Block-B is does not contain any river or stream and there are 2 Nos. streams in Block-A. As described in the approved mining plan, adequate safety barriers will be maintained at both sides of the nalla course till the end of the mine life. Natural runoff water would not be disturbed due to the mining activity.

The average working depth in Block – A and Block – B is 6 m only and the maximum depth will be 9 m BGL. The groundwater level in the mining lease area and vicinity is ranging between 10 - 15m BGL as evidenced from the Tamil Nadu Water Supply and Drainage Board (TWAD) and CGWB data base. Thus, the mining activity will not intersect the groundwater table at both the blocks A and B. If the mining is found to be intersecting the water table, further mining activities will not be carried out at that location.

With no permanent facilities proposed in the Mining Lease area and with the moving population of worker/employees during the mining, water demand will be 2.5 KLD which will be sourced from the permitted quantity of 4500 KLD from Valliyar River for the existing MSP at Manavalakurichi. Also, the requirement will be managed through local Drinking Water suppliers. Sewage generation of 2.2 KLD will be biologically treated in a mobile Bio-Toilets and the sludge will be used as manure for the Green Belt development. No Workshop is proposed and thus no trade effluent generation from the Mine. No mine pit will be there and thus no mine drain is envisaged. No impact is anticipated on the ground water sources in the Mining Lease vicinity.

Biological Environment: There are no Eco Sensitive Areas like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed) within 10 km from the Mining Lease Area. Kanniyakumari Wildlife Sanctuary is at 25 km (shortest) distance in northeast.

The study area does not involve any forest land. The private patta lands are found with scattered coconut trees. The major crops cultivated in the study area are coconut trees, fruit crops like mango, banana, jack and aonla. Only domesticated fauna is recorded in the Study Area.

Green Belt development: The mining will be limited to vacant land available in the mining lease area. Out of total mining lease area of 1144.0618 Ha, the vacant land available for mining of atomic minerals is 834.1296 Ha only. Also, the mining will be carried out in the consented pocket lands given on lease for 11 months by the land owners. After the mining, such pocket lands will be backfilled to its original level and handed over to the land owners. Thus, the land will be in possession of IREL for a short duration of 11 months only and after that the land ownership will not be with IREL. The same scenario would prevail for the entire lease area. IREL will not have any surface right nor land ownership in the entire mining lease area.

In view of this, Greenbelt development in the mining lease area by IREL may not be possible as the ownership of the land vest with land owners. However, IREL will incorporate a clause in the land lease agreement to plant and develop coconut or any other suitable tree plantation @70 Trees per acre in the mined out are.

Towards compensatory afforestation programme, IREL would contribute an amount of Rs. 50 Lakhs to the District Forest Officer (DFO) to develop and maintain 25,000 trees at suitable place near the lease area.

Occupational Health and Safety:

Radiation: The coastal areas in Kanniyakumari District including the mining lease area of 1144.0618 ha are having high natural background radiation in the range of 1 to 4 μ Svh-1 due to presence of Monazite in the BSM Ore. Monazite is a radioactive mineral containing Uranium and Thorium.

On removal of the BSM ore (Run of Mines) containing Monazite and backfilling the minedout areas with tailings (after removal of minerals), the background radiation in the mined-out area is brought down to 0.2 to 0.4 μ Svh-1. In other words, there has been 8 to 10 fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining does not affect either environment or people and makes the area free from high background radiation.

IREL will provide and continually improve the occupational health and safety performance. Personal Protective Equipments will be provided to the mine employees. All the workers will be provided with Internal Dosimetry and Medical Surveillance. Maintenance of Pre, during & Post Employment Records will be done. Duly qualified Radiological Safety Officer (RSO) will be appointed. External Radiation Monitoring will be carried out periodically by Health Physics Division, BARC. All the workers will be trained and instructed in radiation safety.

Socio Economics: Neither land acquisition nor purchase of land would be done for the Project. The permanent structures will not be disturbed and mining shall not lead to displacement of people. Thus, no Rehabilitation & Resettlement (R&R) issue due to the Proposal. Also, there is no Litigation against the Proposal.

The Mine will be operated with the required Statutory Officials and Competent Persons mandatorily appointed as per the provisions of the Mines Act, 1952, Atomic Mineral Concession Rules (AMCR), 2016 and Mineral Conservation Development Rules (MCDR), 2017. Project will employ about 155 persons directly and 250 persons indirectly.

The Project Cost is Rs.31.25 Crores. Royality, DMF and NMET will be remitted as per the statutory requirement. Adequate CER Budget, as per OM F.No.22-65/2017-IA.III dated 20.10.2020, will be allocated for the benefits of local villages in the Mine vicinity, after taking into account of the concerns raised during Public Hearing. IREL spends about Rs. 3.00 – 5.00 Crore for CSR activities in the region (Table 3-3)

	CSR Amount Spent (Rupees in lakhs)						
CSR Component	2020-21	2021-22	2022-23	2023-24	2024-25 Allocated	Total	
Health & Nutrition	15.77	76.76	59.39	134.45	127.50	413.87	
Education	5.41	3.92	21.77	89.56	166.50	287.16	
Rural Development Projects	49.84	28.77	37.64	89.54	150.00	355.79	
Promoting Environment		11.79	36.78	15.68	45.00	109.25	
Women Empowerment		17.96				17.96	
Skill Development			4.06	6.85		2.15	
Sports				4.72	11.00	15.72	
Total	71.02	139.20	159.64	340.80	500.00	1210.66	

Table 3-3: CSR Activities in the Region by IREL

Free Covid-19 Vaccination Camp conducted at BMHS School, Manavalakurichi on 26.08.2021

Eye Camp conducted at Lekshmipuram on 12.08.2023 Beneficiaries - 501 persons

CSR Activities by IREL – MK Unit

¢.

Shri H.R. Koushik, Sub-Collector, Padmanabhapuram

IREL handed over 4 nos. of vehicles to Kollencode & Colachel Municipalities, Ezhuthesam Town Panchayat and Thoothoor Village Panchayat in the presence of Shri N. Selvarajan, Chief General Manager & Head and Trade Union Representatives on 13.01.2023 for handling Solid waste in the Municipalities/Panchayat.

Shri N. Selvarajan, CGM & Head, MK handed over cheque of Rs.14 lakhs and Rs.4.50 lakhs to the Sub-Collector, Padmanabhapuram towards Fishermen Village Development Fund and Medical Assistance

Fund respectively on 14.09.2022

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

11.7 Environmental Monitoring Programme

IREL has EMP Monitoring Cell. The quality of air, noise, water, soil, etc. will be monitored periodically at the identified locations as per MoEF&CC, AMD & TNPCB Norms by appointing an accreditated external agency. The Status Reports will be submitted to the Authorities periodically viz. TNPCB monthly, AMD Quarterly and MoEF&CC Monitoring Cell as Half Yearly Status Reports.

11.8 Additional Studies

Detailed Risk Assessment and mitigative measures are delineated and an effective Disaster Management Plan, for natural and man-made disasters, is also submitted.

11.9 Project Benefits

Social Benefits: Commencement of mining operation over the mining lease area of 1144.06.18 ha will result in overall development of the region in its own way like provision of direct & indirect employment, improvement in the general living standards and knowledge sharing, improved wage level and the living standard of the local people and continual improvements in the amenities and infrastructure facilities for the local populace.

As per the IREL's policy, neither land acquisition nor purchase of land would be done for the project. The Mining operations will be carried out over the private patta lands after obtaining the consent from the respective land owners on lease basis. The land leasing period will be 11 months. Mining and backfilling will be simultaneously carried out within the lease period of 11 months and thereafter the land will be returned to the land owners with lease compensation. Mining in the lease hold areas will not result in any displacement nor change in the ownership of the land. The payment of lease compensation results in significant improvement in quality of life for local populace and economic growth in the region.

Environmental Benefits: The coastal areas in Kanniyakumari District including the mining lease area of 1144.0618 ha are having high natural background radiation in the range of 1 to 4 μ Svh⁻¹ due to presence of Monazite in the BSM Ore. Monazite is a radioactive mineral containing Uranium and Thorium. On removal of the BSM Ore (Run of Mines) containing Monazite and backfilling the mined-out areas with tailings (after removal of minerals), the background radiation in the mined-out area is brought down to 0.2 to 0.4 μ Svh⁻¹. In other words, there has been 8 to 10 fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining makes the area free from radioactivity and improving the living condition of people.

Financial Benefits: IREL is the only CPSE in the country being authorized to mine and handle "Monazite" and its value-added products. The Zircon produced from Manavalakurichi Unit is directly sent to the Nuclear Fuel Complex (NFC), Department of Atomic Energy for strategic applications. The processed mineral products, apart from its usage for strategic purpose in Nuclear Energy, Defense, Space etc., finds application in number of commercial sectors such as aerospace industry, infrastructure development, ceramics, foundries, oil industries etc., while Rare Earths are used in niche applications such as consumer electronics, renewable energy, EVs, etc., and also has excellent contribution for sustenance of industries in the value chain of its mineral & rare earth products. The project will generate revenue in terms of royalty and taxes etc. to the state of Tamil Nadu in addition to make available of strategic material. All these minerals and Rare Earth's provides input for other industries and plays a vital role in global economy

11.10 Environmental Management Plan

Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to various attributes of environment due to the proposed mining operations.

EMP for Construction Phase: There will be no Construction Phase for the Project.

EMP for Operation Phase:-

Land Environment:

- > Mined-out area are to be backfilled simutanoeusly to restore the topography.
- Plantation are to be carried out in the mined-out areas after backfilling.
- Reclaimed Land will be used for other activities including construction and thereby ensuring Eco-friendly and Sustainable mining.
- Carbon sequestration is the long-term storage of carbon in oceans, soils, vegetation (especially forests) and geologic formations. Adequate Green Belt will be developed

around the project for carbon sequestration. As trees grow, they store carbon in woody tissues and soil organic matter.

Traffic Impact

- ▶ RoM transportation from Blocks-A&B to MSP will be through MDR/SH-179.
- All Tippers are to be fully covered with Tarpaulin to avoid any spillage during transportation.
- Restriction of over loading of Tippers shall be enforced.
- Speed restrictions shall be enforced.
- > Restriction of Truck parking in the Highway and Public Roads shall be enforced.
- > Regular and preventive maintenance of transport vehicles are to be ensured.
- Compliance to 'Pollution under Control' Certification has to be ensured and to be checked periodically.

Air Environment

- The DG sets will have acoustic enclosures to control the noise levels. The stack height will be as per CPCB norms to comply with emission norms.
- > Water sprinkling on loading point and Haul Roads are to be carried out.
- > Covering of Trucks/Tippers with tarpaulin shall be ensured during Ore transportation.
- > Over loading of Tippers has to be avoided to control the spillages during transportation.
- Periodical maintenance and replacement of worn out accessories in the mining equipments are to be carried out.
- > 'Pollution under Control' Certification has to be ensured and to be checked periodically.
- > Periodical monitoring of Ambient Air Quality has to be carried out.

Noise Levels

- > Deployment of mining equipments shall be with in-built mechanism for reducing noise.
- Operation of the mobile van will be complying the MoEF&CC noise norms of <45 dB(A) during night time for residential areas.</p>
- Providing ear muffs/ear plugs to the workers in high noise zones.
- > Periodical Noise Monitoring shall be carried out and Reports submitted to the Authorities.

Water Environment

- > Natural drains shall be maintained as such.
- Adequate safety barriers will be maintained at both sides of the nalla course in the Lease till the end of the mine life.
- > No ground water drawl in the Mining Lease Area as well as CRZ area for the project.
- > Periodical monitoring of water table levels and water quality are to be carried out.

Biological Environment

- IREL will incorporate a clause in the land lease agreement to plant and develop coconut or any other suitable tree plantation @70 Trees per acre in the mined out areas.
- Towards compensatory afforestation programme, IREL would contribute an amount of Rs. 50 Lakhs to the District Forest Officer (DFO) to develop and maintain 25,000 trees at suitable place near the lease area.

Occupational Health Measures: Lease area of 1144.0618 ha are having high natural background radiation in the range of 1 to 4 μ Svh-1 due to presence of Monazite in the BSM

Ore. Monazite is a radioactive mineral containing Uranium and Thorium. On removal of the BSM ore (Run of Mines) containing Monazite and backfilling the mined-out areas with tailings (after removal of minerals), the background radiation in the mined-out area is brought down to 0.2 to 0.4 μ Svh-1. In other words, there has been 8 to 10 fold reduction in the radiation level in the area where mining & backfilling is carried out by IREL and as such our mining does not affect either environment or people and makes the area free from high background radiation.

IREL will provide and continually improve the occupational health and safety performance. Personal Protective Equipments will be provided to the mine employees. All the workers will be provided with Internal Dosimetry and Medical Surveillance. Maintenance of Pre, during & Post Employment Records will be done. Duly qualified Radiological Safety Officer (RSO) will be appointed. External Radiation Monitoring will be carried out periodically by Health Physics Division, BARC. All the workers will be trained and instructed in radiation safety.

Social Measures: The Project Cost is Rs.31.25 Crores. Royality, DMF and NMET will be remitted as per the statutory requirement. Adequate CER Budget, as per OM F.No.22-65/2017-IA.III dated 20.10.2020, will be allocated for the benefits of local villages in the Mine vicinity, after taking into account of the issues raised during Public Hearing. IREL spends about Rs. 3.00 – 5.00 Crore for CSR activities in the region which will be continued.

Plastic Waste Management: There will be ban on one-time use and throw away Plastic usage in the Mining Lease. Encourage the use of eco friendly alternatives such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

EMP Budget: The Project Cost is Rs.31.25 Crores. An amount of Rs. 20.00 Lakhs is earmarked as Capital EMP Budget and Rs10.50 Lakhs per Annum is Operating Cost towards EMP measures including Environmental Monitoring. Also, an amount of Rs.10.00 Lakhs per Annum has been earmarked for Occupational Health & Safety Measures. Also, budget for the Corporate Environmental Responsibility (CER) will be allocated in compliance with guidelines of MoEF&CC.

12.0 Disclosure of consultant

ABC Techno Labs India Private Limited (formerly ABC Environ Solutions Pvt. Ltd.) is an ISO 9001, ISO 14001 & OHSAS 18001 Certified Company & leading Environmental Engineering & Consultancy Company constantly striving towards newer heights since its inception in 2006. Our Company is dedicated to providing strategic services in the areas of Environment, Infrastructure, Energy, Engineering and Multi lab.

It is the first firm to be accredited by NABET (National Accreditation Board for Education and Training), Quality Council of India, as an EIA Consultant, approved for carrying out EIA studies and obtaining environmental clearance for various sectors such as Thermal Power Plants, Infrastructure, Industrial Estates/Complexes/Areas, Mining, Township & area development and Building construction projects etc. ABC Techno Labs is equipped with inhouse, spacious laboratory, accredited by NABL (National Accreditation Board for Testing & Calibration Laboratories), Department of Science & Technology, Government of India.

ABC has been accredited for various Sectors including Sector-1 (Mining) for Category 'A' by the National Accreditation Board for Education & Training (NABET), Quality Council of India vide Certificate NABET/EIA/2225/RA 0290 with validity extended till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 15.07.2024). ABC Techno Labs India Private Limited Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2024. The Lab is also recognized by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

Since establishment ABC Techno Labs focus on sustainable development of Industry and Environment based on sound engineering practices, innovation, quality, R&D and most important is satisfying customers need. The company has successfully completed more than 100 projects of a variety of industries, in the field of pollution control and environmental management solutions. The company is also dealing in the projects of waste minimization and cleaner production technology.

12.1 Services of ABC Techno Labs India Pvt Ltd

Environmental Services

- Environmental Impact Assessment (EIA)
- Environmental Management Plan (EMP)
- Social Impact Assessment (SIA)
- Environmental Baseline data collection for Air, Meteorology, Noise, Water, Soil, Ecology, Socio-Economic and Demography etc;
- Environmental Monitoring
- Socio-Economic Studies
- Resettlement & Rehabilitation Plan
- Ecological & Human Health Risk Assessment Studies
- Ecological Impact Assessment
- Environmental Management Framework
- Solid Waste Management
- Hazardous Waste Management
- Internship & Training

Turnkey Projects

- Water Treatment Plants
- Sewage Treatment Plant
- Recycling & Water Conservation Systems
- Zero Discharge System

Other Services

- > Operation & Maintenance of Water & Waste Water Plants
- > Water & Waste Water Treatment Chemicals
- Pilot Plant studies
- > Feasibility studies & preparation of budgetary estimates

Laboratory Services

- Chemical Testing
- > Environmental Testing
- Microbiological Testing
- > Food Testing
- Metallurgical Testing

EIA for Mining of Atomic Minerals over an extent of 1144.0618 Ha in Kanniyakumari District, Tamil Nadu by IREL (India) Ltd.

N	National Accreditation Board for Education and Training	ł	NABE	2
	Certificate of Accreditation	on		ļ
	ABC Techno Labs India Private Limited, Chenn ABC Tower, 400, 13th Street, SIDCO Industrial Estate, North Phase, Amba	i <u>ai</u> ttur, Cheni	nai 600098	
The org Version	anization is accredited as Category-A under the UCI-NABET scheme for Accreditatio 3: for preparing EIA-EMP reports in the following Sectors —	n of EIA Col	rsultant Orga	nizotio
5. No	Sector Description	Sector NABET	(as per) MoEFCC	Cat.
1	Mining of minerals including opencast/ underground mining	1	1 (a) (i)	A
2	Offshore and onshore oil and gas exploration, development & production	2	1 (b)	A
3	River Valley projects	3	1(c)	A
4	Thermal power plants	4	1 (d)	A
5	Mineral beneficiation including pelletisation	7	2 (b)	A
6	Metallurgical industries (ferrous & non-ferrous)	8	3 (a)	A
1	Cement Plants	9	3(b)	A
8	Petroleum refining industry	10	4 (a)	A
9	Leather/skin/hide processing industry	15	4(0)	A
10	Chemical tertilizers	10	⇒ (a) 5 (c)	A.
5.2	Petrochemical based properties	20	5(0)	A .
19	Synthetic organic chemicals industry	21	5/6	A
14	Distilleries	22	5(e)	A
15	Integrated paint industry	23	5(h)	8
16	Sugar Industry	25	5 ())	B
17	Oil & gas transportation pipeline, passing through national parks/ sanctuaries/coral reefs / ecologically sensitive areas including LNG terminal	27	6 (a)	A
18	Airports	29	7 (a)	A
19	Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes		7 (c)	A
20	Ports, harbours, break waters and dredging	33	7 (e)	A
21	Highways	34	7(f)	A
22	Common Entuent Treatment Plants (CE1P5)	36	7 (h)	8
20	Soliding and mostruction projects	3/	8(3)	0
25	Townships and Area development projects	30	8(h)	R
25 ite: Nan D-NABE e Accom creditation ABC Tec	Townships and Area development projects ses of approved EIA Coordinators and Functional Area Experts are mentioned in RAAC mil Ewebsite Intation shall remain in force subject to continued compliance to the terms and condition on bearing no QCI/NABET/ENV/ACO/23/2795 dated July 11, 2023. The accreditation needs thno Labs India Private Limited, Chennal following due process of assessment.	39 nutes dated s mentioned to be renew	8 (b) kune 09, 2023 In QCI-NABET ed before the e	B poster 's lette scory i

ANNEXURES Doc 1- Precise Area Letter

Industries (MMD.2) Department, Secretariat, Chennai - 600 009.

Letter No.12503/MMD.2/2015-19, dated 28.06.2022

From

Thiru S.Krishnan, I.A.S., Additional Chief Secretary to Government.

To

The General Manager and Head, TvI.IREL (India) Limited, Manavalakurichi, Kanyakumari District – 629 252.

Sir,

- Sub: Industries Mines and Minerals Atomic Minerals/Beach Sand Minerals - Area of an extent of 1144.06.18 hectares of Government and Private lands reserved by the Central Government in Kanyakumari District, Tamil Nadu for undertaking prospecting or mining operations through TvI.IREL (India) Limited - Mining Lease application preferred by TvI.IREL (India) Limited - Communication of precise area/Letter of Intent - Regarding.
- Ref: 1. Government of India, Ministry of Mines Notification No.G.S.R.399 (E), dated 11.06.2021.
 - Mining lease application preferred by the General Manager & Head, Manavalakurichi, TvLIREL (India) Limited (Formerly Indian Rare Earths Limited), dated 24.06.2021.
 - Government letter No.12503/MMD.2/2015-14, dated 08.12.2021 and 20.04.2022 addressed to the Government of India, Ministry of Mines.
 - From the Government of India, Ministry of Mines, Order No.M.IV-7/74/2021-Mines IV, dated 21.04.2022.
 - From the Government of India, Ministry of Mines, letter No.M.IV-7/74/2021-Mines IV, dated 22.04.2022.

I am directed to invite attention to the references cited. In the reference 5th cited, the Government of India, Ministry of Mines has conveyed its previous approval for grant of mining lease in favour of TvI.IREL (India) Limited under the proviso to Section 5(1) and proviso to section 17A(2A) of the Mines and Minerals (Development and Regulation) Act, 1957 in respect of Beach Sand Minerals (BSM) over an extent of 1144.06.18 hectares in Keezhmidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages in Killiyoor Taluk, Kanyakumari District.

(p.t.o.)

Unleashing Value

...Z.,

2. Accordingly, under rule 6(5) of the Atomic Minerals Concession Rules, 2016, I am directed to request you to submit the Approved Mining Plan and other necessary clearances from the concerned Government agencies as required for grant of mining lease under section 17A(2A) of the Mines and Minerals (Development and Regulation) Act, 1957 for mining Beach Sand Minerals (BSM) over an extent of 1144.06.18 hectares comprised in survey numbers as annexed to this letter in Keezhmidalam-A, Midalam-B, Enayamputhenthural, Ezhudesam-A, Ezhudesam-B, Ezhudesam-C, Kollencode-A and Kollencode-B Villages in Killiyoor Taluk, Kanyakumari District for a period until the entire reserves of the Beach Sand Minerals are exhausted subject to the following conditions:-

- (i) TvI.IREL (India) Limited should submit an undertaking or an affidavit stating that consent of the private land owner or surface rights will be obtained and furnished in a phased manner to the State Government prior to entering into the private lands for mining, and no mining shall be carried out in private lands not owned by IREL without obtaining the consents or surface rights.
- Mining operations shall not cause any hindrance to the local public and adjoining pattadars.
- (iii) All conditions prescribed under Rule 10 of Atomic Minerals Concession Rules, 2016 shall be strictly adhered to.
- (iv) The applicant company is required to obtain a licence from the Atomic Energy Regulatory Board (AERB), Mumbal under Rule 3 of Atomic Energy (Radiation Protection) Rules, 2004.
- (v) The applicant company is required to obtain a licence from the Department of Atomic Energy under Rule 3 of the Atomic Energy (Working of the Mines, Minerals and Handling of Prescribed Substances) Rules, 1984.
- (vi) The applicant company should prepare a Mining Plan and obtain approval (including Progressive Mine Closure Plan) from the Atomic Minerals Directorate for Exploration and Research approved by the AMD, Hyderabad within a period of twelve months from the date of issuance of the communication from the Government.
- (vii) The applicant company shall obtain environmental clearance from the Ministry of Environment, Forest and Climate Change.
- (viii) The applicant company shall obtain CRZ clearance from the Competent Authority.
- (ix) The applicant company should provide a performance security to the State Government in the form of a bank guarantee or as a security deposit for an amount equivalent to 0.50 percent of the value of estimated resources as per Rule 6(6)(b) of AMCR 2016.

(contd..)

- (x) The applicant company should sign a Mine Development and Production Agreement with the State Government as per the format specified by the Central Government after compliance of conditions specified in clauses (a), (b), (c) and (d) of rule 6(6) of AMCR 2016.
- (xi) The applicant company should obtain approval or permit or no-objection or the like from the concerned Government authorities as may be required under applicable laws for commencement of mining operations.

Yours faithfully,

あっかるw」また 28/06/2025 for Additional Chief Secretary to Government

Copy to:

The Secretary to Government of India, Ministry of Mines, Shastri Bhavan, Dr. Rajendra Prasad Road, New Delhi – 110 001.

The Secretary to Government of India, Department of Atomic Energy, Anushakti Bhavan, C.S.M.Marg, Mumbai-400 001.

The Commissioner of Geology and Mining, Guindy, Chennai – 600 032.

The District Collector, Kanyakumari, Nagercoll – 629 001.

Doc – 2. Mining Plan Approval by AMD

भारत सरकार Government of India परमाणु ऊर्जी विभाग Department of Atomic Energy परमाणु खनिज अन्येषण एवं अनुसंधान निवेशालय Atomic Minerals Directorate for Exploration and Research

1-10-153/156, बेगमपेट Begumpet, हैवराबाद Hyderabad-500 016 दिनांक Date: 21.02.2024

संख्या No. AMD/MRG-4/6/2/2(8A)

- विषयः मेसर्स आईआरईएल (इंडिया) लिभिटेड, मनावालाकुरिची के पक्ष में ग्राम कील मिदालम-ए, मिदालम-वी, इनयमपुर्थेयुराई, एलदेसम-ए, बी & सी, एवं कोल्लेंकोड़े- ए & वी, जिला : कछियाकुमारी, तमिल नाडु में क्षेत्रफल 1144.0618 हेक्टेयर की सीमा में खनन योजना और प्रयामी खान बंदीकरण योजना के अनुमोदन के मंदम में।
- Sub: Approval of Mining Plan and Progressive Mine Closure Plan over an extent of 1144.0618 ha in Keezhimidalam-A, Midalam-B, Enayamputhenthural, Ezhudesam-A, B & C and Kollencode- A & B villages, Kanniyakumari district, Tamil Nadu in favour of M/s IREL (India) Limited, Manavalakurichi – Reg.

संदर्भ Ref : पत्र संख्या Letter No. IREL/MK/ 1144.0518 Ha /2024/107, दिनांक dated 02.02.2024

खान और खनिज (विकास और विनयमत) अधिनियम, 1957 के घारा 5 के उपधारा (2) के परंतुक (वी) और परमाणु खनिज रियायत नियमावली, 2016 के नियम 8(1) के द्वारा प्रदत्त शक्तियों का उपयोग करते हुए निदेशक, प.ख.ति. द्वारा मेमर्म आईआरईएल (इंडिया) लिमिटेड (आईआरईएल), के पक्ष में ग्राम कील मिदानम-ए, मिदालम-वी, इनयमपुयेंथुराई, एलदेनम-ए, वी & सी, एवं फोल्लेंगोडे-ए & वी, जिला : कन्नियानुमारी, तमिल नाडु में क्षेत्रफल 1144.0618 हेक्टेयर की सीमा में खनन योजना और प्रगामी खान बंदीकरण योजना निम्नलिखित शर्तों के तहत अनुमोदित किया जाता है:

In exercise of the powers conferred by clause (b) of sub-section (2) of Section 5 of the Mines and Minerals (Development and Regulation) Act, 1957 and Rule 8 (1) of the Atomic Minerals Concession Rules, 2016, the Mining Plan and Progressive Mine Closure Plan in Keezhimidalam-A, Midalam-B, Enayamputhenthurai, Ezhudesam-A, B & C and Kollencode- A & B villages, Kanniyakumari district, Tamil Nadu, extending over 1144.0618 ha is approved by the Director, AMD in favour of M/s IREL (India) Limited (IREL), subject to the following conditions:

- खनन योजना और प्रगामी खान बंदीकरण योजना तटीय बालू खनिज नामतः इल्मेनाइट, रुटाइल, जिरकान, मोनाज़ाइट, गार्नेट और सिलिमेनाइट के संबंध में अनुमोदित है जिसे खान और खनिज (विकास और विनियमन), 1957 की प्रथम जनुसूची के भाग-ख के अधीन 'परमाणु खनिज' के रूप में जधिमूचित किया गया है। The Mining Plan and Progressive Mine Closure Plan is approved in respect of beach sand minerals viz. ilmenite, rutile, zircon, monazite, garnet and sillimanite which are notified as 'Atomic Minerals' under Part B of First Schedule of Mines and Minerals (Development & Regulation) Act, 1957.
- यह अनुमोदन खनन पट्टा विलेख के निष्पादन और अन्य वैधानिक मंजूरी प्राप्त करने के बाद वर्ष I से वर्ष v तक पांच वर्ष की योजना अवधि के लिए वैध है। This approval is valid for the five-year plan period from Year I to Year V after the execution of mining lease deed and obtaining other statutory clearances.
- 3. आईआरईएल एएमसीआर, 2016 के प्रावधानों के अनुसार प्रत्येक पॉच वर्ष में खनन योजना की समीक्षा करेगा और इन नियमों के अंतर्गत चिनिर्दिष्ट समय सारणी के अनुसार प.ख.नि. के अनुमोदन के लिए उसे प्रस्तुत करेगा। IREL shall review the mining plan for every five-year as per the provisions of AMCR, 2016 and submit the same for approval of AMD as per the time schedule specified under these Rules.
- यह अनुमोदन खनन कायों के लिए आवश्यक केंद्रीय और राज्य प्राधिकरणों / विभाग से अन्य वैधानिक मंजूरी की पूर्ति के अधीन है।

This approval is subject to fulfilment of other statutory clearances from the Central and the State Authorities / Department(s) required for mining operations.

1

- 5. आईआरईएन परमाणु ऊर्जा (मान, मनिज कार्यकरण और विहित पदार्थ उठाई-धराई) नियमायली, 1984 के प्रावधानों के अनुमार अनुमानित माथा के प्रष्ठस्तन/मनन का उल्लेख करते हुए, परमाणु ऊर्जा वियाग में लाइसेंस प्राप्त करे तथा संबंधित माइसेंस में यथानर्णित निबंधन एवं शतौं का पालन करें। इगकी एक प्रतिलिपि प.च.ति, के रिकार्ड हेतु सेजी बाए। IREL shall obtain License from DAE to handle/mine the estimated quantities of prescribed substances as per the provisions of Atomic Energy (Working of Mines, Minerals and Handling of Prescribed Substances) Rules, 1984 and comply with the terms and conditions stipulated in the said License. A copy of the same may be submitted to AMD for records.
- परमाणु ऊर्जा (बिकिरण संरक्षण) नियम, 2004 (दिनांक 09.05.2009 के स्था.आदेश मे. 1210) के प्रावधानों के अनुसार, आईआरईएन एईआरबी में लाइसेंस प्राप्त करेगा। इसकी एक प्रतिलिपि प.ख.नि. के रिकार्ड हेतु मेजी जाए। IREL shall obtain License from AERB as per the provisions of Atomic Energy (Radiation Protection) Rules, 2004 (vide S. O. No. 1210 dated 09.05.2009). A copy of the same may be submitted to AMD for records.
- 7. परमाणु ऊर्जा नियमारू परिषद के निदेशानुसार खनिज पृथक्करण संयंत्र से उत्पादित मोनाजाइट समृद्ध भारी खनिज मांद्रण का भंडारण अलग से किया जाए। उत्पादित मोनाजाइट का भंडारण/निपटान पऊवि एवं एईआरवी के लाइमेंस की श्रदों के अतिरिक्त एमएमढीआर अधिनियम, 1957 के अंतर्गत प्रावधानों के अधीन होगा। The monazite-rich heavy mineral concentrate produced from the mineral separation plant shall be stored separately as per the directions from AERB. The storage/disposal of monazite recovered shall be subjected to the conditions of licenses issued by DAE and AERB and also the provisions specified under MMDR Act, 1957.
- 8. भारत सरकार, राज्य सरकार अथवा किसी अन्य प्राधिकारी द्वारा तैयार, समय-समय पर खान/क्षेत्र पर निदेशित / अधिमूचित किसी कानून के तहत विना किसी पूर्वाग्रह के खान योजना तथा प्रगानी खान वंदीकरण योजना का अनुसोदन किया जाता है। That the Mining Plan and Progressive Mine Closure Plan is approved without any prejudice to any other laws applicable to the mine/area from time to time whether made by the Government of India, State Government, or any other authority.
- 9. खनन योजना (प्रगामी खान बंदीकरण योजना महित) का यह जनुमोदन किसी भी तरह से खान एवं खनिज (विकास एवं विनियम) अधिनियम, 1957 अथवा परमाणु खनिज रियायत नियम, 2016 अथवा वन (संरक्षण) अधिनियम, 1960, पर्यावरण संरक्षण अधिनियम, 1986 और उसके तहत बनाये गये नियमों का फिसी भी अन्य प्रावधानों के संदर्भ में सरकार के अनुमोदन का संफेत नहीं देता है। That this approval of the Mining Plan (including Progressive Mine Closure Plan) does not in any way imply the approval of the Government in terms of any other provisions of the Mines and Minerals

imply the approval of the Government in terms of any other provisions of the Mines and Minerals (Development and Regulation) Act, 1957 or the Atomic Minerals Concession Rules, 2016 or any other law including Forest (Conservation) Act 1960, Environment Protection Act, 1986 and the rules made thereunder.

- खान एवं खनिज (विकास एवं विनियम) अधिनियम, 1957 के प्रावधानों तथा उसके अंतर्गत बनाए गए नियमों का और अन्य वैधानिक प्रवधानों का अनुपालन किया जाए। That the provisions of the Mines and Minerals (Development and Regulation) Act, 1957 and Rules made thereunder and other statutory provisions shall be complied with.
- खान को प्रारंभ करने की सूचना, प्रबंधक तथा अन्य वैधानिक प्राधिकारियों की नियुक्ति सहित और खान अधिनियम, 1952 के प्रावधानों तथा उसके अंतर्गत बनाए गए नियमों और विनियमों के अनुपालन को सुनिश्चित किया जाए। That the provisions of the Mines Act, 1952 and Rules and Regulations made thereunder including submission of notice of opening, appointment of manager and other statutory officials shall be complied with.
- 12. इस खनन योजना (प्रगामी खान बंदीकरण योजना सहित) का अनुमोदन किसी अन्य आदेश या सक्षम क्षेत्राधिकार रखने वाले किसी न्यायालय के निर्देशों पर पूर्वाग्रह के बगैर किया गया है। That this Mining Pian (Including Progressive Mine Closure Plan) is approved without prejudice to any other order or direction from any court of competent jurisdiction.

 खनन योजना (प्रगामी खान बंबीकरण योजना सहित) का निष्पादन, यदि कोई प्रतिबंधन आदेश/नोटिम हो तो उसके निरस्त होने की शर्त पर किया जाएगा।

The execution of Mining Plan (including Progressive Mine Closure Plan) shall be subjected to vacation of prohibitory orders/notices, if any.

14. यदि खनन योजना (प्रगामी खान बंदीकरण योजना सहित) और सुधार प्रस्ताव की विषय-वस्तु में किसी ऐसे तब्य को छियाया हुआ पाया जाता है जिसे की खान अधिनियम, 1952 के अंतर्गत खुलासा करना अनिवार्य है, तो इस अनुमोदन को तत्काल प्रभाव से निरस्त समझा जाए।

If anything is found to have been concealed, which otherwise is required to be disclosed under the Mines Act, 1952 and MMDR Act, 1957 or the Rules made under the said Acts, in the contents of the Mining Plan (including Progressive Mine Closure Plan) and the proposals for rectification, the approval shall be deemed to have been withdrawn with immediate effect.

- 15. यदि किसी चरण में यह पता चलता है कि दम्तावेज में दी गई जानकारी असत्य है या किसी तब्य को गलत ढंग में प्रस्तुत किया गया है, तो इस प्रसेख का अनुमोदन तत्काल प्रभाव से वापस से लिया जायेगा। If at any stage, it is observed that the information furnished in the document is incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 18. खनन प्रचालन और उससे संबद्धित गतिबिधियों के लिए अनुमोदन केवल खनन पट्टा क्षेत्र (तमिल नाडु सरकार द्वारा गया अनुमोदित) में दिया गया है। खनन पट्टा क्षेत्र वह होगा जो अनुमोदित खनन योजना के अधीन पट्टेदार/ आर्हित व्यक्ति/आवेदक द्वारा सांबिधिक योजनाओं में दिखाया गया है। आवेदक/पट्टेदार हारा प्रस्तुत पट्टे का नक्शा और अन्य योजनाओं के नहत प्रस्तुत जानकारी के संदर्भ में स्थल पर पट्टे क्षेत्र की परिसीमा (वाउंड्री) की मरयता के संबंध में प.ख.नि. की कोई जिम्मेदारी नहीं होगी। This approval of mining operations and associated activities is restricted to the mining lease area (as approved by the Government of Tamil Nadu) only. The mining lease area is as shown on the statutory plans in the approved mining plan submitted by the lessee/qualified person/applicant. AMD does not take any responsibility regarding correctness of the boundaries of the lease shown on the ground with reference to the lease map and other plans furnished by the applicant/lessee.
- 17. आईआरईएन राज्य सरकार द्वारा दिए गए खनन पट्टे का विवरण या उसमें किए गए संशोधनों की सूचना निदेशक, प.च.नि. को रिकार्ड के लिए भेजे।

IREL shall furnish the details of grant of lease or modifications in mining lease by State Government to Director, AMD for record.

- 18. खनन योजना (प्रमामी खान वंदीकरण योजना सहित) के क्रियान्वयन के दौरान, राज्य सरकार द्वारा खनन पट्टे की मंजूरी पर विचार करते समय विनिर्दिष्ट शतों पालन किया जाए। The conditions stipulated by the State Government, if any, while considering the grant of mining lease shall be taken care of while implementing the Mining Plan (including Progressive Mine Closure Plan).
- 19. यदि खान के प्रचालन के दौरान किसी भी समय यह पाया जाता है कि मौजूदा कानूनों का पालन नहीं किया जा रहा है तो निदेशक, प.ख.लि. लिखित रूप में संवंधित कारण बताते हुए अनुमोदन को निलंबित कर सकते हैं। That if anytime, during the operation of mines, it is found that the existing laws are not being followed, Director, AMD may suspend the approval accorded by giving the relevant reasons in writing.
- मुख्य नियंत्रक खनन, आईवीएम नागपुर द्वारा उनके दिनांक 06.04.2010 के पत्रांक 11013/3/एमपी/90-सीसीओएम बाल्यूम VII द्वारा जारी किये गये परिपत्रांक 2/2010 की अंतर्वस्तु का अनुपालन किया जाए और पखनि को इसकी प्रति प्रष्ठांकित की आए।

The contents of circular No. 2/2010 issued by the Chief Controller of Mines, IBM, Nagpur vide his letter No. 11013/3/MP/90-CCoM Vol VII dated 06.04.2010 shall be complied with and a copy endorsed to AMD.

 यदि खनन/प्रक्रमण पद्धति में कोई बढ़ा परिवर्तन होता है तो तत्संबंधी सूचना निदेशक, प.स.नि., हैदराबाद को प्रस्तुत की जाए तथा खनन योजना में आवश्यकतानुसार और भी संशोधन किए जाए।

That if there is any drastic change in the method of mining/processing, the information in this regard shall be submitted to Director, AMD, Hyderabad and the mining plan may be subjected to further revision as per requirement.

 खनन योजना के कार्यान्वयन की निरीक्षण / मानिटरिंग के लिए परमाणु खनिज अन्वेषण एवं अनुसंधान निदेशालय के सक्षम प्राधिकारी या प्राधिकृत अधिकारी को पूर्ण सुविद्याएँ प्रदान की जाएंगी।

Full facilities shall be accorded to the Competent Authority or the Authorised Officer of the Atomic Minerals Directorate for Exploration and Research for inspection/monitoring of implementation of mining plan.

 विद्यमान नियमों के अनुसार सभी सांविधिक विवरणियाँ और सूचनाओं की प्रतियाँ राज्य मरकार और निदेशक, प.स.नि. को रिकार्ड हेतु प्रस्तुत किए जाए।

Copies of all statutory returns and notices as per rules in vogue shall be submitted to the State Government and the Director, AMD, Hyderabad for record.

उपरोक्त शर्वों की पूर्ति के अधीन तरीय बाजू खिनज नामतः इल्मेनाइट, रुटाइल, जिरकान, मोनाज़ाइट, गार्नेट और सिलिमेनाइट के संबंध में अनुमोदित खनन योजना की दो प्रतियाँ मंतप्र हैं।

Two copies of approved Mining Plan in respect of beach sand minerals viz. Ilmenite, Rutile, Zircon, Monazite, Garnet and Sillimanite subject to fulfilment of above conditions are enclosed.

HHAUN

(भास्करन सरवणन 'BiSaravanan) ातिदेशक/Directori िदेशक, पर्धात /DIRECTOR, AMP

सेवा में To

श्री एन सेल्वाराजन, मुख्य महाप्रवंधक एवं प्रमुख, आईआरईएल (इंडिया) लिमिटेड, मनावालाकुरिची, जि़िला : कन्नियाकुमारी, तमिल नाडु - 629 252 Shri N Selvarajan, Chief General Manager & Head, IREL (India) Ltd., Manavalakurichi, Kanniyakumari district, Tamil Nadu- 629 252

मुचनार्थ प्रति प्रेपित_Copy for information to:

- संयुक्त सचिव (आई एंड एम), परमाणु ऊर्जा विभाग, पऊवि मचिवालय, जणुशक्ति भवन, सीएसएम मार्ग, मुंबई-400001. Joint Secretary (I&M), Department of Atomic Energy, DAE Secretariat, Anushakti Bhavan, Chatrapati Shivaji Maharaj Marg, Mumbai- 400001
- वेयर्थन, ऐईआरबी, नियामक भवन, जणुशक्ति नगर, चेम्बूर ईस्ट, मुंबई 400094 The Chairman, Atomic Energy Regulatory Board, Niyamak Bhavan, Anushakti Nagar, Chembur East, Mumbai- 400094
- अध्यक्ष एवं महाप्रबंधक, मेसर्स आई आर ई एल (इंडिया) लिमिटेड, प्लाट नं 1207, बीर सावरकर मार्ग, प्रभादेवी, मुम्बई - 400028.

Chairman and Managing Director, M/s IREL (India) Ltd., Plot No. 1207, Veer Savarkar Marg, Prabhadevi Mumbai-400028.

4

- मुख्य खान नियंत्रक, भारतीय खान ब्यूरो, 6वां तल, 'डी'-व्लॉक, इंदिरा भवन, सिविल लाइन्स, नामपुर-440001. The Chief Controller of Mines, Indian Bureau of Mines, 6th Floor, Block 'D', Indira Bhavan, Civil Lines, Nagpur-440001.
- क्षेत्रीय आग निर्ययक, भारतीय खान व्यूरो, राजाजी जवन, C -4 A, सीजीओ काम्प्लेक्स, बेसंत नगर, चेन्नई 600 090. The Regional Controller of Mines, Indian Bureau of Mines, Rajaji Bhavan, C-4A, CGO Complex, Besant Nagar, Chennai – 600 090.
- आयुक्त, भूविज्ञान और खनन आयुक्तालय, खान एवं भूविज्ञान विभाग, औरोगिक एस्टेट, गिंडी, चेन्नई 600 032. The Commissioner, Commissionerate of Geology and Mining, Department of Mines and Geology, Industrial Estate, Guindy, Chennai – 600 032.

 7. निदेशक, खान सुरक्षा महानिदेशालय, चेन्नई क्षेत्र, तीसरी मंजिल, चाएं विंग, नया अतिरिक्त भवन, सीजीओ काम्प्लेक्स, शाखी भवन, नुंगमवक्कम, चेन्नई - 600 006.
The Director, Directorate General of Mines Safety, Chennal Region, 3rd Floor, Left Wing, New Additional Building, CGO Complex, Shastri Bhawan, Nungambakkam, Chennai- 600 006.

(मास्करन सरवणन B. Saravanan) निदेशक Director

Doc 3- Baseline Monitoring Photographs

Doc 4- Hydrogeology: Gorund Water Level Data - Monitored during 24-25.05.2024

Hydrogeology: Gorund Water Level Data - Monitored during 24-25.05.2024

Sampling Point	Location	Latitude	Longitude	Ground Water Level-BGL, m
1	Kodimunai	8° 10′ 50.178″ N	77° 14′ 17.963″ E	10.7
2	Panavilai	8° 11′ 1.878″ N	77° 14′ 5.395″ E	10.5
3	Kurumpanai	8° 11′ 13.859″ N	77° 13′ 52.475″ E	11.7
4	Kurumpanai	8° 11′ 51.972″ N	77° 13′ 30.169″ E	13.7
5	Midalam	8° 12′ 19.519″ N	77° 12′ 57.377″ E	18.2
6	Palappallam	8° 12′ 32.245″ N	77° 13′ 0.955″ E	14.6
7	Karungal	8° 13′ 18.278″ N	77° 12′ 6.998″ E	16.4
8	Melmidalam	8° 12′ 47.376″ N	77° 12′ 31.572″ E	14.6
9	Karungal	8° 13′ 18.444″ N	77° 12′ 7.128″ E	10.8
10	Enayam	8° 13′ 24.254″ N	77° 11′ 9.679″ E	15.5
11	kikulam	8° 13′ 59.520″ N	77° 11′ 3.336″ E	12.1
12	Thengapattanam	8° 14′ 19.082″ N	77° 10′ 22.130″ E	19.1
13	Ezhudesam	8° 15′ 21.330″ N	77° 8′ 58.175″ E	10.9
14	Ezhudesam	8° 15′ 40.320″ N	77° 9′ 3.132″ E	16.1
15	Ezhudesam	8° 16′ 1.956″ N	77° 8′ 10.212″ E	13.7
16	Kirathoor	8° 16′ 32.340″ N	77° 8′ 17.952″ E	13.7
17	Vallavilai	8° 16′ 36.840″ N	77° 7′ 26.677″ E	10.4
18	Painkulam	8° 15′ 58.910″ N	77° 10′ 39.310″ E	17.0
19	Vallavilai	8° 16′ 59.408″ N	77° 6′ 58.205″ E	14.6
20	Kollamkode	8° 17′ 32.435″ N	77° 7′ 13.771″ E	12.1
21	Kollamkode	8° 17′ 22.787″ N	77° 6′ 33.073″ E	12.4
22	Methukummal	8° 18′ 7.398″ N	77° 7′ 43.122″ E	10.4
23	Poramcode	8° 17′ 57.408″ N	77° 8′ 26.016″ E	10.1
24	Nadaikavu	8° 17′ 31.081″ N	77° 8′ 50.802″ E	16.1
25	Arudesam	8° 16′ 43.673″ N	77° 9′ 29.653″ E	12.4
26	Kilkulam	8° 14′ 42.853″ N	77° 11′ 30.127″ E	14.2
27	Thozhicode	8° 13′ 38.820″ N	77° 12′ 37.620″ E	17.3
28	Ritapuram	8° 11′ 23.471″ N	77° 15′ 2.275″ E	13.8
29	Karungal	8° 14′ 22.276″ N	77° 14′ 28.709″ E	18.1
30	Kamplar	8° 15′ 10.793″ N	77° 12′ 57.442″ E	10.8
