DRAFT ENVIRONMENTAL IMPACT ASSESSMENT ENVIRONMENT MANAGEMENT PLAN

"VIOLATION" CATEGORY - MAJOR MINERAL - NON-FOREST LAND - NON-CAPTIVE SIRUGUDI LIMESTONE MINE OF M/s. SIVAM MINES

S.F. Nos - 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District

EXTENT - 2.53.0 ha (Patta Land)

Available Mineable Reserves = 2, 14,734 tonnes (ROM)

Five Year Mining Plan Period = 2, 14,734 tonnes (ROM) (2022-23 to 2026-27)

Lease valid upto = 31.03.2047 (As per MMDR Amendment Act 2015)

Review of Mining Plan Period = 2022-23 to 2026-27

Project Proponent

M/s. Sivam Mines.

Represented By - Thiru. S. Ilangovan (Managing Partner) 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District

Submitted for

Environmental Clearance under EIA Notification 2006 Schedule Sl. No. 1 (a): Mining Projects

Complied as per TOR vide Lr No.SEIAA-TN/F.No.6253/2017/TOR-604/2019 Dated 07.02.2019

Extension of ToR obtained vide Letter No. SEIAA-TN/F.No.6253/TOR-604/2018/A/ Dated: 07.12.2022

(ToR Valid upto 06.02.2024) As per 422nd SEAC & 657th SEIAA (Minutes of Meeting) (ToR Valid upto 06.12.2024)

Environmental Consultant

GEO EXPLORATION AND MINING SOLUTIONS

Old No. 260-B, New No. 17,

Advaitha Ashram Road, Alagapuram,

Salem - 636 004, Tamil Nadu, India

Accredited for sector 1 Cat 'A', sector 31 & 38 Cat 'B' Certificate No: NABET/EIA/2225/RA 0276

Phone: 0427-2431989.

Email: infogeoexploration@gmail.com

Web: www.gemssalem.com

Laboratory

EHS 360 LABS PRIVATE LIMITED.

10/2 Ground floor, 50th street, 7th Avenue, Ashok Nagar, Chennai – 600 083.

Baseline Monitoring Period

October 2023 – December 2023

JUNE 2024

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.0	PREAMBLE	1
	1.1	PURPOSE OF THE REPORT	4
	1.2	IDENTIFICATION OF THE PROJECT AND PROJECT PROPONENT:	5
	1.2.1	IDENTIFICATION OF THE PROJECT	5
	1.2.2	IDENTIFICATION OF THE PROJECT PROPONENTS	5
	1.2.3	PROJECT CONSULTANTS:	6
	1.3	GENERAL INFORMATION ON MINING OF MINERALS	6
	1.4	ENVIRONMENTAL CLEARANCE	6
	1.5	BRIEF DESCRIPTION OF THE PROJECT:	8
	1.5.1	PROJECT NATURE, SIZE & LOCATION	8
	1.5.2	SIZE OF THE PROJECT	
	1.5.3	PAST PRODUCTION DETAILS TABLE	
	1.6	NEED OF THE PROJECT AND IMPORTANCE TO THE COUNTRY AND REGION	
	1.7	REGULATORY COMPLIANCE	11
	1.8	SCOPE OF THE STUDY:	
	1.8.1	DATA GENERATION AND COLLECTION	
	1.9	TERMS OF REFERENCE	14
	1.10	ENVIRONMENTAL POLICY	
		POST ENVIRONMENT CLEARANCE MONITORING	
		TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE	
	1.11	GENERIC STRUCTURE OF EIA DOCUMENT	
2.	PRO	OJECT DESCRIPTION	
	2.0	GENERAL:	
	2.1	LOCATION OF THE PROJECT	
	2.2	LEASE HOLD AREA	
	2.3	REGIONAL GEOLOGY:	
	2.3.1	LOCAL GEOLOGY	
	2.4	QUALITY OF RESERVES	
	2.4.1	CALENDAR PROGRAM FOR ORE AND WASTE RATIO	
	2.5	METHOD OF MINING AND PROCESS DESCRIPTION.	
	2.5.1	EXTENT OF MECHANIZATION:	
	2.5.2	DRILLING AND BLASTING:	
	2.5.3	STORAGE OF EXPLOSIVES:	
	2.5.4	HANDLING OF TOP SOIL	
	2.5.5	WASTE MANAGEMENT	
	2.5.5	GREEN BELT DEVELOPMENT	
	2.5.6	RECLAMATION AND REHABILITATION	
	2.6	GENERAL FEATURES.	
	2.6.1	DRAINAGE PATTERN	
	2.6.2 2.6.3	TRAFFIC DENSITY: MINERAL BENEFICIATION AND PROCESSING	
		POWER, WATER SUPPLY AND OTHER INFRASTRUCTURE REQUIREMENT	
	2.6.4 2.6.5	WATER SOURCE & REQUIREMENT	
	2.6.5	POWER SUPPLY	
	2.6.7	FUEL DETAIL	
	2.0.7	EMPLOYMENT POTENTIAL:	
	2.8	PROJECT IMPLEMENTATION SCHEDULE	
	2.8.1	POST MINING LAND USES:	
	2.8.2	PROJECT COST	
	2.0.2	1 103201 0031	4/

3.	DESC	RIPTION OF ENVIRONMENT	48
	3.0	GENERAL	4
	3.1	LAND ENVIRONMENT	5
	3.1.1	METEOROLOGY	5
	3.1.2	METEOROLOGICAL DATA RECORDED AT SITE	5
	3.1.3	LAND USE/ LAND COVER:	5
	3.1.4	DESCRIPTION OF LAND USE	5.
	3.1.5	ENVIRONMENTAL FEATURES IN THE STUDY AREA	5
	3.1.6	TOPOGRAPHY:	5
	3.1.7	DRAINAGE PATTERN OF THE AREA.	5
	3.1.8	SEISMIC SENSITIVITY	
	3.1.9	SOIL CHARACTERISTICS:	
	3.1.10	SOIL STATUS	
	3.2	WATER ENVIRONMENT:	
	3.2.1	SURFACE WATER:	
	3.2.2	GROUND WATER CONDITIONS:	
	3.2.3	WATER ANALYSIS LOCATIONS	
	3.3	AIR ENVIRONMENT:	
	3.3.1	SELECTION OF AIR QUALITY MONITORING STATIONS LOCATIONS	
	3.3.2	SITE SPECIFIC METEOROLOGY	
	3.3.3	CLIMATOLOGY:	
	3.3.4	AMBIENT AIR QUALITY	
	3.3.5	PERIOD OF STUDY	
	3.3.6	INSTRUMENTS USED FOR SAMPLING & ANALYSIS	
	3.3.7	SAMPLING AND ANALYTICAL TECHNIQUES	
	3.3.8	AIR QUALITY MODELLING	
	3.3.9	OBSERVATIONS OF RESULTS	
	3.4	NOISE ENVIRONMENT	
	3.5 2.5.1	OBJECTIVE OF THE STUDY	
	3.5.1 3.5.2	STUDY APPROACH & METHODOLOGY ADOPTED	
	3.5.2 3.5.3	SAMPLING METHODOLOGY	
	3.5.4	FLORA & FAUNA AT THE STUDY AREA	
	3.5.4	FLORA & FAUNA AT THE STUDY AREA	
	3.6	SOCIO-ECONOMIC ENVIRONMENT	
	3.6.1	OBJECTIVES	
	3.6.2	METHODOLOGY ADOPTED FOR THE STUDY	
	3.6.3	DESCRIPTION OF THE STUDY AREA	
	3.6.4	POPULATION OF THE STUDY AREA	
	3.6.5	LITERACY:	
	3.6.6	WORKERS OCCUPATIONAL PATTERN IN THE STUDY AREA:	
	3.6.7	EDUCATIONAL FACILITIES	
	3.6.8	HEALTH AND MEDICAL FACILITIES	
	3.6.9	SUMMARY OF THE BASELINE STATUS:	11
4.		FICIPATED ENVIRONMENT IMPACT AND ITS MITIGATION MEASURES	113
	4.0	GENERAL	
	4.1	LAND ENVIRONMENT:	
	4.2	WATER ENVIRONMENT	
	4.3	AIR ENVIRONMENT	
	4.4	NOISE ENVIRONMENT	
	4.5	BIOLOGICAL ENVIRONMENT	
	4.6	SOCIO ECONOMIC ENVIRONMENT	

4.7	WASTE MANAGEMENT AND MITIGATION MEASURES	119
4.8	MINE CLOSURE AND MITIGATION MEASURES	120
5. Al	NALYSIS OF ALTERNATIVE (TECHNOLOGY & SITE)	121
5.0	INTRODUCTION:	121
5.1	ANALYSIS OF ALTERNATIVE TECHNOLOGY	121
6. ENV	VIRONMENTAL MONITORING PROGRAMME	122
6.1 IN	NTRODUCTION	122
6.2	ENVIRONMENTAL MONITORING CELL	
6.3	OCCUPATIONAL HEALTH AND SAFETY:	126
6.4	BUDGETARY PROVISION FOR EMP	126
7. Al	DDITIONAL STUDIES	128
7.0	PUBLIC CONSULTATION:	128
7.1	RISK ASSESSMENT	128
7.1.1	OBJECTIVES OF RISK ASSESSMENT	128
7.1.2	METHODOLOGY OF RISK ASSESSMENT:	128
7.1.3	DISASTER MANAGEMENT PLAN: STRUCTURE	130
7.1.4	GENERAL RESPONSIBILITIES OF EMPLOYEES DURING AN EMERGENCY	
7.2		
8. PI	ROJECT BENEFITS	132
8.1	GENERAL	132
8.2	PROJECT BENEFITS	132
8.3	BENEFITS TO LOCAL AND REGIONAL ECONOMY	133
8.4	EMPLOYMENT POTENTIAL	133
8.5	TANGIBLE SOCIAL BENEFITS	134
9. EI	NVIRONMENTAL COST BENEFIT ANALYSIS	135
10. EN	NVIRONMENT MANAGEMENT PLAN	136
10.0	GENERAL	136
	AIR POLLUTION MANAGEMENT AND CONTROL	
10.2	NOISE AND VIBRATION MITIGATION:	137
10.3	WATER MANAGEMENT & POLLUTION CONTROL	138
10.4	LAND RECLAMATION AND WASTE MANAGEMENT	139
10.5	BIOLOGICAL ENVIRONMENT	140
10.6	OCCUPATIONAL HEALTH SAFETY	141
	BUDGETARY PROVISION FOR ENVIRONMENTAL MANAGEMENT PLANPLAN	
	CONCLUSION –	
11. SU	UMMARY AND CONCLUSIONS	147
11.1	INTRODUCTION	147
12.0 DI	ISCLOSURE OF CONSULTANTS ENGAGED	150
13. AS	SSESSMENT OF ECOLOGICAL DAMAGE, REMEDIATION PLAN AND NATUR	AL
	COMMUNITY RESOURCE AUGMENTATION PLAN	
13.0	BACKGROUND OF THE PROJECT	
13.1	METHOD OF MINING	
13.2	BASED ON SITE SPECIFIC FEATURES AND NATURE OF MINING INVOLVED, THE FOLLOWING ARE	
ADDF	RESSED IN THIS CHAPTER	158
12 2	SCALE OF DAMAGE / ECOLOGICAL DAMAGE ASSESSMENT -	150

LIST OF TABLES

TABLE 1.1: IDENTIFICATION OF THE PROJECT	5
TABLE 1.2: SALIENT FEATURES OF THE PROJECT AND SITE	8
TABLE 1.3: RESOURCES AND RESERVES	8
TABLE 1.4: PRODUCTION DETAILS	9
TABLE 1.5: PRODUCTION OF LIMESTONE IN INDIA, TAMIL NADU & DINDIGUL	10
TABLE 1.6: STATUTORY APPROVALS	11
TABLE 1.7: REGULATORY SCOPING CARRIED OUT FOR EIA AS PER TOR	12
TABLE 2.1: LOCATION DETAILS	31
TABLE 2.2: EXTERNAL INFRASTRUCTURES	31
TABLE 2.3: NEAREST SURFACE FEATURES	31
TABLE 2.4: NEAREST WATER BODIES WITHIN 10KM RADIUS	31
TABLE 2.5: EXPLORATION AND CHEMICAL ANALYSIS DETAILS	39
TABLE 2.6 MINERAL RESERVES AS PER UNFC CLASSIFICATION	39
TABLE 2.7: SUMMARY OF YEAR WISE	40
TABLE 2.8: LIST OF MACHINERIES	42
TABLE 2.9: DRILLING AND BLASTING	42
TABLE 2.10: DISPOSAL OF WASTE	43
TABLE 2.11: LAND USE PATTERN OF THE LEASE AREA	44
TABLE 2.12: TRAFFIC DENSITY	45
TABLE 2.13: WATER REQUIREMENT	46
TABLE 2.14: EMPLOYMENT POTENTIAL	47
TABLE 2.15 PROJECT IMPLEMENTATION SCHEDULE	47
TABLE 2.16 PROJECT COST	47
TABLE 3.1: ENVIRONMENTAL MONITORING ATTRIBUTES AND FREQUENCY	49
TABLE 3.2: LAND USE LAND COVER TABLE 10KM RADIUS	51

TABLE 3.3: ENVIRONMENTAL SETTINGS OF THE STUDY AREA	54
TABLE 3.4: DETAILS OF SOIL MONITORING STATIONS	57
TABLE 3.5: SOIL QUALITY MONITORING DATA	60
TABLE 3.6: WATER SAMPLING LOCATIONS	64
TABLE 3.7: WATER QUALITY DATA	68
TABLE 3.8: AMBIENT AIR QUALITY MONITORING STATIONS	69
TABLE 3.9: LAST FIVE YEARS RAINFALL DATA	70
TABLE 3.10 AMBIENT AIR MONITORING INSTRUMENTS:-	73
TABLE 3.11 TESTING METHOD FOLLOWED FOR AMBIENT AIR QUALITY:	73
TABLE 3.12: AMBIENT AIR QUALITY – AAQ1	75
TABLE 3.13: AMBIENT AIR QUALITY – AAQ2	76
TABLE 3.14: AMBIENT AIR QUALITY – A3	77
TABLE 3.15: AMBIENT AIR QUALITY – AAQ4	78
TABLE 3.16: AMBIENT AIR QUALITY – AAQ5	79
TABLE 3.17: AMBIENT AIR QUALITY – AAQ6	80
TABLE 3.18: AMBIENT AIR QUALITY – AAQ7	81
TABLE 3.19: AMBIENT AIR QUALITY – AAQ8	82
TABLE 3.20: AMBIENT AIR QUALITY – AAQ9	83
TABLE 3.21: AMBIENT AIR QUALITY – AAQ10	84
TABLE 3.22: AMBIENT AIR QUALITY – AAQ11	85
TABLE 3.23: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ1 & AAQ2	86
TABLE 3.24: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ3 & AAQ4	86
TABLE 3.25: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ5 & AAQ6	87
TABLE 3.26: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ7 & AAQ8	87
TABLE 3.27: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ9 & AAQ10	88
TABLE 3.28: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ 11	88

TABLE 3.29: EMISSION SOURCE	90
TABLE 3.30: EMISSION RATES FOR HEAVY DUTY VEHICLES (AVERAGE)	92
TABLE 3.31: EXPECTED GROUND LEVEL CONCENTRATIONS	93
TABLE 3.32: NOISE LEVEL MONITORING DONE IN THE LOCATION	97
TABLE 3.33: AMBIENT NOISE LEVELS	101
TABLE 3.34: FLORA IN THE CORE ZONE (ML Area)	103
TABLE 3.35: FLORA IN THE BUFFER ZONE	103
TABLE 3.36: FAUNA IN THE CORE ZONE (ML Area)	104
TABLE 3.37: FAUNA IN THE BUFFER ZONE	104
TABLE 3.38: DEMOGRAPHY PROFILE OF THE STUDY AREA	108
TABLE 3.39: OCCUPATIONAL PATTERN OF THE AREA	110
TABLE 3.40: EDUCATION FACILITIES IN THE STUDY AREA	110
TABLE 3.41: MEDICAL FACILITIES IN THE STUDY AREA	111
TABLE 4.1: WATER REQUIREMENT	115
TABLE 4.2 IDENTIFIED CSR ACTIVITIES	119
TABLE 6.1: PROPOSED ENVIRONMENTAL MONITORING PROGRAM	122
TABLE 6.2: ENVIRONMENTAL MONITORING PROGRAM PROPOSED	124
TABLE 6.3 ENVIRONMENT MONITORING BUDGET	127
TABLE 7.1: ANALYSIS OF CAUSES AND CONTROL MEASURES	130
TABLE 10.1: AIR POLLUTION MANAGEMENT AND CONTROL	136
TABLE 10.2: NOISE AND VIBRATION MITIGATION	137
TABLE 10.3: RECOMMENDED SPECIES TO PLANT IN THE GREENBELT	140
TABLE 10.4: GREENBELT DEVELOPMENT PLAN	140
TABLE 10.5: EMP BUDGET	143
TABLE 13.1: DAMAGE DUE TO CHANGE IN LAND USE / LAND COVER	159
TABLE 13.2: ENVIRONMENTAL SAFEGUARDS SUPPOSED TO BE IMPLEMENTED	161

TABLE	13.3:	DAMAGE	DUE	TO NON-	IMPLEMEN	NTATION	OF	ENVIR	ONMENTAL
MA	NAGEM	IENT MEASU	JRES						163
TABLE 1	3.4: TO	TAL DAMA	GE COST						168
TABLE 1	13.5: RE	EMEDIATION	N PLAN '	WITH ACTI	ON PLAN	SPECIFIC	TO TI	HE REG	ION ALONG
WIT	H BUD	GET							168
TABLE 1	3.6: YE	AR WISE SU	JMMARY	OF REMEI	DIATION P	LAN WIT	H COST	Γ	169
									THE REGION169
									FIC TO THE
NAT	TURAL	RESOURC	E AUG	MENTATIO	N PLAN	AND C	COMMU	JNITY	TION PLAN, RESOURCE

www.gemssalem.com vii

LIST OF FIGURES

FIGURE 2.1: KEY MAP	26
FIGURE 2.2: DIGITIZED LOCATION MAP ON THE GEO REFERENCED TOPOSHEET RADIUS)	`
FIGURE 2.3: DIGITIZED LOCATION MAP ON THE GEO REFERENCED TOPOSHEET RADIUS)	,
FIGURE 2.4: LOCATION MAP COVERING 2KM RADIUS	29
FIGURE 2.5: LOCATION MAP COVERING 1KM RADIUS	30
FIGURE 2.6: TOPOGRAPHICAL VIEW OF LEASE AREA	32
FIGURE 2.7: MINE LEASE AREA COVERING WITH 300M AND 500M RADIUS	33
FIGURE 2.8: SURFACE PLAN OF MINE LEASE AREA	34
FIGURE 2.9: GEOLOGY MAP OF THE AREA COVERING 10 km RADIUS	36
FIGURE 2.10: GEOLOGICAL PLAN OF MINE LEASE AREA	37
FIGURE 2.10A: GEOLOGICAL SECTION OF MINE LEASE AREA	38
FIGURE 2.11: YEAR WISE PLAN	40
FIGURE 3.1: LAND USE LAND COVER MAP OF THE STUDY AREA (10KM RADIUS)	52
FIGURE 3.2: PIE DIAGRAM OF LAND USE LAND COVER	53
FIGURE 3.3: DRAINAGE MAP OF THE STUDY AREA COVERING 10KM RADIUS	56
FIGURE 3.4: SOIL SAMPLES COLLECTION LOCATION MAP	58
FIGURE 3.5: SOIL MAP OF THE STUDY AREA	59
FIGURE 3.6: DISTRICT GROUND WATER LEVEL CHART	62
FIGURE 3.7: GROUND WATER PROSPECTING MAP OF THE STUDY AREA	63
FIGURE 3.8: WATER QUALITY MONITORING LOCATIONS	66
FIGURE 3.9: WATER SAMPLE COLLECTION IN MINE PIT AND PUBLIC WATER TANK	67
FIGURE 3.10: WIND ROSE DIAGRAM	71
FIGURE 3.11: AMBIENT AIR QUALITY MONITORING PHOTOS	71
FIGURE 3.12: AIR QUALITY MONITORING LOCATION MAP	72

www.gemssalem.com viii

FIGURE 3.13 TERRAIN MAP OF THE STUDY AREA	90
FIGURE 3.14: PM ₁₀ -24 HOUR AVERAGE	92
FIGURE 3.15: PM _{2.5} -24 HOUR AVERAGE	92
FIGURE 3.16: NO _X – 24 HOUR AVERAGE	93
FIGURE 3.17: NOISE LEVEL MONITORING PHOTOS	99
FIGURE 3.18: NOISE MONITORING LOCATION MAP	100
FIGURE 3.19: OCCUPATIONAL PATTERN OF THE STUDY AREA	110
FIGURE 3.21 BAR DIAGRAM SHOWING THE MEDICAL FACILITIES	111
FIGURE 6.1 ENVIRONMENTAL MONITORING CELL STRUCTURE	123
FIGURE 7.1 LAYOUT OF RISK ASSESSMENT	129
FIGURE 10.1: WATER SPRINKLING ON HAUL ROADS	137
FIGURE: 10.2 DUMP DESIGN	139
FIGURE 10.3: PERSONAL PROTECTIVE EQUIPMENT TO THE MINE WORKERS	141

1. INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process, used to identify the environmental, social and economic impacts of a project prior to decision-making. It is a decision making tool, which guides the decision makers in taking appropriate decisions for proposed projects. It aims predicting environmental impacts at an early stage of project planning and design, find ways and means to reduce adverse impacts, shape projects to suit the local environment and present the predictions and options to decision makers. By using EIA, both environmental and economic benefits can be achieved. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are taken into account during the project designing.

The Ministry of Environment & Forests, Government of India, made environmental clearance (EC) for certain development projects mandatory through its notification of 27th January 1994 under the Environment Protection Act, 1986. Keeping in view of the experience gained in environmental clearance process over a period of one decade, the MoEF & CC came out with Environmental Impact Notification, S.O. 1533 (E), Dated: 14th September 2006. The notification has been amended from time to time. It has been made mandatory to obtain environmental clearance for different kinds of development projects (Schedule-1 of notification). But, there was no provision of Environmental Clearance for Major Mineral < 5 ha category.

Initially, the mining lease for limestone was granted to Thiru. S. Asaialangaram, Dindigul District vide G.O. 3(D).No. 91, Dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997

Later, the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Industries (MMA.1) Department., Dated 03.11.2014

As on the date of MoEF & CC Notification S.O. 804 (E) Dated: 14.03.2017, the project had no Environmental Clearance and it was clearly communicated by order to apply for environmental clearance under this notification. Therefore, the project proponent applied for environmental clearance vide online proposal no. IA/TN/MIN/64272/2017 Dated: 29.04.2017.

MoEF & CC vide notification S.O. 1030 (E) Dated: 08.03.2018, notified that violation projects of Category B – the appraisal and approval thereof shall vest with the State or Union territory level Expert Appraisal Committees and State or Union territory Environment Impact Assessment Authorities in different States and Union territories, constituted under sub-section (3) of section 3 of the Environment (Protection) Act, 1986.

Therefore, the online proposal was transferred to SEIAA – TN vide online proposal number SIA/TN/MIN/23074/2018 Dated 03.04.2018.

ToR was issued vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2019 Dated: 07.02.2019.

Proponent applied for the extension for the existing ToR vide online proposal No SIA/TN/MIN/268975/2022 Dated 21.04.2022. The proposals were considered in 331st SEAC – TN Meeting held on 24.11.2022 and issued Terms of Reference (ToR) vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2018/A/ Dated: 07.12.2022, The validity of the Terms of Reference is upto **06.02.2024**.

Now, as per MMDR Amendment Act 2015, the validity of lease period is extended upto 31.03.2047 and Review of Mining Plan & Progressive Mine Closure Plan was prepared by RQP and submitted to Regional Controller of Mines, Indian Bureau of Mines, Chennai and got approved on 11.10.2023.

Again, the proposal was placed in 369th SEAC meeting held on 24.04.2023 and SEAC decided to constitute a sub-committee to make an on-site inspection to assess the present Status of the project site and Environmental settings as the proposal falls under violation category and submit the report along with the recommendations to the committee.

Further the committee called for the following additional details:

- A letter from the PP justify that the project activity is covered under category B2 of Item 1(a) "Mining of Minerals Project" of the schedule to the EIA notification 2006 as amended
- Valid Mine plan approved by the competent authority for the proposed period of quarrying.
- The PP shall furnish the copy of receipt of the penalty levied by Department of Geology and Mining for the exploitation of mineral without Prior EC

After the receipt of Additional details from the PP and the evaluation report by the subcommittee, SEAC will deliberate on the issue of environmental clearance under violation category. SEAC also decided to request SEIAA-TN to initiate action under sec-19 of the Environment (Protection) act, to be taken for violation cases, in accordance with law and the proposal was placed in 616th SEIAA meeting held on 10.05.2023.

The view of the above, the authority accepts the decision of SEAC and decided to request the member secretory SEIAA to communicate the SEAC minutes to the PP and to write to the

state govt\TNPCB to take credible action under the provision of Sec – 19 of the Environment (Protection) act, 1986 against the Project Proponent as per the EIA notification dated 14.03.2017 and 08.03.2018

The Proposal was placed in 422nd SEAC meeting held on 09.11.2023 and as per the 422nd SEAC & 657th SEIAA Minutes of Meeting During the meeting, SEAC noted that the PP had not carried out the public hearing for the above proposal.

Therefore, after the long deliberation and discussions in the 422nd SEAC meeting, The SEAC has observed that the public hearing is mandatory for all mining projects of Major Minerals category irrespective of the area for ensuring the scientific and systematic mining and the conservation minerals. The SEAC decided to direct the PP to conduct the public hearing as per the procedure described in EIA notification 2006 and submit the minutes of the public hearing with action plan for considering the application\proposal towards the grant of EC.

Subsequently, the proponent requested to extend the validity of ToR to conduct Public Hearing and to update the EIA Report accordingly, since the validity of ToR issued is about to expire on 27.10.2023. The Committee after detailed discussion, accepted the request of the PP and extended the validity of ToR further for a Period of 1 year, i.e., up to 27.10.2024. After the receipt of the minutes of the Public Hearing along with updated Final EIA Report submitted by the PP along with a valid Mining Lease, and approved Mining Plan/Scheme of Mining including the PMCP/FMCP for the proposed mining operations, the SEAC may deliberate the future course of action.

This proposal was placed in 677th SEIAA meeting and after detailed discussions, the Authority decided to grant extension of ToR for further period of 1 year i.e. up to **06.12.2024** .as recommended by SEAC. All the other conditions stipulated in the ToR Letter No. SEIAA-TN/F.No.6254/ToR-335/2018/ dated 28.10.2022 issued under violation category.

As per Gazette Notification S.O. 3977 (E) of 14th August 2018, Mining Projects are classified under two categories i.e. A (> 100 Ha) and B (< 100 Ha), Category-A projects (including expansion and modernization of existing projects) require Environmental Clearance from Central Government (Ministry of Environment, Forests and Climate Change, Government of India, New Delhi) while Category–B projects are considered by State Level Environmental Impact Assessment Authority (SEIAA), constituted by MoEF & CC, New Delhi. If in case, any

Category "B" project attracts the "General Condition" given in the EIA Notification, it shall be treated as Category "A" and will be considered at MoEF & CC, New Delhi.

1.1 PURPOSE OF THE REPORT

The sole purpose of the Environmental Impact Assessment report is to assess the beneficial and adverse impacts of the project on the existing environmental systems and to propose appropriate pollution control measures to ensure a secure, hale and healthy environment.

Thus, the report is a presentation of environmental consequences of the project activity so that all the factors are considered tactfully in eventually claiming a decision. The main objectives are described as follows:

- Evaluation of current level of pollution (air, soil, water & noise) in and around the mine under the existing conditions
- Assessment of existing Environmental Status of Water, Air, Flora, Fauna, Demography and Land use pattern.
- Suggested measures, recommendations for pollution control, monitoring equipment's and organizational set up for maintenance of pollution control.

The ToR was issued by SEIAA – TN for preparation of Environmental Impact Assessment report (EIA) and Environmental Management Plan EMP along with Ecological Damage Assessment, Remediation Plan, Natural Resource Augmentation Plan and Community Resource Augmentation Plan.

The proponent has engaged M/s. Geo Exploration & Mining Solutions an Accredited Organization under Quality Council of India – National Accreditation Board for Education & Training, New Delhi for preparation of Environmental Impact Assessment and Environmental Management Plan Report for obtaining Environmental Clearance from SEIAA Tamil Nadu.

1.2 IDENTIFICATION OF THE PROJECT AND PROJECT PROPONENT:

1.2.1 IDENTIFICATION OF THE PROJECT

Initially, the mining lease for limestone was granted to Thiru. S. Asaialangaram, Dindigul District vide G.O. 3(D).No. 91, Dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997

Later, the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Industries (MMA.1) Department., Dated 03.11.2014

TABLE 1.1: IDENTIFICATION OF THE PROJECT

Description	Details	
S.F.No's	693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5	
Extent& Classification	2.53.0 ha Patta	
Village, Taluk, District	Sirugudi Village, Natham Taluk, Dindigul District	
Latitude Between	N 10° 14'28.23 to N 10° 14'32.83	
Longitude Between	E 78° 17'36.09 to E 78° 17'48.27	
MSL	213	
Average Proposed Production	25,768 tonnes per annum of Limestone @ 60% Recovery	
Proposed Depth of Mining	25 m bgl (1 m Topsoil + 24 m Limestone) – Block 1	
	9 m bgl (1 m Topsoil + 8 m Limestone) – Block 2	
Dip	85° SE	
Strike	N 60° E – S 60° W	
Existing Pit Dimension	72 m (L) * 40 m (W) * 16 m (D) – Block 1	
	105 m (L) * 43 m (W) * 8 m (D) – Block 2	

Source: Approved Mining Plan

1.2.2 IDENTIFICATION OF THE PROJECT PROPONENTS

Name and address of the proponents

Name of the lessee : M/s. Sivam Mines

Address : 6/209, Main Road, Sirugudi Post,

Natham (Tk),

Dindigul District,

District : Dindigul
State : Tamil Nadu
Pin code : 624 404

Mobile No : +91 94430 67632

Email id. : ilangovanmadhavi4.9@gmail.com

M/s. Sivam Mines is partnership firm. Thiru. S. Asaialangaram, Thiru. S. Ilangovan, Thiru. I. Vijay Alangar and Selvi. I. Sempon Manickam are partners and Thiru. S. Ilangovan is the Managing Partner of the firm (Partnership Deed Enclosed as Annexure Volume 1).

1.2.3 PROJECT CONSULTANTS:

Name and address of the Consultant:

M/s. Geo Exploration and Mining Solutions

No 17, Advaitha Ashram Road, Alagapuram, Salem – 636 004

Tamil Nadu, India

Email: infogeoexploration@gmail.com

Website: www.gemssalem.com Phone: 0427 – 2431989

NABET Certificate No: NABET/EIA/1922/SA 0139 Valid upto 29.04.2023

1.3 GENERAL INFORMATION ON MINING OF MINERALS

Geologically, Tamil Nadu is a treasure trove of various mineral-bearing rocks ranging in age from Pre-Cambrian, Cretaceous, Tertiary and Quaternary Formations. Tamil Nadu is endowed with rich minerals like, lignite, limestone, bauxite, magnesite, fire-clay, quartz, feldspar, gypsum and dimension stones with which the state possesses a prominent place in mineral production in India. Mineral production has been a major factor in providing employment especially in backward areas, earning valuable royalty and foreign exchange. The existence of high-class infrastructure facilities and business environment, further add to the prospect of mineral development and mineral based industries in the state.

This project is about mining crystalline Limestone in Sirugudi village, Natham taluk, Dindigul District.

1.4 ENVIRONMENTAL CLEARANCE

As per the EIA Notification S.O. No. 1533 (E) Dated: 14th September 2006 Mining Projects are classified as Category "A" and Category "B".

The Environmental Clearance process for the project will comprise of four stages. These stages in sequential order are given below:-

- 1. Screening
- 2. Scoping,
- 3. Public consultation &
- 4. Appraisal

Screening –

As per Gazette Notification S.O. 3977 (E) Dated: 14th August 2018, the project is classified as Category "B", The extent of mining area is 2.53.0 ha and the projects doesn't attract any General Condition & Specific Conditions. Hence, the proposal for Grant of Environmental Clearance is submitted to SEIAA – Tamil Nadu.

Scoping -

Based on the documents furnished, SEIAA – TN considered the project under Category "B" and the authority prescribed the Terms of Reference (ToR) vide ToR Letter No. Lr.No.SEIAA-TN/F.No.6253/TOR-604/2018/A Dated: 07.12.2022, The validity of the Terms of Reference is upto 06.02.2024.

Public Consultation –

Application to The Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA / EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

Appraisal -

Appraisal means the detailed scrutiny by the state expert appraisal committee (SEAC) of the application and other documents like the final EIA & EMP report, outcome of the public consultations including public hearing proceedings, submitted by the proponent to the regulatory authority concerned for grant of environmental clearance. This appraisal shall be made by State Level Expert Appraisal Committee concerned in a transparent manner in a proceeding to which the proponent shall be invited for furnishing necessary clarifications in person or through an authorized representative. On conclusion of this proceeding, the State Level Expert Appraisal Committee concerned shall make categorical recommendations to the regulatory authority concerned either for grant of environmental clearance on stipulated terms and conditions, or rejection of the application for environmental clearance, together with reasons for the same.

This report has been prepared as per the Terms of Reference issued by SEIAA – TN and using the following references:

• EIA Notification, 14th September, 2006

- Guidance Manual of Environmental Impact Assessment for Mining of Minerals,
 Ministry of Environment and Forests, 2010
- ToR issued by SEIAA TN
- Approved Mining Plan
- In addition, other relevant standards for individual activities such as sampling and testing of environmental attributes have been followed.

1.5 BRIEF DESCRIPTION OF THE PROJECT:

The mining lease is existing limestone mines for non-captive use, non-forest land, open cast category "A" other than fully mechanized. The limestone is proposed to win by deploying hydraulic excavators coupled with tippers. The Produced Limestone is proposed to supply to the nearby cement industries and limestone based industries.

1.5.1 PROJECT NATURE, SIZE & LOCATION

TABLE 1.2: SALIENT FEATURES OF THE PROJECT AND SITE

Description	Details		
S.F. No's	693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5		
Extent& Classification	2.53.0 ha Patta		
Village, Taluk, District	Sirugudi village, Natham Taluk, Dindigul District		
IBM Registration No	IBM/5284/2011, Dated 25.11.2011		
Mine code	38TMN33006		
Latitude Between	N 10° 14'28.23 to N 10° 14'32.83		
Longitude Between	E 78° 17'36.09 to E 78° 17'48.27		
Nearest town	Dindigul NW-37Km		
Nearest NH	NH 45B Trichy – Madurai–9Km East.		
Nearest SH	SH -35 (Dindigul - Natham - Singampunari - Tiruppattur - Karaikudi		
	Rastha)		
	Districts connected = Dindigul, Madurai, Sivaganga.		
	Distance and Direction from the project area = 3.50 Km South side		
Nearest railway station	Dindigul Railway Station 35 Km North West		
Nearest airport	Madurai international Airport 50 Km South Western side of the area		
Seismic sensitivity	The Seismic Sensitivity of the project area is categorized as Zone II		
	https://moes.gov.in/writereaddata/files/LS_EN_20032020_385.pdf		

Source: Approved Mining Plan

1.5.2 SIZE OF THE PROJECT

TABLE 1.3: RESOURCES AND RESERVES

Description	Quantity in tonnes
Geological Resources Reassessed and Approved by IBM	8,04,430

Mineral reserves (111) ROM Reassessed and Approved		2,14,734	<u> </u>
Limestone @ 60% Reassessed and Approved by IBM		1,28,840	
Total Waste (Mineral rejects + side burden)		91,203	
Topsoil		18,720	
Proposed Production for 5 Year Mining Plan Period	ROM	Side Burden	Topsoil
	2,14,734	11,310	18,720
Average Production of Limestone per annum		25,768	
Limestone Production per day		86	•

Source: Approved Mining Plan

1.5.3 PAST PRODUCTION DETAILS TABLE

The mining operation was commenced in the year of 1997 and the requirement of Environmental Clearance for Major Mineral Mining below 5 ha was not required until based on clarification letter by MoEF & CC Z-11013/24/2017-IA.II (M) Dated: 03.04.2017 regarding Requirement of Environmental Clearance for Major Minerals below 5 hectares, it was communicated that mining leases which continue to operate without obtaining EC after 15.01.2016 shall be considered as violation cases and the same shall be dealt in accordance with the violation policy under Environmental Impact Assessment Notification, 2006 as amended.

The last permit was issued and the quarrying operation stoppage details as well penalty paid are certified by Assistant Director, Department of Geology and Mining, Dindigul District vide letter Rc.No. 618/2019 (Mines) Dated: 06.08.2019.

TABLE 1.4: PRODUCTION DETAILS

Sl.No.	Period	Quantity Produced	Mineral Royalty
1	15.01.2016 - 10.01.2017*	41600 tonnes	Rs 21, 29,200/-

^{*} Mining Operations were stopped from 10.01.2017

1.6 NEED OF THE PROJECT AND IMPORTANCE TO THE COUNTRY AND REGION

Limestone is one of the important mineral, which finds extensive use in the modern civilization and plays an important role in the development program of the country.

The demand for the limestone is increasing because of its multi furious uses in Industrial projects, irrigation and hydro-power schemes, construction works, etc., most important uses of limestone are in Metallurgical and chemical industries and the manufacture of cement.

The demand for limestone has been rapidly going up and it has become imperative that more and more limestone suitable for various industrial uses.

It is notable that the Tamil Nadu State is richly endowed with various types of limestone especially south Tamil Nadu, the need for state can be met with from its own resources, it may be in a position to fulfill the demands of other states as well.

In India the production of limestone in 2016-17 at 313.2 Million Tonnes increased by about 2% as compared to that of the previous year. Rajasthan was the leading producing state accounting for (21%) of the total production of limestone, followed by Madhya Pradesh & Andhra Pradesh (11% each), Chhattisgarh & Karnataka (10% each), Gujarat, Tamil Nadu and Telangana (8% each).

TABLE 1.5: PRODUCTION OF LIMESTONE IN INDIA, TAMIL NADU & DINDIGUL

Duaduction of Limestone	(QTY 000 in Tonnes)	
Production of Limestone	2015-16	2016-17
India	307001	313196
Tamil Nadu	23008	23840
Dindigul	1926	2148

Source: Indian mineral yearbook 2017, 56th edition (Government of India Ministry of Mines, Indian Bureau of Mines)

In India, limestone mines are worked by opencast method. Captive mines and Non captive mines are mechanized and supply feed to cement and iron & steel units. The face length, width and height of the benches correspond to the mining machinery deployed and production schedule. Heavy earthmoving machinery like 3.3 to 4 cu m capacity hydraulic excavators in combination with 10-35 Tonnes dumpers is normally used. Other mines are mainly worked by semi-mechanized and manual opencast mining methods. As per MCDR reports drilling are done by Jack hammer & Wagon drill and blasting is done by Slurry explosives, Emulsion explosives etc.

Limestone in Tamil Nadu is consumed by various industries like Cement, Steel, Paper, Foundry, Poultry feed, Fertilizer and Chemicals.

The principal use of limestone is in the Cement Industry. Other important uses are as raw material for the manufacture of quicklime (Calcium Oxide), Slaked lime (Calcium hydroxide) and mortar. Pulverized limestone is used as a soil conditioner to neutralize acidic soils (agricultural lime).

IMPORTANCE FOR THE REGION (STUDY AREA)

- The entire mined out mineral is been utilized by the Cement and lime based industries and Manufacturing unit in open market. The grade is been approved and fit for industries standards.
- The standard of the local villages enhance and employment opportunity has been generated to local community. The project provides direct employment opportunities to about 18 employees and indirectly shall create secondary employment opportunity for local people in mineral transport, service sectors, garages, shops/canteen, etc.,
- There is a great demand for Limestone mineral, to fulfill the demand of market the mined out Limestone will be supplied in the open market.
- Government will get seigniorage fees, Royalty, DMF (District Mineral Fund) GST etc.,

1.7 REGULATORY COMPLIANCE

TABLE 1.6: STATUTORY APPROVALS

	CTATUTODY ADDOVALC
	STATUTORY APPROVALS
	G.O. 3(D). No.91, Dated: 13.06.1997 (Twenty Years)
Lease granted	(27.11.1997 to 26.11.2017)
	(Transfer of lease vide G.O.(D). No.171 Inds (MMA.1) Dept., Dated: 03.11.2014)
Deemed Extension	As per MMDR Amendment Act 2015, the validity of the lease period shall be deemed to have
Deemed Extension	been extended pto26.11.2047.
	1997-98 to 2001-02
Mining plan period	Approved by IBM letter No
	TN/D.A/MP/LST-963-MDS dated 07.08.1997
1st Scheme of	2002-03 to 2006-07 approved by IBM vide letter
mining	No.TN/DN/LST/MS-283-MDS, Dated: 14.12.2005
2 nd Scheme of	2007-08 to 2011-12
	Approved by IBM letter No.
mining	TN/DGL/LST/MS-757-MDS, Dated: 20.02.2013.
2rd G 1	2014-15 to 2017-18 upto 26.11.2017
3 rd Scheme of	Approved by IBM
Mining	letter No. TN/DGL/LST/MS-1103-MDS, Dated:04.08.2014.
D: £M::	[2017-18 (from 27.11.2017) to 2021-22]
Review of Mining	Approved by IBM vide letter No
Plan	TN/DGL/LST/ROMP-1464-MDS, Dated: 19.12.2017.

1.8 SCOPE OF THE STUDY:

This EIA studies evaluates the predicted impact of the mining activities on the environment. Based on the identification and quantification of the impacts various remedial measures considered like air pollution control system, recycling of mine pit water, greenbelt development plans which are useful for controlling environmental degradation due to the proposed mining project.

The baseline monitoring study was conducted during the post monsoon season (October – December 2023) for various environmental components to assess the anticipated impacts of the project on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project.

For these aspects various monitoring studies have been carried out and this EIA EMP report has been prepared as per the generic structure (Appendix – III) specified in the EIA Notification 2006.

1.8.1 DATA GENERATION AND COLLECTION

The base line data have been generated by M/s EHS 360 LABS PRIVATE LIMITED Certified & MoEF Recognized Laboratory in accordance with the requirement of statutory agencies to carry out all the regulatory scoping as per the Terms of Reference issued to the project proponents. The monitoring and testing have been carried out as per the guidelines of MoEF and the IS standards. Monitoring has been conducted for the following parameters:

TABLE 1.7: REGULATORY SCOPING CARRIED OUT FOR EIA AS PER TOR

Sl.No	Description	No of Locations	Total No of Samples
1	Air Ambient air monitoring (24 hourly samples), continuously for 2 days in a week for 4 weeks in a month. Parameters: PM10, SO2, NOx. etc., (As per IS 5182 (Part 1-23), National Ambient Air Quality Standards and CPCB)	11 Locations	264 Samples
2	Meteorological parameters at hourly duration for 3 months Parameters: a. Wind speed, direction b. Relative humidity c. Temperature d. Cloudiness e. Rainfall	1 Location	Primary Data – at project site Secondary Data from IMD Station.
3	WATER Water/Effluents samples to be collected from each of the various locations (surface and ground water)	11 Locations	11 Samples

	in core and buffer zone (10 km radius). Analyzed as per IS 10500, IS 3025 And IS 2488 (Part 1-5)		
	Parameters:		
	Water/Effluents: tested for physical, chemical and		
	biological parameters as well		
	Grab sampling once in a Season for Ground Water.		
4	Soil Quality Monitoring.		
	Once during study period for Physio-Chemical	9 Locations	9 Sample
	Characteristics.		1
	As per IS 2720.		
5	Noise Quality monitoring		
	IS 9989 and As per CPCB Guidelines		
	Hourly observation for 24 hours per location once	2	1 Locations
	in the Season		
	At all air quality monitoring station for		
	L _{eq} , L _{day} and L _{night} values.		

The following data's were collected and discussed in this report-

- Identification of Eco-Sensitive Places, Wild Life Sanctuaries, Biosphere Reserves within 10 KM Radius through the base map.
- Religious Places / Historical Monuments and Tourist Places within 10 Km Radius.
- Land use pattern within core zone and buffer zone (10 Km Radius around the core zone) based on Bhuyan.
- Population Density, Welfare Amenities and Demography based on last available Census data for entire study area.
- Collecting the Meteorological Data, for past data's from IMD Station and relevant websites.
- Geo-Hydrological aspects based on available data from various secondary sources and correlated by the consultant at the field site.
- Identification of water bodies, hills, roads etc., within 10 Km Radius.
- Details of Fauna and Flora within a distance of 10 Km from the project site and information about Forests, if any.
- Socio Economic studies within 10Km buffer zone by secondary sources like District Census handbook correlating the same by primary survey.

1.9 TERMS OF REFERENCE

The Terms of Reference were issued by State Expert Appraisal Committee (SEAC), Tamil Nadu and their incorporation in EIA report.

I. A	Iditional Conditions	
	The limestone quarry involves raw material extraction,	The mining operation will be carried out day time only no
	transportation and comminution. Therefore, large quantity	Electricity will be used for the mining operation.
1	of diesel and electricity are supposed to be consumed in the	Diesel consumption for this project would be around 230 –
	production. The diesel fuel and electricity to be consumed	250 Ltrs per day.
	What are the green mining technologies to be adopted for	Three tier plantation will be carried out around the
2	What are the green mining technologies to be adopted for reducing GHC/Coz emissions and lowering the carbon	boundary barrier and BSVI vehicles only allowed to work
2	footprint in the limestone mining.	in the project site.
		Method of mining and strategies for safe mining operation
3	Strategies adopted for safety and healthy mining operations.	is discussed in the Chapter No 2 Page No. 40
	What are the transparency and accountability system in	Mining operation will be carried out under the supervision
4	place during the operation and post-operation period of the	of Mines Manager.
	project.	CCTV cameras will be installed four corners of the lease area.
	What are the In-House environmental performance and	Environmental Monitoring cell headed by the Mines
5	evolution tools to understand negative impacts of mining.	manager will be formed and the Environmental policy is
		given in the Chapter No.6.
6	Detailed study to be made on material flow analysis and	As per the RoMP the life of the mine is 5 years.
	Life Cycle Assessment (LCA) in the process of production Through a chart Illustration, clarify the cradle to grave	
	approach for extraction of limestone and anticipated	It is an existing quarry; Exploration studies are already
7	emissions, environmental threats in every stage and	carried out the anticipated impacts and mitigation measures
	mitigation strategy at every stage.	are given in the Chapter No. IV.
8	Project Proponent to study impacts on human health viz	Occupational study and health impacts of the project is
0	respiratory impacts, toxicity impacts and radiation impacts.	described in the Chapter No – VI. Page No 124.
	Study to be made on aquatic, terrestrial toxicity, aquatic	Impact on the biodiversity is described in the Chapter No
9	eutrophication including detailed terrestrial toxicity and	IV.
	their impacts of wildlife and biodiversity	
10	What is the total water withdrawal consumption, likely	No withdrawal of water in this project leads to temperature
	temperature rises and climate change impacts.	rises and climate changes. The limestone is composed of CaO and MgO.
	What are the chemical exposures in the limestone mining	CaO is 40 % to 50% and MgO is 2 to 4%.
11	and risks anticipated to environmental and human health.	No toxic chemicals in the Limestone hence the risk to the
	and the distribution to the nominental and name near	human health is not arise.
II	Standard Terr	ns of Reference
1.	Year-wise production details since 1994 should be given,	Past Production details is discussed under Chapter 1; Table
	clearly stating the highest production achieved in any one	1.4, Page No. 8.
	year prior to 1994. It may also be categorically informed whether there had been any increase in production after the	
	EIA Notification 1994 came into force, w.r.t. the highest	
	production achieved prior to 1994.	
2.	A copy of the document in support of the fact that the	The copies of proceedings of The Director of Geology and
	Proponent is the rightful lessee of the mine should be	Mining, Guindy, Chennai are enclosed as Annexure

	given.	Volume 1
3.	All documents including approved mine plan, EIA and	The mine lease area, production levels, waste generation
3.	Public Hearing should be compatible with one another in	and its management, mining technology etc. in the name of
	terms of the mine lease area, production levels, waste	lessee are in compatibility with all documents including
	generation and its management, mining technology etc.	approved mine plan, EIA Report.
	and should be in the name of the lessee.	approved fillife pian, ETA Report.
4.	All corner coordinates of the mine lease area,	Location Map on the Toposheet covering 10 km radius
	superimposed on a High Resolution Imagery/ toposheet,	Figure 2.2 (Pg. No. 26)
	topographic sheet, geomorphology and geology of the area	Location Map of the area covering 5 km Radius Figure 2.3
	should be provided. Such an Imagery of the proposed area	(Pg. No. 27),
	should clearly show the land use and other ecological	Land use land cover map of the study area Figure 3.2 (Pg.
	features of the study area (core and buffer zone).	No. 50)
5.	Information should be provided in Survey of India	Geology Map of the area covering 5 km radius Figure 2.9
	Toposheet in 1:50,000 scale indicating geological map of	(Pg. No. 35)
	the area, geomorphology of land forms of the area,	Drainage Map of the study area covering 10 km radius
	existing minerals and mining history of the area, important	Figure 3.4 (Pg. No. 54).
	water bodies, streams and rivers and soil characteristics.	
6.	Details about the land proposed for mining activities	Land use cover table 10 km Radius in Table 3.2, Pg. No.
	should be given with information as to whether mining	50.
	conforms to the land use policy of the State; land diversion	Geology of the area is discussed in the Chapter 2, Page No
	for mining should have approval from State land use board	34.
	or the concerned authority.	
7.	It should be clearly stated whether the proponent Company	The Environment Policy discussed under Chapter 1, Page
	has a well laid down Environment Policy approved by its	No. 20 & Environmental Monitoring Detailed in Chapter
	Board of Directors? If so, it may be spelt out in the EIA	6, Page No.120 – 125.
	Report with description of the prescribed operating	
	process/procedures to bring into focus any	
	infringement/deviation/ violation of the environmental or	
	forest norms/conditions? The hierarchical system or	
	administrative order of the Company to deal with the environmental issues and for ensuring compliance with the	
	EC conditions may also be given. The system of reporting	
	of non-compliances / violations of environmental norms to	
	the Board of Directors of the Company and/or	
	shareholders or stakeholders at large, may also be detailed	
	in the EIA Report.	
8.	Issues relating to Mine Safety, including subsidence study	It is an opencast Category "A" other than fully
.		Mechanized mine. Drilling and blasting are discussed in
	open cast mining, blasting study etc. should be detailed.	the Chapter 2, Page No.40.
	The proposed safeguard measures in each case should also	Issues relating to mine safety will be dealt by strictly
	be provided.	following the DGMS Guidelines as per MMR, 1961 and
	F	necessary permission will be obtained.
9.	The study area will comprise of 10 km zone around the	The Study are comprises of core zone and buffer zone (10
	mine lease from lease periphery and the data contained in	km distance from periphery of lease area).
	the EIA such as waste generation etc. should be for the life	
	of the mine / lease period.	
10.	Land use of the study area delineating forest area,	No wildlife sanctuaries, National park, migratory routes of
	agricultural land, grazing land, wildlife sanctuary, national	fauna and water bodies are in the study area.
	park, migratory routes of fauna, water bodies, human	Land Use of the study area delineating forest area,
	settlements and other ecological features should be	agricultural land, grazing land, human settlements and
	indicated. Land use plan of the mine lease area should be	other ecological features has been incorporated in Chapter
	prepared to encompass preoperational, operational and	3.
	post operational phases and submitted. Impact, if any, of	Land use plan of the mine lease in operation & post
	change of land use should be given.	operation phase has been discuss in Chapter 2. Pg. No. 42.
11.	Details of the land for any Over Burden Dumps outside the	Not applicable, no overburden dump is proposed outside

	mine lease such as sutent of 11 1:-t f.	the mine lease area
	mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given	the mine lease area.
12.	A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.	Not Applicable, the Mining lease area does not involve any forest land.
13.	Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.	Not Applicable, the Mining lease area does not involve any forest land.
14.	Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.	Not Applicable, the project doesn't attract Recognition of Forest Rights Act, 2006
15.	The vegetation in the RF / PF areas in the study area, with necessary details, should be given.	Not Applicable, no RF / PF fall under study area.
16.	A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.	Not Applicable, there is no National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Tiger/Elephant Reserves/Critically Polluted areas within 10 km radius of the mining lease area.
17.	Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished	Not Applicable. There is no National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Tiger/Elephant Reserves/Critically Polluted areas within 10 km radius of the mining lease area.
18.	A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.	Details biological study (flora & fauna) separately for core zone and buffer zone within 10 km radius of the project site have been incorporated in Chapter 3, Page No 100.
19.	Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range',	Project area is not declared in 'Critically Polluted' area and not come under Aravali range.

	(attracting court restrictions for mining operations), should	
	also be indicated and where so required, clearance	
	certifications from the prescribed Authorities, such as the	
	SPCB or State Mining Department should be secured and	
	furnished to the effect that the proposed mining activities	
	could be considered.	
20.	Similarly, for coastal Projects, A CRZ map duly	Not Applicable, the project doesn't attract the C.R.Z.
	authenticated by one of the authorized agencies	Notification, 1991
	demarcating LTL. HTL, CRZ area, location of the mine	
	lease w.r.t CRZ, coastal features such as mangroves, if	
	any, should be furnished. (Note: The Mining Projects	
	falling under CRZ would also need to obtain approval of	
	the concerned Coastal Zone Management Authority).	
21.	R&R Plan/compensation details for the Project Affected	No reclamation and rehabilitation is proposed and neither
21.	People (PAP) should be furnished. While preparing the	reclamation nor rehabilitation was carried out during the
	R&R Plan, the relevant State/National Rehabilitation &	previous mining activity. Hence reclamation and
	Resettlement Policy should be kept in view. In respect of	rehabilitation will not arise.
	SCs /STs and other weaker sections of the society in the	Tenaomitation win not arise.
	study area, a need based sample survey, family-wise,	
	should be undertaken to assess their requirements, and	
	action programmes prepared and submitted accordingly,	
	integrating the sectoral programmes of line departments of	
	the State Government.	
	It may be clearly brought out whether the village(s)	
	located in the mine lease area will be shifted or not. The	
	issues relating to shifting of village(s) including their R&R	
	and socio-economic aspects should be discussed in the	
22	Report.	
22.	One season (non-monsoon) [i.e. March-May (Summer	
		Baseline data were collected during October – December
	Season); October-December (post monsoon season) ;	2023 has been incorporate in Chapter 3.
	Season); October-December (post monsoon season) ; December-February (winter season)]primary baseline data	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and
22.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22:	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22:	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
22:	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
-2	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
-2	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
-2-	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
-2-	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report.
23.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92.
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site,	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation.	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
23.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in
23.	Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.	2023 has been incorporate in Chapter 3. Air quality, Water quality, Noise level, Soil and Flora and Fauna in core and buffer zones are collected and complied data wise in the EIA report. Air quality modeling has carried out by using AERMOD view 9.6.1 Model for prediction of impact of the proposed mine has been incorporate Chapter 3, Page No 87 – 92. The predominant wind direction recorded during study period is depicted vide Wind rose diagram shown in Chapter 3, Figure No 3.11; Page No.69

	should also be provided. Fresh water requirement for the	
	Project should be indicated.	27
25.	Necessary clearance from the Competent Authority for	Not Applicable
	drawl of requisite quantity of water for the Project should	Water for dust suppression, plantation and domestic use
	be provided.	will be obtained from accumulated rainwater/seepage
		water in mine pits (when available). Drinking water will be
		sourced from the approved water vendors,
26.	Description of water conservation measures proposed to be	The rain water collected in the pits after spell of rain will
	adopted in the Project should be given. Details of	be used for greenbelt development and dust suppression.
	rainwater harvesting proposed in the Project, if any, should	At the end of life of mine, excavated area will be used as a
	be provided.	water reservoir.
27.	Impact of the Project on the water quality, both surface	No negative impact on the water quality is anticipated,
	and groundwater, should be assessed and necessary	details along with mitigation measures are discussed under
	safeguard measures, if any required, should be provided.	Chapter 4, Page No. 113.
28.	Based on actual monitored data, it may clearly be shown	The ground water table is at 30-35m below ground level.
	whether working will intersect groundwater. Necessary	The ultimate depth of mine working is 25m from the
	data and documentation in this regard may be provided. In	general ground profile the project shall not intersect the
	case the working will intersect groundwater table, a	ground water table.
	detailed Hydro Geological Study should be undertaken and	
	Report furnished. The Report inter-alia, shall include	
	details of the aquifers present and impact of mining	
	activities on these aquifers. Necessary permission from	
	Central Ground Water Authority for working below	
	ground water and for pumping of ground water should also	
	be obtained and copy furnished.	
29.	Details of any stream, seasonal or otherwise, passing	There is no stream, seasonal or otherwise passing through
	through the lease area and modification / diversion	the lease area.
	proposed, if any, and the impact of the same on the	
	hydrology should be brought out.	
30.	Information on site elevation, working depth, groundwater	Elevation of the lease area is 213m AMSL.
	table etc. Should be provided both in AMSL and BGL. A	Ultimate depth of the mine is 25 m bgl
	schematic diagram may also be provided for the same.	Water level of the area is 30-35m below ground level.
31.	A time bound Progressive Greenbelt Development Plan	Greenbelt development Plan & Recommended Species
	shall be prepared in a tabular form (indicating the linear	proposed for greenbelt development are given in the
	and quantitative coverage, plant species and time frame)	Chapter 10, Pg. No. 138.
	and submitted, keeping in mind, the same will have to be	
	executed up front on commencement of the Project. Phase-	
	wise plan of plantation and compensatory afforestation	
	should be charted clearly indicating the area to be covered	
	under plantation and the species to be planted. The details	
	of plantation already done should be given. The plant	
	species selected for green belt should have greater	
	ecological value and should be	
	of good utility value to the local population with emphasis	
	on local and native species and the species which are	
	tolerant to pollution.	77
32.	Impact on local transport infrastructure due to the Project	Transportation will not have significant impact on the
	should be indicated. Projected increase in truck traffic as a	existing traffic density/ existing road (refer chapter 2)
	result of the Project in the present road network (including	Chapter No 2. Pg. No. 42.
	those outside the Project area) should be worked out,	Maximum 2 trips per day is anticipated
	indicating whether it is capable of handling the	
	incremental load. Arrangement for improving the	The Mining project improves the social infrastructure of
	infrastructure, if contemplated (including action to be	the area.
	taken by other agencies such as State Government) should	
1	be covered. Project Proponent shall conduct Impact of	1

the mine opening of use and areas are
& CC – 20, the cases was c Hearing
oroject.
index and
are given

	sources should be indicated.	
d.	Project Proponent shall enclose all the analysis/testing	Enclosed as Annexure Volume 1
	reports of water, air, soil, noise etc. using the	
	MoEF&CC/NABL accredited laboratories. All the original	
	analysis/testing reports should be available during appraisal of the Project	
e.	Where the documents provided are in a language other	Not Applicable
•	than English, an English translation should be provided.	Two Tippileacie
f.	The Questionnaire for environmental appraisal of mining	Enclosed as Annexure Volume 1
	projects as devised earlier by the Ministry shall also be	
	filled and submitted.	The state of the s
g.	While preparing the EIA report, the instructions for the	Instructions issued by MoEF & CC O.M. No. J-
	Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated	11013/41/2006-IA.II (I) dated 4 th August, 2009 are followed.
	4th August, 2009, which are available on the website of	ionowed.
	this Ministry, should be followed.	
h.	Changes, if any made in the basic scope and project	No Modifications is carried out.
	parameters (as submitted in Form-I and the PFR for	
	securing the TOR) should be brought to the attention of	
	MoEF&CC with reasons for such changes and permission should be sought, as the TOR may also have to be altered.	
	Post Public Hearing changes in structure and content of the	
	draft EIA/EMP (other than modifications arising out of the	
	P.H. process) will entail conducting the PH again with the	
	revised documentation	
i.	As per the circular no. J-11011/618/2010-IA.II(I) dated	Not applicable.
	30.5.2012, certified report of the status of compliance of	
	the conditions stipulated in the environment clearance for the existing operations of the project, should be obtained	
	from the Regional Office of Ministry of Environment,	
	Forest and Climate Change, as may be applicable.	
j.	The EIA report should also include (i) surface plan of the	All the maps are included in the EIA/EMP report.
	area indicating contours of main topographic features,	
	drainage and mining area, (ii) geological maps and	
	sections and (iii) sections of the mine pit and external	
	dumps, if any, clearly showing the land features of the adjoining area.	
	aujoning area.	

1.10 ENVIRONMENTAL POLICY

The proponent affirms to maintain clean and sustainable environment through continual improvement of environmental performance as an integral part of business.

In order to achieve the goal the proponents shall stand committed to –

- Conduct operations in an environmentally responsible manner, to comply with applicable legal and other requirements related to environmental aspects.
- Gradually phase out inefficient operations with modern environmental friendly alternatives.
- Efficient use of natural resources, energy and equipment's.
- Comply with all applicable laws governing environmental protection through appropriate mechanisms.
- Sustainable development and conservation of mineral.
- Actively participate in Social Welfare and Environmental Development activities for the locality around the lease hold area.
- Ensure Environment related information, dissemination and training to all employees.
- Constitute an Environment Monitoring Cell for the project.
- Provide adequate system to minimize dust emission.

The proponent shall organize a Non-Compliance Reporting System, in any case of non-compliance of Environmental issues will be reported directly to the mines manager/Proponent and the mines manager/Proponent shall assign respective person for taking up the necessary corrective actions.

1.10.1 POST ENVIRONMENT CLEARANCE MONITORING

The project proponent shall submit a half-yearly compliance report in respect of stipulated Environmental Clearance terms and conditions to MoEF & CC Regional Office & SEIAA after grant of EC on 1st June and 1st December of each calendar year as per MoEF & CC Notification S.O. 5845 (E) Dated: 26.11.2018.

Besides the Mines manager or mine agent will submit the periodical compliance reports to

- TNPCB Half yearly status report
- IBM quarterly, half yearly annual reports
- Director of mines safety,
- Labor enforcement officer,
- Controller of explosives as per the norms stipulated by the department.

1.10.2 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

Environmental Clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period.

1.11 GENERIC STRUCTURE OF EIA DOCUMENT

The overall contents of the EIA report follow the list of contents prescribed in the EIA Notification 2006 and the "Environmental Impact Assessment Guidance Manual for Mining of Minerals" published by MoEF & CC. The report consists of twelve chapters and the content is briefly described in this section.

Chapter 1 – Introduction:

This chapter contains the general information on the location of the mines, mining methods, and major sources of environmental impacts in respect of mining projects and details of environmental clearance process.

Chapter 2 – Project Description:

In this chapter the type of the project, need for the project, project location, layout, project activities during preparation and operation phases, capacity of the project, project operation i.e., land availability, utilities (power and water supply) and infrastructure facilities such as roads, railways, housing and other requirements are provided. The project implementation schedule, estimated cost of development as well as operation etc., is also included.

Chapter 3 – Description of the Environment:

The methodology for assessing various baseline environmental components in the study area prior to the commencement of the project has been identified in this chapter. The various parameters of present environmental status are identified under different aspects, which include location and regional setting of the area, physical aspects such as land use, land cover and soil quality. Hydrological aspect consists of area drainage, surface and ground water quality.

Meteorological aspect contains all the climatic factors and ambient air quality of the study area. Ecological environment describes the flora and fauna of the region. Human aspect includes the demographical features, socio-economic environment and infrastructure facilities of the study area.

Chapter 4 – Anticipated Environmental Impacts & Mitigation Measures:

This chapter describes the anticipated impacts on the environment and the mitigation measures. The method of assessment of impacts including studies carried out, modelling techniques adopted to assess the impacts where pertinent should be elaborated in this chapter. The Environmental Impact Assessment of the project during construction and operation stages is provided. The mathematical modelling exercises pertaining to ground level concentrations of air pollutants have been presented in this chapter with suitable mitigation measures.

Chapter 5 – Analysis of Alternatives:

This chapter gives details of various alternatives both in respect of location of site and technologies to be deployed.

Chapter 6 – Environment Monitoring Programme:

This chapter emphasizes the formation of an Environment Management Cell with trained staff under Senior Environment Engineer equipped with all monitoring facilities for monitoring of all environmental parameters during construction as well as post project monitoring. Organization structure for environmental management and frequency of monitoring has also been provided.

Chapter 7 – Additional Studies:

This chapter covers the details of the additional studies required as per ToR prescribed by MoEF & CC like Risk Assessment, Public Consultation details and Social Impact Assessment and R&R plans.

Chapter 8 – Project Benefits:

The benefits that will be accrued from the project in the locality in particular and society in general as well as development will be identified and described in this chapter.

Chapter 9 – Environmental Cost Benefit Analysis:

Environmental Cost Benefit analysis is not recommended.

Chapter 10 – Environmental Management Plan:

In this chapter, an environmental strategy to mitigate the adverse effects likely to occur on environmental parameters during mining phase has been drawn up for the proposed mining project. Post project monitoring and organization structure for environmental management has been given in this chapter.

Chapter 11 – Summary & Conclusion:

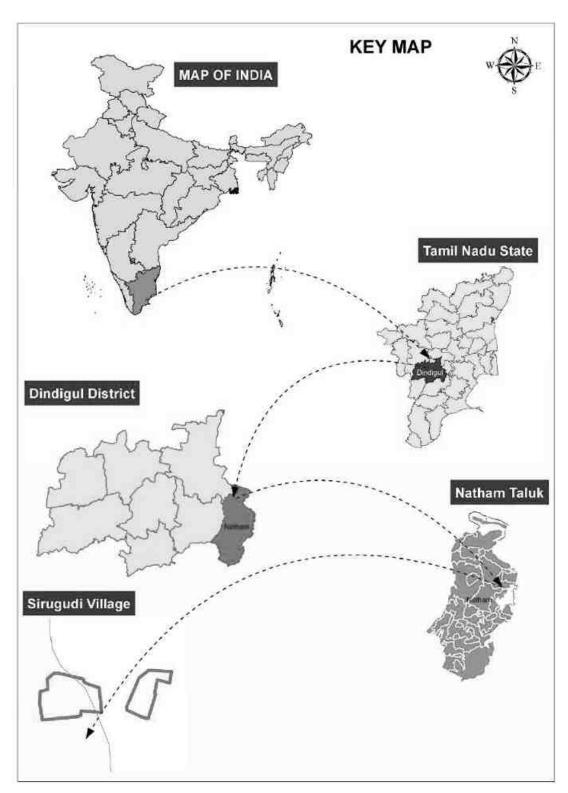
This chapter gives a brief of the focus areas of the report for a quick glance.

Chapter 12 – Disclosure of the Consultant:

The detailed profile of the consultants along with their capabilities, professional expertise and work experiences are highlighted in this chapter.

2. PROJECT DESCRIPTION

2.0 GENERAL:


The Environmental Impact Assessment report has been prepared in terms of EIA Notification of the MoEF & CC Dated: 14.09.2006, as amended and the EIA Guideline Manual for Mining of Minerals (Feb, 2010) of MoEF & CC, Government of India, for seeking Environmental Clearance for Mining of Limestone by M/s. Sivam Mines in Sirugudi Village, Natham Taluk, Dindigul District and Tamil Nadu (Extent 2.53.0 ha) falling under Category 'B' TYPE OF THE PROJECT:

- Existing limestone mines < 5ha, non-captive mines, Opencast Mines. There are no technological changes in the mining operations. No ore beneficiation or mineral processing is proposed.
- The method of mining is opencast manual method without involving deep hole drilling and heavy earth moving machineries. The mining operation is being carried out with jack hammer drilling, manual excavation and Manual loading into the tippers.
- Shot hole blasting with slurry explosives is used for given heaving effect in hard strata.
- There are no interlinked projects; the project is site specific, there is no additional area required for this project.
- The mine lease area does not have any water-courses in the form of river, nallah etc. & There is no effluent generation/discharge from the mines.

2.1 LOCATION OF THE PROJECT

- The mining lease is located in Sirugudi Village, Natham Taluk, Dindigul District and Tamil Nadu (Extent: 2.53.0 ha).
- The project falls in Toposheet No: 58 J/08.
- Latitude between N 10° 14'28.23 to N 10° 14'32.83
- Longitude between E 78° 17'36.09 to E 78° 17'48.27
- The project site is about 37 KM from district headquarter. The nearest railway station is located at Dindigul 37 KM North west.
- The project site is well connected by SH 35 Dindigul Natham Singampunari Tiruppattur Karaikudi South Side and NH 45-B Trichy Madurai-9Km East.
- All the basic infrastructure such as hospitals, post offices, educational institutions, place of worship, banks etc., are available at Dindigul 37 Km North West.
- The Nearest Airport and Seaport are Madurai 50 Km South west & Tuticorin 165 Km South east respectively.

FIGURE 2.1: KEY MAP

Source: Google maps

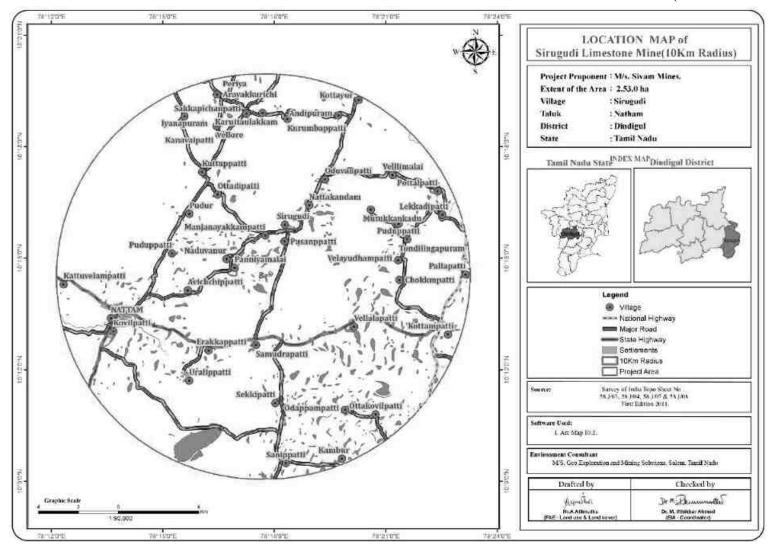
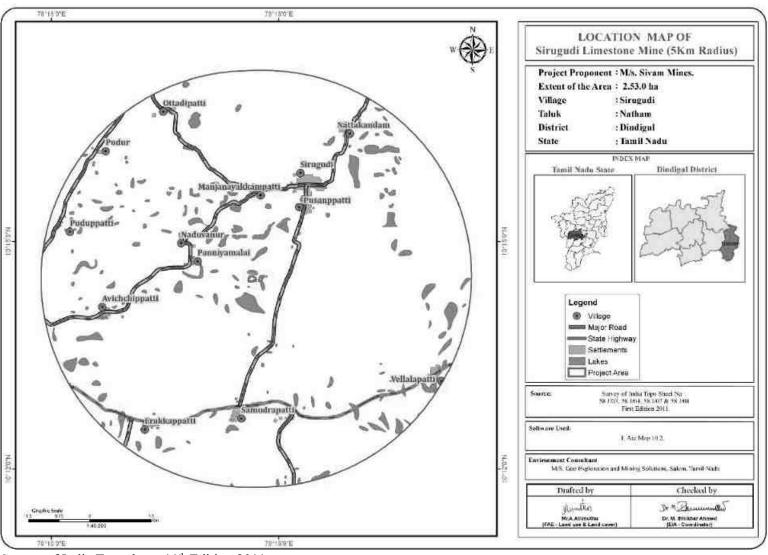



FIGURE 2.2: DIGITIZED LOCATION MAP ON THE GEO REFERENCED TOPOSHEET (10Km RADIUS)

Source: Digitized in Geographical information System (ARC GIS), Survey of India Toposheet, 11th Edition 2011

FIGURE 2.3: DIGITIZED LOCATION MAP ON THE GEO REFERENCED TOPOSHEET (5KM RADIUS)

Source: Survey of India Toposheet, 11th Edition 2011

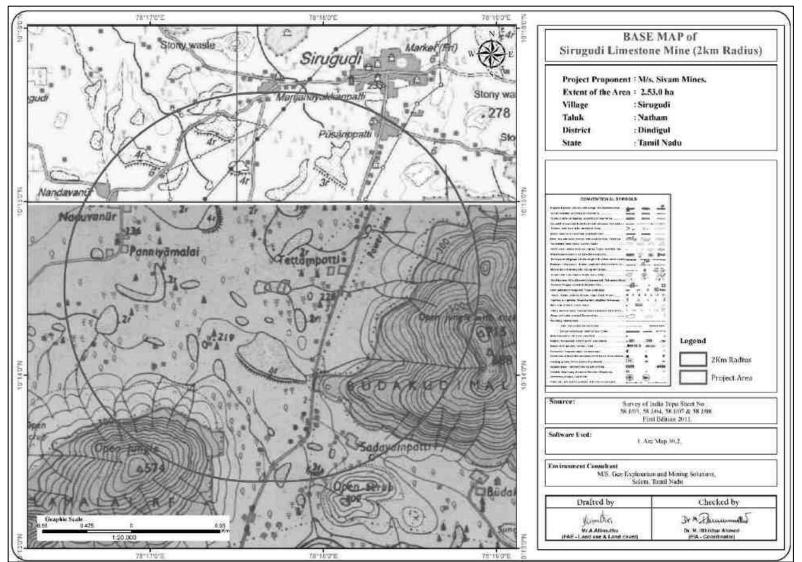


FIGURE 2.4: LOCATION MAP COVERING 2KM RADIUS

Source: Survey of India 11th Edition, 2011

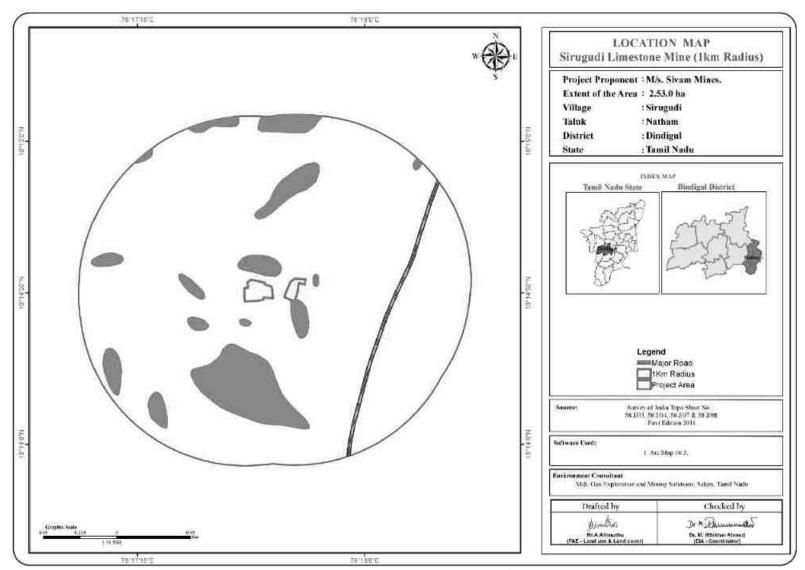


FIGURE 2.5: LOCATION MAP COVERING 1KM RADIUS

Source: Digitized in Geographical information system (ARC GIS), Survey of India 11th Edition, 2011.

2.2 LEASE HOLD AREA

- The lease area is an existing limestone mines which is site specific, non-captive use, opencast category "A" other than fully mechanized.
- No beneficiation or mineral processing is proposed.
- Mine Lease Area = 2.53.0 ha
- General gradient of the area is towards south.

TABLE 2.1: LOCATION DETAILS

Description	Details
Latitude between	N 10° 14'28.23 to N 10° 14'32.83
Longitude between	E 78° 17'36.09 to E 78° 17'48.27
MSL	213
Extent	2.53.0 ha
Village Taluk and District	Sirugudi Village, Natham Taluk and Dindigul District.

Source: Approved Mining Plan

TABLE 2.2: EXTERNAL INFRASTRUCTURES

S.No	Particulars	Location	Direction	Approximate Distance in Km
1	Nearest Post office	Sirugudi	NE	3
2	Nearest Town(D.H)	Dindigul	NW	37
3	Nearest Police Station	Natham	SW	8
4	Nearest Govt. Hospital	Natham	SW	8
5	Nearest School	Sirugudi	NE	3
6	Nearest DSP Office	Dindigul	NW	37
7	Nearest Railway Station	Dindigul	NW	37
8	Nearest Airport	Trichy	NE	74
9	Nearest Seaport	Tuticorin	S	165

Source: Approved Mining Plan

There are no significant features within the radius of 500m, it is a dry land. Some people will perform sustenance farming due to the availability of small land during rainy seasons.

TABLE 2.3: NEAREST SURFACE FEATURES

	NEAREST MINES WITHIN 500m RADIUS				
SL.No	Name of the lessee	S.F.No	Extent		
1	M/s. Sivam Mines	630/1A, 1B, 2, 631/10 & 11	0.94.50		
2	M/s. Sivam Mines	693/1, 2, 3, 4 & 7	1.70.0		
3	M/s. Sivam Mines	644/4 (Part)	0.24.29		
5	M/s. Sivam Mines	616/1B (Part), 1C, 618/1(Part) & 619	0.94.0		

Source: Approved Mining Plan

TABLE 2.4: NEAREST WATER BODIES WITHIN 10KM RADIUS

Sl.No.	Water Bodies	Distance and Direction
1	Sirugudi Village Tank	400 m South West
2	Sirugudi Village Tank	1 km North

Source: Approved Mining Plan

FIGURE 2.6: TOPOGRAPHICAL VIEW OF LEASE AREA

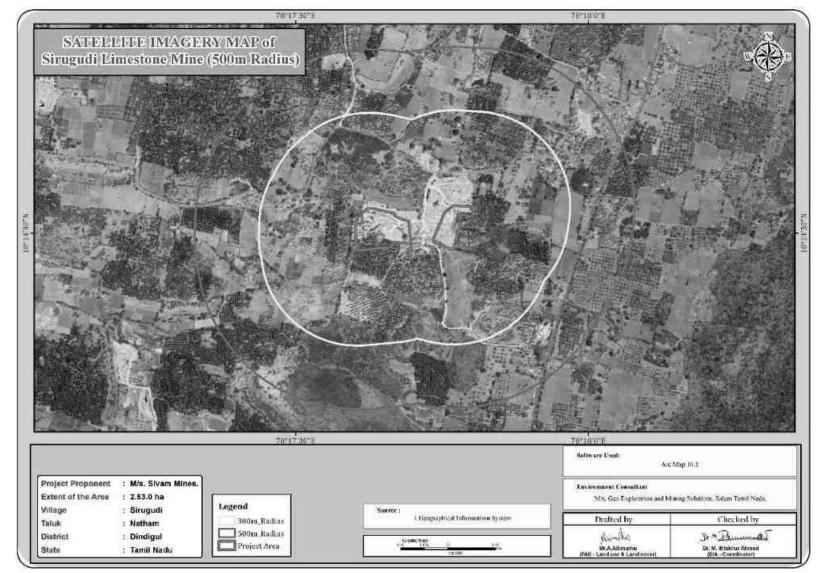


FIGURE 2.7: MINE LEASE AREA COVERING WITH 300M AND 500M RADIUS

Source: Google earth imagery

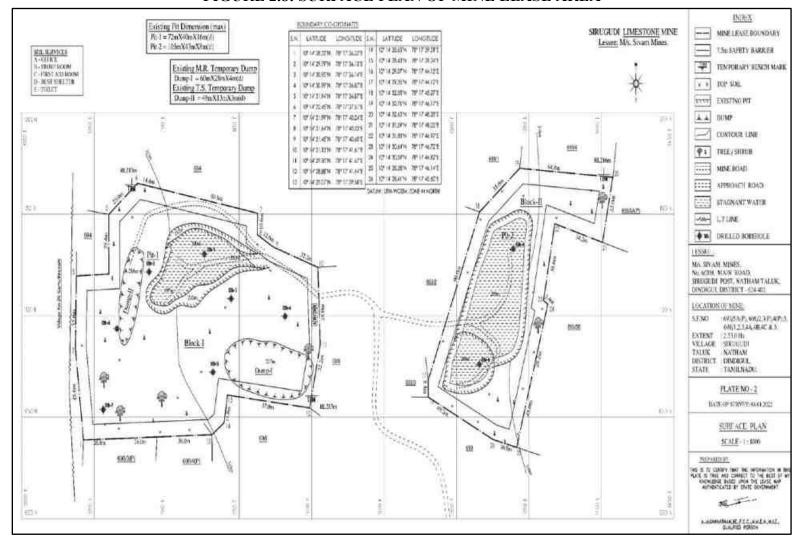


FIGURE 2.8: SURFACE PLAN OF MINE LEASE AREA

2.3 REGIONAL GEOLOGY:-

The project area comprises crystalline Archaean rocks of deep seated metamorphic origin which include mainly calc-gneiss, cordierite-sillimanite Gneiss, **Biotite gneiss and granite gneiss**. The gneisses appear to have resulted by migratizations of the pre-existing sediments by intrusive of high grade metamorphism viz. High temperatures and pressures. In addition, younger intrusive such as granites, pegmatites and quartz veins are found within the limestone. The above said different types of metamorphosed rocks occur in the form of long, narrow, parallel bands which are traceable over a long distance. Limestone, band is noticed with prominent outcrops.

The regional trend of the limestone formation in the area is $N60^{\circ}E-S60^{\circ}W$ with Dip SE80°.

The general geological sequence of the limestone deposits is as follows:

Order of Super position:

AGE ROCK FORMATION

Recent - Reddish Soil

Archean - Crystalline Limestone

- Calc-gneiss.

2.3.1 LOCAL GEOLOGY

The area was surveyed in detail to prepare a Geological map in the scale of 1:1000 showing the various formations and attitude of the deposit. It is inferred that the Limestone mineral is of cement grade and in the form Band running from $N60^{\circ}$ E - S60° W with Dip SE80°. Reddish soils cover up to a depth in about 1m. Recovery of minerals is estimated as 60% and 80% of the total excavation of the ore body.

The recovery percentage is based on the knowledge gained from the past mine workings and adjacent working mine in this region, by the field tests carried out in the lease area and analysis done in NABL Laboratories. The recovery percentage was approved by IBM Chennai.

The physical attitudes of the limestone bands are as follows:

Strike direction : $N60^{\circ} E - S60^{\circ} W$

Dip amount and direction : SE85°

The depth of the mineralization has been proved maximum upto 25 m depth with an average of 1.0 m topsoil, based on the core drill investigation as per the UNFC classification.

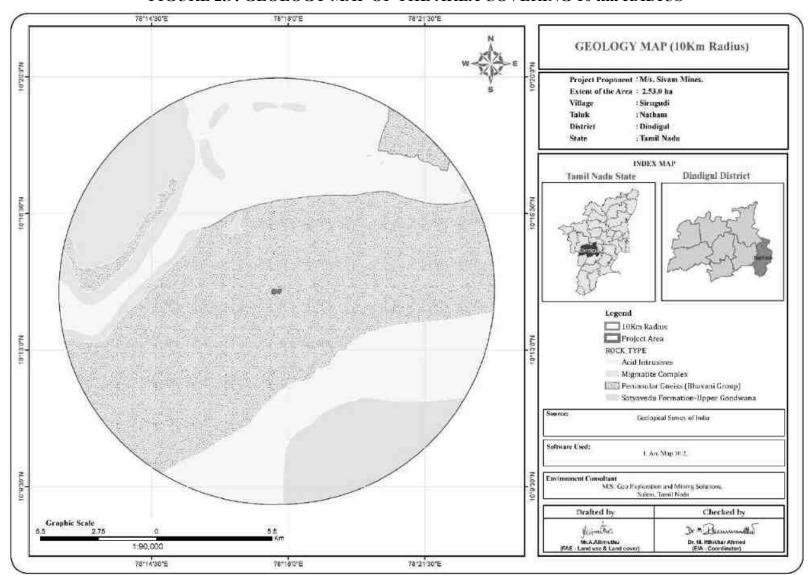


FIGURE 2.9: GEOLOGY MAP OF THE AREA COVERING 10 km RADIUS

Source: Geographical information system (ARC GIS MAP)

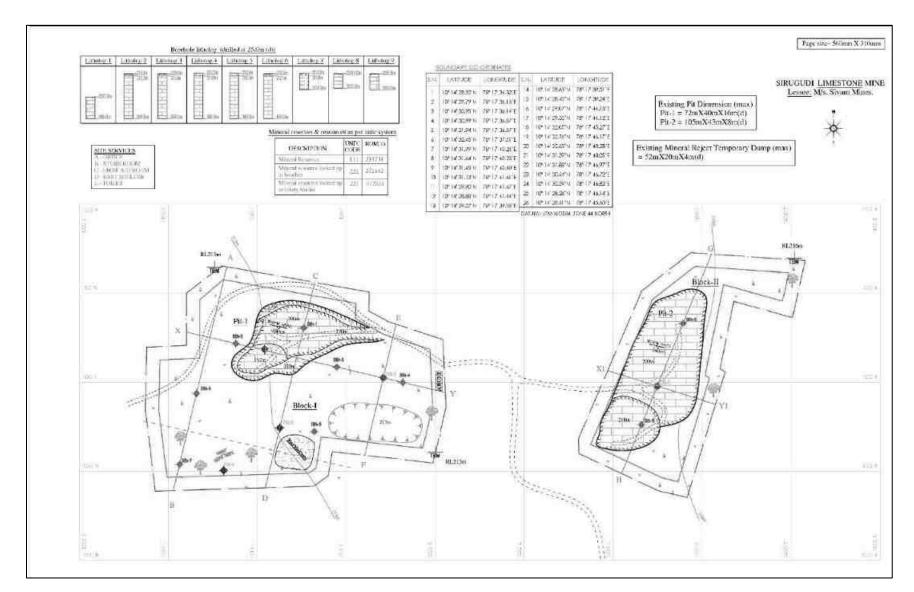
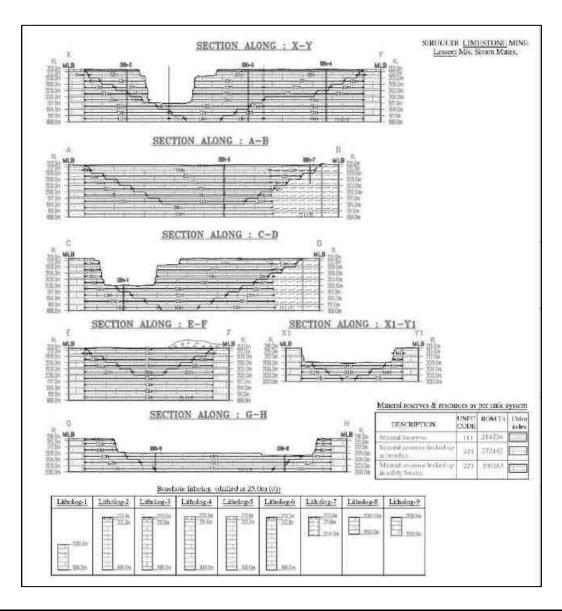



FIGURE 2.10: GEOLOGICAL PLAN OF MINE LEASE AREA

FIGURE 2.10A: GEOLOGICAL SECTION OF MINE LEASE AREA

2.4 QUALITY OF RESERVES

Exploration details as per UNFC.

- The proponent has carried out detailed exploration as per United Nation Framework Classification and re assessed the resources and reserves afresh with his consulting geologist.
- Exploration and chemical analysis with litho-log and borehole details are given below.

TABLE 2.5: EXPLORATION AND CHEMICAL ANALYSIS DETAILS

No. of bore holes	Depth of boreholes (m)	Depth of deposition of Limestone from the RL	Strata
DBH1	12.3	200.3m-188.0m	Limestone
DBH2	25.1	213.1m-212.3m	Top soil
рвп2	23.1	212.3m-188.0m	Limestone
DBH3	25.0	213.0m-211.9m	Top soil
DBH3	23.0	211.9m-188.0m	Limestone
DBH4	25.2	213.2m-211.8m	Topsoil
DBH4		211.8m-188.0m	Limestone
DBH5	25.1	213.1m-212.2m	Top soil
рвиз	23.1	212.2m-188.0m	Limestone
DBH6	25.2	213.2m-212.1m	Topsoil
рвно	23.2	212.1m-188.0m	Limestone
DBH7	9.0	213.0m-211.8m	Topsoil
рвп/	9.0	211.8m-204.0m	Granite Gneiss
DBH 8	8.1	208.1m-200.0m	Limestone
DBH 9	8.9	208.9m-200.0m	Limestone

Chemical analysis table

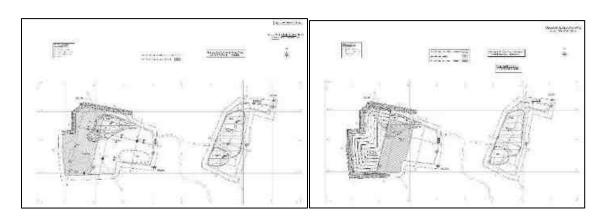
LIMESTONE			
Parameter	Composition %		
Cao	41.74		
Mgo	4.24		
Fe ₂ O ₃	0.47		
Al ₂ O ₃	0.92		
SiO ₂	8.14		
LOI	44.47		

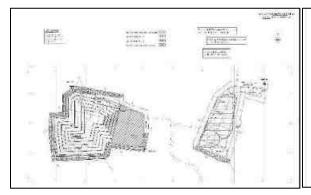
Source: Approved Mining Plan

TABLE 2.6 MINERAL RESERVES AS PER UNFC CLASSIFICATION

United Nations Frame work Classification (UNFC)	UNFC Code	Details	Grade	
Total Mineral reso	erves			
*Proved Mineral reserves	111	230545		
Probable Mineral Reserves	121 & 122	-		
Total Remaining Resources				
Feasibility Mineral resources	211	-		
Pre-feasibility Mineral resources	221 & 222	525439	Cement Grade	
Measured Mineral resource	331	-	Cement Grade	
Indicated Mineral resources	332	-		
Inferred Mineral resource	333	-		
Reconnaissance Mineral Resource	334	_		
Total Reserves + Resources		755984		

Source: Approved Mining Plan


2.4.1 CALENDAR PROGRAM FOR ORE AND WASTE RATIO


TABLE 2.7: SUMMARY OF YEAR WISE

Year	ROM (Ts)	Limestone @	Mineral	Over	Topsoil	Ore waste ratio
		60% (Ts)	Rejects @ 40%	burden	(Ts)	
			(Ts)	(Ts)		
2022-23	0	0	0	0	0	Nil
2023-24	46925	28155	18770	7870	7639	0.0645
2024-25	54436	32661.60	21774.40	3440	3468	0.0243
2025-26	59779	35867.40	23911.60	0	7613	Nil
2026-27	23594	32156.40	21437.60	0	0	Nil
Total	214734	128840.4	85893.60	11310	12720	-

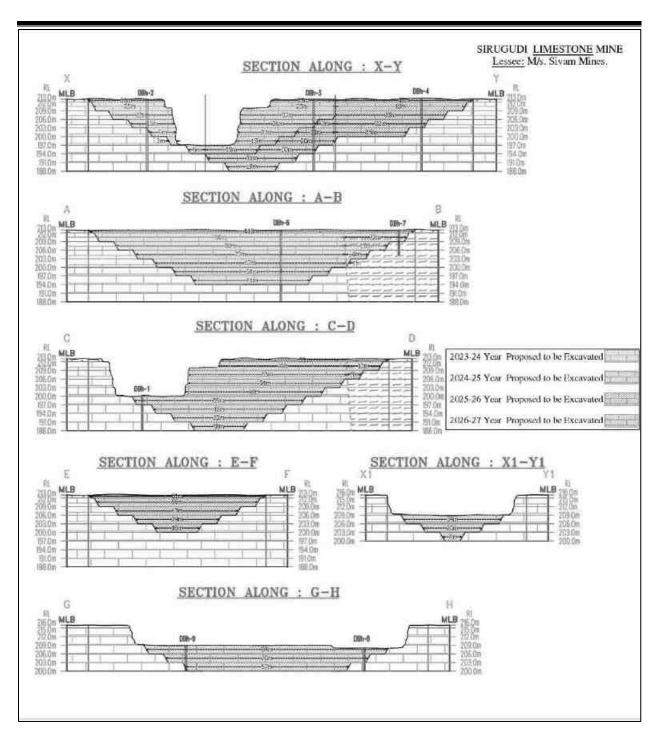

Source: Approved Mining Plan

FIGURE 2.11: YEAR WISE PLAN

Source: Approved Mining Plan

2.5 METHOD OF MINING AND PROCESS DESCRIPTION.

- The method of mining is Open cast mechanized method categorized as "Opencast category "A" other than fully mechanized"; Hydraulic Excavator coupled with tippers is deployed for the formation of benches and loading.
- There is no mineral processing or ore beneficiation proposed.
- The method of mining is opencast mechanized mining method.
- Jack hammers with compressors deployed for drilling (short hole drilling), only slurry explosives are used for liberation of limestone from the parent sheet rock.
- After the manual segregation the limestone will be loaded manually into the tippers.
- One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.
- In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-1 and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-2.
- The waste is in the form of Mineral rejects and side burden; the waste will be dumped in the earmarked area.

2.5.1 EXTENT OF MECHANIZATION:

TABLE 2.8: LIST OF MACHINERIES

Type	No	Capacity	Make	Motive power	H.P
Tractor mounted compressor	1	140cfm	Atlas copco	Diesel	45
Portable Compressor	2	250/150 cfm	Elga	Diesel	200
Tipper-Taurus	6	10 tonnes	Ashok Leyland	Diesel	90

Source: Approved Mining Plan

2.5.2 DRILLING AND BLASTING:

TABLE 2.9: DRILLING AND BLASTING

S.No	Parameters	Description
1	Drilling Source:-	Jack hammer operated by the compressed air from tractor mounted
		compressor or Portable compressors.
2	Drilling parameters:-	Burden 0.7m spacing 0.8m depth 1.5m
3	Charge pattern:-	Charge 0.2 to 0.3kgs per hole. Stemming is 1/3 and explosives 2/3. The
		stemming material is moisture clay/pyroxenite mixed waste.
4	Initiation System:-	Bottom initiation system with safety fuses and ordinary or /plain electric
		detonators.
5	No of blast hole:	Number of the hole required per day is 26, based on the above said
		parameters.
6	Powder factor:	Powder factor is reported as 6 tonnes per kg of explosives.

Source: Approved Mining Plan

2.5.3 STORAGE OF EXPLOSIVES:

Drilling and blasting will be carried out only when the hard strata encountered. No magazine is available at mine sites. For each leases agreement is made with authorized explosive dealer for supply of explosives under Form-22. The blasting will be done under the supervision of qualified blaster. The authorized explosive supplier will bring the required explosive in his approved van and take back the remaining explosive after blasting. There is no proposal for storing of explosives in any of the leases.

2.5.4 HANDLING OF TOP SOIL

The average thickness of the top soil is about 1 m; anticipated quantity of top soil for this plan period is 13,972 tonnes. Top soil will be removed and preserved all along the boundary barrier to facilitate the greenbelt.

2.5.5 WASTE MANAGEMENT

TABLE 2.10: DISPOSAL OF WASTE

THE ENTRY PIST CRITE OF THE TE			
Description	Details		
Existing waste	60m X 24m X 4m		
	South East of Block I		
Top soil dump	48m X 13m X 3m		
	(Top soil will be utilized for greenbelt development.)		

Source: Approved Mining Plan

The grade below 40% of CaCO3 with contaminations of calc gneiss waste is considered as mineral rejects in these particular formations.

Mineral rejects excavated from the mine will be dump separately as per the predetermined places identified in the above table and it will be backfilled in the mined out pit at the end of the life of the mine.

The small quantity of Municipal waste will be generated and domestic effluent will be discharged in septic tank and soak pit system.

2.5.5 GREEN BELT DEVELOPMENT

In this present plan period 1500 Numbers of saplings are proposed to be planted in the in the boundary barrier and village roads as indicated in the afforestation plan with 3m X 3m spacing proposed for the greenbelt during the present plan period.

2.5.6 RECLAMATION AND REHABILITATION

Reclamation and rehabilitation are not proposed in the present scheme period. After the end of the life of the mine the mined out pit will be allowed to collect the rain water, the pit will be utilized as temporary storage reservoir which will enhance the ground water level.

2.6 GENERAL FEATURES.

Breakup of the land use and land cover within the lease area as approved by the Indian Bureau of Mines, Chennai.

TABLE 2.11: LAND USE PATTERN OF THE LEASE AREA

S.No	Description	Present Area (Ha)	Additional Area required during the present MP Period (Ha) [2022-23 to 2026-27]	Area at the end of life of Mine (Ha)
1	Area under Mining	0.73.9	0.81.1	1.55.0
2.	Waste dump	0.23.0	Nil *	Nil *
3.	Office & infrastructure	0.01.0	Nil	0.01.0
4.	Processing plant	-	-	-
5.	Mineral stack processing yard	-	-	-
6.	Sub grade mineral stacks	-	-	-
7.	Mine roads	0.03.0	Nil	0.03.0
8.	Areas under plantation	0.07.0	0.10.0	0.17.0
9.	Un utilized area	1.45.1	0.77.0	0.77.0
10.	Total	2.53.0		2.53.0

Source: Approved Mining Plan

2.6.1 DRAINAGE PATTERN.

The drainage pattern of the area is dendritic pattern. There are no streams, canals or water bodies crossing the project area, hence there is no requirement of stream deviation or canals in the near future.

2.6.2 TRAFFIC DENSITY:

Traffic density measurements were performed at one location at Dindigul – Karaikkudi Road (SH-35), which is about 3.5Km in the west side. Traffic density survey was carried out as per IRC 1960 Guidelines. The monitoring was performed on 27-11-2023. Traffic density measurement were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station during each shift- one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

TABLE 2.12: TRAFFIC DENSITY

Type of vehicle	No of vehicle per day Dindigul – Natham road
Heavy Vehicles	243
Light vehicles	372
Three wheelers	842
Grand Total	1457

Source: Field Monitoring Data

Total quantity of limestone to be transported from the mine to needy cement industries for the peak production capacity.

Average Proposed production of Limestone per annum = 25,768 tonnes

Average Proposed production of Limestone per day = 86 tonnes Capacity of tipper = 10 tonnes

No of vehicles for the transportation = 86 tonnes / 10 tonnes

= 9 Trips max per day.

This transportation will not have significant impact on the existing traffic density/ existing road. The transported vehicles are likely to move in the MDR and State Highways. The haulage road does not enroute any nearby villages.

2.6.3 MINERAL BENEFICIATION AND PROCESSING.

There is no proposal for the mineral processing or ore beneficiation in all the mine lease area. The mined out limestone after grade separation (manually) will be sold to needy customers in raw form.

2.6.4 POWER, WATER SUPPLY AND OTHER INFRASTRUCTURE REQUIREMENT

The project does not require any power supply for the mining operations. The Mining activity is proposed during day time only (General Shift 8 AM - 5 PM, Lunch Break 1 PM - 2 PM). Electricity for use in office will be obtained from SEB. There is no DG set in the mine site.

Water shall be obtained from accumulated rainwater/seepage water in mine pits. Packaged Drinking Water is available from the approved water vendors in Sirugudi village which is about 3KM North eastern side.

The temporary infrastructures such as Mine Office, First Aid Room, Rest Shelter etc., are available in the mine lease area. No workshops are proposed inside the mine lease area hence there will not be any process effluent generation from the mine lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. There is no toxic effluent expected to generate in the form of solid liquid and gases and the no requirement of waste treatment.

2.6.5 WATER SOURCE & REQUIREMENT

Detail of water requirements in KLD as given below:

TABLE 2.13: WATER REQUIREMENT

Purpose	Quantity	Source
Dust Suppression	0.8 KLD	Rainwater accumulated in Mine Pit
Green Belt	0.8 KLD	Rainwater accumulated in Mine Pit
Domestic & Drinking Purpose	0.4 KLD	Approved Water Vendors
Total		2 KLD

Source: Approved Mining Plan

2.6.6 POWER SUPPLY

Mining is proposed and practiced for day shift only 8AM to 5PM. No workshops are installed inside the mines. Power is required only for the mines office complex. There is no DG set in mine site.

2.6.7 FUEL DETAIL

High Speed Diesel (HSD) is used for mining machineries. HSD will be brought from nearby fuel stations.

Average Consumption of HSD by Mining Machineries is as below –

0.9 to 1.2 m³ Bucket Capacity Hydraulic Excavator – 150 ltr

Compressor – 40 ltr

10 tonnes Capacity Tipper – 40 ltr

Hence it is computed as average 230-250 ltrs of HSD per day.

2.7 EMPLOYMENT POTENTIAL:

The local labours have been engaged for Mining of limestone, loading and handling of mineral in mining area, watch and ward and plantation activity for proper maintenance.

Beside the proponents engaged skilled and managerial staff to meet the statutory requirement under MMR 1961 and MCDR 1988.

At present, the mine is not operational. The following skilled / unskilled and semi-skilled workers besides managerial and administrative staff shall be proposed to be deployed at the time of re-opening of mine.

TABLE 2.14: EMPLOYMENT POTENTIAL

Present Employment position	Details
Mining engineer	1
Geologist	1
Mines Office Clerk	1
Skilled Labour (Mate/Supervisor)	1
Semi-Skilled (Drivers)	3
Un skilled Labour	15
Total	22

Source: Approved Mining Plan

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the consent authority. The conditions imposed during the Environmental Clearance will be compiled before the start of mining operation.

TABLE 2.15 PROJECT IMPLEMENTATION SCHEDULE

Sl. No.	Particulars	Time Schedule (In Month)*				:	Remark if any	
		1 st	1 st 2 nd 3 rd 4 th 5 th			5 th		
1	Environmental Clearance							
2	Consent To Establish						Project Establishment Period	
3	Consent To Operate						Production Start Period	
*Time lin	*Time line may vary; subjected to rules and regulations /& other unforeseen circumstances							

Source: Anticipated Timeline as per EIA Notification and Other Applicable Rules

2.8.1 POST MINING LAND USES:

After complete exploitation of the limestone mineral from the lease area, the mined out pit will be partially backfilled by the dumping material (Mineral rejects and side burden) and partially allowed to collect the rain water which will act as a temporary reservoir, this temporary storage of water will act as an artificial recharge pond.

Adequate measure will be taken care for constructing wall around the mined out area with 2mts height and fenced as per the rules. A watchman (Security guard) will be posted around the clock to prevent inherent entry of public and cattle. During rains the accumulated/stagnated water will be pumped out by means of temporary electric source with 5 HP motor and the water will be utilized for greenbelt.

2.8.2 PROJECT COST

TABLE 2.16 PROJECT COST

Fixed Assets	Rs 6, 81,000/-
Operational Cost	Rs 19, 24,175/-
Total	Rs 26, 05,175/-

Source: Pre-feasibility Report

3. DESCRIPTION OF ENVIRONMENT

3.0 GENERAL

Study area

For the description of baseline environmental scenario, the mine area has been considered as the *core zone*. The area falling within a distance of 10km from the boundary of the core zone has been considered as the *buffer zone*. The core zone and the buffer zone, combined together are referred to as the study area for determination of baseline status and assessment of environment impacts.

Study period

The Base line environmental quality represents the background scenario of various environmental components in the study area. Monitoring of environmental parameters over a radial distance of 10 km around the mine was carried out during **Post monsoon season - 2023 covering the months of October to December.**

Sources of Environmental data

Baseline Environmental study was carried out in an area of 10Km around the mine leases. The baseline information on micro-meteorology, ambient air quality, water quality, noise levels, soil quality and floristic descriptions are drawn from the data's generated by M/s EHS 360 LABS PRIVATE LIMITED Certified & MoEF Recognized Laboratory and meteorological data collected from the nearest IMD station located in Karur paramathi - index KPM 43342.

Apart from these, secondary data have been collected from Census Handbook, Revenue Records, Statistical Department, Soil Survey and Land use Organization, District Industries Centre, forest working plan, Forest Department, Central Ground Water Authority, etc., The generation of primary data as well as collection of secondary data and information from the site and surroundings was carried out during Pre monsoon season i.e **October to December 2023.**

TABLE 3.1: ENVIRONMENTAL MONITORING ATTRIBUTES AND FREQUENCY

ATTRIBUTE	PARAMETERS	FREQUENCY OF MONITORING	PROTOCOL
Meteorology	Wind Speed Wind Direction Temperature	1 Hourly Continuous Mechanical/Automatic Weather Station	IS 5182 Part 1-20
	Rainfall	weather Station	Secondary Data from IMD Station.
Ambient Air	PM_{10}	24 hourly twice a week	IS 5182 Part 1-23
Quality	PM _{2.5}	for 3 months	National Ambient Air
	SO_2		Quality Standards,
	NO_X		CPCB
	CO		
Water Quality	Physical,	Once during the study	IS 10500
	Chemical and	period	IS 3025
	Bacteriological Parameters		IS 2488 (Part 1-5)
Ecology	Existing Flora and Fauna	Through field visit	Primary Survey by
		during the study period.	Quadrate & Transect
			Study
Noise Levels	Background Noise Levels in	Hourly observation for	IS 9989
	the study area	24 hours per location	As per CPCB Guidelines
Soil	Physio-Chemical	Once during the study	IS 2720
Characteristics	Characteristics	period	
Landuse	Landuse Pattern within 10 KM radius of the study area	Data's from census handbook 2011 and from the satellite imagery	Satellite Imagery Primary Survey
Socio Economic	Socio-Economic	Census handbook, 2011	Primary survey,
Aspects	Characteristics,		census handbook &
	Population Statistics and		need based
	Existing Infrastructure in the		assessments.
	study area.		

Source: EIA Guidelines

All monitoring and testing are been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 METEOROLOGY.

Sampling Methodology

The meteorology data recorded during the study period is useful for proper correlation and interpretation of the baseline information as well as for input to prediction models for air quality dispersion. It is characterized by a hot and dry summer from March – May, a monsoon or rainy season from October - December and winter season from January - March. The climate of the Dindigul District is generally warm. The hottest period of the year is generally from the months of March to May, the highest temperature going up to 38° C in April. During field monitoring at study area various meteorological parameters were generated continuous monitoring equipment's to record wind speed, wind direction, temperature and relative humidity.

The methodology adopted for monitoring field observations was as per the standard norms laid down by the Bureau of Indian Standards (IS: 8829) and Regional meteorological center under IMD (Indian Meteorological Department) situated in Karur paramathi vide index No KPM -43342.

3.1.2 METEOROLOGICAL DATA RECORDED AT SITE

Period of Study

The meteorological parameters were recorded at site on hourly basis during the study period (October – December 2023) and consist of parameters like, wind speed, wind direction, temperature and relative humidity.

Temperature

In Dindigul, the average annual temperature is 27.8 °C. The rainfall here averages 717 mm. The driest month is March, with 11 mm of rainfall. The greatest amount of precipitation occurs in October, with an average of 180 mm. The warmest month of the year is May, with an average temperature of 30.4 °C. The lowest average temperatures in the year occur in January, when it is around 24.8 °C. The difference in precipitation between the driest month and the wettest month is 169 mm. The variation in temperatures throughout the year is 5.6 °C. The nearest IMD station for the proposed mine project is Karur paramathi - index KPM 43342.

Relative Humidity

The climate of the district on the whole is slightly humid. The driest months are February and March with average relative humidity of about 40% in the afternoons. During the rainy months the average humidity is appreciably below the saturation level. Skies are generally clear or lightly clouded during the period October to December.

3.1.3 LAND USE/ LAND COVER:

Land use pattern of the area is studied through the Bhuvan (ISRO). The interpretation made visually by identifying the land use cover through the keys given in the map. In the study area 10Km map radius map has been taken for the analysis of land use cover.

Since the mining is carried out by opencast category "A" other than fully mechanized method, studies on land environment of eco-system play an imperative role in identifying susceptible issues and taking appropriate action to uphold ecological equilibrium in the region. The main objective of this section is to provide a baseline status of the study area covering 10km radius around the proposed mine site so that temporal changes due to the mining activities on the surroundings can be assessed in future.

3.1.4 DESCRIPTION OF LAND USE

The distribution of lands within the buffer zone was computed based on the Bhuvan details.

TABLE 3.2: LAND USE LAND COVER TABLE 10KM RADIUS

Sl.No.	Classification	Area in Ha.	Area in %
1	Builtup, Urban	36.99	0.12
2	Builtup, Rural	384.83	1.21
3	Builtup, Mining	146.85	0.46
4	Agriculture, Crop land	16592.75	52.17
5	Agriculture, Plantation	5808.03	18.26
7	Forest, Deciduos	6396.36	20.11
9	Forest, Scrub Forest	396.87	1.25
12	Barren/Uncul./Wast., Barren rocky	85.58	0.27
13	Barren/Waste., Scrub land	1236.61	3.89
14	Wetlands/WB,River/Str./Canals	30.91	0.10
15	Wetlands/WB,Res./Lakes/Ponds	686.56	2.16
	Total	31802.33	100.00

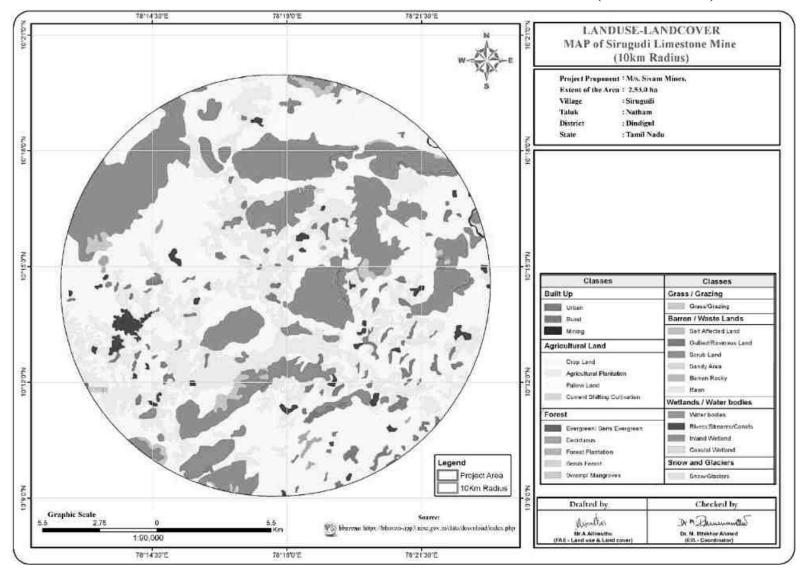


FIGURE 3.1: LAND USE LAND COVER MAP OF THE STUDY AREA (10KM RADIUS)

Source: Bhuvan ISRO on LISS III image

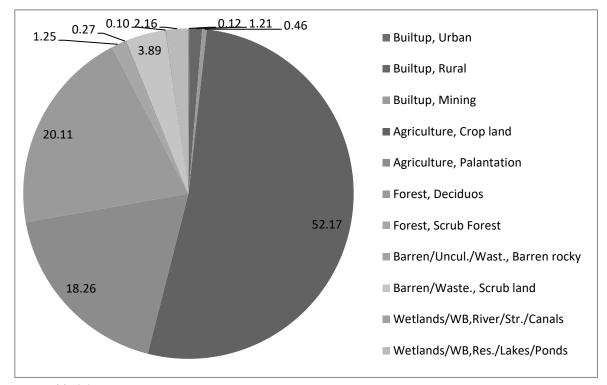


FIGURE 3.2: PIE DIAGRAM OF LAND USE LAND COVER

Source: Table 3.2

Interpretation:

Most of the study area is covered by the agriculture land which depends upon the seasonal vegetation. The total mining areas in the 10 km radius is about 0.46% are very small in nature. The proposed mining area is 2.53.0 ha which covers about 1.72% from the total mining area within the study area which will not have any significant impact on the environmental.

3.1.5 ENVIRONMENTAL FEATURES IN THE STUDY AREA

No major eco-system / biosphere reserves have been identified within the periphery of the project site. Details of the important features along with other sensitive ecological locations in the study area are provided in the following table.

TABLE 3.3: ENVIRONMENTAL SETTINGS OF THE STUDY AREA

S.No	Sensitive ecological features	Name	Arial distance in Km from mine lease boundary			
1	National Park -Wild life	None				
	sanctuaries					
2	Reserve forest	Nedunkuthu reserve forest	4.40Km North			
		Vellimalai reserve forest	6.50KM North East			
		Karumalai reserve forest	4.20Km North East			
		Badugudi reserve forest	700m South East			
		Alagar hills reserve forest	11KM South West			
		Karandamalai reserve forest	7KM North West			
3	Lakes/Reservoir/Dams	Sirugudi Village Tank	400 m South West			
		Sirugudi Village Tank	1 km North			
4	Tiger Reserve/Elephant Reserve	None	Nil within 10Km Radius			
5	Core Zone of Biosphere	None	Nil within 10Km Radius			
	Reserve					
6	Migratory birds	None	Nil within 10Km Radius			
7	Stream/Rivers	None	Nil within 10Km Radius			
8	Mangroves	None	Nil within 10Km Radius			
9	Mountains/Hills	None	Nil within 10Km Radius			
10	Notified Archaeological sites	None	Nil within 10Km Radius			
11	Industries/Thermal Power	None	Nil within 10Km Radius			
	Plants					
12	Defense Installation	None	Nil within 10Km Radius			

Source: Survey of India Toposheet

3.1.6 TOPOGRAPHY:

The area is almost plain terrain. The general slope of the area is towards South. The attitude of the area is 213 m above MSL.

3.1.7 DRAINAGE PATTERN OF THE AREA.

The general drainage pattern of the area is of dendritic and SUB dendritic pattern. No prominent water course or nallah is inferred. During rainy season the surface runoff flows in N to S direction. The drainage pattern of the study area is given in Fig. 3.4.

There are no developed surface drainage channels in the ML area. There are no major rivers within the radius of 10KM. The area is studded with numerous tanks that serve as the source of drinking water and also their surplus feeds adjoining tanks. The area is mostly dry in all seasons except rainy seasons.

3.1.8 SEISMIC SENSITIVITY

Zone II, Low Risk Zone (https://moes.gov.in/writereaddata/files/LS_EN_20032020_385.pdf) and no history of such incidents in the area.

The mining lease area falls in the Garnet biotite gneiss on the peninsular shield of south India which is highly stable.

FIGURE 3.3: DRAINAGE MAP OF THE STUDY AREA COVERING 10KM RADIUS

Source: Geographical information system (GIS)

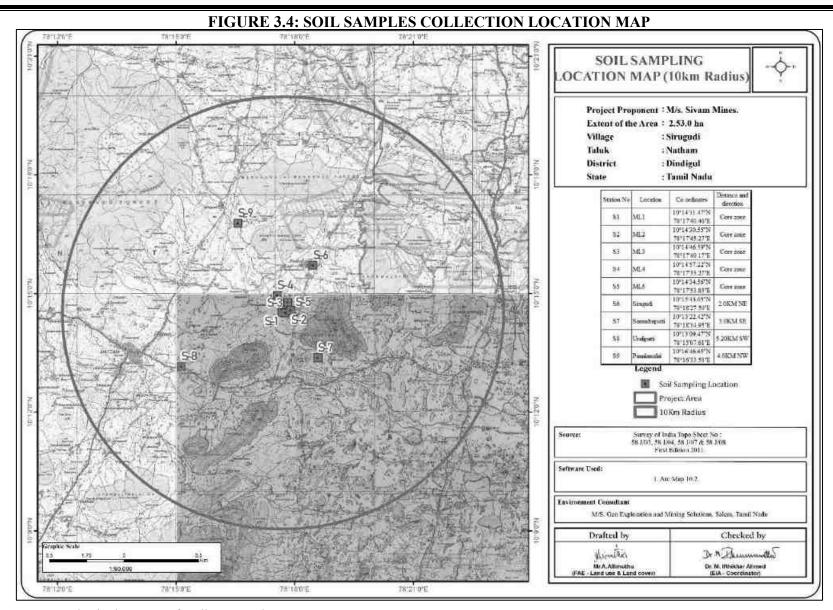
3.1.9 SOIL CHARACTERISTICS:

The soil is developed by the weathering of the rocks present in nature and differentiated into horizons of various heights and characters. The soil is a natural medium for plant growth and supplies the required nutrients to the growing plants. Some soils are very productive that contain adequate amounts of all essential elements in the form readily available to plants. For good plant growth the soil should also be in good physical condition which ensures proper supply of air and water.

The objective of the soil sampling is: -

- To determine the baseline soil characteristics of the study area;
- To determine the impact of proposed activity on soil characteristics and;
- To determine the impact on soil more importantly agriculture production point of view.

The Soil Productive Capacity can be evaluated by determining Physio-Chemical characteristics of the soil. Nine Samples of Soil were collected from different locations for studying soil characteristics in the study area, the location of which is listed in Table 3.4


Methodology of Soil Monitoring -

It is most essential to obtain a representative sample of soil from an area in any study. A composite sample of an area is normally preferred. The soil sample was collected from different locations in the month of October 2023 by hand auger boring and from trial pit method up to the depth of 90 cm and transported to the laboratory and was spread for air drying. After proper drying of the soil, large stones and other similar objects were removed and the soil was grounded to break up aggregates and crumbs, and tested as per IS 2720. The results are given in Table 3.5.

Station No Location/ Co ordinates Distance and direction Environmental settings ML1 10°14'31.47"N 78°17'40.46"E Core zone Mining Area S1 10°14'30.55"N 78°17'45.27"E S2 ML2 Core zone Mining Area ML3 10°14'46.59"N 78°17'49.17"E Mining Area S3Core zone 10°14'57.22"N 78°17'33.27"E S4 ML4 Core zone Mining Area 10°14'34.56"N 78°17'53.85"E S5 ML5 Core zone Mining Area 10°15'43.05"N 78°18'27.50"E Sirugudi 2.0Km NE S6 Agriculture land 10°13'22.42"N 78°18'34.95"E S7 Samudrapatti 3.0Km SE Agriculture land 10°13'09.47"N 78°15'07.61"E S8 5.20Km SW Uralipatti Agriculture land Panniamalai 10°16'46.65"N 78°16'33.58"E 4.0Km NW Agriculture land

TABLE 3.4: DETAILS OF SOIL MONITORING STATIONS

Source: Baseline Monitoring Data at Project Site

Source Geological survey of India Topo sheet

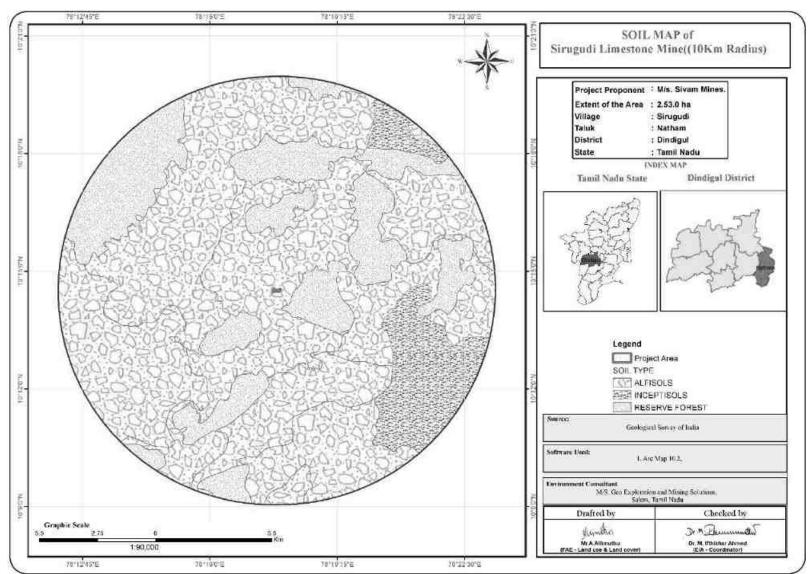


FIGURE 3.5: SOIL MAP OF THE STUDY AREA

Source: Geographical information system (GIS).

TABLE 3.5: SOIL QUALITY MONITORING DATA

Sl. No.	Pa	rameter	S1	S2	S3-	S4	S 5	S 6	S 7	S 8	S 9	Desirable Range	Interpretation
1	рН @ 25°С		8.31	8.09	7.98	8.16	8.04	7.85	7.47	8.02	7.68	5.5-9.0	Strongly alkaline
2	Electrical Conductivity @ 25°C, μS/cm		590	624	609	614	628	484	516	534	546	1000 - 2000	Low conductivity
3	Water Conte	nt, %	0.89	0.68	0.73	0.64	0.59	1.34	1.25	1.16	1.09	-	
4	Available Ph	osphorous, μg/g	55.6	51.4	58.2	50.6	50.1	48.4	51.2	50.8	49.6	15 - 840	Very Low
5	Organic Mat	ter,%	0.7	0.9	1.1	1.8	2.0	1.5	1.2	1.8	1.3	-	
6	Soluble Calc	ium as Ca, meq/l	14.0	12.4	10.8	8.8	6.4	3.8	4.4	2.6	1.9	50 - 100	Low
7	Soluble Calc Magnesium,		20.6	20.6	19.5	12.8	10.3	5.4	5.8	3.4	3.2	-	
8	Chloride as C	Cl ⁻ , meq/l	12.8	11.7	12.4	11.8	10.1	4.2	3.6	2.8	3.4	0.1 - 0.2	High
	Soluble Potassium as K, mg/100g		0.8	0.6	0.8	0.9	1.1	1.1	0.9	1.4	0.2	15 - 25	Low
	Soluble Sodium as Na, mg/100g		4.7	3.6	3.1	3.3	2.9	5.4	3.9	5.8	4.3	-	
11	Sulphate as S	SO ₄ -,mg/100g	18.6	20.4	18.6	16.4	14.6	14.8	12.6	13.4	15.8	0.2 - 1	Low
12	Calcium Carbonate as CaCO ₃ , %		32	34	32	20	28	28	36	34	28	-	
13	Carbonate and Bicarbonate, meg/l		1.6	1.4	1.8	2.2	1.2	2.2	2.0	1.8	2.0	-	
14		al Nitrogen, %	14	14	28	14	14	56	48	14	28	0.15 - 0.25	Very Low
15	Bulk density gm/cc		1.28	1.22	1.26	1.28	1.25	1.52	1.44	1.38	1.30		
16	Water holding capacity %		42	42	48	44	44	44	46	48	44		
17	Porosity %		56	54	60	52	50	60	62	64	66		
		Sand	92	93	90	93	96	40	35	35	40		
18	Texture %	Silt	4	3	4	2	2	25	30	35	30		
		Clay	4	4	6	5	2	35	35	30	30		
19			Sand	Sand	Sand	Sand	Sand	Clay Loam	Clay	Clay loam	Clay		

Source: Lab Analysis Results

^{*} Desirable Range for High Production Soil

3.1.10 SOIL STATUS

Interpretation:

It is observed that the pH of the Soil ranging from 7.47 to 8.31 indicating that the soils is strongly Alkaline in nature. The Electrical Conductivity of the Soil ranges from 516 to 628 indicating Low Conductivity. The concentration of Chlorides is ranging from 2.8 to 12.8 which is found to be on the higher side, this is due to the dispersion of chlorides from the limestone to the nearby areas. The soil found in the area is semi fertile soil.

3.2 WATER ENVIRONMENT:

3.2.1 SURFACE WATER:

There is no perennial source (river) of surface water in the study area. Few ponds are present in some villages but are mostly dry before summer. Though the rainfall over the area is low to moderate, the rainwater storage in open wells, trenches is in practice over the area and the stored water acts as source of freshwater for couple of months after rainy season. The overland monsoon season runoff is intercepted and channelized to local open wells to a great extent by local villagers with a view to recharge the sub surface aquifer.

General water level of the area falls between 35m to 30m (35m in summer and 30m in rainy season).

3.2.2 GROUND WATER CONDITIONS:

The district is underlain entirely by Archaean Crystalline formations most of the area's are covered by Recent alluvial deposits. Weathered, fissured and fractured crystalline rocks and the recent alluvial deposits constitute the important aquifer systems in the district. Well irrigation is the highest in Natham block. As per the CGWB records Natham block categorization as semi critical.

The study area falls in the Natham block which is categorized as Semi Critical (70%-90%) as per G.O. (MS) No 113 dated 09.06.2016.

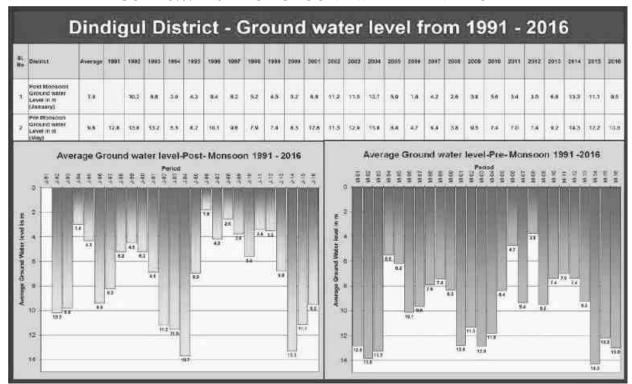


FIGURE 3.6: DISTRICT GROUND WATER LEVEL CHART

 $\textbf{Source:}\ \underline{\text{http://www.twadboard.gov.in/twad/dgl_dist.aspx}}$

TWAD BOARD Tamil Nadu Water Supply and Drainage Board

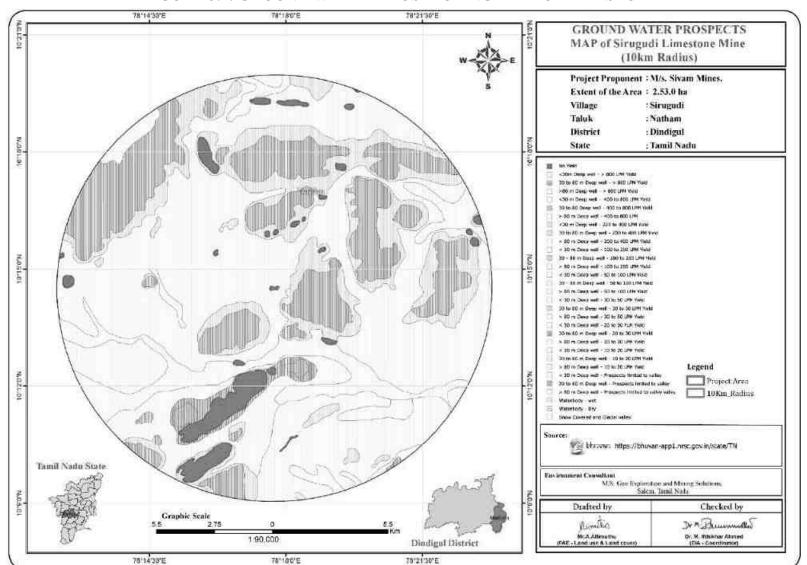


FIGURE 3.7: GROUND WATER PROSPECTING MAP OF THE STUDY AREA

Source: Bhuvan IRS Liss III Data

3.2.3 WATER ANALYSIS LOCATIONS

Ground water is water located beneath the ground surface in soil pore spaces and in the fractures of lithologic formations. Ground water is also often withdrawn for agriculture, municipal and industrial use by constructing and operating extraction wells. Ground water is naturally replenished by surface water from precipitation, streams and rivers.

Numerous industrial activities deliberately inject untreated effluent directly into the ground, contaminating underground aquifers.

Groundwater has been an important source for catering to the local needs of water consumption for various purposes, mainly domestic usage. Keeping in view the importance of groundwater to the local population, eight water samples was collected from the study area for the monitoring and assessment of groundwater quality. The locations as mentioned in Table 3.6.

All the collected water samples were analyzed by M/s EHS 360 LABS PRIVATE LIMITED Certified & MoEF Recognized Laboratory.

TABLE 3.6: WATER SAMPLING LOCATIONS

Location Code	Location	Co ordinates	Direction with respect to project site	Distance with respect to project site (km)	Type of water
W1	Project Site Lease 1	10°14'27.98"N 78°17'42.80"E	Core zone	Core zone	Mine pit water
W2	Project site Lease 3	10°14'35.66"N 78°17'55.58"E	Core zone	Core zone	Bore water
W3	Project site Lease 4	10°14'43.75"N 78°17'49.77"E	Core zone	Core zone	Pit water
W4	Project site Lease 5	10°14'57.33"N 78°17'34.83"E	Core zone	Core zone	Pit water
W5	Sirugudi	10°15'47.45"N 78°18'26.16"E	NE	3.0	Ground water
W6	Samudrapatti	10°13'20.25"N 78°18'35.50"E	SE	2.60	Ground water
W7	V.Pudur	10°13'31.90"N 78°19'59.29"E	SE	4.30	Ground water
W8	Uralipatti	10°13'2.66"N 78°15'1.61"E	SW	5.50	Ground water
W9	Panniamalai	10°16'46.65"N 78°16'36.79"E	NW	2.75	Ground water
W10	Odugampatti	10°17'12.01"N 78°19'18.76"E	NE	5.18	Ground water
W 11	Avichipatti	10°14'47.39"N 78°16'46.65"E	West	1.64KM	Ground water

Source: Lab Monitoring Data

Methodology for sample collection –

Water sample was collected in the month of November - 2023.

The sample was collected and analyzed as per IS-10500; IS-3025 & IS-2488 (Part 1-5). Grab sample of water was collected. Sample for chemical analysis was collected in polyethylene carboys. Sample for bacteriological analysis was collected in the sterilized bottle. Specified physio-chemical and Bacteriological parameters have been analyzed for projecting the existing water quality status in the study area.

Objective of Water sampling:-

- For rational planning of pollution control strategies and their prioritization.
- To assess nature and extent of pollution control needed in different water bodies or their part.
- To evaluate effectiveness of pollution control measures already in existence.
- To assess assimilative capacity of a water body thereby reducing cost on pollution control.
- To understand the environmental fate of different pollutants.
- To assess fitness of water for different uses.

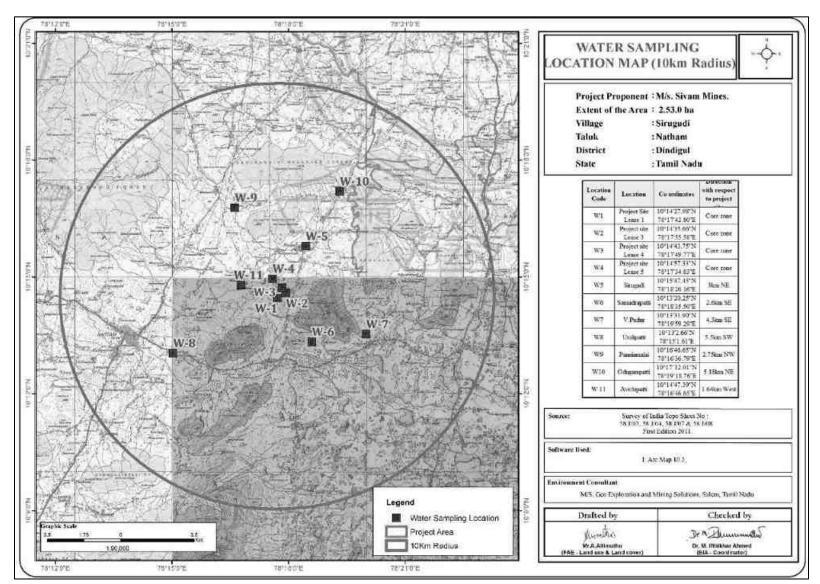


FIGURE 3.8: WATER QUALITY MONITORING LOCATIONS

Source: Survey of India Toposheet, 11th Edition, 2011

FIGURE 3.9: WATER SAMPLE COLLECTION IN MINE PIT AND PUBLIC WATER TANK

TABLE 3.7: WATER QUALITY DATA

S.N O	Test Parameters	Unit	BW1	BW2	BW3	BW4	BW5	BW6	BW7	BW8	BW9	BW10	BW11	IS:10500 Norms*
1	рН @ 25°С	-	7.72	7.73	7.83	7.63	7.01	7.59	7.4	7.82	7.67	8.23	7.49	-
2	Conductivity@ 25°C	μs/cm	2140	1810	990	1740	1470	1440	2880	1070	1150	1340	610	1/5
3	Turbidity	NTU	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	6.5 – 8.5
4	Total Dissolved Solids	mg/l	1391	1177	643	1131	956	936	1872	696	748	871	397	500 / 2000
5	Total Alkalinity	mg/l	430	280	310	235	310	288	292	150	154	156	200	
6	Total Hardness as CaCO ₃	mg/l	563	561	288	581	590	570	501	260	285	292	270	200 / 600
7	Calcium as Ca	mg/l	108	99	56	104	104	106	103	56	58	54	72	200 / 600
8	Magnesium as Mg	mg/l	71	76	36	68	80	74	59	29	34	38	22	75 / 200
9	Chloride as Cl ⁻	mg/l	260	265	95	192	200	178	125	155	146	155	50	250 / 1000
10	Sulphate as SO ₄ -	mg/l	120	104	72	110	95	92	94	119	122	138	26	200 / 400
11	Sodium as Na	mg/l	164	108	106	136	128	116	209	178	184	205	42	0.3
12	Iron as Fe	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	-
13	Phosphate as PO ₄	mg/l	BDL (DL:0.1)	-										
14	Silica as SiO ₂	mg/l	28.0	26.0	28.0	32.0	31.0	26.0	26.0	22.0	28.0	24.0	14.0	-
15	Total Coliform	mgl	Absent											
16	E.Coli	mgl	Absent											

^{*} IS: 10500:2012-Drinking Water Standards; # within the permissible limit as per the WHO Standard. The water can be used for drinking purpose in the absence of alternate sources. Note: SW- Surface water, GW – Ground water.

Interpretation:

The mining operation is restricted above the Ground water table, the average pH value of the samples is 7.64 indicating slightly alkaline in nature. All physic- chemical parameters of the water samples in study area is well within the permissible limits as per IS: 10500.

The quality of the mine pit water does not have any heavy metal concentration, acidic, Sulphur or suspended solid particles hence the water can be used for green belt development and dust suppression. During rainy season the water from the mine will be collected in the mine pit only hence the water regime in the surroundings will not be affected in any manner.

As per the IS: 10500-2012 norms the water in the mine pit is fit for drinking purpose in the absence of alternate sources.

3.3 AIR ENVIRONMENT:

Ambient air quality is considered as background concentration of atmosphere. Monitoring of Ambient air is carried out to establish the impacts of various activities leading to generation of dust which have an impact on ambient air quality. All substances in ambient air exist as particulate matter, gases or vapors.

3.3.1 SELECTION OF AIR QUALITY MONITORING STATIONS LOCATIONS

Ambient air quality monitoring (AAQM) station was set up in eleven locations in study area for sampling –

The baseline status of the ambient air quality has been assessed through a scientifically designed ambient air quality monitoring network based the downwind and up wind direction as curtained through micro meteorological monitoring and wind rose diagrams; Sampler away from source and other interferences (inlet 15 m away from source/ traffic artery).

TABLE 3.8: AMBIENT AIR QUALITY MONITORING STATIONS

S.No	Station code	Location	Coordinates	Distance & Direction
1	AAQ 1	Near Lease 2	10°14'31.42"N 78°17'43.09"E	Core zone
2	AAQ 2	Near Lease 1	10°14'32.59"N 78°17'46.66"E	Core zone
3	AAQ 3	Near Lease 2	10°14'29.65"N 78°17'43.25"E	Core zone
4	AAQ 4	Near Lease 4	10°14'48.60"N 78°17'48.60"E	Core zone
5	AAQ 5	Near Lease 4	10°14'46.32"N 78°17'49.98"E	Core zone
6	AAQ 6	Near Lease 5	10°14'57.78"N 78°17'34.06"E	Core zone
7	AAQ 7	Sirugudi	10°15'46.94"N 78°18'29.24"E	3.00Km NE
8	AAQ 8	Samudrapatti	10°13'19.98"N 78°18'34.47"E	2.62Km SE
9	AAQ 9	V.Pudur	10°13'30.08"N 78°19'59.39"E	4.42Km SE
10	AAQ 10	Uralipatti	10°13'2.82"N 78°15'1.28"E	5.40 Km SW
11	AAQ 11	Panniamalai	10°16'45.84"N 78°16'36.52"E	3.70Km NW

Source: Lab Monitoring Data

3.3.2 SITE SPECIFIC METEOROLOGY

Site specific meteorology during the study period was recorded by an automated weather station. Wind profile of the area is shown in the form of wind rose diagram given in Figure 3.14. Aeromod software version 9.1 was used to interpretation the air quality analysis.

3.3.3 CLIMATOLOGY:

Dindigul has a tropical climate. The summers are much rainier than the winters in Dindigul. This climate is considered to be Aw according to the Köppen-Geiger climate classification. In Dindigul, the average annual temperature is 27.8 °C. The driest month is March, with 11 mm of rainfall. The greatest amount of precipitation occurs in October, with an average of 180 mm. The warmest month of the year is May, with an average temperature of 30.4 °C. The lowest average temperatures in the year occur in January, when it is around 24.8 °C. The difference in precipitation between the driest month and the wettest month is 169 mm. The variation in temperatures throughout the year is 5.6 °C. The nearest IMD station for the proposed mine project is Karur paramathi - index KPM 43342

Rainfall

The average annual rainfall and the 5 years rainfall collected from IMD, Chennai is as follows:

TABLE 3.9: LAST FIVE YEARS RAINFALL DATA

	Actual ra	ainfall in n	nm		Normal rainfall in mm
2013	2014	2017	Normai raintati in min		
531.3	994.3	1118.6	502.3	925.5	930.54

Source: http://www.twadboard.gov.in/twad/dgl_dist.aspx

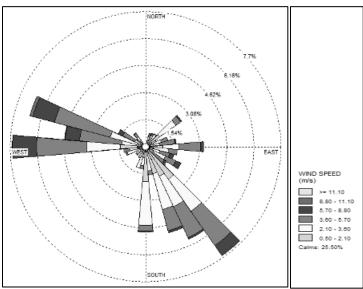


FIGURE 3.10: WIND ROSE DIAGRAM

3.3.4 AMBIENT AIR QUALITY

Objectives:-

- The prime objective of the baseline air quality monitoring is to evaluate the existing air quality of the area in conformity to NAAQS (National Ambient Air Quality Standards) 2009.
- To identify specific industrial and other sources of pollution.
- To assess health hazards and potential damage to property.
- To assess the pollution impacts on biotic environment.
- To collect data for formulating and testing air pollution models.

The results of monitoring during the study period (October to December 2023) are presented in the report.

FIGURE 3.11: AMBIENT AIR QUALITY MONITORING PHOTOS

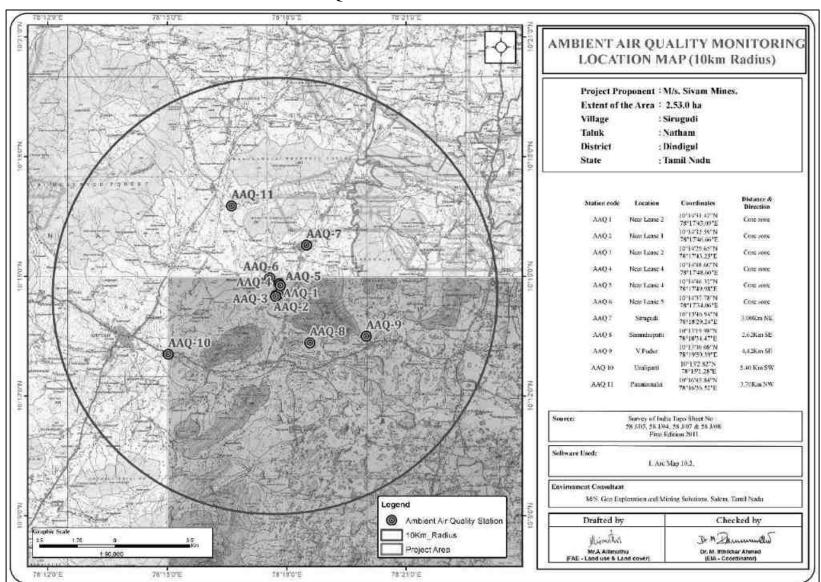


FIGURE 3.12: AIR QUALITY MONITORING LOCATION MAP

Source: Survey of India Toposheet, 11th Edition, 2011

3.3.5 PERIOD OF STUDY

Ambient air quality monitoring was carried out at a frequency of 2 days per week at each location for three months. The baseline data of air environment was generated for the following parameters:

- ➤ Sulphur dioxide as SO₂
- ➤ Nitrogen dioxide as NO₂
- Particulate Matter(Size Less than 10 μm) as PM₁₀
- Particulate Matter (Size Less than 2.5 μm) as PM_{2.5}
- ➤ Ozone as O₃
- Lead as Pb,
- > Carbon Monoxide as CO
- ➤ Ammonia as NH₃
- ➤ Benzene as C₆ H₆
- Benzo (a) Pyrene as BaP
- > Arsenic as As
- Nickel as Ni

3.3.6 INSTRUMENTS USED FOR SAMPLING & ANALYSIS

TABLE 3.10 AMBIENT AIR MONITORING INSTRUMENTS:-

INSTRUMENT	MODEL NO.	RANGE AND SENSITIVITY					
Respirable Dust Sampler (RDS)	APM-450BL	$0.40 - 1.5 \text{ m}^3/\text{min}$	0-3 LPM				
		$\pm 0.02 \text{ m}^3/\text{min}$	$\pm 0.2 \text{ LPM}$				
		(PM_{10})	(gases)				
Fine Particulate Sampler	APM 550	$\pm 0.03 \text{ DGM m}^3 (PM_{2.5})$					

Source: Lab Monitoring Data

3.3.7 SAMPLING AND ANALYTICAL TECHNIQUES

TABLE 3.11 TESTING METHOD FOLLOWED FOR AMBIENT AIR QUALITY:-

Pa	rticular	Testing Method to be Followed
A	PM_{10}	IS 5182 (Part–23) 2006
В	PM _{2.5}	IS 5182 (Part–23) 2006
C	SO ₂ (Sulfur Dioxide)	IS 5182 (Part–2) 2001, with Improved West & Gaeke Method
D	NO _x (Oxides of Nitrogen)	Modified Jacobs – Hochheiser Method / Arsenite Method (IS
		5182 Part 6) 2011

Source: Lab Monitoring Data

The air inlet has a circular symmetry so that air entry is unaffected by wind direction and is designed to keep out rain, insects and very large particles. The inlet section immediately leads to an impactor stage designed to trap particles with an aerodynamic diameter larger than 10 microns (Glass Fiber Filter size is 20.3 x 25.4cm). Thus the air stream in the down tube consists of only medium and fine particulates. The streamlined air flow of the down tube is accelerated through the nozzle of the well-shaped impactor designed to trap medium size particulates with an aerodynamic diameter between 2.5 and 10 microns.

To avoid sampling errors due to the tendency of small particles to bounce off the impaction surface a 37mm diameter GF/A paper immersed in silicone oil is used as an impaction surface. The air stream leaving the WINS impactor consists of microns. These fine particles are collected on a special Teflon membrane filter of 47 mm diameter. Modified West and Gaeke method (IS 5182 part II, 2001) has been adopted for estimation of SO₂ and Arsenite Modified Jacob & Hochheiser has been adopted for estimation of NO_X. NH₃ by Indophenols blue Method, O₃ by Chemical method.

The Particulate Matters (Size less than 10µm) are used to estimate the Mercury, lead, Nickel and Arsenic levels. Filter paper is digested and analyzed for heavy metal as per the method "As per IS 5182 (Part 22): 2004 followed by Atomic Absorption Spectrometer (AAS), Benzene and Benzo(a) Pyrene (BaP) as per method IS 5182 followed by Gas Chromatography (GC&HPLC).

TABLE 3.12: AMBIENT AIR QUALITY – AAQ1

Period: October – December 2023 Location: AAQ1- Near lease area 2 Sampling Time: 24-hourly

Monit	oring	Particulate	es, µg/m³		Gaseous Pollutants, µg/m³						Other Pollutants (Particulate Phase) , µg/m³				
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ng/m ³	BaP, ng/m³		
NAAQ	Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0	6.0 (annual)	20 (annual)	5.0	1.0 (annual)		
06-07.10.2023	07.00-07.00	17.3	35.4	4.1	12.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
07-08.10.2023	07.15-07.15	18.2	36.7	4.4	12.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
13-14.10.2023	07.00-07.00	17.1	36.1	4.2	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
14-15.10.2023	07.15-07.15	18.4	37.9	4.5	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
20-21.10.2023	07.00-07.00	18.1	35.4	4.2	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
21-22.10.2023	07.15-07.15	19.2	36.7	4.4	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
27-28.10.2023	07.00-07.00	18.4	36.1	4.3	14.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
28-29.10.2023	07.15-07.15	19.9	37.1	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
03-04.11.2023	07.00-07.00	17.8	36.4	4.0	12.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
04-05.11.2023	07.15-07.15	18.4	37.2	4.4	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
10-11.11.2023	07.00-07.00	17.3	35.1	4.3	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
11-12.11.2023	07.15-07.15	18.4	36.7	4.5	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
17-18.11.2023	07.00-07.00	17.4	35.3	4.2	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
18-19.11.2023	07.15-07.15	19.1	36.4	4.4	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
24-25.11.2023	07.00-07.00	18.3	36.7	4.1	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
25-26.11.2023	07.15-07.15	19.4	37.3	4.5	14.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
01-02.12.2023	07.00-07.00	17.3	35.1	4.1	12.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
02-03.12.2023	07.15-07.15	18.4	36.7	4.4	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
08-09.12.2023	07.00-07.00	18.1	35.4	4.2	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
09-10.12.2023	07.15-07.15	19.4	36.8	4.5	14.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
15-16.12.2023	07.00-07.00	17.3	35.3	4.3	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
16-17.12.2023	07.15-07.15	18.4	37.1	4.5	14.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
22-23.12.2023	07.00-07.00	17.2	35.4	4.1	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
23-24.12.2023	07.15-07.15	18.7	37.1	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		

Source: Lab Analysis Results

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen; NH₃-Ammonia; O₃-Ozone; CO-Carbon monoxide;

Status: Within the permissible limit

Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-Benzene &BaP-Benzo (a) pyrene in particulate phase.

^{*} NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas

TABLE 3.13: AMBIENT AIR QUALITY – AAQ2

Period: October – December 2023 Location: AAQ2-Lease 1 Sampling Time: 24-hourly

Monitoring Particulates, μg/m³ Gaseous Pollutants, μg/m³ Other Pollutants (Particulate Phase), μg/m³													
Monit	oring	Particulat	es, μg/m³		Gase	ous Pollut					s (Particula		
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ N	Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
06-07.10.2023	07.00-07.00	17.5	35.3	4.1	12.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07-08.10.2023	07.15-07.15	18.1	35.9	4.4	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13-14.10.2023	07.00-07.00	17.1	35.1	4.2	42.5	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.15-07.15	17.9	35.4	4.3	42.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20-21.10.2023	07.00-07.00	18.1	35.6	4.1	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.15-07.15	18.5	36.1	4.4	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.00-07.00	17.6	36.2	4.2	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
28-29.10.2023	07.15-07.15	18.2	36.8	4.5	13.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03-04.11.2023	07.00-07.00	17.2	36.2	4.0	12.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.15-07.15	17.8	36.9	4.2	12.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10-11.11.2023	07.00-07.00	17.3	36.8	4.3	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.15-07.15	17.9	37.2	4.5	13.0	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.00-07.00	18.3	37.3	4.2	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	19.1	37.4	4.5	13.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	18.6	37.4	4.3	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	19.2	37.9	4.4	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	18.4	35.3	4.1	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	18.9	36.1	4.2	13.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	19.1	35.4	4.3	14.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	19.7	36.2	4.4	14.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	19.3	35.3	4.2	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	19.8	36.9	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	19.2	36.1	4.3	12.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	19.9	36.8	4.4	12.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.14: AMBIENT AIR QUALITY – A3

Period: October – December 2023 Location: AAQ3- Lease 2 Sampling Time: 24-hourly

	r – December 2			ocation: AF	_		, , , ,		Other Pollutants (Particulate Phase), µg/m³					
Monito	oring	Particulat	es, μg/m³		Gase	ous Pollut	ants, μg/m ³	T ~~			s (Particula			
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³	
NAAQ N	Vorms*	60	100	80	80	400	100	2.0	1.0	6.0	20	5.0	1.0	
MAAQI		(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(8 hrs.)	(8hrs.)	(24 hrs.)	(annual)	(annual)	(annual)	(annual)	
06-07.10.2023	07.00-07.00	17.3	35.4	4.2	12.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
07-08.10.2023	07.15-07.15	17.9	36.1	4.3	12.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
13-14.10.2023	07.00-07.00	17.2	35.7	4.3	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
14-15.10.2023	07.15-07.15	17.6	36.8	4.5	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
20-21.10.2023	07.00-07.00	18.3	36.1	4.4	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
21-22.10.2023	07.15-07.15	18.6	37.4	4.5	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
27-28.10.2023	07.00-07.00	17.6	36.4	4.1	13.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
28-29.10.2023	07.15-07.15	18.4	37.9	4.2	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
03-04.11.2023	07.00-07.00	18.2	35.3	4.1	14.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
04-05.11.2023	07.15-07.15	18.8	35.8	4.3	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
10-11.11.2023	07.00-07.00	17.4	36.3	4.2	12.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
11-12.11.2023	07.15-07.15	17.9	36.9	4.3	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
17-18.11.2023	07.00-07.00	18.4	37.1	4.1	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
18-19.11.2023	07.15-07.15	19.2	37.9	4.5	13.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
24-25.11.2023	07.00-07.00	18.7	35.4	4.1	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
25-26.11.2023	07.15-07.15	19.3	36.7	4.5	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
01-02.12.2023	07.00-07.00	18.5	35.4	4.2	14.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
02-03.12.2023	07.15-07.15	18.7	36.3	4.3	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
08-09.12.2023	07.00-07.00	19.2	35.7	4.3	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
09-10.12.2023	07.15-07.15	19.6	36.9	4.4	13.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
15-16.12.2023	07.00-07.00	19.4	35.8	4.2	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
16-17.12.2023	07.15-07.15	19.9	36.4	4.5	12.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
22-23.12.2023	07.00-07.00	18.3	36.7	4.3	12.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	
23-24.12.2023	07.15-07.15	18.7	37.9	4.5	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0	

Source: Lab Analysis Results

TABLE 3.15: AMBIENT AIR QUALITY – AAQ4 Location: AAQ4-Lease - 4

Period: October – December 2023 Location: AAQ4-Lease - 4 Sampling Time: 24-hourly

	toring	es, μg/m ³				24-Lease - 4 ants, μg/m ³		Other Pollutants (Particulate Phase), µg/m³					
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ I	Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
06-07.10.2023	07.00-07.00	18.1	36.1	4.1	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07-08.10.2023	07.15-07.15	18.5	37.3	4.2	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13-14.10.2023	07.00-07.00	18.4	36.4	4.2	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.15-07.15	18.9	36.9	4.3	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20-21.10.2023	07.00-07.00	19.1	37.1	4.4	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.15-07.15	19.4	37.8	4.2	12.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.00-07.00	19.3	35.2	4.3	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
28-29.10.2023	07.15-07.15	19.9	35.9	4.4	13.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03-04.11.2023	07.00-07.00	18.4	35.3	4.0	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.15-07.15	18.7	35.8	4.1	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10-11.11.2023	07.00-07.00	19.1	36.2	4.1	14.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.15-07.15	19.2	36.7	4.2	14.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.00-07.00	19.7	36.4	4.3	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	19.5	37.3	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	20.0	37.1	4.3	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	18.3	37.9	4.5	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	18.7	36.1	4.1	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	17.4	36.4	4.3	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	17.9	36.7	4.3	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	17.3	37.3	4.3	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	18.1	35.3	4.4	12.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	18.4	35.8	4.0	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	18.9	35.3	4.1	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	19.7	35.6	4.8	14.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.16: AMBIENT AIR QUALITY – AAQ5

Period: October – December 2023 Location: AAQ5-P. Lease 4 Sampling Time: 24-hourly

Monitoring Particulates, μg/m³ Gaseous Pollutants, μg/m³ Other Pollutants (Particulate Phase), μg							, 3						
Moni	toring	Particulat	es, μg/m³		Gase	ous Pollut		1		1	(Particula		
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃	CO (8-hly Avg.)	Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
		60	100	80	80	400	100	2.0	<u>μg/III</u> 1.0	6.0	20	5.0	1.0
NAAQ	Norms*	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(8 hrs.)	(8hrs.)	(24 hrs.)	(annual)	(annual)	(annual)	(annual)
06-07.10.2023	07.00-07.00	18.1	36.1	4.1	13.3	<5	<5	<1.0	<0.01	<5	<3	<1.0	<3.0
07-08.10.2023	07.15-07.15	18.5	37.3	4.2	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13-14.10.2023	07.00-07.00	18.4	36.4	4.2	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.15-07.15	18.9	36.9	4.3	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20-21.10.2023	07.00-07.00	19.1	37.1	4.4	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.15-07.15	19.4	37.8	4.2	12.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.00-07.00	19.3	35.2	4.3	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
28-29.10.2023	07.15-07.15	19.9	35.9	4.4	13.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03-04.11.2023	07.00-07.00	18.4	35.3	4.0	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.15-07.15	18.7	35.8	4.1	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10-11.11.2023	07.00-07.00	19.1	36.2	4.1	14.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.15-07.15	19.2	36.7	4.2	14.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.00-07.00	19.7	36.4	4.3	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	19.5	37.3	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	20.0	37.1	4.3	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	18.3	37.9	4.5	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	18.7	36.1	4.1	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	17.4	36.4	4.3	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	17.9	36.7	4.3	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	17.3	37.3	4.3	13.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	18.1	35.3	4.4	12.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	18.4	35.8	4.0	12.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	18.9	35.3	4.1	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	19.7	35.6	4.8	14.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.17: AMBIENT AIR QUALITY – AAQ6

Period: October – December 2023 Location: AAQ6- Lease 5 Sampling Time: 24-hourly

Period: October			Location: AAQo- Lease 5 Sampling Time: 24-nourly										
Monite	oring	Particulat	es, μg/m³		Gase	ous Pollut	ants, μg/m³			Pollutants	s (Particula		
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ N	Norms*	60	100	80	80	400	100	2.0	1.0	6.0	20	5.0	1.0
MAAQT	NOT IIIS	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(8 hrs.)	(8hrs.)	(24 hrs.)	(annual)	(annual)	(annual)	(annual)
06-07.10.2023	07.00-07.00	18.4	35.4	4.4	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07-08.10.2023	07.15-07.15	18.7	36.3	4.5	14.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13-14.10.2023	07.00-07.00	19.3	36.1	4.2	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.15-07.15	19.7	36.4	4.3	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20-21.10.2023	07.00-07.00	19.6	35.7	4.4	13.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.15-07.15	20.0	36.3	4.5	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.00-07.00	18.4	35.4	4.3	14.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
28-29.10.2023	07.15-07.15	18.7	35.9	4.5	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03-04.11.2023	07.00-07.00	17.4	35.3	4.4	14.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.15-07.15	17.9	35.8	4.5	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10-11.11.2023	07.00-07.00	17.5	36.4	4.3	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.15-07.15	18.1	36.9	4.4	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.00-07.00	18.3	37.1	4.0	12.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	18.7	37.4	4.1	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	17.7	36.1	4.2	12.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	17.9	36.7	4.5	12.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	17.3	35.3	4.1	13.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	17.6	35.9	4.4	13.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	17.7	36.1	4.3	12.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	18.4	36.4	4.5	12.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	18.3	.35.3	4.2	14.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	18.9	36.7	4.3	14.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	19.1	36.6	44	13.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	19.4	36.9	4.5	13.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.18: AMBIENT AIR QUALITY – AAQ7

Period: October – December 2023 Location: AAQ7- Sirugudi Sampling Time: 24-hourly

Monitori Date l	Period, hrs.	Particulat	es, μg/m³		1-966	nne Pallint							
Date 1	Daried hre								Other Pollutants (Particulate Phase), µg/m³				
	i eriou, iirs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)		Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m³
NAAQ No	rms*	60	100	80	80	400	100	2.0	1.0	6.0	20	5.0	1.0
		(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(24 hrs.)	(8 hrs.)	(8hrs.)		(annual)	(annual)	(annual)	(annual)
	07.15-07.15	20.1	39.4	5.1	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
 	07.30-07:30	21.3	40.7	5.4	17.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
13-14.10.2023	07.15-07.15	20.4	41.7	5.2	16.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.30-07:30	21.7	42.4	5.5	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
	07.15-07.15	21.3	42.7	5.4	18.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.30-07:30	22.4	43.0	5.6	19.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.15-07.15	21.4	41.7	5.5	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0
28-29.10.2023	07.30-07:30	22.	42.3	5.9	19.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0
03-04.11.2023	07.15-07.15	22.1	39.1	5.4	16.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.30-07:30	23.7	39.9	5.6	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0
10-11.11.2023	07.15-07.15	20.4	39.2	5.3	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.30-07:30	22.3	40.2	5.8	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.15-07.15	21.7	41.3	5.7	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	22.4	41.8	6.0	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	22.3	40.4	5.4	18.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	23.7	42.9	5.9	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	21.4	41.3	5.2	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	22.7	42.3	5.3	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	22.1	42.1	5.4	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	23.9	42.9	5.6	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	21.4	39.4	5.7	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	22.3	40.3	5.9	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	20.4	39.7	5.1	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	22.7	40.9	5.9	19.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.19: AMBIENT AIR QUALITY – AAQ8

Period: October – December 2023 Location: AAQ8- Samudrapatti Sampling Time: 24-hourly

	ber – December 2025 Location: AAQ8- Samudrapatii							Other Pollutants (Particulate Phase), µg/m³					
Monito	oring	Particula	ites, μg/m³		Gas	eous Polluta					s (Particulat	//!	0
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
NAAQ N	Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)
06-07.10.2023	07.30-07.30	21.2	39.3	5.3	16.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07-08.10.2023	07.45-07:45	22.7	40.2	5.7	17.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0
13-14.10.2023	07.30-07.30	21.4	39.7	5.2	16.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
14-15.10.2023	07.45-07:45	22.8	40.9	5.6	18.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
20-21.10.2023	07.30-07.30	20.3	41.2	5.4	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
21-22.10.2023	07.45-07:45	21.7	42.7	5.7	19.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
27-28.10.2023	07.30-07.30	20.4	41.3	5.4	17.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
28-29.10.2023	07.45-07:45	22.8	42.9	5.9	19.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
03-04.11.2023	07.30-07.30	21.7	39.1	5.2	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
04-05.11.2023	07.45-07:45	23.2	40.4	5.4	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
10-11.11.2023	07.30-07.30	21.4	40.1	5.3	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
11-12.11.2023	07.45-07:45	23.8	41.7	5.7	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
17-18.11.2023	07.30-07.30	20.4	41.2	5.4	17.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
18-19.11.2023	07.15-07.15	22.6	42.9	5.6	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
24-25.11.2023	07.00-07.00	21.7	40.1	5.5	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
25-26.11.2023	07.15-07.15	23.7	42.7	5.7	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
01-02.12.2023	07.00-07.00	20.8	39.3	5.3	19.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
02-03.12.2023	07.15-07.15	21.7	40.4	5.7	19.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
08-09.12.2023	07.00-07.00	21.4	39.2	5.4	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
09-10.12.2023	07.15-07.15	22.7	41.7	5.7	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
15-16.12.2023	07.00-07.00	21.4	40.1	5.3	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
16-17.12.2023	07.15-07.15	22.3	42.3	5.8	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
22-23.12.2023	07.00-07.00	21.4	42.1	5.2	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
23-24.12.2023	07.15-07.15	22.9	40.9	5.9	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0

Source: Lab Analysis Results

TABLE 3.20: AMBIENT AIR QUALITY – AAQ9

Period: October – December 2023 Location: AAQ9- V.Pudur Sampling Time: 24-hourly

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BaP,
Date Period, hrs. PM2.5 PM10 SO2 NO2 NH3 (8-hly Avg.) (8-hly Avg.) µg/m³ ng/m³ Ni, ng/m³	ng/m ³
NAAQ Norms* (24 hrs.) (24 hrs.) (24 hrs.) (24 hrs.) (24 hrs.) (24 hrs.) (8 hrs.) (8 hrs.) (24 hrs.) (annual) (annual)	1.0
C24 hrs. C24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/ /
13-14.10.2023 07.00-07.00 20.9 41.3 5.2 16.4 <5	<3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<3.0
20-21.10.2023 07.00-07.00 21.4 40.1 5.3 17.3 <5	<3.0
21-22.10.2023 07.15-07:15 23.7 42.7 5.7 18.4 <5	<3.0
27-28.10.2023 07.00-07.00 20.7 40.1 5.5 18.1 <5	<3.0
28-29.10.2023 07.15-07:15 21.9 42.1 5.9 19.4 <5	<3.0
03-04.11.2023 07.00-07.00 22.4 40.1 5.2 18.7 <5	<3.0
04-05.11.2023 07.15-07:15 23.7 42.1 5.6 19.9 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
	<3.0
10-11.11.2023 07.00-07.00 21.4 41.3 5.4 16.4 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
	<3.0
11-12.11.2023 07.15-07:15 22.9 42.4 5.9 17.3 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
17-18.11.2023 07.00-07.00 20.9 41.3 5.3 19.1 <5	<3.0
18-19.11.2023 07.15-07.15 21.4 42.4 5.7 19.9 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
24-25.11.2023 07.00-07.00 21.7 40.4 5.1 17.3 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
25-26.11.2023 07.15-07.15 22.4 41.3 5.5 18.4 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
01-02.12.2023 07.00-07.00 20.7 40.3 5.2 16.4 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
02-03.12.2023 07.15-07.15 21.7 41.4 5.6 17.9 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
08-09.12.2023 07.00-07.00 20.8 39.7 5.1 17.1 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
09-10.12.2023 07.15-07.15 21.8 40.5 5.4 18.4 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
15-16.12.2023 07.00-07.00 22.7 41.3 5.2 17.9 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
16-17.12.2023 07.15-07.15 24.0 42.7 5.6 18.7 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0
22-23.12.2023 07.00-07.00 22.3 41.7 5.3 17.1 <5 <5 <1.0 <0.01 <5 <3 <1.0	
23-24.12.2023 07.15-07.15 23.8 42.9 5.9 18.4 <5 <5 <1.0 <0.01 <5 <3 <1.0	<3.0

Source: Lab Analysis Results

TABLE 3.21: AMBIENT AIR QUALITY - AAQ10

Period: October – December 2023 Location: AAQ10 - Uralipatti Sampling Time: 24-hourly

– December 2		Location: AAQ10 - Uralipatti						Sampling Time: 24-hourly				
oring	Particulat	es, μg/m ³		Gase	ous Pollut				Pollutants	s (Particula	te Phase)	μg/m ³
Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)		Pb, μg/m ³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m ³
Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5000 (annual)	1.0 (annual)
07:30-07:30	22.8	40.7	5.3	16.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	24.0	41.7	5.4	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	23.2	39.3	5.5	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	23.9	40.4	5.7	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	20.4	39.1	5.6	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	22.7	41.7	5.8	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	21.3	40.2	.5.4	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	22.4	41.3	5.6	18.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	21.3	39.3	5.3	18.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	22.9	40.4	5.7	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	21.9	39.7	5.4	18.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:45-07:45	23.4	41.3	5.8	19.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07:30-07:30	22.1	40.4	5.2	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	23.9	42.3	5.9	18.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0
07.00-07.00	22.4	41.3	5.1	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	23.4	42.7	5.5	19.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.00-07.00	20.4	40.3	5.1	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	21.8	42.7	5.5	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.00-07.00	21.3	41.3	5.2	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	22.4	42.9	5.6	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.00-07.00	21.9	42.3	5.4	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	22.4	42.9	5.8	19.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.00-07.00	21.3	40.7	5.2	18.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
07.15-07.15	22.3	42.3	5.6	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0
	Period, hrs. Norms* 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:45-07:45 07:30-07:30 07:15-07.15 07.00-07.00 07.15-07.15 07.00-07.00 07.15-07.15 07.00-07.00 07.15-07.15 07.00-07.00 07.15-07.15 07.00-07.00	oring Particulate Period, hrs. PM _{2.5} Norms* 60 (24 hrs.) 07:30-07:30 22.8 07:45-07:45 24.0 07:30-07:30 23.2 07:45-07:45 23.9 07:30-07:30 20.4 07:45-07:45 22.7 07:30-07:30 21.3 07:45-07:45 22.4 07:30-07:30 21.3 07:45-07:45 22.9 07:30-07:30 21.9 07:45-07:45 23.4 07:30-07:30 22.1 07:45-07:45 23.4 07:30-07:30 22.1 07:45-07:45 23.4 07:30-07:30 22.1 07.15-07.15 23.9 07.00-07.00 22.4 07.15-07.15 23.4 07.00-07.00 20.4 07.15-07.15 22.4 07.00-07.00 21.3 07.15-07.15 22.4 07.00-07.00 21.9 07.15-07.15 22.4 <t< td=""><td>Oring Particulates, μg/m³ Period, hrs. PM_{2.5} PM₁₀ Norms* 60 (24 hrs.) 100 (24 hrs.) 07:30-07:30 22.8 40.7 07:45-07:45 24.0 41.7 07:30-07:30 23.2 39.3 07:45-07:45 23.9 40.4 07:30-07:30 20.4 39.1 07:45-07:45 22.7 41.7 07:30-07:30 21.3 40.2 07:45-07:45 22.4 41.3 07:30-07:30 21.3 39.3 07:45-07:45 22.9 40.4 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 22.1 40.4 07.15-07.15 23.9 42.3 07.00-07.00 20.4 40.3</td><td>Period, hrs. PM_{2.5} PM₁₀ SO₂ Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 07:45-07:45 24.0 41.7 5.4 07:30-07:30 23.2 39.3 5.5 07:45-07:45 23.9 40.4 5.7 07:30-07:30 20.4 39.1 5.6 07:45-07:45 22.7 41.7 5.8 07:30-07:30 21.3 40.2 5.4 07:30-07:30 21.3 39.3 5.3 07:45-07:45 22.4 41.3 5.6 07:30-07:30 21.3 39.3 5.3 07:45-07:45 22.9 40.4 5.7 07:30-07:30 21.9 39.7 5.4 07:30-07:45 22.9 40.4 5.7 07:30-07:45 22.9 40.4 5.7 07:30-07:30 21.9 39.7 5.4 07:30-07:45 23.4 41.3 <td< td=""><td>Oring Particulates, μg/m³ Gase Period, hrs. PM2.5 PM10 SO2 NO2 Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 80 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 07:45-07:45 24.0 41.7 5.4 17.9 07:30-07:30 23.2 39.3 5.5 16.4 07:45-07:45 23.9 40.4 5.7 17.3 07:30-07:30 20.4 39.1 5.6 17.1 07:45-07:45 22.7 41.7 5.8 18.4 07:30-07:30 21.3 40.2 .5.4 17.3 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.9 40.4 5.7 19.7</td><td>Period, hrs. PM_{2.5} PM₁₀ SO₂ NO₂ NH₃ Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 400 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 <5</td> 07:45-07:45 24.0 41.7 5.4 17.9 <5</td<></td> 07:30-07:30 23.2 39.3 5.5 16.4 <5</t<>	Oring Particulates, μg/m³ Period, hrs. PM _{2.5} PM ₁₀ Norms* 60 (24 hrs.) 100 (24 hrs.) 07:30-07:30 22.8 40.7 07:45-07:45 24.0 41.7 07:30-07:30 23.2 39.3 07:45-07:45 23.9 40.4 07:30-07:30 20.4 39.1 07:45-07:45 22.7 41.7 07:30-07:30 21.3 40.2 07:45-07:45 22.4 41.3 07:30-07:30 21.3 39.3 07:45-07:45 22.9 40.4 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 21.9 39.7 07:45-07:45 23.4 41.3 07:30-07:30 22.1 40.4 07.15-07.15 23.9 42.3 07.00-07.00 20.4 40.3	Period, hrs. PM _{2.5} PM ₁₀ SO ₂ Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 07:45-07:45 24.0 41.7 5.4 07:30-07:30 23.2 39.3 5.5 07:45-07:45 23.9 40.4 5.7 07:30-07:30 20.4 39.1 5.6 07:45-07:45 22.7 41.7 5.8 07:30-07:30 21.3 40.2 5.4 07:30-07:30 21.3 39.3 5.3 07:45-07:45 22.4 41.3 5.6 07:30-07:30 21.3 39.3 5.3 07:45-07:45 22.9 40.4 5.7 07:30-07:30 21.9 39.7 5.4 07:30-07:45 22.9 40.4 5.7 07:30-07:45 22.9 40.4 5.7 07:30-07:30 21.9 39.7 5.4 07:30-07:45 23.4 41.3 <td< td=""><td>Oring Particulates, μg/m³ Gase Period, hrs. PM2.5 PM10 SO2 NO2 Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 80 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 07:45-07:45 24.0 41.7 5.4 17.9 07:30-07:30 23.2 39.3 5.5 16.4 07:45-07:45 23.9 40.4 5.7 17.3 07:30-07:30 20.4 39.1 5.6 17.1 07:45-07:45 22.7 41.7 5.8 18.4 07:30-07:30 21.3 40.2 .5.4 17.3 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.9 40.4 5.7 19.7</td><td>Period, hrs. PM_{2.5} PM₁₀ SO₂ NO₂ NH₃ Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 400 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 <5</td> 07:45-07:45 24.0 41.7 5.4 17.9 <5</td<>	Oring Particulates, μg/m³ Gase Period, hrs. PM2.5 PM10 SO2 NO2 Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 80 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 07:45-07:45 24.0 41.7 5.4 17.9 07:30-07:30 23.2 39.3 5.5 16.4 07:45-07:45 23.9 40.4 5.7 17.3 07:30-07:30 20.4 39.1 5.6 17.1 07:45-07:45 22.7 41.7 5.8 18.4 07:30-07:30 21.3 40.2 .5.4 17.3 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.4 41.3 5.6 18.2 07:30-07:30 21.3 39.3 5.3 18.1 07:45-07:45 22.9 40.4 5.7 19.7	Period, hrs. PM _{2.5} PM ₁₀ SO ₂ NO ₂ NH ₃ Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 400 (24 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 <5	Period, hrs. PM _{2.5} PM ₁₀ SO ₂ NO ₂ NH ₃ O ₃ (8-hly Avg.) Norms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 400 (24 hrs.) 100 (8 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 <5	Period, hrs. PM _{2.5} PM ₁₀ SO ₂ NO ₂ NH ₃ (8-hly Avg.) CO (8-hly Avg.) vorms* 60 (24 hrs.) 100 (24 hrs.) 80 (24 hrs.) 40h (24 hrs.) 100 (8 hrs.) 2,000 (8 hrs.) 07:30-07:30 22.8 40.7 5.3 16.1 <5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Source: Lab Analysis Results

TABLE 3.22: AMBIENT AIR QUALITY – AAQ11

Period: October – December 2023 Location: AAQ11 - Panniamalai Sampling Time: 24-hourly

Period: October	· – December 2	023	Location: A	cation: AAQ11 - Panniamalai						Sampling Time: 24-hourly					
Monit	oring	Particulat	es, μg/m³		Gas	eous Pollut	ants, μg/m³		Oth	er Pollutant	ts (Particulat	te Phase), μ	ıg/m³		
Date	Period, hrs.	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	NH ₃	O ₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, μg/m³	As, ng/m ³	Ni, ng/m ³	C ₆ H ₆ , ng/m ³	BaP, ng/m³		
NAAQ N	Norms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2.0 (8hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)		
06-07.10.2023	08:00-08:00	22.4	40.1	5.4	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
07-08.10.2023	08:15-08:15	23.7	42.1	5.7	17.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
13-14.10.2023	08:00-08:00	21.4	41.0	5.5	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
14-15.10.2023	08:15-08:15	22.7	42.3	5.8	18.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
20-21.10.2023	08:00-08:00	22.4	42.3	5.7	18.6	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
21-22.10.2023	08:15-08:15	23.7	42.9	5.9	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
27-28.10.2023	08:00-08:00	20.4	40.3	5.3	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
28-29.10.2023	08:15-08:15	21.7	42.3	5.6	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		
03-04.11.2023	08:00-08:00	21.4	39.7	5.2	16.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
04-05.11.2023	08:15-08:15	22.7	40.5	5.4	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
10-11.11.2023	08:00-08:00	22.1	41.5	5.3	17.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
11-12.11.2023	08:15-08:15	23.4	42.7	5.6	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
17-18.11.2023	08:00-08:00	22.4	41.7	5.4	16.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
18-19.11.2023	07.15-07.15	23.9	42.9	5.8	19.2	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
24-25.11.2023	07.00-07.00	22.4	41.4	5.5	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
25-26.11.2023	07.15-07.15	23.9	42.1	5.9	17.3	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
01-02.12.2023	07.00-07.00	20.9	40.1	5.2	16.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
02-03.12.2023	07.15-07.15	22.4	42.3	5.6	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
08-09.12.2023	07.00-07.00	21.7	40.4	5.3	16.8	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
09-10.12.2023	07.15-07.15	23.4	42.3	5.7	17.9	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
15-16.12.2023	07.00-07.00	22.4	40.3	5.4	18.1	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
16-17.12.2023	07.15-07.15	23.7	41.3	5.8	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
22-23.12.2023	07.00-07.00	21.4	41.2	5.3	17.4	<5	<5	<1.0	< 0.01	<5	<3	<1.0	<3.0		
23-24.12.2023	07.15-07.15	28.4	43.0	5.9	19.7	<5	<5	<1.0	< 0.01	<5	<3	<1.0	< 3.0		

Source: Lab Analysis Results

TABLE 3.23: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ1 & AAQ2

GI.		Pollutant Concentration, μg/m ³								
Sl.	Donomotor	PM _{2.5}	PM_{10}	SO ₂	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	
No.	Parameter	AAQ1-	Northeast	corner o	f quarry	AAQ2- Northeast corner of quarry				
1	No. of Observations	24	24	24	24	24	24	24	24	
2	10 th Percentile Value	17.3	35.3	4.1	17.36	17.36	35.40	4.10	12.33	
3	20th Percentile Value	17.3	35.4	4.16	17.72	17.72	35.70	4.20	12.60	
4	30 th Percentile Value	17.76	35.4	4.2	17.90	17.90	35.80	4.20	12.97	
5	40 th Percentile Value	18.12	36.16	4.3	18.12	18.12	36.14	4.22	13.20	
6	50 th Percentile Value	18.35	36.55	4.35	18.35	18.35	36.35	4.30	13.45	
7	60 th Percentile Value	18.4	36.7	4.4	18.58	18.58	36.64	4.30	13.68	
8	70 th Percentile Value	18.4	36.71	4.41	19.10	19.10	36.81	4.40	13.81	
9	80 th Percentile Value	18.86	37.1	4.5	19.20	19.20	36.98	4.40	14.18	
10	90 th Percentile Value	19.34	37.17	4.5	19.58	19.58	37.75	4.50	14.84	
11	95 th Percentile Value	19.4	37.285	4.5	19.79	19.79	37.90	4.50	38.36	
12	98th Percentile Value	19.67	37.624	4.5	19.85	19.85	37.90	4.50	42.72	
13	Arithmetic Mean	18.45	36.49	4.36	18.69	18.69	36.67	43.3	18.38	
14	Geometric Mean	18.43	36.48	4.35	18.67	18.67	36.66	4.33	16.41	
15	Standard Deviation	0.81	0.82	0.15	0.87	0.87	0.89	0.14	11.02	
16	NAAQ Norms*	60	100	80	60	100	100	80	60	
17	% Values exceeding Norms*	0	0	0	0	0	35.40	0	0	

TABLE 3.24: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ3 & AAQ4

				Pollut	ant Conce	ntration, µ	ıg/m3			
Sl.	Parameter	PM2.5	PM10	SO2	NO2	PM2.5	PM10	SO2	NO2	
No.		AAQ3 -	- Southeas	t corner of	f quarry	AAQ4 - Northeast corner of quarry				
1	No. of Observations	24	24	24	24	24	24	24	24	
2	10th Percentile Value	17.46	35.40	4.10	12.46	17.40	35.90	4.20	12.40	
3	20th Percentile Value	17.78	35.70	4.20	12.66	17.60	36.22	4.20	12.64	
4	30th Percentile Value	18.17	35.80	4.20	12.88	17.89	36.39	4.29	12.90	
5	40th Percentile Value	18.32	36.14	4.30	13.12	18.12	36.70	4.30	13.12	
6	50th Percentile Value	18.45	36.35	4.30	13.25	18.30	36.90	4.30	13.25	
7	60th Percentile Value	18.68	36.64	4.30	13.68	18.40	37.18	4.40	13.70	
8	70th Percentile Value	18.71	36.81	4.40	13.81	18.90	37.31	4.40	13.81	
9	80th Percentile Value	19.20	36.98	4.50	14.24	19.18	37.56	4.44	13.98	
10	90th Percentile Value	19.37	37.75	4.50	14.58	19.47	37.87	4.50	14.27	
11	95th Percentile Value	19.57	37.90	4.50	14.87	19.76	37.90	4.50	14.64	
12	98th Percentile Value	19.76	37.90	4.50	14.90	19.85	37.95	4.50	14.81	
13	Arithmetic Mean	18.68	36.67	4.35	13.68	18.62	37.08	4.37	13.59	
14	Geometric Mean	18.67	36.66	4.34	13.65	18.61	37.07	4.36	13.57	
15	Standard Deviation	0.74	0.89	0.14	0.88	0.86	0.72	0.11	0.80	
16	NAAQ Norms*	60	100	80	80	60	100	80	80	
17	% Values exceeding Norms*	0	0	0	0	0	0	0	0	

Source: Lab Analysis Results

TABLE 3.25: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ5 & AAQ6

G.			Pollutant Concentration, μg/m ³										
Sl. No.	Parameter	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	NO ₂				
110.		AAQ5 -	- Northeas	t corner o	f quarry	AAQ6 - Northeast corner of quarry							
1	No. of Observations	24	24	24	24	24	24	24	24				
2	10 th Percentile Value	17.96	35.30	4.10	12.49	17.53	35.40	4.12	12.70				
3	20th Percentile Value	18.22	35.72	4.10	12.76	17.70	35.74	4.20	12.90				
4	30 th Percentile Value	18.40	35.89	4.19	13.19	17.90	35.90	4.30	13.19				
5	40 th Percentile Value	18.54	36.12	4.20	13.30	18.30	36.10	4.30	13.30				
6	50 th Percentile Value	18.80	36.40	4.30	13.35	18.40	36.30	4.40	13.70				
7	60 th Percentile Value	19.06	36.64	4.30	13.68	18.64	36.40	4.40	13.86				
8	70 th Percentile Value	19.21	36.92	4.30	13.72	18.72	36.48	4.44	14.12				
9	80 th Percentile Value	19.44	37.18	4.40	13.98	19.18	36.70	4.50	14.30				
10	90th Percentile Value	19.70	37.30	4.47	14.27	19.54	36.90	4.50	14.61				
11	95 th Percentile Value	19.87	37.73	4.50	14.39	19.69	37.08	4.50	14.87				
12	98 th Percentile Value	19.95	37.85	4.66	14.67	19.86	37.27	4.50	14.90				
13	Arithmetic Mean	19.01	36.64	4.32	13.62	18.68	36.39	4.38	13.86				
14	Geometric Mean	19.00	36.63	4.32	13.60	18.66	36.38	4.38	13.84				
15	Standard Deviation	0.69	0.84	0.18	0.68	0.81	0.58	0.13	0.77				
16	NAAQ Norms*	60	100	80	80	60	100	80	80				
17	% Values exceeding Norms*	0	0	0	0	0	0	0	0				

TABLE 3.26: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ7 & AAQ8

		Pollutant Concentration, μg/m ³								
Sl. No.	Parameter	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	
1,00	7 W. W. W. W.		AAQ7 -	Sirugudi		AAQ8 - Samudrapatti				
1	No. of Observations	24	24	24	24	24	24	24	24	
2	10 th Percentile Value	20.4	39.4	5.2	16.52	20.52	39.30	5.23	17.10	
3	20th Percentile Value	21.3	39.82	5.3	17.02	21.32	39.94	5.30	17.22	
4	30th Percentile Value	21.4	40.29	5.4	17.19	21.40	40.10	5.39	17.40	
5	40 th Percentile Value	21.7	40.74	5.4	17.42	21.46	40.40	5.40	17.98	
6	50th Percentile Value	22.05	41.3	5.5	17.9	21.70	40.90	5.45	18.40	
7	60th Percentile Value	22.26	41.7	5.6	18.18	22.18	41.20	5.60	18.40	
8	70 th Percentile Value	22.31	42.12	5.7	18.4	22.70	41.70	5.70	18.70	
9	80th Percentile Value	22.52	42.34	5.84	19.4	22.80	42.18	5.70	19.14	
10	90th Percentile Value	23.4	42.84	5.9	19.7	23.11	42.70	5.77	19.58	
11	95 th Percentile Value	23.7	42.9	5.9	19.7	23.63	42.87	5.89	19.70	
12	98th Percentile Value	23.808	42.954	5.954	19.808	23.75	42.90	5.90	19.81	
13	Arithmetic Mean	22.26	41.49	5.61	18.29	22.23	41.29	5.58	18.49	
14	Geometric Mean	22.24	41.47	5.60	18.26	22.21	41.27	5.57	18.47	
15	Standard Deviation	1.06	1.28	0.27	1.20	1.04	1.27	0.23	0.99	
16	NAAQ Norms*	60	100	80	80	60	100	80	80	
17	% Values exceeding Norms*	0	0	0	0	0	0	0	0	

Source: Lab Analysis Results

TABLE 3.27: ABSTRACT OF AMBIENT AIR QUALITY DATA – AAQ9 & AAQ10

G.		Pollutant Concentration, μg/m ³									
Sl. No.	Parameter	PM _{2.5}	PM ₁₀	SO ₂	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	NO ₂		
110.	1 at affect		AAQ9 -	V.Pudur			AAQ10 - Uralipatti				
1	No. of Observations	24	24	24	24	24	24	24	24		
2	10 th Percentile Value	20.83	40.10	5.13	16.55	21.30	39.42	5.20	16.61		
3	20th Percentile Value	21.20	40.22	5.20	17.10	21.30	40.26	5.24	17.10		
4	30th Percentile Value	21.40	40.49	5.29	17.30	21.89	40.40	5.36	17.30		
5	40th Percentile Value	21.72	41.30	5.32	17.82	22.14	40.70	5.40	17.94		
6	50th Percentile Value	22.10	41.30	5.40	17.90	22.40	41.30	5.50	18.20		
7	60 th Percentile Value	22.30	41.38	5.50	18.34	22.40	41.30	5.60	18.40		
8	70 th Percentile Value	22.43	42.10	5.60	18.40	22.81	41.76	5.60	18.70		
9	80th Percentile Value	23.10	42.40	5.70	18.70	23.28	42.30	5.70	18.98		
10	90th Percentile Value	23.70	42.70	5.84	19.31	23.75	42.70	5.80	19.70		
11	95 th Percentile Value	23.79	42.70	5.90	19.83	23.90	42.87	5.80	19.87		
12	98th Percentile Value	23.91	42.81	5.90	19.90	23.95	42.90	5.86	19.90		
13	Arithmetic Mean	22.41	41.59	5.53	18.29	22.65	41.45	5.55	18.43		
14	Geometric Mean	22.38	41.58	5.52	18.26	22.63	41.43	5.55	18.40		
15	Standard Deviation	1.09	1.02	0.28	1.09	0.97	1.17	0.23	1.13		
16	NAAQ Norms*	60	100	80	80	60	100	80	80		
17	% Values exceeding Norms*	0	0	0	0	0	0	0	0		

TABLE 3.28: ABSTRACT OF AMBIENT AIR QUALITY DATA - AAQ 11

		Poll	utant Conce	entration, µ	g/m ³
Sl.	Parameter	PM _{2.5}	PM ₁₀	SO ₂	NO ₂
No.	i ai aincei		AAQ11 - P	anniamalai	
1	No. of Observations	24	24	24	24
2	10 th Percentile Value	21.40	40.16	5.30	16.40
3	20th Percentile Value	21.58	40.36	5.30	16.40
4	30 th Percentile Value	22.06	40.95	5.40	17.07
5	40 th Percentile Value	22.40	41.32	5.42	17.30
6	50 th Percentile Value	22.40	41.60	5.55	17.40
7	60 th Percentile Value	22.64	42.10	5.60	17.90
8	70 th Percentile Value	23.40	42.30	5.70	17.92
9	80 th Percentile Value	23.70	42.30	5.80	18.64
10	90 th Percentile Value	23.84	42.84	5.87	19.55
11	95 th Percentile Value	23.90	42.90	5.90	19.70
12	98 th Percentile Value	26.33	42.95	5.90	19.70
13	Arithmetic Mean	23.06	41.80	5.61	18.00
14	Geometric Mean	23.02	41.79	5.61	17.96
15	Standard Deviation	1.40	1.00	0.24	1.24
16	NAAQ Norms*	60	100	80	80
17	% Values exceeding Norms*	0	0	0	0

Source: Lab Analysis Results

Legend: $PM_{2.5}$ -Particulate Matter size less than 2.5 um; PM_{10} -Respirable Particulate Matter size less than 10 um; SO_2 -Sulphur dioxide; NO_x -Oxides of Nitrogen; CO-Carbon monoxide; O_3 -Ozone; NH_3 -Ammonia; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C_6H_6 -Benzene & BaP-Benzo (a) pyrene in particulate phase levels were monitored below their respective detectable limits.

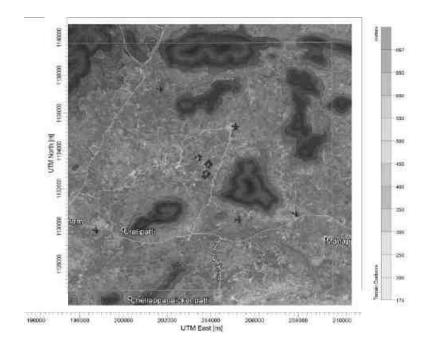
3.3.8 AIR QUALITY MODELLING

Prediction of particulate emissions, ISC-AERMOD View 9.1 model was used to predict changes in air quality i.e., maximum ground level concentration (GLC's) of PM₁₀ and PM_{2.5} due to the proposed mining activity. The inputs required for the model is:

- Hourly meteorological data
- Source data
- Receptor data
- Program control parameters

In order to estimate the ground level concentrations due to the emission from the proposed project, EPA approved Industrial Source Complex ISC AERMOD View Model has been employed.

The mathematical model used for predictions on air quality impact in the present study is ISC-AERMOD View 9.1. It is the next generation air dispersion model, which incorporates planetary boundary layer concepts.


The AERMOD is actually a modeling system with three separate components:

- AERMOD (AERMIC Dispersion Model),
- AERMAP (AERMOD Terrain Preprocessor)
- AERMET (AERMOD Meteorological Preprocessor)

Special features of AERMOD include its ability to treat the vertical in homogeneity of the planetary boundary layer special treatment of surface releases, irregularly shaped area sources, a plume model for the convective boundary layer, limitation of vertical mixing in the stable boundary layer, and fixing the reflecting surface at the stack base.

The AERMET is the meteorological preprocessor for the AERMOD. Input data can come from hourly cloud cover observations, surface meteorological observations and twice-a-day upper air soundings. Output includes surface meteorological observations and parameters and vertical profiles of several atmospheric parameters.

The AERMAP is a terrain preprocessor designed to simplify and standardize the input of terrain data for the AERMOD. Input data include receptor terrain elevation data. Output includes, for each receptor, location and height scale, which are elevations used for the computation of airflow around hills.

FIGURE 3.13 TERRAIN MAP OF THE STUDY AREA

SOURCE CHARACTERIZATION

A detailed listing of all emission sources and their corresponding modelling input release parameters and emission rates is listed this report. A general description of how each source type was treated is presented below.

The emission Sources from the proposed operation are

Activity Process Sources Fugitive Dust Sources

Mining Drilling Blasting

Loading and Hauling

Transportation Haul Roads

TABLE 3.29: EMISSION SOURCE

Point Sources

Point sources for mining operations are typically included dust collectors, hot water heaters, and emergency generator(s). The following sources are anticipated for this project site –

- 1. Portable Compressors (400 cfm)
- 2. Tipper
- 3. Tractor Mounted (HMT), Compressor (45 HP)
- 4. Drilling and excavation with Accessories

The above machineries are adequate to meet out the simultaneous development and production schedule drawn out in this mining plan.

Volume sources -

A road network was developed to depict the anticipated haul truck routes and truck discharge locations during the mine operations. The anticipated emissions from the road sources and corresponding anticipated impact during the monitoring period of October – December 2023 emissions were estimated. Emissions due to haul road and general plant traffic on the unpaved road network were modelled as volume sources. The model volume source parameter for the haul roads initially utilized USPEA developed emission factors for hauling trucking. The haul road sources utilized source to source spacing of 6 meters along the simulated haul roads. The initial lateral dimension of the sources were set to 3 m were used as an input to replicated a 2 truck travel adjacent for a typical mining scenario.

The parameters considered for the hauling operation include the following

- size of haul trucks commonly used –
- degree of dust control/compaction of permanent haul roads

Other Fugitive Particulate Sources

Other fugitive particulate emission sources that were modelled as volume sources include the following:

- Fugitive emissions from trucks, loading and unloading were represented by single volume sources. The release heights for these sources were set to the actual height of the truck transfer process.
- As the mining area is predominately sedimentary terrain Fugitive emissions due to wind erosion is considered.

Particulate and Gaseous Emissions Due to Blasting

The emissions due to blasting in considered being minimal impact. Since the limestone is sold to needy industries in the raw form boulders ranging from 10cm to 30cm. no grinding is proposed hence the dust due to blasting is minimal.

However, small quantity of explosive like slurry etc., are also used for removing the side burden, toes etc., and bench forming purpose. It is therefore any emissions such blasting operations would be localized and would be cause minor environmental impact occasionally.

TABLE 3.30: EMISSION RATES FOR HEAVY DUTY VEHICLES (AVERAGE)

Pollutant	HDDV (diesel)	Emission rate assuming Vehicle Travel within the project at
	(grams/mile)	40 km/h(g/s)
NO_X	8.613	0.029906
Pm _{2.5}	0.202	0.001403
PM_{10}	0.219	0.002281

FIGURE 3.14: PM₁₀ -24 HOUR AVERAGE

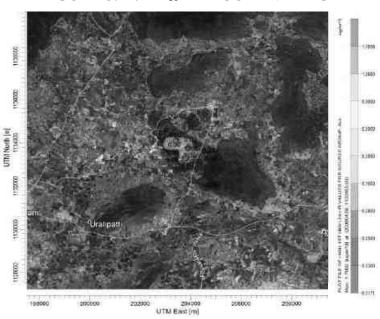
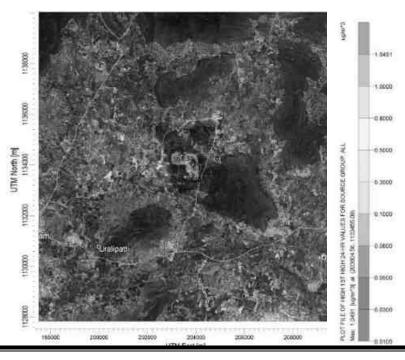



FIGURE 3.15: PM_{2.5} -24 HOUR AVERAGE

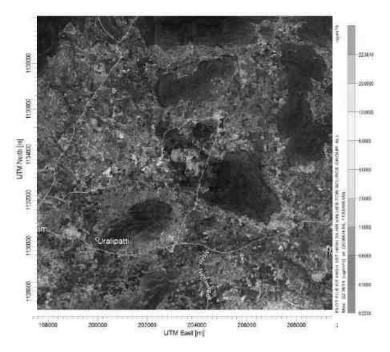


FIGURE 3.16: NOx – 24 HOUR AVERAGE

RESULTS AND CONCLUSIONS

The ground level concentrations are computed for 24-hr average. The combined ground level concentrations of PM_{10} and NOx from the different mining activities at different nearby locations within the study for study period are given in Table 3.31. The maximum GLC's were falling within the lease area for the given meteorological and topographical conditions.

TABLE 3.31: EXPECTED GROUND LEVEL CONCENTRATIONS

	GROUND LEVEL CONCENTRATIONS OF PM ₁₀ IN μg/m ³				
RECEPTOR LOCATIONS	PREDICTED	BACKGROUND (Max)	TOTAL EXPECTED	CPCB STANDARD	
Location: Northeast side of quarry	0.2004	37.62	37.82		
Location: Northeast side of quarry	1.7055	34.50	36.21		
Location: Southwest side of quarry	0.1772	37.90	38.08		
Location: Northwest corner of quarry	0.5541	37.95	38.50		
Location: Northeast side of quarry	0.2976	37.85	38.14		
Location: Northeast side of quarry	1.3349	37.27	38.60	100	
Location: Sirugudi	0.0027	42.95	42.95		
Location: Samudrapatti	0.0013	42.90	42.90		
Location: V.Pudur	0.0054	42.81	42.82		
Location: Uralipatti	0.0011	42.90	42.90		
Location: Panniamalai	0.0091	42.95	42.96		
RECEPTOR LOCATIONS	GROUND LEVEL CONCENTRATIONS OF PM2.5 IN µg/m³				

	PREDICTED	BACKGROUND (Max)	TOTAL EXPECTED	CPCB STANDARD	
Location: Northeast side of quarry	0.1232	19.67	19.79	STANDARD	
Location: Northeast side of quarry	1.0490	37.67	38.72		
Location: Southwest side of quarry		19.76	19.87		
Location: Northwest corner of quarry	0.1090				
	0.3408	19.85	20.19	60	
Location: Northeast side of quarry	0.1830	19.95	20.13		
Location: Northeast side of quarry	0.8210	19.86	20.68		
Location: Sirugudi	0.0016	23.80	23.80		
Location: Samudrapatti	0.0008	23.75	23.75		
Location: V.Pudur	0.0033	23.91	23.91		
Location: Uralipatti	0.0007	23.95	23.95		
Location: Panniamalai	0.0056	26.33	26.34		
	GROUND LEVEL CONCENTRATIONS OF NO _x IN µg/m ³				
RECEPTOR LOCATIONS	PREDICTED	BACKGROUND	TOTAL	СРСВ	
		(Max)	EXPECTED	STANDARD	
Location: Northeast side of quarry	2.6274	19.85	22.48		
Location: Northeast side of quarry	22.3614	19.85	42.21		
Location: Southwest side of quarry	2.3233	14.90	17.22		
Location: Northwest corner of quarry	7.2658	14.81	22.08		
Location: Northeast side of quarry	3.9023	14.67	18.58	80	
Location: Northeast side of quarry	17.5021	14.90	32.40	80	
Location: Sirugudi	0.0355	19.80	19.84		
Location: Samudrapatti	0.0171	19.81	19.83		
Location: V.Pudur	0.0709	19.90	19.97		
Location: Uralipatti	0.0153	19.90	19.92		
Location: Panniamalai	0.1202	19.70	19.82		

Source: Lab Analysis Results & Modelling Data

The ground level concentration will not increase significantly the concentration of PM_{10} , $PM_{2.5}$ & NO_x values are well below the standards prescribed by CPCB for ambient air quality.

Controlling NOx Levels

NOx emissions in the mine mainly occur during blasting operations. The main reasons for NOx emissions are:

- Poor quality of explosives having large oxygen imbalance
- Use of expired explosives in which ingredients have disintegrated.

3.3.9 OBSERVATIONS OF RESULTS

<u>PM10</u>: The maximum and minimum concentrations for PM10 were recorded as 43.00 μ g/m³ and 35.1 μ g/ m³ respectively. The maximum concentration was recorded at the Sirugudi and the minimum concentration was recorded at project site lease 2. The average concentrations were ranged between 38.60 μ g/m³. Consent the CPCB standard of 100 μ g/m³. The maximum PM10 values are well within the prescribed limits.

PM_{2.5}: The maximum and minimum concentrations for PM_{2.5}were recorded as 28.4 μ g/m³ and 17.1 μ g/m³ respectively. The maximum concentration was recorded at the Panniamalai and the minimum concentration was recorded at project site Lease 2. The average concentrations were ranged between 20.161 μ g/m³. Consent the CPCB standard of 60ug/m³. The maximum PM_{2.5} values are well within the prescribed limits.

<u>SO2</u>: The maximum and minimum SO₂ concentrations were recorded as 6.0 μ g/m³ and 4.0 μ g/m³. The maximum concentration was recorded at Sirugudi and the minimum concentration was recorded at Project site Lease 2. The average values were observed to be in the range of 4.85 μ g/m³. Consent the CPCB standard of 80ug/m³. The maximum SO₂ values are well within the prescribed limits.

NOx: The maximum and minimum NO_X concentrations were recorded as 19.9 μ g/m³ and 11.2 μ g/m³. The maximum concentration was recorded at Sirugudi and the minimum concentration was recorded at Project site. The average values were observed to be in the range of 15.50 μ g/m³. Consent the CPCB standard of 80μ g/m³. The maximum NO₂ values are well within the prescribed limits.

The concentrations of PM₁₀, PM_{2.5}, SO₂, NO_X, and Pb are observed to be well within the standards prescribed by Central Pollution Control Board (CPCB) for Industrial, Rural, Residential and Other area. Whereas, the concentration heavy metals like Benzene, Ni, CO and As was observed is below detection limits (BDL).

National Ambient Air Quality Standard: The levels of air quality with an adequate margin of safety, to protect the public health, vegetation and property. Whenever and wherever two consecutive values exceed the limit specified above for the respective category, it would be considered adequate reason to institute regular/continuous monitoring and further investigations:

- 1. 24-hrs./8-hrs.values should be met 98% of the time in a year; however, 2% of the time it may exceed but not on two consecutive days.
- 2. Annual arithmetic mean of minimum 144 measurements in a year taken twice a week 24-hourly at uniform interval.

Carbon Monoxide (CO) concentrations were monitored <1.0 mg/m³ at all the monitoring locations against the NAAQ limit value of 4mg/m³ (annual mean).

Ozone (O₃) concentrations were monitored $<5\mu g/m^3$ at all the monitoring locations against the NAAQ limit value of $180\mu g/m^3$ (annual mean).

Ammonia (NH₃) concentrations were monitored $<5\mu g/m^3$ at all the monitoring locations against the NAAQ limit value of 400 $\mu g/m^3$ (annual mean).

Lead (Pb) concentrations were monitored $<0.01 \mu g/m^3$ at all the monitoring locations against the NAAQ limit value of $1\mu g/m^3$ (annual mean).

Arsenic (As) concentrations were monitored <5.0ng/m³ at all the monitoring locations against the NAAQ limit value of 6 ng/m³ (annual mean).

Nickel (Ni) concentrations were monitored <3.0ng/m³ at all the monitoring locations against the NAAQ limit value of 20 ng/m³ (annual mean).

Benzene (C₆H₆) concentrations were monitored <1.0 ng/m³ at all the monitoring locations against the NAAQ limit value of 5.0 ng/m³ (annual mean).

Benzo(a) Pyrene (BaP) concentrations were monitored <1.0 ng/m³ at all the monitoring locations against the NAAQ limit value of 1.0 ng/m³ (annual mean).

Interpretations

While comparing with the National Ambient Air Quality (NAAQ) Standards revised as per GSR 826(E) dated 16.11.2009, all monitored values were found to be well within the respective limit values for 24-hourly periods for Industrial, Residential, Rural and other Areas.

3.4 NOISE ENVIRONMENT

Noise is any sound that is undesirable because it interferes with speech and hearing. The environment impact of noise can have several effects varying from noise induced hearing loss to annoyance depending on loudness of noise levels.

The main objective of noise monitoring in the study area is to establish the baseline noise levels and assess the impact of the total noise expected to be generated in the surrounding areas by implementation of the proposed project.

Noise level monitoring has been conducted in the study area once in a season 06, 07, 08 November 2023 to assess the background noise levels in different zones viz., Residential, Industrial, Commercial and Silence zones.

3.4.1 Methodology

Noise level monitoring in the study area was carried out 60minutes during each hour over a period of 24Hours as per the Ambient Noise quality standards under environmental (protection) Act 1986.

Identification of Sampling Locations

Twenty one locations were selected for the noise level monitoring stations based on the population and activities in the study area. The locations of the noise level monitoring stations are as given below as **Table. 3.32**

TABLE 3.32: NOISE LEVEL MONITORING DONE IN THE LOCATION

S.No	Station code	Location	Co ordinates	Distance from the lease
1 N1	NI1	Project site	10°14'36.12"N	Core
	INI	Lease 2	78°17'48.68"E	Core
2	N2	Project site	10°14'28.18"N	Core
	INZ	Lease 1	78°17'46.22"E	Core
3	N3	Project site	10°14'29.23"N	Core
3		Lease 1	78°17'40.64"E	Core
4	N4	Project site	10°14'30.42"N	Core
4	114	Lease 1	78°17'37.55"E	Core
5	N5	Project site	10°14'31.16"N	Core
3	NJ	Lease 1	78°17'41.14"E	Core
6	N6	Project site	10°14'34.93"N	Core
0	NO	Lease 2	78°17'44.41"E	
7	N7	Project site	10°14'48.75"N	Core
/	/ N/	Lease 4	78°17'50.64"E	
8	8 N8	Project site	10°14'43.24"N	Core
8 N8	No	Lease 4	78°17'47.47"E	
9	N9	Project site	10°14'45.26"N	Core
		Lease 4	78°17'46.02"E	
10	N10	Project site	10°14'48.42"N	Core
10		Lease 4	78°17'47.88"E	
11	N11	Project site	10°14'59.28"N	Core
11		Lease 5	78°17'33.46"E	

12	N12	Project site	10°14'58.65"N	Core
		Lease 5	78°17'30.67"E	
13 N13	Project site	10°14'54.52"N	Core	
	Lease 5	78°17'31.77"E		
14 N14	N114	Project site	10°14'55.39"N	Core
	Lease 5	78°17'35.83"E		
15 N15	Project site	10°14'35.74"N	Core	
	Lease 3	78°17'54.64"E		
16 N16	Project site	10°14'32.79"N	Core	
	Lease 3	78°17'54.17"E		
17 N17	Project site	10°14'33.20"N	Core	
	Lease 3	78°17'52.51"E		
18 N 18	Project site	10°14'35.93"N	Core	
	Lease 3	78°17'53.45"E		
19 N19	9 N19 Sirugudi	C:1:	10°15'46.52"N	2 10KM NE
		78°18'21.14"E	2.10KM NE	
20 N20	20 N20 V.Pudur	V.Pudur	10°13'33.25"N	4.20VM CE
		78°19'59.05"E	4.30KM SE	
2.1	NO	Panniamalai	10°16'44.36"N	2.7000 NIN
21 N2	N21	78°16'34.71"E	3.70KM NW	

Source: Lab Monitoring Data

Instrument Used for Monitoring

Noise levels were measured using a sound level meter (LUTRON / SL - 4030). The sound level meter measures the Sound Pressure Level (SPL), the Maximum Sound Pressure Level (max) and the equivalent continuous noise level (Leq) by switching on the corresponding functional modes.

Method of Monitoring

Sound Pressure Level (SPL) measurements were taken at the specified locations, with an interval of 60 minutes per hour over a period of 24 hours as per the Ambient Noise quality standards notified under Environmental (Protection) Act 1986. The noise levels during day time have been monitored between 6 am to 10 pm and night noise levels during 10 pm to 6 am at all the locations covered in the study area.

To obtain noise levels at 8 AM, noise readings, with setting at 'A' response - slow mode, were recorded continuously for every 1 hour. All the readings were obtained for 24 hours.

FIGURE 3.17: NOISE LEVEL MONITORING PHOTOS

Parameters Measured During Monitoring

For noise levels measured over a given period of time interval, it is possible to derive important features of noise using statistical methods.

L_{day} Average noise levels between 6.00 hours to 22.00 hours.

L_{night} Average noise levels between 22.00 hours to 6.00 hours.

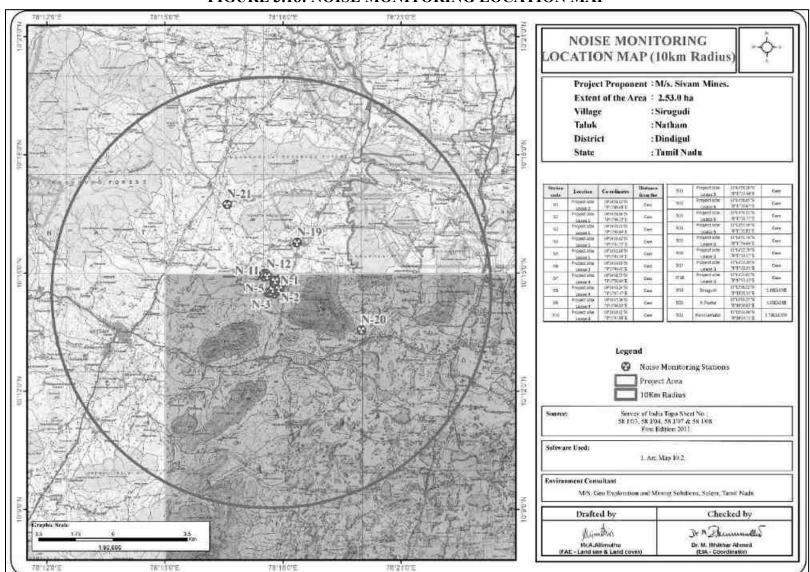


FIGURE 3.18: NOISE MONITORING LOCATION MAP

Source: Survey of India Toposheet, 11th Edition, 2011

3.4.2 Presentation of Results

The summary of computed ambient noise level parameters like L_{day} and L_{night} for all the sampling locations are presented in **Table.3.33** and compared to the standards specified by ANQS under EP Act 1986 as given in **3.33**

Monitoring Date: 06, 07, 08 November 2023 **TABLE 3.33: AMBIENT NOISE LEVELS**

				Noise Lev	vels, dB(A)			
Sl.	Location	Day Ti	me (06:00-22		Night Time (22:00-06:00 hrs.)			
No.		Lmin.	Lmax.	Leq	Lmin.	Lmax.	Leq	
1	N1-Project site	40.3	55	50	35	44.3	41.8	
2	N2-Project site	40.3	55	49.1	35.1	44.7	41.5	
3	N3-Project site	40.1	59.3	49.8	35.1	44.3	41.7	
4	N4-Project site	40.3	55	49.1	35.3	45.3	41.6	
5	N5-Project site	37.4	58.9	49.4	32.6	48.7	41.2	
6	N6-Project site	38.7	55	49.1	36.1	40.5	39.9	
7	N7-Project site	41.6	58.1	48.5	36.5	41.5	40.6	
8	N8-Project site	42.7	55.7	50	30.2	40.5	36.3	
9	N9-Project site	38.8	55.1	48.7	32.8	38.5	36	
10	N10-Project site	39.5	59.5	50.1	32.9	44.1	36.9	
11	N11-Project site	18.2	55.3	49.1	30.5	41.2	38.5	
12	N12-Project site	38.3	55.1	48.3	31.1	38.6	38.5	
13	N13-Project site	39.4	58.6	47.8	33.7	41.9	38.8	
14	N14-Project site	39.1	55.3	47.4	33.2	39.5	37.4	
15	N 15-Project site	44	55.8	50.5	33.1	44.3	39.9	
16	N16-Project site	38.5	45.9	45.1	32.7	40.5	38.3	
17	N17–Project site	40.5	59.3	52.0	31.8	46.1	39.3	
18	N18–Project site	37.4	56.2	48.7	31.1	39.7	36.9	
Buffer Zone :								
19	N19- Sirugudi	42.1	58.7	51.3	36.4	48.7	41.5	
20	N20- V.Pudhur	42.5	59.4	50.8	35.1	48.9	43.2	
21	N21- Pannianmalai	43.1	59.8	51.2	36.2	48.7	39.8	
	MoEF&CC Norms*	_	-	55		-	45	

Source: Lab Analysis Results

Interpretation

Ambient noise levels were ranging from 18.2dB (A) to 59.8dB (A) during day times and from 30.2dB (A) to 48.9dB (A) during night times on the monitoring day. Average Day Equivalent Noise (Leq-d) level was found to be 49.33dB (A) and Night Equivalent Noise (Leq-n) level was 39.50dB (A). While comparing with the MoEF & CC Leq Norms for day and night times, the monitored ambient noise levels were well within the limit values of <55 dB(A) during day times and <45 dB(A) during night times, for Residential Areas.

3.5 BIOLOGICAL ENVIRONMENT

Biological environment of any area constitute all living beings of that area, it is an integral part of the environment. Hence, any change in the surrounding environment could cause loss of species or decrease in biodiversity of the area. Therefore, the present study is proposed to assess the impact of the proposed projects on biological environment of the project site and surrounding area within 10km radius. Accordingly, mitigation measures are evolved to sustain the biological diversity. In general biological environment is represented by flora and fauna. Flora constitutes the herbs, shrubs and trees and fauna constitutes the mammals, birds, reptiles, arthropods, amphibians, fishes etc.,

3.5.1 OBJECTIVE OF THE STUDY

The major objectives of the study were:

- To document the diversity of the local flora within core & buffer zone.
- To enlist the major agricultural crops, plantations and cultivated species.
- To document the major fauna both invertebrate and vertebrate occurring in the selected 10Km study area.

3.5.2 STUDY APPROACH & METHODOLOGY ADOPTED

The baseline study for existing ecological environment was carried out during October to December, 2023. A participatory and consultative approach was followed. Field visits were undertaken for survey of the vegetation and animals in the study area. The study area has been divided in to two parts as core area consisting of project site and the buffer area as the 10 km radius of the project site.

3.5.3 SAMPLING METHODOLOGY

Flora Floral status was assessed in different habitat types and project site of the study area. Quantitative data was collected using standard methods of quadrate method. Flora lenumeration was done following standard sampling techniques. Random quadrates were laidin order to quantify the vegetation of the study area. Quadrate size for trees was 100 x 100m, for shrubs it was 5 x 5 m and for herbs it was 1 x 1m. Plots of 1 x 1 m were laid within the tree quadrate at each corner to record grasses. In each of the quadrates, species and their number were recorded.

3.5.4 FLORA & FAUNA AT THE STUDY AREA

3.5.4 FLORA & FAUNA AT THE STUDY AREA

TABLE 3.34: FLORA IN THE CORE ZONE (ML Area)

Sl. No.	Scientific Name	Family	Common Name
1.	Azadirachta indica	Meliaceae	Neem (Vembu)
2.	Borassus flabellifer	Arecaceae	Palmyra Palm
	Abutilon indicum	Malvaceae	Indian mallow, Thuthi
	Solanum torvum	Solanaceae	Turkey berry, Sundaikkai
	Euphorbia hirta	Euphorbiaceae	Asthma Plant, Ammaan Pachcharisi
	Argemone Mexicana	Papaveraceae	Prickly Poppy, Kudiyotti
	Solanum trilobatum	Solanaceae	Thoothuvalai

TABLE 3.35: FLORA IN THE BUFFER ZONE

S.No	Name of the plant (Scientific)	Family Name	Common Name	Local name
1.	Cocus nucifera	Arecaceae	Coconut, Thennai	Thennai
2.	Psidium gujava	Myrtaceae	Guava	Koiya
3.	Musa paradisiaca	Musaceae	Plantain, Vazhai	Vaalai maram
4.	Pongamia pinnata	Fabaceae	Indian Beech,	Pungam
5.	Azadirachta indica	Meliaceae	Neem,	Vembu
6.	Borassus flabellifer	Arecaceae	Palmyra Palm	Panaimaram
7.	Pithecellobium dulce	Fabaceae	Kodukkapuli	Kodukkapuli
8.	Prosopis juliflora	Fabaceae	Algaroba,	Seemaikaruvel
10	Moringa oleifera	Moringaceae	Drumstick,	Murungai
11	Tamarindus indica	Fabaceae	Tamarind,	Puliyamaram
12	Argemone mexicana	Papaveraceae	Prickly poppy,	Kudiyotti
13	Calotropis gigantea	Asclepiadaceae	Crown Flower,	Erukku
14	Senna auriculata	Fabaceae	Aavarampoo	Avarampoo
15	Solanum torvum	Solanaceae	Turkey berry,	Sundaikkai
16	Solanum trilobatum	Solanaceae	Thoodhuvalai	Thooduvalai
17	Adathoda vasica	Acanthaceae	Vasaca,	Adathodai
18	Argemone mexicana	Papaveraceae	Prickly poppy,	Kudiyotti
19	Oryza sativa	Poaceae	Rice	Nel
20	Abutilon indicum	Malvaceae	Country Mallow, Tutti	Tutti
21	Agave sisalana	Agavaceae	Sisal	Kathalai,
22	Aloe vera	Liliaceae	Kathalai	Sothu Kathalai
23	Aristida adscensionis	Poaceae	Coomon Needle grass	Korai pul
24	Euphorbia hirta	Euphorbiaceae	Asthma weed,	Ammam Paccharisi
25	Tridax procumbens	Asteraceae	Tridax daisy,	Vettukkaayapoondu
26	Amaranthus viridis	Amaranthaceae	slender amaranth	Kuppaikeerai
27	Oryza sativa	Poaceae	Rice	Nel
28	Abutilon indicum	Malvaceae	Country Mallow, Tutti	Tutti

TABLE 3.36: FAUNA IN THE CORE ZONE (ML Area)

Scientific name	Common name	WPA 1972 Schedule	IUCN Status
funambuluspalmarum	India palm squirrel	IV	Least concern
Corvussplendens	House Crow	IV	Least concern
Acridotherestristis	Common myna	IV	Least concern
Buteobuteo	Common buzzard	IV	Least Concern

TABLE 3.37: FAUNA IN THE BUFFER ZONE

		AMPHIBIANS		
S.No	Scientific Name	Common Name	WPA 1972 Schedule	IUCN Status
1	Bufo melanrostictus	Common Indian Toad		LC
2	Euphlyctis cyanophlyctis	Skittering frog		LC
'		REPTILES		
1	Ahaetulla nasuta	Common Green Whip Snake		
4	Calotes versicolor	Common Garden lizard	IV	LC
8	Hemidactylus flaviviridis	House gecko	IV	LC
		BIRDS		
1	Acridotheres tristicus	Common myna	IV	LC
4	Ardeola grayii	Pond Heron or Paddy Bird	IV	LC
5	Athene brama	Spotted Owlet	IV	LC
6	Bubo bubo	Indian great horned owl	IV	LC
7	Bubulcus ibis	Cattle egret	IV	LC
9	Centropus sinensis	Crow-Pheasant or coucal	IV	LC
15	Corvus splendens	House Crow	IV	LC
34	Passer domesticus	House Sparrow	IV	LC
37	Psittacula krameri	Rose Ringed Parakeet	IV	LC
		MAMMALS		
1	Bandicota indica	Bandicoot	IV	LC
2	Atherurus macrourus	Asiatic Brush tailed porcupine	IV	LC
2	Bos indicus	Сож	IV	LC
3	Bubalus bubalis	Buffalo	IV	LC
6	Capra hircus	Goat	IV	LC
9	Funambulus palmarum	Indian Palm squirrel	IV	LC
11	Macaca radiata	Bonnet macaque	IV	LC
		INSECTS		
S.No.	Scientific Name	Common Name	Picture	
1.	Agrion sp & Petalura sp	Dragon fly	IV	LC
2.	Apis indica	Hon ey bee	IV	LC
3.	Aranea sp	Spider	IV	LC
4.	Carausius sp	Stick insect	IV	LC
5.	Cicada sp.	Cicade	IV	LC
6.	Coenagrion sp & Ischnura	Damsel fly	IV	LC
7.	Eumenus	Wasp	IV	LC

8.	Hieroglyphus sp	Grasshopper	IV	LC				
9.	Mantis religiosa	Praying mantis	IV	LC				
10.	Monomorium indicum	Ant	IV	LC				
11.	Palamnaeus swammerdam	Scorpion	IV	LC				
12.	Scolopendra	Centipede	IV	LC				
		BUTTERFLIES						
1.	Acraea terpsicore	Tawny coster	IV	LC				
2.	Danaus plexipppus	Striped tiger	IV	LC				
	FISH							
1.	Cirrhinus mrigala	Mrigal	IV	LC				
2.	Cyprirus carpio	Common Carp	IV	LC				

Among the flora recorded most of them are common residence population and no endangered species in the study area.

Interpretation:

There is no schedule I species of animals observed within study area as per Wildlife Protection Act 1972 as well as no species is in vulnerable, endangered or threatened category as per IUCN. There is no endangered red list species found in the study area. Hence this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO-ECONOMIC ENVIRONMENT

To assess the impact on the socio economic environment, it is essential to collect the following data:

- Population surrounding the project site those likely to be targeted receptor of impact
- Employment pattern
- Infrastructure facilities available to the local population such as water supply and sanitation electricity, roads, education and medical facilities.
- Land use pattern.

Information on the Socio economic front has been collected from various secondary sources including 2011 published census data, Government and semi government office.

3.6.1 OBJECTIVES

The objectives of the socio-economic study are as follows:

- To study the socio-economic status of the people living in the study area of the proposed mining project.
- To assess the impact of the project on socio-economic environment in the study area.
- To assess the impact of the project on Quality of life of the people in the study area.
- To evaluate the community development measures proposed to be taken up by the project proponent, if any.
- To recommend Community Development measures needs to be taken up in the study area.

3.6.2 METHODOLOGY ADOPTED FOR THE STUDY

- A mixture of both quantitative and qualitative approach has been adopted in the current socio-economic study.
- The study has been conducted based on primary and secondary data. While primary data
 has been collected through a sample survey of selected households, the secondary data
 has been collected from the administrative records of the Government of Tamilnadu,
 Census 2011 District hand books etc.,
- The details regarding population composition, number of literates, workers etc., have been collected from secondary sources and analyzed. Also village/city/town wise details regarding amenities available in the study area have been collected from secondary sources and analyzed.
- Random Sampling has been adopted to select the sampling units.
- Estimation of various parameters has been made based on sample data and bottom top approach has been adopted.

- The data collected during the above survey was analyzed to evaluate the prevailing socioeconomic profile of the area.
- Based on the above data, impacts due to mining operation on the community have been assessed and recommendations for improvement have been made.

3.6.3 DESCRIPTION OF THE STUDY AREA

The study area covers all the villages/ part of villages located in the 10 km radius around the mine lease periphery. In this Limestone mine in an area of 2.53.0 ha at village Sirugudi, the study area is spread over 34 villages. The list of villages along with the population details is given in Table 3.38.

3.6.3.1 REVIEW OF THE STUDY AREA:

The study area is in the Sirugudi village of Natham Taluk, Dindigul District.

Total extent of the study area (10Km Radius) = 31,802Ha.

Total Population = 90,008

Total male population = 45,422

Total female population = 44,586

Population density per Km^2 = 186person/ Km^2

Sex ratio = 1001

District headquarters = Dindigul

3.6.3.2 DEMOGRAPHY OF SIRUGUDI VILLAGE: (SOURCE: DISTRICT SENSEX HAND BOOK 2011)

Total area = 1,847ha
Total No of Households = 2,315
Total population = 9,524

Male population = 4,770

Female population = 4,754

Population density = 529 per Km^2

Literacy rate = 63 %

TABLE 3.38: DEMOGRAPHY PROFILE OF THE STUDY AREA

SI.No.	Village Name	Total Population	Male	Female	Total SC Population	Male SC	Female SC	Total ST Population	Male ST	Female ST	Total Literate Population	Male Literate	Female Literate	Total Illiterate Population	Male Illiterate	Female Illiterate
1	Avichchippatti	2325	1169	1156	95	46	49	0	0	0	1489	890	599	836	279	557
2	Ayyapatti	4934	2470	2464	356	170	186	0	0	0	2965	1781	1184	1969	689	1280
3	Budagudi	1425	726	699	93	49	44	0	0	0	941	550	391	484	176	308
4	Chellappanaickenpatti	4876	2435	2441	552	281	271	0	0	0	2986	1708	1278	1890	727	1163
5	Chokkampatti	2789	1325	1464	286	138	148	0	0	0	1684	940	744	1105	385	720
6	Idayapatti	583	295	288	4	1	3	0	0	0	315	183	132	268	112	156
7	Kambur	7925	3998	3927	652	339	313	0	0	0	4442	2663	1779	3483	1335	2148
8	Kesampatti	4607	2274	2333	203	98	105	0	0	0	2580	1540	1040	2027	734	1293
9	Kottaiyur	3925	1993	1932	200	103	97	0	0	0	2452	1413	1039	1473	580	893
10	Kottampatti	5406	2716	2690	1164	608	556	1	0	1	3959	2229	1730	1447	487	960
11	Kunnarampatti	3163	1575	1588	558	285	273	0	0	0	1961	1136	825	1202	439	763
12	Manappachcheri	5441	2716	2725	611	322	289	0	0	0	3557	2073	1484	1884	643	1241
13	Nadumandalam	8830	4495	4335	1960	1002	958	1	0	1	5472	3225	2247	3358	1270	2088
14	Pallapatti	13701	6933	6768	5471	2757	2714	0	0	0	9730	5330	4400	3971	1603	2368
15	Pandangudi	948	459	489	240	119	121	0	0	0	678	381	297	270	78	192
16	Pannimalai	2068	1065	1003	371	186	185	0	0	0	1365	789	576	703	276	427
17	Pannuvarpatti	1218	617	601	622	316	306	0	0	0	778	430	348	440	187	253
18	Pappapatti	7988	3945	4043	3163	1572	1591	2	1	1	963	617	346	396	131	265
19	Pottapatti	3382	1640	1742	415	217	198	0	0	0	2166	1242	924	1216	398	818
20	Punnapatti	7576	3812	3764	988	494	494	0	0	0	4851	2802	2049	2725	1010	1715
21	Samudrapatti	3929	1945	1984	687	341	346	0	0	0	2645	1456	1189	1284	489	795
22	Sattambadi	6210	3221	2989	825	429	396	0	0	0	3845	2311	1534	2365	910	1455
23	Seithur	8222	4135	4087	338	173	165	0	0	0	4789	2790	1999	3433	1345	2088
24	Sekkipatti	4436	2248	2188	1007	530	477	0	0	0	2626	1567	1059	1810	681	1129
25	Sirangattupatti	6717	3361	3356	83	41	42	0	0	0	4276	2417	1859	2441	944	1497
26	Sirugudi	9524	4770	4754	1669	828	841	0	0	0	6002	3435	2567	3522	1335	2187
27	Surappatti	1769	856	913	200	95	105	0	0	0	1131	638	493	638	218	420
28	Tarkakudi	349	171	178	160	80	80	0	0	0	244	135	109	105	36	69
29	Thethur	5906	2996	2910	707	360	347	0	0	0	3804	2155	1649	2102	841	1261
30	Tiruchchunai	1837	946	891	127	70	57	0	0	0	1147	687	460	690	259	431
31	Tondilingapuram	1874	936	938	177	93	84	0	0	0	1152	693	459	722	243	479
32	Uralipatti	3896	1948	1948	333	166	167	1	0	1	2367	1377	990	1529	571	958
33	Valaichcherippatti	1408	685	723	249	131	118	0	0	0	1019	551	468	389	134	255
34	Velanpatti	9873	5025	4848	750	366	384	31	13	18	7290	4019	3271	2583	1006	1577

Source: District primary census handbook 2011.

3.6.4 POPULATION OF THE STUDY AREA

The statistics, regarding the human population and the No of dwelling units of villages in the study area taken from the 34 villages in the buffer zone, while in core zone there is no village. Population, literacy, in the study area are given in **Table 3.38.** This information is taken from the District Census Hand book, Dindigul, 2011. On this basis, the population of the study area is estimated about 1,59,060, i.e. within a 10 km periphery or 318.02 Km² area gives a population density of about 500 persons / km².

About 60% population depends upon the agriculture, 20 % population depends upon the seasonal agriculture about 10-15% of the population depends upon self-employment like petty shop, small hotels, agro shops etc., about 4% of the population are employed in foreign country both literate and illiterate about 2% of the population relay on self-employment scheme (100 days workers scheme) 8-10 % of the population are employed in Government and private sector companies besides a small amount of population are elderly persons, sick persons, handicap and un employed.

3.6.5 LITERACY:

Of the total population 61.40% belongs to literate category. Amongst this, male and female constitute 57.49% and 42.50% respectively.

3.6.6 WORKERS OCCUPATIONAL PATTERN IN THE STUDY AREA:

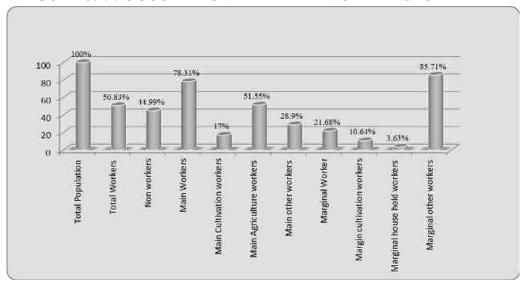

The occupational profile has been classified based on the available 2011 Census classification. A person is treated as main worker if the person has worked for a major part of the year, i.e. 183 days or more. A marginal worker is a person who worked for some time during the year but not for 183 days. The main workers have been further categorized as cultivators, agricultural labourers, household industry workers and other workers. Household industry relates to production, processing, repairing, making and selling of goods at household level. The other workers include factory employees, plantation workers, persons engaged intrade, commerce, business, transport, mining, construction, social work, entertainment as well as government employees, teachers and priests.

TABLE 3.39: OCCUPATIONAL PATTERN OF THE AREA

S.No	Description	No of peoples	Proportion %
1	Total Population	1,59,060	100
2	Total Workers	80,858	50.83
3	Non workers	71,573	44.99
4	Main Workers	63,323	78.31
5	Main Cultivation workers	10,817	17.00
6	Main Agriculture workers	32,649	51.55
7	Main other workers	18,301	28.90
8	Marginal Worker	17,535	21.68
9	Margin cultivation workers	1867	10.64
10	Marginal house hold workers	638	3.63
11	Marginal other workers	15,030	85.71

Source: District primary census handbook 2011

FIGURE 3.19: OCCUPATIONAL PATTERN OF THE STUDY AREA

Source: Table 3.39

3.6.7 EDUCATIONAL FACILITIES

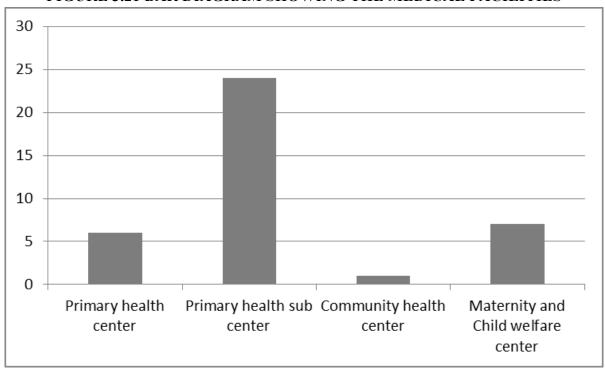
TABLE 3.40: EDUCATION FACILITIES IN THE STUDY AREA

S.No	Name of educational facilities	No of facilities	Government	Private
1	Pre Primary school	42	33	9
2	Primary School	42	33	9
3	Middle school	27	23	4
4	Secondary school	21	15	6
5	Higher secondary school	16	11	5
6	Degree Colleges	2	-	2
7	Engineering college	Nil	-	-
8	Polytechnic college	2	-	2

Source: District primary census handbook 2011.

3.6.8 HEALTH AND MEDICAL FACILITIES

Out of total 34 villages health & medical facilities are available almost in all villages. The statistical data representing the type and number of medical facilities available within the study area is given in Table 3.41 and the same is represented in the form of a bar chart.


TABLE 3.41: MEDICAL FACILITIES IN THE STUDY AREA

S.No	Type of facility	Number
1	Primary health center	6
2	Primary health sub center	24
3	Community health center	1
4	Maternity and Child welfare center	7

Source: District primary census handbook 2011.

Besides there are plenty of private registered medical practitioners have their dispensaries in most of the villages.

FIGURE 3.21 BAR DIAGRAM SHOWING THE MEDICAL FACILITIES

Source: Table 3.41

3.6.9 SUMMARY OF THE BASELINE STATUS:

The interpretation of the baseline environmental status in the study area is following.

- The monitored Air quality in the mine lease area was found to be in compliance with the NAAQ norms for industrial and residential rural and other areas.
- The noise level Leq during the day and night was found to be well within the ambient noise quality standards notified under Environmental (protection) Act 1986.
- The quality of the surface water and ground water are found well within the prescribed standards of CGWB Norms and drinking water specification IS 10500 and Central Pollution Control Board water quality criteria.
- The soil in the mine area would well support vegetation if preserved suitably. There is no
 Eco sensitive zone or any Archeological/ historical places found within the vicinity of the
 mine area.
- There are no endangered species of fauna and the area is thinly populated. All basic facilities like school, hospitals, communication center, transportation center, are available in and around the project area.
- There is sufficient buffer zone for the project with respect to physical and biological environments.
- There is no effluent discharge from the mine to the nearby water bodies.

4. ANTICIPATED ENVIRONMENT IMPACT AND ITS MITIGATION MEASURES

4.0 GENERAL

The Environmental Impacts associated with any activities have significant impacts on the environment.

The purpose of Environmental Impact Assessment (EIA) is to identify and evaluate the potential impacts (beneficial and adverse) of development and projects on the environmental system. It is a useful aid for decision making based on understanding of the environment implications including social, cultural and aesthetic concerns which could be integrated with the analysis of the project costs and benefits. On the basis of the impact analysis, the mitigating action and future monitoring requirement are focused in the Environmental Management Plan for counting or minimizing adverse impacts.

Generally, the environmental impacts can be categorized as either primary or secondary. Primary impacts are those, which are attributed directly by the project, secondary impacts are those, which are indirectly induced and typically include the associated investment and changed pattern of social and economic activities by the proposed action.

The impact has been ascertained for the project assuming that the pollution due to mining activity has been completely spelled out under the baseline environmental status for the entire ROM which is proposed to exploit from the mines.

Several scientific techniques and methodologies are available to predict impacts of physical environment. The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail.

Various impacts have been studied and are discussed in the subsequent sections.

- 1. Land Environment
- 2. Water Environment
- 3. Air Environment
- 4. Noise Environment
- 5. Solid waste
- 6. Biological
- 7. Socio-Economic

4.1 LAND ENVIRONMENT:

Topography of the land will be changed according to the Limestone mining operation. The main anticipated impact on the Land Environment due to quarrying operation is change in Landscape, change in Land – use Pattern. Land use pattern of the area is dry barren land, with existing quarry pit. The topography of the area is almost plain terrain having gentle gradient towards south side. Core zone of the area is patta land. No forest land is involved.

As per the approved mine plan at conceptual stage, mined out pit will be converted into rain water harvesting pit and green belt will be developed on the top benches. Hence impact due to change in land use is positive. No discharge of toxic elements. No adverse impact is anticipated on land use of buffer zone associated due to the Limestone quarrying, as all the activities will be confined within the project area.

MITIGATION MEASURES

Due to the mining activities in the lease area the land use pattern will be altered. In order to minimize the adverse effects, the following control measures will be implemented:

- Top soil generated during the previous period was preserved all along the boundary barrier to facilitate the greenbelt.
- Top Soil generated during mining will be temporarily stacked at designates places and will be used for carrying out greenbelt on the safety zone and top benches of mined out area. Part of the remaining void/ un-reclaimed area at the lower elevation of the pit area will be used as water storage cum ground water recharge pit.
- Construction of garland drains all around the quarry pit and construction of check dam at strategic location in lower elevations to prevent soil erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Construction of retention walls with weep holes around the waste dump boundary to arrest boulder roll down and silt wash off to avoid discharged to surroundings, particularly agriculture land.
- Green belt development along the boundary within safety zone and reclaimed mined out area. The water stored in the mined out pit will be used for greenbelt development.
- Thick plantation will be carried out on undisturbed area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use of mining area will change into area covered with plantation and water reservoir.
- Proper fencing will be carried out at the conceptual stage to prevent inherent entry of the public and cattle.

4.2 WATER ENVIRONMENT

The impact due to quarrying on the water quality is expected to be insignificant because of no use of chemicals or hazardous substances during quarrying process. The quarrying activity will not intersect ground water table and water table is found at a depth of 35m BGL in summer season.

The quarrying operation will be carried out well above the water table. There is no intersection of surface water bodies (Streams, Canal, Odai etc.,) in the project area. During rainy season rain water will be collected in the quarry pit and later used for greenbelt development and for the water sprinkling in the haul roads. There is no proposal for discharging of quarry pit water outside the project area

There is no proposal processing or workshop within the project area thus there is no effluent anticipated in the mine.

Detail of water requirements in KLD as given below:

PurposeQuantitySourceDust Suppression0.8 KLDRainwater accumulated in Mine PitGreen Belt0.8 KLDRainwater accumulated in Mine PitDomestic & Drinking Purpose0.4 KLDApproved Water VendorsTotal2 KLD

TABLE 4.1: WATER REQUIREMENT

Mitigation measures:

- Construction of garland drains to divert surface run-off into the mining area.
- Construction of check dams / gully plugs at strategic places to arrest silt wash off from broken up area.
- Retaining walls with weep hole will be constructed around the external dumps. The storm water will goes to the Garland drains through the weep holes.
- The remaining excavated pits after back filling will be converted into the water reservoir at the end of mine life. This will help in recharging ground water table by acting as a water harvesting structure.
- Periodic analysis of mine pit water and ground water quality in nearby villages.
- Domestic sewage from site office & urinals/latrines provided in ML is discharged in septic tank followed by soak pits.

4.3 AIR ENVIRONMENT

Mining Operations are carried out by opencast category "A" other than fully mechanized; dust particles are generated due to various activities like Drilling, Blasting, Excavation of mineral, Loading, handling of waste and transportation. The air quality in the mining area depends upon the nature and concentration of emissions and meteorological conditions.

The major air pollutants due to mining activity includes:-

- Particulate Matter (Dust) of various sizes.
- Gases, such as, Sulphur Dioxide, Oxides of Nitrogen, Carbon Monoxide etc., from vehicular exhaust.
- Dust is the single air pollutant observed in the open cast mines. Diesel operating drilling machines, small amount of blasting and movement of machinery/vehicles produce NO_X, SO₂and Co emissions, usually at low levels. Dust can be of significant nuisance surrounding land users and potential health risk in some circumstances.

Mitigation Measures

Mitigated measures suggested for air pollution controls are based on the baseline ambient air quality of the area. From the point of view of maintenance of an acceptable ambient air quality in the region, it is desirable that air quality is monitored on a regular basis to check compliance of standards as prescribed by regulatory authorities. In case of non-compliance, appropriate mitigated measures need to be checked. No heavy earth moving machineries are

The following additional measures will also be adopted such as,

- Wet drilling will be carried out to contain the dust.
- Controlled blasting techniques will be adopted.
- Water spraying on haul roads, service roads and overburden dumps will help in reducing considerable dust pollution.
- Proper and regular maintenance of mining equipment's have to be considered.
- Transport of Limestone in trucks covered with tarpaulin.
- The mine pit water can be utilized for dust suppression in and around mine areas.
- Information on wind direction and meteorology will be considered while planning, so that pollutants, which cannot be fully suppressed by engineering technique, will be prevented from reaching the nearby agriculture area.
- Green belt around overburden dumps to be carried out to reduce to fugitive dust emissions in order to create clean and healthy environment.

4.4 NOISE ENVIRONMENT

Noise pollution is mainly due to operation of drilling Machineries and occasional plying of tippers only. Noise due to the movement of Heavy earth moving machineries will not arise. These activities will not cause any problem to the inhabitants of this area because there is no human settlement in close proximity to the lease area. Noise level monitoring has been carried out in the project area. The result indicates that no significant impact to nearby villages.

MITIGATION MEASURES

- Periodic maintenance of machinery, equipment's will be ensured to keep the noise generated at minimum.
- Development of thick green belt around mining area and haul roads to reduce the noise.
- Provision of earplugs to workers exposed to high noise generating activities. Workers and operators at work site will be provided with earmuffs.
- Conducting periodical medical checkup of all workers for any noise related health problems.
- Proper training to personnel to create awareness about adverse noise level effects.
- Periodic noise monitoring at suitable locations in the mining area and nearby habitations to assess efficacy of adopted control measures.
- During the blasting, optimum Spacing, Burden and charging of holes will be made under the supervision of competent qualified mines foreman, Mate as approved by Director of Mines safety.

4.5 BIOLOGICAL ENVIRONMENT

The impact on biodiversity is not anticipated as there is no forest, wild life sanctuaries eco sensitive zone within the radius of 10Km from the mine site. The impact on biodiversity is difficult to quantify because of its diverse and dynamic characteristics.

Mining activities generally result in the deforestation, land degradation, water, air and noise pollution which directly or indirectly affect the faunal and floral status of the project area. However, occurrence and magnitude of these impacts are entirely dependent upon the project location, mode of operation and technology involved.

MITIGATION MEASURES:

- Development of gap filling plantation in the safety barrier left around the proposed area.
- Carrying out thick plantation with local flora species on the inactive mined out upper benches.
- Development of dense poly-culture plantation using local flora species in the mining area at conceptual stage.
- Adoption of suitable air pollution control measures as suggested above.
- Covered transportation of mineral outside the mining area.
- Construction of garland drains and settling tank to arrest silt wash off from ML area.
- Construction of retention walls around lower boundary of mining area to arrest silt wash off and roll down boulders.
- Retaining walls with weep hole will be constructed around the external dumps to arrest silt wash off and roll down boulders.

4.6 SOCIO ECONOMIC ENVIRONMENT

The socio-economic impacts of mining are many. Impacts of a mine project may be positive or Negative. The adverse impacts attribute to physical displacement due to land acquisition, which is followed by loss of livelihood, mental agony, changes in social structure, and risk to food security etc.,

The villages and their inhabitants in the buffer zone will not be disturbed from their settlements due to the mining operations. There is no inhabitation within the ML area. Therefore neither villages nor any part of village or any hamlet will be disturbed during the entire life of the mine.

Regular medical checkup / eye-camps will be organized for the villagers. Allocation of funds towards public health has been indicated in the CSR CER activities.

The existing project will provide job opportunities to 18 local workers directly and 40 workers indirectly. Earning wages will be as per the minimum wages act applicable for unskilled, semi-skilled and highly skilled categories.

Lessee will contribute for the development of the area, nearby schools and basic amenities as per the CSR Act 2013. Besides 30% of the royalty as DMF, GST, levis will be given to the concern department for local community development and state/country revenue.

CSR ACTIVITIES CARRIED OUT SO FAR BY THE PROPONENT.

- Providing note books to the students.
- Supplying hospital beds to the Sirugudi PHC.

- ❖ Drinking water facility to the government school.
- ❖ Maintenance of public road.
- Cultural activities for the community.

CSR ACTIVITIES PROPOSED TO BE CARRIED OUT.

With reference to the above subject, the Socio – Economic assessment study was carried out to identify Corporate Social Responsibility (CSR) for M/s. Sivam Mines.

TABLE 4.2 IDENTIFIED CSR ACTIVITIES

S.No	Description	Amount in Rs/	Type of expenses
		year	
1	Scholarship program for 10 students/ year at	Rs 2,00,000/-	Recurring
	Sirugudi government school Rs 20,000/ each		
	Total	Rs 2,00,000/-	Recurring

4.7 WASTE MANAGEMENT AND MITIGATION MEASURES.

The waste anticipated in the mines is only the Mineral rejects and side burden which is proposed to dump in the pre-determined places approved by Indian Bureau of Mines and proposed to backfill in the conceptual stage followed by greenbelt. Proper terracing with safety slope angles 37^{0} - 28^{0} are proposed to follow to prevent soil erosion into the mine pit and other areas.

Top soil generated during the previous plan period was preserved all along the boundary barrier to facilitate the greenbelt. The top soil which is stacked separately will be spread in the backfilled area to facilitate greenbelt.

Domestic sewage from site office & urinals/latrines provided in ML is discharged in septic tank followed by soak pits. The small quantity of spilled out and fly rocks of limestone during production will be collected manually and cleared periodically. There is no impact on the surrounding agriculture land or haulage roads.

4.8 MINE CLOSURE AND MITIGATION MEASURES

After complete exploitation of the limestone mineral from the lease areas, the mined out pit will be partially backfilled and partially allowed to collect the rain water which will act as a temporary reservoir, this temporary storage of water will act as an artificial recharge pond which will enhance the near ground water level and the static level of the nearby wells.

Barbed wire fencing will be constructed along the lease boundary to prevent inherent entry of public and cattle's. Watchman will be appointed in the entrance to prevent inherent entries. The water in the remaining mined out pits will used for maintenance of Greenbelt. The temporary mine office complex will be demolished and restored to original ground profile. The soak pits will be filled with sand to avoid degradation. Native species will be planted as much as possible in the left out area during the conceptual stage, as vegetation cover is the best long term method of stabilizing the site.

The closure of the mine will be in accordance to the final mine closure plan approved by the Indian Bureau of Mines. The proponents are instructed to obtain final mine closure certificate from the Indian Bureau of Mines and by the condition stipulated by the MoEF at the end of the life of the mine.

5. ANALYSIS OF ALTERNATIVE (TECHNOLOGY & SITE)

5.0 INTRODUCTION:

The mining project is site specific and no alternate sites are proposed. There are no alternate sites are interlinked projects. There is no ore beneficiation, mineral processing proposed in the project. This is a site specific projects the limestone is sold to the needy customers in the raw form after the grade separation.

No workshops, housing, colonies are proposed within the project area. The workers are being employed from the nearby community villages. Hence there is no impact on selection of alternate.

5.1 ANALYSIS OF ALTERNATIVE TECHNOLOGY

There are no changes in the method of mining and technology using in this mining operation. The methodology is carried out as per the Mining plan, Modified Mining plan and Review of Mining plan approved by the Indian Bureau of Mines, Government of India.

6. ENVIRONMENTAL MONITORING PROGRAMME

6.1 INTRODUCTION

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during project operation. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental conditions due to operation of the project, to enable taking up suitable mitigation steps in time to safeguard the environment.

Monitoring is important to measure the efficiency of control measures. An environmental impact assessment study is carried over for a specified period of time and the data cannot bring out all variations induced by the natural or human activities. Therefore, regular monitoring program of the environmental parameters is essential to take into account the changes in the environmental quality.

TABLE 6.1: PROPOSED ENVIRONMENTAL MONITORING PROGRAM

S.No	Activity				
	Air pollution monitoring				
1	Ambient air monitoring of parameters specified by CPCB in their air consents from	Half yearly			
	time to time within the core zone.	once			
2	Ambient air monitoring of parameters specified by CPCB in their air consents from	Half yearly			
	time to time at stations outside ie., buffer zone	once			
	Water quality monitoring				
3	Monitoring water quality from rain water collected in mine pit area. Rain water will	Half yearly			
	be used for plantation purpose.	once			
4	Monitoring of one sample of tube well and open well at mine/ nearby location.	Half yearly			
	Parameters are essential parameters as per IS: 10500:1991.	once			
5	Monitoring of water spray requirements	Daily basis			
	Noise quality monitoring				
6	Noise in the ambient atmosphere in mining lease & outside	Half yearly			
		once			
	Green belt maintenance				
7	Monitor schedule for Greenbelt development as per approved mining plan	Weekly basis			

Source: Proposal as per EIA Guidelines

6.2 ENVIRONMENTAL MONITORING CELL

An Environmental Management Cell (EMC) will be established under the control of Proponents and mines manager. A statutory competent qualified will be appointed for looking after the environmental monitoring and compliance with the conditions stipulated in the Environmental clearance for the mines. The environmental monitoring will be carried out by external agency approved by MoEF/TNPCB and NABL for conducting the monitoring. The non-compliance of the condition stipulated in the Environmental clearance will be periodically supervised by the company.

Proponent

Mines Manager

Environmental Engineer/ Chemist

Assistant (1)

Gardener (1)

Water Sprinkler Operator (1)

FIGURE 6.1 ENVIRONMENTAL MONITORING CELL STRUCTURE

The responsibilities of EMC will be as follows:

- 1. Implementation of pollution control measures as suggested in Environmental Management Plan
- 2. Conducting Environmental monitoring as per EMP through external laboratories approved by MoEF/TNPCB and NABL. Compliance reports will be submitted to respective agencies like Regional Office, MoEF & CC, PCB etc.,
- 3. Seeking experts guidance, as and when required.

- 4. Conducting CSR and CER activities in nearby villages.
- 5. Implementation of training program for occupational health and safety of workers as directed by the Director General of Mines safety.
- 6. The Environmental Engineer along with statutory persons like mines manager, Mining engineer, Geologist and foreman will be responsible for regular monitoring and the same will be reported to the lessees/proponent.
- 7. The mining engineer and geologist will be held responsible to carry out the mining operation as per the plan approved by the Indian bureau of mines and to comply with the statutory standards stipulated by the Director of Mines safety, labour enforcement officer, pollution control board and the Department of Geology and Mining.

TABLE 6.2: ENVIRONMENTAL MONITORING PROGRAM PROPOSED

Sl. No.	Environment Aspect	Action to be Followed	Parameters for Monitoring	Frequency of Monitoring	Location
1	Air Emissions	Ambient air quality within mining area and at the nearby habitations.	PM ₁₀ , PM _{2.5} , SO ₂ , NO _x .	Once in 3 months	One location within mining area & one location at Sirugudi village
		Exhaust from mining machinery to be minimized periodic maintenance	Vehicle logs to be maintained	Quarterly	
		Prohibition of overloading and adoption of covered transportation of stone	Vehicle logs	Daily records	Main gate
2	Noise	Noise generated from various mining operation like drilling/ blasting/ vehicular movement to be optimized and monitored.	Spot Noise Level recording; L _{eq} (day), L _{eq} (night)	Twice in a year (Noise level in dB (A) for day and night time.	One location within mining area & one location at Sirugudi village
		Generation of vehicular noise	Maintain records of vehicles	Periodic during operation phase	Mine working area
3	Wastewater Discharge	No untreated discharge to be made to surface water, groundwater or soil.	Quality of run- off water from settling	Periodic during operation	Garland drains, settling ponds

No. Aspect Monitoring Monitoring tank/pond phase	ocation
	-
4 Drainage and Ensure drainage system Visual Periodic Surfe	
Diamage and Libare diamage system visual 1 critodic Sunt	ace run-off
effluent and specific design inspection of during from	ML area
Management measures are working drainage and operation during	ng rains.
effectively. records thereof phase Qual	lity of
	narge
natural drainage of the wate	er, if any.
area.	
	umulated
	r in mine
	& ground
per IS 10500 water	
	itoring
water table from	\mathcal{L}
area	
locat	
Sirug	
6 Emergency Fire protection and safety Mock drill Periodic Expl	osive van,
6 Emergency Fire protection and safety Mock drill Periodic Expl preparedness, measures to take care of records, on site during mine	
	hinery
fighting hazards, to be assessed evacuation plan phase	illici y
and steps taken for their	
prevention.	
1	tation area
of flora and green cover development species, survival during in mi	
fauna rate operation	
phase	
	e lease area
Management management plan and the waste during	
procedures for collection, generation, operation	
handling & disposal of treatment and phase	
each waste generated in disposal	
the mine.	
	tation area,
excavated contamination monitoring top s	soil dump
10 Health & Employees and All relevant Regular check Mine	e workings
Safety contractual labour health parameters ups	
check ups including HIV	

Source: Proposed as per EIA Guidelines

The mines manager will implement the green belt development as per the approved mining plan and besides in consultation with the proponents will submit periodical status report to

- 1. MoEF & CC Half yearly status report
- 2. TNPCB Half yearly status report
- 3. IBM quarterly, half yearly annual reports

Besides the Mines manager or mine agent will submit the periodical reports to

- 1. Director of mines safety,
- 2. Labor enforcement officer,
- 3. Controller of explosives as per the norms stipulated by the department.

6.3 OCCUPATIONAL HEALTH AND SAFETY:

As per the guidelines of the Mine Rules 1955, occupational health safety stipulated by the ILO/WHO. The proponent will take all necessary precautions. Normal sanitary facilities provided within the lease areas. The proponent's will carry out periodic health checkup of to the workers.

Occupational hazards involved in mines are related to dust pollution, noise pollution, blasting and injuries from moving machineries & equipment and fall from high places. DGMS has given necessary guidelines for safety against these occupational hazards. The management will strictly follow these guidelines.

All necessary first aid and medical facilities will be provided to the workers. The mine will be well equipped with Personal Protective Equipment (PPE). Further all the necessary protective equipment's such as helmets, safety goggles, earplugs, earmuffs, etc. will be provided to persons working in mines as per Mines Rules. All operators and mechanics will be trained to handle fire-fighting equipment's.

6.4 BUDGETARY PROVISION FOR EMP

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF.

TABLE 6.3 ENVIRONMENT MONITORING BUDGET

Sl.No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality		
2	Meteorology		
3	Water Quality	Rs 47500/-	Rs 47500/-
4	Hydrology	RS 4/300/-	RS 4/300/-
5	Soil Quality		
6	Noise Quality		
	Total	Rs 47,500/-	Rs 47,500/-

Source: Approved Mining Plan

7. ADDITIONAL STUDIES

7.0 PUBLIC CONSULTATION:

Application to The Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA / EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

7.1 RISK ASSESSMENT

Risk assessments will help the mine operators to identify high, medium and low risk levels. Risk assessments will help to prioritize risks and provide information on the probability of harm arising and severity of harm by understanding the hazard, combine assessments of probability and severity to produce an assessment of risk and it is used in the assessment of risk as an aid to decision making.

Risk assessment is a process whereby risks are analyzed, assessed and risk management priorities are evaluated. It is defined as the characterization of the potential adverse effect to human health & environment due to environmental hazards.

7.1.1 OBJECTIVES OF RISK ASSESSMENT

- Review of literature on Hazard Identification and Risk Assessment
- Review of accidents in mines and their analysis.
- Study of risk assessment methodologies.
- Application of Hazard Identification and Risk analysis for improvement of workplace safety in mines.

7.1.2 METHODOLOGY OF RISK ASSESSMENT:

- Collection of information & identification of hazard
- Classify their severity and probability of occurrence
- Identification of exposed risks
- Assess the risk and risk rating based on
 - Probability
 - Consequence
 - Prioritization of the risks
 - Implementation of control measures

- Monitoring risk assessment
- Evaluation and correction

FIGURE 7.1 LAYOUT OF RISK ASSESSMENT

Factors of risks involved due to human induced activities in connection with mining operations are

- 1. Stability of top soil bench
- 2. Drilling
- 3. Blasting
- 4. Excavation of mineral and
- 5. Transportation of mineral

Other risk factors due to natural activities are

- 1. Fire due to oil spillage
- 2. Water inundation and
- 3. Natural Calamities.

For the various risks, likely to arise, as above, detailed analysis of causes and control measures is given in below:

TABLE 7.1: ANALYSIS OF CAUSES AND CONTROL MEASURES

S.No	factors	Causes of risks	Control measures
1.	Removal of Top Soil	 Top soil bench may slide due to its unconsolidated nature. Vibration due to movement of vehicles in the benches 	The top soil bench is about 1m which will not have any impact.
2.	Drilling	A) due to high air pressure air hoses may burst.b) wear and tear of drill rods.	Periodic Maintenance of worn out accessories of the compressor and drill equipment's will be replaced.
3.	Blasting.	a Fly rock, ground vibrationand noise etc.,b Improper charging of explosives.	Controlled blasting technique will be implemented.
4.	Excavation of Ore	a Hauling and loading equipment are in such proximity while excavation. b Swinging of bucket over the body of tipper. C Driving of un authorized person.	Operator shall not operate the machine when person & vehicles are in such proximity. Shall not swing the bucket over the cab and operator leaves the machine after ensuring the bucket is on ground. Shall not allow any unauthorized person to operate and maintain the excavator. Induction training specified by the excavators manufacturers will be provided.
5.	Transportation of Ore	a operating the vehicle nose to allb. Overloading of materialc While reversal & overtaking of vehicle	It will be ensured that all these causes will be minimized by giving training to the persons No over loading Audio visual reserve horn will be provided
6.	Fire due to electricity and Oil	a Due to the short circuit of cables & other electrical parts,	Since we propose to operate the mine in day time only, and no illumination is required hence the risk related to Electricity will not arise. For Dewatering we propose to use Diesel Drive Pumps.
7.	Water inundation	a Inrush of storm water due to heavy rain. b Unusual seepage of water from river side d Sudden collapse of peripheral bund due to torrential pour	Guard will keep a continuous watch on water level and shall immediately inform to the mine officials when it approaches the danger mark. Withdraw all the persons from the mine via shortest route in an orderly manner Work shall not be resumed except with the prior permission of the Manager unless all the working places are thoroughly examined by a competent person.
8.	Natural calamities	Unexpected happenings like earth quakes/ land slides	There is no record in the past history of any natural calamities.

7.1.3 DISASTER MANAGEMENT PLAN: STRUCTURE

The Disaster Management Plan (DMP) is supposed to be a dynamic, changing, document focusing on continual improvement of emergency response planning and arrangements.

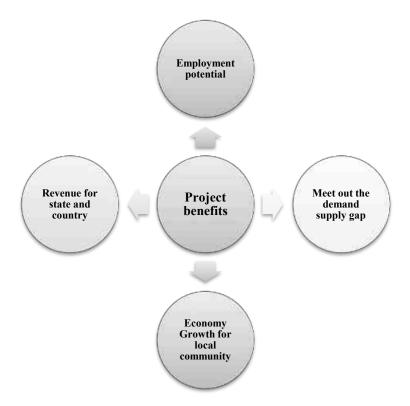
The disaster management plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. For effective implementation of the disaster management plan, it should be widely circulated and personnel training through rehearsals/induction conducted by the respective department from time to time.

7.1.4 GENERAL RESPONSIBILITIES OF EMPLOYEES DURING AN EMERGENCY

During an emergency, it becomes more enhanced and pronounced when an emergency warning is raised, the workers in-charge, should adopt safe and emergency shut down and attend any prescribed duty as essential employee. If no such responsibility is assigned, he should adopt a safe course to assembly point and await instructions. He should not resort to spread panic. On the other hand, he must assist emergency personnel towards objectives of DMP.

Co-ordination with Local Authorities:

The mine manager who is responsible for emergency will always keep a jeep ready at site. In case any eventualities the victim will be taken to the nearby hospitals after carrying out the first aid at site. A certified first aid certificate holder will be responsible to carry out the first aid at site. The mine manager should collect and have adequate information of the nearby hospitals, fire station, police station, village panchayat heads, taxy stands, medical shop, district revenue authorities etc., and use them efficiently during the case of emergency.


7.2 RECLAMATION AND REHABILITATION

No reclamation and rehabilitation is proposed and neither reclamation nor rehabilitation was carried out during the previous mining activity. Hence reclamation and rehabilitation will not arise.

8. PROJECT BENEFITS

8.1 GENERAL

Various benefits are envisaged for the mining of Limestone at Sirugudi Village. The project will be beneficial and important to the Community, local & regional economy.

This chapter gives a comprehensive description of various advantages and benefits anticipated from the project to the locality, neighborhood, region and nation as a whole. Lime stone is very important chemical mineral and is the principal raw material for the production of soda ash and clinker for cement, etc. The need for mining of the chemical grade limestone from the project (mine lease area) has arisen to meet the current situation of demand supply gap faced by the proponent.

8.2 PROJECT BENEFITS

Physical and Social infrastructure to the Community

- Improved road communication,
- Strengthening of existing community facilities through the existing Community Development Program.

- After complete exploitation of mineral the Mine pits will be converted into rain water reservoir to augment the water availability for greenbelt development consistently.
- Greenbelt has been carried out in the mine area so far and lot many are proposed to
 mitigate the ill-effects of mining and to improve the vicinity and environment of mine
 and its surrounding area.
- Awareness program and community activities, like health camps, medical aids, family welfare programs, immunization camp sports & cultural activities, plantation etc.,
- Providing certain facilities for the local schools and primary health centers/eye camps.

8.3 BENEFITS TO LOCAL AND REGIONAL ECONOMY

- It will generate revenue for the State of Tamil Nadu
- Royalty, DMF & GST to the Government
- CER/CSR Activities will be provided as per law
- Direct employment to skilled/unskilled and semiskilled laborers.
- Indirect employment to local people in different activities such as transportation, food points, plantation activities, water tanker supply, hand equipment's etc.
- Generation of self-employment through self-help groups.

8.4 EMPLOYMENT POTENTIAL

The local labors shall be engaged for supervising, sizing of limestone and loading and handling of mineral in mining area, besides, watch and ward and plantation activity with proper maintenance. The total manpower required for material handling and loading works out to 18; including skilled and managerial staff to meet the statutory requirement under MMR 1961 and MCDR 1988. At present, the mine is not functional. The following skilled / unskilled and semi-skilled workers besides managerial and administrative staff shall be employed at the time of reopening of mine.

8.5 TANGIBLE SOCIAL BENEFITS

There will be positive impact in socio-economic area due to increased economic activities, creation of new employment opportunities, infrastructural development and better educational and health facilities.

Health

The proponent will undertake awareness program and community activities like health, camps, medical aids, family welfare camps, medical awareness program etc., Periodic medical checkups as per Mines Act/ Rules and other social development and promotional activities will be undertaken. All this will assist to lift the general health status and standards of the communities of the area around mines.

9. ENVIRONMENTAL COST BENEFIT ANALYSIS.

Environmental Cost benefit analysis is not recommended.

ENVIRONMENT MANAGEMENT PLAN 10.

10.0 GENERAL

The environmental management plan consists of a set of mitigation, management, monitoring and institutional measures to be taken during mining operation.

The main activities in the proposed mining projects involves

- Drilling and blasting (occasionally)
- Excavation,
- Transportation of mineral.

The environmental management plan has been developed with a view to bring down the levels of impacts as discussed as above within limits. In each of the areas of impact, measures have to be taken to reduce potentially significant adverse impacts and where these are beneficial in nature, such impacts are to be enhanced / augmented so that the overall adverse impacts are reduced to as low level as possible. Measures to be taken for each of the impact areas are detailed in the following Para's:

10.1 AIR POLLUTION MANAGEMENT AND CONTROL

TABLE 10.1: AIR POLLUTION MANAGEMENT AND CONTROL

Potential impact	Action	Parameters for monitoring	Timing
Air emission	Topsoil must be	Stock pile monitoring	During pit development
	removed from the earmarked		and mine movement.
	area to be mined and stored		una mino mo vemena
	separately for green belt		
	development.		
	Use certified drill bits for drilling	Random check of	During short hole drilling.
	holes and wet drilling shall be	equipment used for	
	practiced.	drilling	
	All equipment's are operated	Random checks of	During mining operation.
	within specified design	equipment logs/ manuals	And maintenance stage
	parameters with trained and		
	qualified operators.		
	Vehicle should be loaded	Vehicle logs / optimum	During operational phase.
	optimum loads to minimized to	capacity of vehicle	
	the extent possible		
	Ambient air quality within the	The ambient air quality	As per CPCB and TNPCB
	premises of the proposed unit to	will conform to the	requirement.
	be monitored.	standards for SPM, SO ₂	
		and NO _X	

Controlling of Air Environment

- Wet drilling shall be practiced to control the dust, pits and rods are regularly checked as per the manufacturer's guidelines.
- Overcharging of blast holes avoided to prevent the fly rocks and dust emission.
- Periodically water will be sprinkled in the haul roads to wet the surface.
- Overloading of material is avoided to prevent spillage.
- The material is transported to the needy customers after covering by the tarpaulin to avoid spillage on the haul roads.
- The dumps are designed with optimum heights and slopes between 37⁰- 28⁰ and plantation on the slope to prevent soil erosion.
- Vehicles will be regularly checked and maintained as per the RTO and TNPCB Norms.

FIGURE 10.1: WATER SPRINKLING ON HAUL ROADS

10.2 NOISE AND VIBRATION MITIGATION:

TABLE 10.2: NOISE AND VIBRATION MITIGATION

Potential impact	Action	Parameters for	Timing
		monitoring	
Noise	List of all noise generating	Equipment logs,	During mining
	machinery onsite along with	noise reading	operation.
	age to be prepared.		- F
	Equipment to be maintained in		
	good working order.		
	Implement good working	Site working	During short hole
	practices (equipment selection	practices records,	drilling.
	and siting) to minimize noise	noise reading	8
	and also reduce its impacts on		
	human health (ear muffs, safe		
	distances and enclosures).		
	Adopt good blasting practices		

	to reduce impact on flora and		
	fauna. Muffling will be done at		
	the time of blasting		
	Noise to be monitored in	Noise reading	As per TNPCB/ MoEF
	ambient air near blasting		& CC norms.
	shelter and at the lease		
	boundaries.		
Ground vibration	Ground vibration Controlled customized blasting		At the time of
due to blasting	technique will be implemented.	Modeled and	Blasting.
	With the supervision of	customized.	
	qualified blaster.		

Control of Noise, Vibration and fly rock during blasting:

- Drilling shall be carried out with sharp drill bits, which reduces generation of noise during drilling.
- Controlled Blasting shall be carried out to minimize noise generation.
- No heavy earth moving machineries involved in the mining operation.
- In order to reduce the effect of noise pollution, earmuffs will be provided to all operators and employees working at mining site as a safety measure.
- Proper maintenance, oiling and greasing of machines at regular intervals will be done to reduce generation of noise.
- Periodical monitoring of noise level near vicinity of operating mining machines and at some locations in the surrounding area of mine working will be carried out with the help of Sound level meter & records will be maintained.
- Silencers and mufflers on mining equipment, wherever required, will be properly fitted and maintained.

10.3 WATER MANAGEMENT & POLLUTION CONTROL

SURFACE WATER MANAGEMENT

There is no river stream, nallah or any other water body passing through the lease area. During rains some natural drains may form in the area. For that, garland drains all along the quarry surface edge keeping a barrier from the mine surface will be constructed to arrest incoming water to and from the mine. The surface run off during the rainy season will be prevented from entering into the active pits by constructing garland drains.

GROUND WATER MANAGEMENT

The general ground level in the area is 213 m RL. The water table in the area is 30 m BGL (Below ground level) during pre-monsoon and 35m BGL (Below ground level) during post monsoon season. The maximum depth is about 25 m below ground level. Water table will not be intersected during any stage of mine life; hence contamination of ground water is redundant.

DETAILS OF WATER CONSERVATION MEASURES PROPOSED

The rain water collected in the pits after spell of rain will be used for plantation and dust suppression. At the end of life of mine, excavated area will be used as a water reservoir to facilitate the enhancement of groundwater and for utilization of green belt.

The main aim of greenbelt of mined out areas is to stabilize the land, to protect it from erosion and provide an aesthetic landscape. It is proposed to carry out greenbelt program as per mining plan approved by the Indian Bureau of Mines.

10.4 LAND RECLAMATION AND WASTE MANAGEMENT

Details of overburden (OB) removal and stacking -

The top soil thickness is about 1m; total quantity of top sol anticipated in the present plan period is about 13,972 tonnes. This top soil will be utilized for the greenbelt development. Precautions will be taken to limit the height of the topsoil dump from 4 to 5 meters in order to preserve its fertility and shelf life. It will be suitably protected from soil erosion and infertility by constructing a retaining wall at the foot wall side and by planting fodder grass and leguminous plants during temporary storage.

Topsoil Spreading

Retention Parapet Wall
(1 Meter Height)

FIGURE: 10.2 DUMP DESIGN

- Gradation of dump shall be done automatically as coarser materials go to the bottom and finer at the top and therefore drain of rain water flow freely to the bottom without endangering the stability of dump.
- Stabilization of dump with top soil and tree plantation shall make the dump more stable on long.
- 1m height parapet shall be constructed for dumps more than 4m height along the toe to prevent and control wash out from dumps entering into natural system through rain water.
- Garland drainage around dump shall prevent under wash of dump by hydrostatic pressure to be developed by surface water and control wash outs and collapse.
- Dump shall be terraced for every 5m height and stabilized as above.

10.5 BIOLOGICAL ENVIRONMENT

Green Belt Development

• A well planned Green Belt with multi rows (Three tiers) preferably with long canopy leaves shall be developed with dense plantations around the boundary and haul rods to prevent air, dust noise propagation to undesired places.

Species Recommended for Plantation

Following points have been considered while recommending the species for plantation:

- Natural growth of existing species and survival rate of various species.
- Suitability of a particular plant species for a particular type of area.
- Creating of bio-diversity.
- Fast growing, thick canopy cover, perennial and evergreen large leaf area,
- Efficient in absorbing pollutants without major effects on natural growth.
- The following species may be considered primarily for plantation best suited for the prevailing climatic condition in the area.

TABLE 10.3: RECOMMENDED SPECIES TO PLANT IN THE GREENBELT

S.No	Name of the plant (Botanical)	Family Name	Common Name
1.	Azadirachta indica	Meliaceae	Neem, Vembu
2.	Tamarindus indica	Fabaceae	Tamarind, Puliyamaram
3.	Polyalthia longifolia	Annonaceae	Indian mast tree, Vansulam
			(Asoka tree)
4.	Borassus flabellifer	Arecaceae	Palmyra Palm

TABLE 10.4: GREENBELT DEVELOPMENT PLAN

Year	No. of Saplings	Specie	Location	Spacing	Survival Rate
1 st Year	1500	Neem, Pungam, etc.,	Safety zone & village roads	3 m * 3 m	80%

10.6 OCCUPATIONAL HEALTH SAFETY

Occupational safety and health is very closely related to productivity and good employer-employee relationship. The main factors of occupational health in limestone mine are fugitive dust and noise. Safety of employees during mining operation and maintenance of mining equipment will be taken care as per Mines Act 1952 and mine rule 29 of Mines rules 1955, To avoid any adverse effect on the health of workers due to dust, heat, noise and vibration sufficient measures have been provided in the mining project. These include:

- Provision of rest shelters for mine workers with amenities like drinking water, fans, toilets etc.,
- Providing of personal protection equipment's to the workers during mining operation.
- Rotation of workers exposed to noisy areas.
- Periodical dust suppression on haul roads to prevent dust emission into the air.
- First-aid facilities in the mining area.

FIGURE 10.3: PERSONAL PROTECTIVE EQUIPMENT TO THE MINE WORKERS

Additionally, the health status of workers in the mine shall be regularly monitored under an occupational surveillance program. Under this program, all the employees are subjected to a details medical examination at the time of employment.

The medical examination covers the following tests.

- General Physical Examination and Blood Pressure
- X-ray Chest and ECG
- Sputum Examination
- Detailed Routine Blood and Urine examination

The medical histories of all employees will be maintained in a standard format. Thereafter, the employees will be subject to medical examination on annual basis. The above tests keep upgrading the database of medical history of the employees.

10.7 BUDGETARY PROVISION FOR ENVIRONMENTAL MANAGEMENT PLAN

Adequate budgetary provision has been made by the Company for execution of Environmental Management Plan. The Table 10.5 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

TABLE 10.5: EMP BUDGET

Activities	Mitigation Measure	Provision for Implementation	Capital	Recurring
	Compaction, gradation and drainage on both sides for Haulage Road	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare; and yearly maintenance @ Rs. 10,000/- per hectare	25300	25300
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed Sprinkler Installation and New Water Tanker Cost for Capital; and Water Sprinkling (thrice a day) Cost for recurring	800000	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000
Air Environment	Wet drilling procedure / latest eco-friendly drill machine with separate dust extractor unit	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance - 4 Units	100000	10000
	No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governers @ Rs. 5000/- per Tipper/Dumper deployed - 6 Units	30000	1500
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes by Manual Labour	0	5000
	Regular sweeping and maintenance of approach roads for at least about 200 m from ML Area	Provision for 2 labours @ Rs.10,000/labour (Contractual) per Hectare	0	50600
	Installing wheel wash system near gate of quarry	Installation + Maintenance + Supervision	50000	20000
	Source of noise will be during operation of transportation vehicles, HEMM for this proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0
	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done	Provision made in Operating Cost	0	0
	Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0
Noise Environment	It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0
	Safety tools and implements that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of Portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground	Rs. 30/- per 6 Tonnes of Blasted Material	0	558249

Final EIA EMP Report

	vibration and fly rocks			
	Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency	5000	20000
Waste Management		Installation of dust bins	5000	2000
	Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	0	0
	Progressive Closure Activity - Surface Runoff managent	Provision for garland drain @ Rs. 10,000/- per Hectare with maintenance of Rs. 5,000/- per annum	25300	5000
	2. Progressive Closure Activity Barbed Wire Fencing to quarry area will be provisioned.	Per Hectare fencing Cost @ Rs. 2,00,000/- with Maintenance of Rs 10,000/- per annum	506000	10000
	3. Progressive Closure Activity Green belt development - 500 trees per one hectare - Proposal for 1500 Trees - (450 Inside	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring)	90000	13500
Mine Closure	Lease Area & 1050 Outside Lease Area)	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	315000	31500
	4. Implementation of Final Mine Closure Actity as per Approved Mining Plan on Last Year	Few activities already covered as progressive closure activities as greenbelt development, wire fencing, garland drain. *For Final Closure Activities 15% of the proposed closure cost will be spent during the final mine closure stage - Last Year	137250	0
	5. Contribution towards Green Fund. As per TNMMCR 1959, Rule 35 A	The Contribution towards Green Funds @ 10% of Seigniorage fee are indicated as part of EMP Budge and not necessarily implemented in the Project Site	1266795	
	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed Display Board at the Quarry Entrance as permanent structure mentioning Environmental Conditions	10000	1000
	Air, Water, Noise and Soil Quality Sampling every 6 Months for Compliance Report of EC Conditions	Submission of 2 Half Yearly Compliance - Lab Monitoring Report as per CPCB norms	0	50000
Implementation of EC, Mining Plan & DGMS Condition	Workers will be provided with Personal Protective Equipment's	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee) - 22 Employees	88000	22000
	Health check up for workers will be provisioned	IME & PME Health check up @ Rs. 1000/- per employee	0	22000
	First aid facility will be provided	Provision of 2 Kits per Hectare @ Rs. 2000/-	0	5060
	Mine will have safety precaution signages, boards.	Provision for signages and boards made	10000	2000
	No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs. 10,000/- as maintenance cost	126500	10000

	vehicles /HEMMs. Flaggers will be deployed for traffic			
	management			
	Installation of CCTV cameras in the mines and mine entrance	Camera 4 Nos, DVR, Monitor with internet facility	30000	5000
	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1st Class / 2nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	780000
CER	As per MoEF &CC OM 22-65/2017-IA.III Dated 25.02.2021	Detailed Description in following slides and Budget allocation is included as per MoEF & CC OM	500000	
TOTAL			Rs.40,32,895	Rs.17,21,709

(Notes: @ 5% per year inflation adjustment)

Year Wis	se Break Up
Year	cost
2022-23	Rs.57,54,604/-
2023-24	Rs.18,07,794/-
2024-25	Rs.18,98,184/-
2025-26	Rs.19,93,093/-
2026-27	Rs.20,92,748/-

In order to implement the environmental protection measures, an amount of Rs.40.32 lakhs as capital cost and recurring cost as Rs.17.21 lakhs as recurring cost is proposed considering present market price considering present market scenario.

10.8 CONCLUSION -

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area

11. SUMMARY AND CONCLUSIONS

11.1 INTRODUCTION

M/s. Sivam Mines is a Partnership Firm. When the Transfer of mining lease was granted in the year 2014, the partners of the firm are Thiru. S.Asaialangaram, Thiru.S.Ilangovan, Thiru. I.Vijay Alangar and Selvi. I.Sempon Manickam, Thiru. S.Ilangovan is the Managing Partner of the firm. The partners of the firm have very good knowledge and experience in Limestone mining for more than three decades

Initially, the mining lease for limestone was granted to Thiru. S. Asaialangaram, Dindigul District vide G.O. 3(D).No. 91, Dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997

Later, the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Industries (MMA.1) Department., Dated 03.11.2014

As on the date of MoEF & CC Notification S.O. 804 (E) Dated: 14.03.2017, the project had no Environmental Clearance and it was clearly communicated by order to apply for environmental clearance under this notification. Therefore, the project proponent applied for environmental clearance vide online proposal no. IA/TN/MIN/64272/2017 Dated: 29.04.2017.

MoEF & CC vide notification S.O. 1030 (E) Dated: 08.03.2018, notified that violation projects of Category B – the appraisal and approval thereof shall vest with the State or Union territory level Expert Appraisal Committees and State or Union territory Environment Impact Assessment Authorities in different States and Union territories, constituted under sub-section (3) of section 3 of the Environment (Protection) Act, 1986.

Therefore, the online proposal was transferred to SEIAA – TN vide online proposal number SIA/TN/MIN/23074/2018 Dated 03.04.2018.

ToR was issued vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2019 Dated: 07.02.2019.

Proponent applied for the extension for the existing ToR vide online proposal No SIA/TN/MIN/268975/2022 Dated 21.04.2022. The proposals were considered in 331st SEAC – TN Meeting held on 24.11.2022 and issued Terms of Reference (ToR) vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2018/A/ Dated: 07.12.2022, The validity of the Terms of Reference is upto **06.02.2024**.

Now, as per MMDR Amendment Act 2015, the validity of lease period is extended upto 31.03.2047 and Review of Mining Plan & Progressive Mine Closure Plan was prepared by RQP and submitted to Regional Controller of Mines, Indian Bureau of Mines, Chennai and got approved on 11.10.2023.

Again, the proposal was placed in 369th SEAC meeting held on 24.04.2023 and SEAC decided to constitute a sub-committee to make an on-site inspection to assess the present Status of the project site and Environmental settings as the proposal falls under violation category and submit the report along with the recommendations to the committee.

Further the committee called for the following additional details:

- A letter from the PP justify that the project activity is covered under category B2 of Item 1(a) "Mining of Minerals Project" of the schedule to the EIA notification 2006 as amended
- Valid Mine plan approved by the competent authority for the proposed period of quarrying.
- The PP shall furnish the copy of receipt of the penalty levied by Department of Geology and Mining for the exploitation of mineral without Prior EC

After the receipt of Additional details from the PP and the evaluation report by the subcommittee, SEAC will deliberate on the issue of environmental clearance under violation category. SEAC also decided to request SEIAA-TN to initiate action under sec-19 of the Environment (Protection) act, to be taken for violation cases, in accordance with law and the proposal was placed in 616th SEIAA meeting held on 10.05.2023.

The view of the above, the authority accepts the decision of SEAC and decided to request the member secretory SEIAA to communicate the SEAC minutes to the PP and to write to the state govt\TNPCB to take credible action under the provision of Sec – 19 of the Environment (Protection) act, 1986 against the Project Proponent as per the EIA notification dated 14.03.2017 and 08.03.2018

The Proposal was placed in 422nd SEAC meeting held on 09.11.2023 and as per the 422nd SEAC & 657th SEIAA Minutes of Meeting During the meeting, SEAC noted that the PP had not carried out the public hearing for the above proposal.

Therefore, after the long deliberation and discussions in the 422nd SEAC meeting, The SEAC has observed that the public hearing is mandatory for all mining projects of Major Minerals category irrespective of the area for ensuring the scientific and systematic mining and the conservation minerals. The SEAC decided to direct the PP to conduct the public hearing as per the procedure described in EIA notification 2006 and submit the minutes of the public hearing with action plan for considering the application\proposal towards the grant of EC.

Subsequently, the proponent requested to extend the validity of ToR to conduct Public Hearing and to update the EIA Report accordingly, since the validity of ToR issued is about to expire on 27.10.2023. The Committee after detailed discussion, accepted the request of the PP and extended the validity of ToR further for a Period of 1 year, i.e., up to 27.10.2024. After the receipt of the minutes of the Public Hearing along with updated Final EIA Report submitted by the PP along with a valid Mining Lease, and approved Mining Plan/Scheme of Mining including the PMCP/FMCP for the proposed mining operations, the SEAC may deliberate the future course of action.

This proposal was placed in 677th SEIAA meeting and after detailed discussions, the Authority decided to grant extension of ToR for further period of 1 year i.e. up to **06.12.2024** .as recommended by SEAC. All the other conditions stipulated in the ToR Letter No. SEIAA-TN/F.No.6254/ToR-335/2018/ dated 28.10.2022 issued under violation category.

Now, as per Gazette Notification S.O. 1886 (E) of 20^{th} April 2022, Mining Projects are classified under two categories i.e. A (>250 Ha) and B (\leq 250 Ha),

"All mining lease area in respect of minor mineral mining leases and ≤ 250 ha mining lease area in respect of major mineral mining lease other than coal".

Environmental monitoring and audit mechanism have been recommended before and after commencement of the project, where necessary, to verify the accuracy of the EIA predictions and the effectiveness of recommended mitigation measures.

The main scope of the EIA study is to quantify the cumulative impact in the study area and formulate the effective mitigation measures. A detailed account of the emission sources, emissions control equipment, background Air quality levels, Meteorological measurements, Dispersion model and all other aspects of pollution like effluent discharge, Dust generation etc., have been discussed in this report. The baseline monitoring study has been carried out during the months October 2023 to December 2023 for various environmental components so as to assess the anticipated impacts of the quarry project on the environment and suitable mitigation measures for likely adverse impacts due to the proposed project is given under Chapter 10.

The project proponent ensures to obtain necessary clearances and quarrying will be carried out as per rules and regulations. The Mining Activity will be carried out in a phased manner as per the approved mining plan after obtaining EC, CTO from TNPCB, execution of lease deed and obtaining DGMS Permission and working will be carried out under the supervision of Competent Persons employed.

Overall, the EIA report has predicted that the project will comply with all environment standards and legislation after commencement of the project and operational stage mitigation measures are implemented.

Mining operations has positive impact on environment and socio economy such as landscape improvement, water as by-product, economy development and better public services, providing and supply of Limestone as per market demand.

Sustainable and modern mining leads us to see positive impact of mining operation and providing consistent employment for nearly 22 people directly and indirectly around 15 people.

As discussed, it is safe to say that the proposed quarry is not likely to cause any significant impact to the ecology of the area, as adequate preventive measures will be adopted to keep the various pollutants within the permissible limits. Green belt development around the area will also be taken up as an effective pollution mitigate technique, as well as to serve as biological indicators for the pollutants released from the M/s.Sivam Mines Limestone Mine (Extent:2.53.0 ha).

12.0 DISCLOSURE OF CONSULTANTS ENGAGED

M/s. Sivam Mines has engaged M/s Geo Exploration and Mining Solutions, an Accredited Organization under Quality Council of India – National Accreditation Board for Education & Training, New Delhi, for carrying out the EIA Study as per the ToR Issued.

Name and address of the consultancy:

GEO EXPLORATION AND MINING SOLUTIONS

No 17, Advaitha Ashram Road, Alagapuram, Salem – 636 004

Tamil Nadu, India

Email: infogeoexploration@gmail.com

Web: <u>www.gemssalem.com</u> Phone: 0427 2431989.

The Accredited Experts and associated members who were engaged for this EIA study as given below –

CI Na	None of the company	In house/Emmonalled	/Emparallad EIA Coordin		F.	AE
Sl.No.	Name of the expert	of the expert In house/ Empanelled		Category	Sector	Category
1	D. M. ICLUL. Alm. J	To become		A	WP	В
1	Dr. M. Ifthikhar Ahmed	In-house	1	A	GEO SC	A A
2	Dr. P. Thangaraju	In-house	-	-	HG GEO	A A
3	Mr. A. Jagannathan	In-house	-	-	AP NV SHW	B A B
4	Mr. N. Senthilkumar	Empanelled	38 28	B B	AQ WP RH	B B A
5	Mrs. Jisha parameswaran	In-house	-	-	SW	В
6	Mr. Govindasamy	In-house	-	-	WP	В
7	Mrs. K. Anitha	In-house	-	-	SE	A
8	Mrs. Amirtham	In-house	-	-	EB	В
9	Mr. Alagappa Moses	Empanelled	-	-	EB	A
10	Mr. A. Allimuthu	In-house	-	-	LU	В

11	Mr. S. Pavel	Empanelled	-	-	RH	В
12	Mr. I D Wilman Kaialana	F 11 - 4			SHW	A
12	Mr. J. R. Vikram Krishna	Empanelled	-	-	RH	A

	Abbreviations
EC	EIA Coordinator
AEC	Associate EIA Coordinator
FAE	Functional Area Expert
FAA	Functional Area Associates
TM	Team Member
GEO	Geology
WP	Water pollution monitoring, prevention and control
AP	Air pollution monitoring, prevention and control
LU	Land Use
AQ	Meteorology, air quality modeling, and prediction
EB	Ecology and bio-diversity
NV	Noise and vibration
SE	Socio economics
HG	Hydrology, ground water and water conservation
SC	Soil conservation
RH	Risk assessment and hazard management
SHW	Solid and hazardous wastes
MSW	Municipal Solid Wastes
ISW	Industrial Solid Wastes
HW	Hazardous Wastes

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA/EMP

Declaration by experts contributing to the EIA/EMP Report for Sirugudi Limestone Mine of M/s. Sivam Mines over an Extent of 2.53.0 ha in Sirugudi Village of Natham Taluk, Dindigul District of Tamil Nadu. It is also certified that information furnished in the above EIA study are true and correct to the best of our Knowledge.

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA/EMP Report.

Name: Dr. M. Ifthikhar Ahmed

Designation: EIA Coordinator

Date & Signature: Dr. M. Plumunumllin

Period of Involvement: Jan 2017 to till date

Associated Team Member with EIA Coordinator:

- 1. Mr. S. Nagamani
- 2. Mr. P.Viswanathan
- 3. Mr. Santhoshkumar
- 4. Mr. S. Ilavarasan

FUNCTIONAL AREA EXPERTS ENGAGED IN THE PROJECT

Sl. No.	Functional Area	Involvement	Name of the Expert/s	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity Prediction of air pollution and propose mitigation measures / control measures 	Mr. A. Jagannathan	相, 工
		 Suggesting water treatment systems, drainage facilities 	Dr. M. Ifthikhar Ahmed	Dr. M. Burning
2	WP	 Evaluating probable impacts of effluent/waste water discharges into the receiving environment/water bodies and suggesting control measures. 	Mr. N. Senthilkumar	A
3	HG	 Interpretation of ground water table and predict impact and propose mitigation measures. Analysis and description of aquifer Characteristics 	Dr. P. Thangaraju	aty mm
4	GEO	 Field Survey for assessing the regional and local geology of the area. Preparation of mineral and geological maps. 	Dr. M. Ifthikhar Ahmed	Dr. M. Blancamounts of
		 Geology and Geo morphological analysis/description and Stratigraphy/Lithology. 	Dr. P. Thangaraju	ty mm
5	SE	 Revision in secondary data as per Census of India, 2011. Impact Assessment & Preventive Management Plan Corporate Environment Responsibility. 	Mrs. K. Anitha	Su
6	EB	 Collection of Baseline data of Flora and Fauna. Identification of species labelled as Rare, Endangered and threatened as per IUCN list. 	Mrs. Amirtham	d American

		 Impact of the project on flora and fauna. Suggesting species for greenbelt development. 	Mr. Alagappa Moses	- that
		Identification of hazards and hazardous substances Dislocand consequences analysis.	Mr. N. Senthilkumar	4
7	RH	 Risks and consequences analysis Vulnerability assessment 	Mr. S. Pavel	M.S. This.
		Preparation of Emergency Preparedness PlanManagement plan for safety.	Mr. J. R. Vikram Krishna	Jan-
8	LU	 Construction of Land use Map Impact of project on surrounding land use Suggesting post closure sustainable land use and mitigative measures. 	Mr. A. Allimuthu	alemultons
9	NV	 Identify impacts due to noise and vibrations Suggesting appropriate mitigation measures for EMP. 	Mr. A. Jagannathan	70, 工
10	AQ	 Identifying different source of emissions and propose predictions of incremental GLC using AERMOD. Recommending mitigations measures for EMP 	Mr. N. Senthilkumar	4
11	SC	Assessing the impact on soil environment and proposed mitigation measures for soil conservation	Dr. M. Ifthikhar Ahmed	Dr 10 Brancomita
		Identify source of generation of non-hazardous solid waste and hazardous waste.	Mr. A. Jagannathan	枫
12	SHW	Suggesting measures for minimization of generation of waste and how it can be reused or recycled.	Mr. J. R. Vikram Krishna	James .

LIST OF TEAM MEMBERS ENGAGED IN THIS PROJECT

LIST OF TEAM MEMBERS ENGAGED IN THIS PROJECT				
Sl.No.	Name	Functional Area	Involvement	Signature
1	Mr. S. Nagamani	AP; GEO; AQ	 Site Visit with FAE Provide inputs & Assisting FAE with sources of Air Pollution, its impact and suggest control measures Provide inputs on Geological Aspects Analyse & provide inputs and assist FAE with meteorological data, emission estimation, AERMOD modelling and suggesting control measures 	8.10V.
2	Mr. P.Viswanathan	AP; WP; LU	 Site Visit with FAE Provide inputs & Assisting FAE with sources of Air Pollution, its impact and suggest control measures Assisting FAE on sources of water pollution, its impacts and suggest control measures Assisting FAE in preparation of land use maps 	P Commbe
3	Mr. Santhoshkumar	GEO; SC	 Site Visit with FAE Provide inputs on Geological Aspects Assist in Resources & Reserve Calculation and preparation of Production Plan & Conceptual Plan Provide inputs & Assisting FAE with soil conservation methods and identifying impacts 	M. Estato Kinney
4	Mr. Umamahesvaran	GEO	 Site Visit with FAE Provide inputs on Geological Aspects Assist in Resources & Reserve Calculation and preparation of Production Plan & Conceptual Plan 	S. Connection may

5	Mr. A. Allimuthu	SE	 Site Visit with FAE Assist FAE with collection of data's Provide inputs by analyzing primary and secondary data 	alematers
6	Mr. S. Ilavarasan	LU; SC	 Site Visit with FAE Assisting FAE in preparation of land use maps Provide inputs & Assisting FAE with soil conservation methods and identifying impacts 	8.21-14-
7	Mr. E. Vadivel	HG	 Site Visit with FAE Assist FAE & provide inputs on aquifer characteristics, ground water level/table Assist with methods of ground water recharge and conduct pump test, flow rate 	E Varlinel
8	Mr. D. Dinesh	NV	 Site Visit with FAE Assist FAE and provide inputs on impacts due to proposed mine activity and suggest mitigation measures Assist FAE with prediction modelling 	a &
9	Mr. Panneer Selvam	ЕВ	 Site Visit with FAE Assist FAE with collection of baseline data Provide inputs and assist with labelling of Flora and Fauna 	P Prosty
10	Mrs. Nathiya	EB	 Site Visit with FAE Assist FAE with collection of baseline data Provide inputs and assist with labelling of Flora and Fauna 	T. anny

DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT ORGANIZATION

I, Dr. M. Ifthikhar Ahmed, Managing Partner, Geo Exploration and Mining Solutions, hereby, confirm that the above mentioned Functional Area Experts and Team Members prepared the EIA/EMP Report for Sirugudi Limestone Mine of M/s. Sivam Mines over an Extent of 2.53.0 ha in Sirugudi Village of Natham Taluk, Dindigul District of Tamil Nadu. It is also certified that information furnished in the EIA study are true and correct to the best of our Knowledge.

Signature & Date:	Dr. M. Zhummundler
Name:	Dr. M. Ifhikhar Ahmed
Designation:	Managing Partner
Name of the EIA Consultant Organization:	M/s. Geo Exploration and Mining Solutions
NABET Certificate No & Issue Date:	NABET/EIA/2225RA 0276 Dated: 20.02.2023
Valid upto:	06.08.2025

13. ASSESSMENT OF ECOLOGICAL DAMAGE, REMEDIATION PLAN AND NATURAL AND COMMUNITY RESOURCE AUGMENTATION PLAN

13.0 BACKGROUND OF THE PROJECT

Initially, the mining lease for limestone was granted to Thiru. S. Asaialangaram, Dindigul District vide G.O. 3(D).No. 91, Dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997

Later, the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Industries (MMA.1) Department., Dated 03.11.2014

As on the date of MoEF & CC Notification S.O. 804 (E) Dated: 14.03.2017, the project had no Environmental Clearance and it was clearly communicated by order to apply for environmental clearance under this notification. Therefore, the project proponent applied for environmental clearance vide online proposal no. IA/TN/MIN/64272/2017 Dated: 29.04.2017.

MoEF & CC vide notification S.O. 1030 (E) Dated: 08.03.2018, notified that violation projects of Category B – the appraisal and approval thereof shall vest with the State or Union territory level Expert Appraisal Committees and State or Union territory Environment Impact Assessment Authorities in different States and Union territories, constituted under sub-section (3) of section 3 of the Environment (Protection) Act, 1986.

Therefore, the online proposal was transferred to SEIAA – TN vides online proposal number SIA/TN/MIN/23074/2018 Dated 03.04.2018.

Therefore, the online proposal was transferred to SEIAA – TN vide online proposal number SIA/TN/MIN/23074/2018 Dated 03.04.2018.

ToR was issued vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2019 Dated: 07.02.2019.

Proponent applied for the extension for the existing ToR vide online proposal No SIA/TN/MIN/268975/2022 Dated 21.04.2022. The proposals were considered in 331st SEAC – TN Meeting held on 24.11.2022 and issued Terms of Reference (ToR) vide Lr.No.SEIAA-TN/F.No.6253/TOR-604/2018/A/ Dated: 07.12.2022, The validity of the Terms of Reference is upto **06.02.2024**.

Now, as per MMDR Amendment Act 2015, the validity of lease period is extended upto 31.03.2047 and Review of Mining Plan & Progressive Mine Closure Plan was prepared by RQP and submitted to Regional Controller of Mines, Indian Bureau of Mines, Chennai got approved on 11.10.2023.

Again, the proposal was placed in 369th SEAC meeting held on 24.04.2023 and SEAC decided to constitute a sub-committee to make an on-site inspection to assess the present Status of the project site and Environmental settings as the proposal falls under violation category and submit the report along with the recommendations to the committee.

Further the committee called for the following additional details:

- A letter from the PP justify that the project activity is covered under category B2 of Item 1(a) "Mining of Minerals Project" of the schedule to the EIA notification 2006 as amended
- Valid Mine plan approved by the competent authority for the proposed period of quarrying.
- The PP shall furnish the copy of receipt of the penalty levied by Department of Geology and Mining for the exploitation of mineral without Prior EC

After the receipt of Additional details from the PP and the evaluation report by the subcommittee, SEAC will deliberate on the issue of environmental clearance under violation category. SEAC also decided to request SEIAA-TN to initiate action under sec-19 of the Environment (Protection) act, to be taken for violation cases, in accordance with law and the proposal was placed in 616th SEIAA meeting held on 10.05.2023.

The view of the above, the authority accepts the decision of SEAC and decided to request the member secretory SEIAA to communicate the SEAC minutes to the PP and to write to the state govt\TNPCB to take credible action under the provision of Sec – 19 of the Environment (Protection) act, 1986 against the Project Proponent as per the EIA notification dated 14.03.2017 and 08.03.2018

The Proposal was placed in 422nd SEAC meeting held on 09.11.2023 and as per the 422nd SEAC & 657th SEIAA Minutes of Meeting During the meeting, SEAC noted that the PP had not carried out the public hearing for the above proposal.

Therefore, after the long deliberation and discussions in the 422nd SEAC meeting, The SEAC has observed that the public hearing is mandatory for all mining projects of Major Minerals category irrespective of the area for ensuring the scientific and systematic mining and the conservation minerals. The SEAC decided to direct the PP to conduct the public hearing as per the procedure described in EIA notification 2006 and submit the minutes of the public hearing with action plan for considering the application\proposal towards the grant of EC.

Subsequently, the proponent requested to extend the validity of ToR to conduct Public Hearing and to update the EIA Report accordingly, since the validity of ToR issued is about to expire on 27.10.2023. The Committee after detailed discussion, accepted the request of the PP and extended the validity of ToR further for a Period of 1 year, i.e., up to 27.10.2024. After the receipt of the minutes of the Public Hearing along with updated Final EIA Report submitted by the PP along with a valid Mining Lease, and approved Mining Plan/Scheme of Mining including the PMCP/FMCP for the proposed mining operations, the SEAC may deliberate the future course of action.

This proposal was placed in 677th SEIAA meeting and after detailed discussions, the Authority decided to grant extension of ToR for further period of 1 year i.e. up to **06.12.2024** .as recommended by SEAC. All the other conditions stipulated in the ToR Letter No. SEIAA-TN/F.No.6254/ToR-335/2018/ dated 28.10.2022 issued under violation category.

The mining operation was commenced in the year of 1997 and the requirement of Environmental Clearance for Major Mineral Mining below 5 ha was not required until based on clarification letter by MoEF & CC Z-11013/24/2017-IA.II (M) Dated: 03.04.2017 regarding Requirement of Environmental Clearance for Major Minerals below 5 hectares, it was communicated that mining leases which continue to operate without obtaining EC after 15.01.2016 shall be considered as violation cases and the same shall be dealt in accordance with the violation policy under Environmental Impact Assessment Notification, 2006 as amended.

The last permit Dated: 10.01.2017 and the quarrying operation were stopped in requirement of Environmental Clearance.

13.1 METHOD OF MINING

OPENCAST MINING -

- Hydraulic Excavator coupled with tippers is deployed for the formation of benches and loading
- Small Dia drilling (Jackhammer) of 35 mm diameter varying in depths from 1.0m to
 1.5m are drilled with Jackhammer supported by compressor
- One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.
- In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

- Gradient of Haulage Roads are maintained not less than 1:16
- Hydraulic Excavators are deployed for removal of waste
- Manual Labour are engaged for sorting of Limestone
- The Limestone will be loaded into tippers by Excavators attached with bucket
- Spoil waste are loaded into the tippers with the help of hydraulic excavator and are dumped in the earmarked area for the backfilling purpose

13.2 BASED ON SITE SPECIFIC FEATURES AND NATURE OF MINING INVOLVED, THE FOLLOWING ARE ADDRESSED IN THIS CHAPTER

- a) Damage Assessment
- b) Remediation plan
- c) Natural and community resource augmentation
- d) Benefits derived out of violation

AIMS AND OBJECTIVES -

The objectives of the study are –

- How to define 'significant damage' to natural resources and a 'minimum level of restoration':
- How, or to what extent, monetary valuation techniques can be used to estimate the economic value of biodiversity damage; and
- How, or to what extent, the valuation of damages to natural resources should be included in a future directive on liability.

In principle, there are three possible options to provide compensation for damages to natural resources:

- Monetary compensation: compensation according to the 'value of damage' caused to natural resources;
- Resource ('in-kind') compensation: investment in resource restoration projects, which could be on-site and/or off-site; and
- Mixture of in-kind compensation (partial restoration) and a monetary payment.

The liability covering damage to natural resources could be framed either as an obligation to pay for the damage incurred in order to compensate via monetary compensation, or as an obligation to compensate through restoration and investment in natural resources, both on-site and off-site (resource compensation).

Damage Assessment and Significance

- Pre-incident resource statusScale of damage
 - Impact assessment
 - Significance of damage

Primary Restoration
Options
(to restore the initial

- Setting primary restoration targets
 Identification and categorisation of technical options
 - Selection of restoration options
 - •Estimation of interim losses
- Cost-effectiveness and cost-benefit analyses

Compensatory
Restoration Options
(to supplement primary
restoration options when
these are not sufficient and
to compensate for interim

- Objectives of compensatory measures
- Monetary compensation and the value of damage
 - Resource compensation measures
- Classification and selection of compensatory measures
- Assessing the scale of compensatory measures
- Cost-effectiveness and cost-benefit analyses

13.3 SCALE OF DAMAGE / ECOLOGICAL DAMAGE ASSESSMENT –

Based on site specific features and nature of mining involved, the following activities are considered for assessment of ecological damage:

- Damage due to change in Land use/ Land cover
- Damage due to loss of vegetation / Plant cover
- Damage due to Air pollution
- Damage due to exploitation of surface water resources
- Damage due to exploitation of Ground water resources
- Damage due to non-implementation of Environmental Management measures

Damage due to change in Land use / Land Cover:

Mining operations have led to change in land use / land cover (LULC) of the ML area.

TABLE 13.1: DAMAGE DUE TO CHANGE IN LAND USE / LAND COVER

Period	Sl.No.	Land use / Land Cover	Area in ha	Area in %
	1	Area already covered under pits and	0.73.9	29.21
	1	quarries	0.73.7	27.21
	2	Infrastructures including, office and	0.01.0*	0.40
Mining Plan Period	2	labor rest shelter	0.01.0	0.40
(2015-16 to 2016-17)	3	Greenbelt	0.07.0	2.77
(2013-10 to 2010-17)	4	Dumps of ores and waste	0.23.0*	9.09
	5	Mine roads	0.03.0*	1.18
	6	Un utilized area	1.45.1	57.35
		Total	2.53.0	100

Source: Approved Mining Plan

*area considered as damaged or disturbed

Area disturbed or damaged due to mining operations during 2015-16 to 2016-17 is 1.07.9 ha

Considering compensation @ Rs 30,000/- per hectare of damaged land i.e., 1.07.9 ha * 30,000 = Rs 32,370/-

Damage due to loss of vegetation / Plant cover:

The mining operation is carried out from the year of 1997 with valid Mining Plan, in the year 2015-16 to 2016-17; there is a growth in the area of Plantation, settlement, road and vegetation.

The damage caused due to mining activities from 2016 to 2017 shall be loss of scrubs and tree covers in the damaged area of 0.88.3ha. Considering option if the damaged land was not subjected to mining and utilized for plantation and considering rate of plantation at 500 trees/plants per ha and Value shall be Rs. 20 per tree/plant for its biomass.

Thus, considering effective loss of 600 trees/plants per hectare, the damage cost shall be 500 trees / ha x 1.07.9 ha x Rs 20 per tree = Rs 10,790/-

Damage due to Air pollution:

All the air quality parameters like particulate matters (PM_{10} & $PM_{2.5}$) and SO_2 , NO_2 and free silica percentage are found in the permissible limit. There is no visible damage due to air pollution in the core and buffer zone of the mining area.

Damage due to exploitation of surface water resources:

Major water bodies around the project area are Sirugudi Village Tank 400 m South West & Tank 1 km North. The Drainage pattern is not affected due to mining activities at the project site. For dealing with the storm water and excess mine water as well as for keeping the low lands free from accumulated water, an intricate drainage system is maintained by the project proponent. The general trend of the drainage pattern is north to south direction and the general drainage pattern is dentritic to sub-dentritic in nature.

Surface water resources were not affected by mining activities as mine water discharge was/will be utilized in internal work like dust suppression, plantation and for domestic use.

The excess water during the rainy season has been drained out to the natural water bodies namely Sirugudi Village Tank 400 m South West & Tank 1 km North, theses excess water was discharged only after connecting via settlement traps for collecting silt and contaminations. It is to note-worthy that the rain water accumulated in the pit does not contain any toxic effluents as there is no dispersion of mineral to the rain water collected. Therefore, no damage observed.

Damage due to exploitation of Ground water resources:

Any ground water table loss if any would have been recouped by the rainfalls in this area.

No water was used for mining activities

Damage due to non-implementation of Environmental Management measures:

The project proponent has obtained mining license as per MMDR Act 1957, Mining plan along with Environmental Management plan is prepared since 1996. The mining operation was carried out as per the Approved Mining plan, Scheme of Mining along with Environmental Management plan; the proponent does not have EMP approved by the MoEF / SEIAA.

Damage assessment has been done considering the measures which M/s. Sivam Mines should have implemented including monitoring during mining operations for protecting various environmental components.

The Environmental safeguards which M/s. Sivam Mines should have taken during the mining operations at various stages are given below:

TABLE 13.2: ENVIRONMENTAL SAFEGUARDS SUPPOSED TO BE IMPLEMENTED

Conceptualization :	Baseline Monitoring studies should have been carried	
Preliminary Environmental	out	
assessment		
Planning:	Impact Assessment should have been carried out and	
Detailed studies of Environmental	an environmental management plan should have been	
impacts and design of safeguards	prepared and implemented	
	Its effectiveness should have been monitored	
Execution:	Once the mine commences its operations after	
Implementation of environmental	obtaining EC, all measures should be practiced and	
safety measures	implemented immediately.	
Operation:	Half yearly compliance monitoring should have been	
Monitoring of effectiveness of	prepared and submitted	
built-in safeguards		

Source: Proposed by FAE's & EIA Coordinator

The pollution related activities for which EMP should have been in place during mine operations are extracted from the list provided by MOEF & CC for formulation and implementation of environmental management plan and monitoring of effectiveness of measures during and after commissioning of project.

The resource conservation and pollution abatement versus the damage assessed for not implementing the measures based on applicability are detailed below:

- Liquid Effluents
- Air Pollution

- Solid Wastes
- Noise and Vibration
- Occupational Safety and Health
- Medical check-up
- Prevention, maintenance and operation of Environment Control Systems
- House-Keeping
- Human Settlements
- Recovery-reuse of waste products
- Vegetal Cover
- Emergency Planning
- Environment Management Cell

TABLE 13.3: DAMAGE DUE TO NON-IMPLEMENTATION OF ENVIRONMENTAL MANAGEMENT MEASURES

Sl.No.	Resource Conservation/Pollution Abatement Aspect	Applicability	Damage due to Non Implementation of EMP Measures	Damage cost (Rs.)
1	Liquid Effluents			
A	Effluents should be treated well to the standards as prescribed by the Central/State Water Pollution Control Boards.	There was no discharge of any effluent from the mine.	No damage observed, however, since labour are employed for mining activities, septic tank followed by soak pit is provided within the lease area	Ç .
В	Soil permeability studies should be made prior to effluents being discharged into holding tanks or impoundments and steps taken to prevent percolation and ground water contamination.	No discharge of effluent except for domestic waste water in soak pit	There is no damage as there is no effluent discharge leading to percolation and ground water contamination.	No Damage Cost is involved.
С	Effluents containing toxic compounds, oil and grease have been known to cause extensive death of flora & fauna.	Mining activity did not result in release of any toxic compounds. The machineries repair works were carried out in the service centers located in nearby area	There is no damage as no effluents are generated from the mine leading to toxic compounds or oil and grease release leading to death of flora & fauna. The project area is not foraging ground and sheltering land for Migratory birds. Mine Pit water do not possess any biological species that serve as their food.	No Damage Cost is involved.
D	Deep well burial of toxic effluents should not be resorted to as it can result in resurfacing and ground water contamination. Re-surfacing has been known to cause extensive damage to crop.	No such activity is involved in the subject mine. There is no discharge and no re-surfacing of contaminants is involved leading to damage to crop.	There is no damage as the project area is devoid of crop.	No Damage Cost is involved.
Е	In all cases, efforts should be made for re-use of water and its conservation	The water consumption is mainly for dust suppression, plantation and domestic use, which is mostly used from the rain water harvested in the mine pits	There is no damage as there is no scope for reuse of water as it cannot be recovered	No Damage Cost is involved.

F	In order to ascertain the change in water quality in the area, water samples were collected from the mine site and surrounding areas.					
	Interpretation: It can be seen from the above that TDS, Chloride in the mine water to the nearby villages' ground water are almost similar and are found well					
	within the limit. As mine water discharge are not sent outside the project area, it does not affect the nearby surface water sources.					
G	Infrastructural facilities should be	Though there is no water pollution from	No Monitoring Carried out	Monitoring Cost Rs 10,000/-		
	provided for monitoring water quality.	the mining activity. Monitoring should				
		have been carried out.				
2	Air Pollution					
A	The emission levels of pollutants should	Mining activity was by opencast method.	The predicted increment in GLC of all the	No Damage Cost is involved.		
	conform to the standards prescribed as	Mine pit was done in the proper way by	parameters are within the standards. No			
	per NAAQ.	taking all steps for dust control by water	damage is caused due to air pollution. It is			
		sprinkling. Hence the dust emission	also evident from the above; there is no			
		resulting in PM ₁₀ and PM _{2.5} during	impact on the vegetation in the area due to			
		mining was addressed.	air pollution.			
С	Infrastructural facilities should be	Though there is no air pollution from the	No Monitoring Carried out	Monitoring Cost Rs 10,000/-		
	provided for monitoring ambient air	mining activity.				
	quality.	Monitoring should have been carried out.				
	Ambient air quality was monitored within	project area and outside the project area. T	The reports are enclosed. All other parameters	are well within the prescribed		
	limits of NAAQ standards					
3	Solid Wastes					
A	The site for waste disposal should be	Waste dumps are nontoxic in nature.	No damage is there as OB material is a	No Damage Cost is involved		
	checked to verify permeability so that no		stable material existing and the			
	contaminants percolate into the ground		contamination due to percolation of in			
	water or river/lake.		situ/disturbed material does not arise			
В	Reactive materials should be disposed of	No toxic material/chemicals are found in	No damage is caused. The product i.e.	No Damage Cost is involved		
	by immobilizing the reactive materials	the OB dump. Rather it contains some	Limestone are stable material and not			
	with suitable additives.	percentage of Calcium Carbonate which	reactive Material.			
		can be further segregated.	No environmental hazard are expected			
C	Intensive programs of tree plantation on	There is waste (Mineral rejects + side	Dumps are formed on which plantation	No Damage Cost is involved		
	disposal areas should be undertaken.	burden) generated from the mine	was done.			
		dumped in the nearby lease area in				
		proponent own patta land dump sites are				
		earmarked surrounding which there will				
		be plantation.				

D	Infrastructural facilities should be	Though there is no soil erosion /	No Monitoring Carried out	Monitoring Cost Rs 10,000/-
	provided for monitoring soil quality.	deterioration from the mining activity.		
		Monitoring should have been carried out.		
4	Noise and Vibration			
A	Adequate measures should be taken for	This is mechanized mine consisting of	The impact due to noise levels/vibrations	Monitoring Cost Rs 10,000/-
	control of noise and vibration in the	opencast mine workings where blasting	is felt in core zone on mineworkers.	
	mining area.	was done and that can produce some	All workers deputed in mine are provided	
		noise and vibration.	with safety equipment's.	
			a. Helmets	
			b. Gloves	
			c. Goggles	
			d. Shoes	
			e. Dust Masks	
			f. Ear Plug / Ear Muff	
			g. Blasting Shelter	
5	Occupational safety and Health			
A	Proper precautionary measures for	The mining activity involves the	All mine workers were provided with	No Damage Cost is involved.
	adopting occupational safety and health	occupation risk or safety by inhalation of	following personal protection equipment	
	standards should be taken.	fine dust during mining and blasting.	a. Helmets	
			b. Gloves	
			c. Goggles	
			d. Shoes	
			e. Nose Masks	
			No health issues are reported.	
6	Medical Check-Up			
A	Proper medical check-up should be	The dust due to wind drift can cause	However periodical medical check-ups	No Damage Cost is involved.
	carried out	respiratory and other health issues.	done as per DGMS guidelines.	
7	House -Keeping			
A	Proper house- keeping and cleanliness	Fugitive dust with drifting of wind	The practice of transportation in area with	No Damage Cost is involved.
	should be maintained both inside and	during movement of vehicular and spill	trucks covered with tarpaulin is practiced.	
	outside	over	Water sprinkling thrice a day on haul	
			roads, working face & admin block.	
			Office premises & infrastructural area are	

			well developed by plantation.	
8	Human Settlements			
A	Persons who are displaced or have lost agricultural lands as a result should be properly rehabilitated.	The project area is proponent own patta land and free from following since inception of mine operation a. No agricultural lands / crops b. No habitation is present	CSR Activities were carried out and the proponent has spent Rs 10 lakhs till date	No Damage Cost is involved.
9	Transport systems	-		
A	Proper parking places should be provided for the trucks and other vehicles by the lessees to avoid any congestion or blocking of roads	Proper parking place is provided.	Trucks are parked in the open spaces of the project area and no inconvenience is caused to local vehicles. Vehicles possessing Pollution Under Control (PUC) Certificate is only permitted and the same are used.	No Damage Cost is involved.
В	Spillage of materials. Proper road safety signs both inside and outside the project area should be displayed for avoiding road accidents	Signs boards are installed and the proponent participates in yearly safety week celebrations conducted by DGMS	There were no accidental deaths due to heavy vehicular traffic due to movement of tippers / dumpers from the subject mine	No Damage Cost is involved.
10	Recovery – Reuse of waste products			
A	Efforts should be made to recycle or recover the waste materials to the extent possible. The treated liquid effluents can be conveniently and safely used for irrigation of lands, plants and fields for growing nonedible crops.	No recovery of waste products from the mine as no waste is generated in terms of effluent or in terms of solid waste	Not applicable	No Damage Cost is involved.
11	Greenbelt			
A	Afforestation should be done in the mine.	Greenbelt development has been carried out since the commencement of mining operation	Greenbelt development has been carried out as per approved mining plan	No Damage Cost is involved.
В	Infrastructural facilities should be provided for monitoring of flora &fauna and green belt.	Monitoring has not been carried out.	Monitoring should have been carried out at least twice a year within the project area and outside project area for monitoring of biodiversity index.	Monitoring Cost Rs 10,000/-

12	Emergency plan			
A	Emergency Preparedness plan should be	Moderate Risk Zone as per BMTPC,	Mine pits filled with water until seepage/	No Damage Cost is involved.
	in place for handling unforeseen	Vulnerability Atlas of Seismic zone of	total soaking are likely to result in threat to	
	incidents/natural calamities	India IS: 1893 – 2002	moving cattle/persons.	
			As per the information obtained no person	
			has died in project area and not even single	
			cattle have fallen in the mine pit of this	
			area.	
13	Environment Management Cell			
A	PP should identify within its setup a	Environment Management Cell was not	Should carry out an Audit by external	Non-Implementation of
	Department/Section/Cell with trained	formed officially.	personnel having experience in	supervision on
	personnel to take up the model		Environment and safety matters to inspect	environmental aspects
	responsibility of environmental		and suggest the measures.	= Rs 10,000/
	management as required for planning			
	and implementation of the projects.			
14	CSR Activities			
A	Community Welfare measures	CSR activities have been carried out.	CSR activities have been carried out.	No Damage Cost is involved.

Source: Proposed by FAE's & EIA Coordinator

TABLE 13.4: TOTAL DAMAGE COST

	Activity	Damage cost (Rs.)				
Ecolog	Ecological Damage Cost					
Due to	change in Land-use/Land cover	Rs 32,370/-				
loss of	Vegetation /Plant cover	Rs 10,790/-				
Damag	e due to exploitation of Surface water resources	Rs 00/-				
Damag	Damage due to Non implementation of Environmental Management Measures					
1	Liquid Effluents / water monitoring	Rs 10,000/-				
2	Air Pollution	Rs 10,000/-				
3	Solid Wastes / Soil	Rs 10,000/-				
4	Noise and Vibration	Rs 10,000/-				
5	Occupational Safety and Health	Rs 00/-				
6	Medical Check-Up	Rs 00/-				
7	House – Keeping	Rs 00/-				
8	Human Settlements	Rs 00/-				
9	Transport Systems	Rs 00/-				
10	Recovery –Reuse of Waste Products	Rs 00/-				
11	Greenbelt	Rs 10,000/-				
12	Emergency Plan	Rs 00/-				
13	Environment Management cell	Rs 10,000/-				
	TOTAL Rs 1,03,160/-					

Source: Proposed by FAE's & EIA Coordinator

Remediation Plan -

TABLE 13.5: REMEDIATION PLAN WITH ACTION PLAN SPECIFIC TO THE REGION ALONG WITH BUDGET

Env. Component	Remediation Measures for Environmental damage	1 st Year (in Rs)	2 nd Year (in Rs)	3 rd Year (in Rs)	Total (Rs.)
Air			(III KS)	(III KS)	10.000
Environment	water sprinkler in the haul road and mines	10,000			10,000
Water	Renovation of Rain Water Harvesting Pits		10,000		10,000
Environment	Renovation of Rain water Harvesting 1 its		10,000		10,000
Land	Renovation of Garland Drains	10,000			10,000
Environment	Renovation of Garland Diams	10,000			10,000
Ecological	Avenue Plantation		10,000		10,000
Environment	Avenue i fantation		10,000		10,000
Socio					
economic	Solar Lighting Facilities along the village roads			10,000	10,000
environment					
Total					50,000

Source: Proposed by FAE's & EIA Coordinator

TABLE 13.6: YEAR WISE SUMMARY OF REMEDIATION PLAN WITH COST

Environment Component	1 st Year	2 nd Year	3 rd Year	Total (Rs.)
Air Environment	10,000			10,000
Water Environment		10,000		10,000
Land Environment	10,000			10,000
Ecological Environment		10,000		10,000
Socioeconomic environment			10,000	10,000
	50,000			

Source: Proposed by FAE's & EIA Coordinator

Natural Resources Augmentation -

TABLE 13.7: NATURAL RESOURCE AUGMENTATION PLAN SPECIFIC TO THE REGION ALONG WITH ACTION PLAN

Environmental	Natural Resource	1st Year	2nd Year	3 rd Year	Total
components	Augmentation	1 Tear	2 Tear	3 Tear	(Rs.)
Water Environment	Rain water harvesting structures at prominent place in the Sirugudi village	10,000			10,000
Air Environment	Providing trees in three tier system around project area as air barrier	5,000 Plantation			5,000
Land / Soil Environment	Providing Agricultural needs for 2 families	10,000			10,000
TOTAL					25,000

Source: Proposed by FAE's & EIA Coordinator

Community Resource Development (augmentation) Plan -

TABLE 13.8: THE COMMUNITY RESOURCES DEVELOPMENT PLAN SPECIFIC TO THE REGION ALONG WITH ACTION PLAN

Sl.No	Community Resource Development	1st Year	2 nd Year	3 rd Year	Total (Rs.)	
1	Sintex tank facilities for	10,000	10 000			10,000
1	water supply in the village		-	_	10,000	
2	Improving sanitation facilities in	15,000			15,000	
2	Sirugudi Government schoolr		13,000		13,000	
TOTAL					25,000	

Source: Proposed by FAE's & EIA Coordinator

Budget for remediation plan, natural resource augmentation plan and community resource augmentation plan, the total damage cost as computed above shall be Rs 1, 00,000/-. The summary of amounts which will be spent for Remediation Plan, Natural Resource Augmentation Plan and Community Resource Augmentation Plan is given below –

TABLE 13.9: SUMMARY OF AMOUNTS WHICH WILL BE SPENT FOR REMEDIATION PLAN, NATURAL RESOURCE AUGMENTATION PLAN AND COMMUNITY RESOURCE AUGMENTATION PLAN

Sl. No.	Description	Estimated cost in Rs
1	Remediation Plan	50,000/-
2	Natural Resources Augmentation Plan	25,000/-
3	Community Resources Augmentation Plan	25,000/-
Total Bud	getary Provision	1, 00,000/-

Source: Proposed by FAE's & EIA Coordinator

Calculation of bank guarantee amount as per Notification No. S.O. 804(E) Dated: 14.03.2017 shall be **Rs. 1, 00,000/-** as per details given here in above.

ANNEXURES

FOR

M/s. Sivam Mines,

Represented By – Thiru. S. Ilangovan (Managing Partner) 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District.

SIRUGUDI LIMESTONE MINE

Mine Lease Area – 2.53.0ha

S.F.Nos 693/5A(P), 696/2, 3(P), 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5

Sirugudi Village, Natham Taluk, Dindigul District

List of Annexure:

S.No	Description	Annexure Nos	Page Nos
1	Terms of Reference (ToR)	I	1A – 23A
2	Extension Terms of Reference (ToR)	IA	1AA - 5AA
3	Copy of Proceeding Letter	II	24A – 25A
4	Copy of last permit issued by the Dept. Of Geology and Mining, Salem	III	26A – 27A
5	Approval Letter – Review of Mining plan	V	28A – 29A
6	Approved Review of Mining Plan	VI	30A – 227A
7	Baseline Studies	VII	228A-252A
8	Copy of NABET Certificate	VIII	253A

Dr. JAYANTHI. M, I.F.S MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY – TAMIL NADU

3rd Floor, Panagal Maaligai, No.1 Jeenis Road, Saidapet, Chennai-15. Phone No.044-24359973 Fax No. 044-24359975

<u>TERMS OF REFERENCE (ToR)</u> Lr No.SEIAA-TN/F.No.6253/2017/TOR- 604/2019 Dated: 07.02,2019

Josepho

To

M/s. Sivam Mines, 6/209, Main Road, Sirungudi post, Natham Taluk, Dindigul District – 624 404.

Sir / Madam,

Sub: SEIAA, Tamil Nadu – Terms of Reference (ToR) under violation for the Existing Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P). 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, by M/s. Sivam Mines under project category – B and Schedule S.No. 1(a) – TOR issued for the preparation of EIA report, EMP report, ecological damage assessment, remediation plan, natural resource augmentation and community resource augmentation—Regarding.

Ref: 1, MoEF & CC Notification S.O. 804 (E) dated 14.03.2017

- 2. MoEF & CC Notification S.O.1030 (E) dated 08.03.2018
- 3. Your Online application No. SIA/TN/MIN/23074/2018, dated: 03.04.2018, (Under Violation)
- 4. Minutes of the 110th SEAC Meeting held on 04.05.2018
- 5. Minutes of the 337th SEIAA Meeting held on 07.02.2019

Kindly refer to y submitted to the State Level Impact Assessment Authority for Terms of Research.

MEMBER SECRETARY
SEIAA-TN

2.53.0 ha

The proponent of, M/s. Sivam Mines submitted application for Terms of Reference on 03.04.2018, in Form-I, Pre- Feasibility report for the existing Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P). 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu seeking ToR under the MoEF & CC Notification cited under reference 1nd & 2nd.

The proposal seeking ToR was placed before the 110th SEAC meeting held on 04.05.2018. Based on the document furnished, the Committee observed that the project falls under the category B and schedule 1(a) of the EIA Notification, 2006. The SEAC recommends the Terms of Reference for the project for assessment of Ecological damage, remediation plan and natural & community resource augmentation plan to be prepared as an independent chapter in the Environment Impact Assessment report by the Accredited consultant and also with collection and analysis of data for the assessment of ecological damage, preparation of remediation plan and natural & community resource augmentation plan to be done by an Environmental laboratory duly notified under the Environment (Protection) Act, 1986, accredited by NABET or a laboratory of council of Scientific and Industrial research Institutions working in the field of Environment. Three months data relating to the ecological parameters is to be submitted with analysis.

The project proponent besides above has to also submit the No Objection certificate (NOC) from State Mines and Geology Department. The NOC should also indicate whether the mine was operated.

- Without Environmental Geamne (EC) or in excess of quantity approved in EC.
- Without consent to Operate (CTO) or in excess of quantity approved in CTO.
- Without mining plan/scheme or mining or in excess of quantity approved in mining plan/scheme of mining.
- Without Forest clearance
- Any other violation such as excess quantity mined during the mining period to assess the ecological and other damages.

Further, the proponent shall consider the impacts due to the mining operations carried out in the adjacent four mines and shall prepare comprehensive EIA covering all the five mines. The EMP should be spare for s projects.

MEMBER SECRETA

The proposal was considered as recommended by SEAC in 337th SEIAA meeting held on 07.02.2019 and after detailed discussion, the authority decided to issue ToR with public hearing for considering the mining period from 2018-19 onwards only for the preparation of EIA report along with additional ToR subject to the following:

- 1. The proponent furnish in affidavit undertaking inter-alia includes commitment of the Project Proponent not to repeat any such violation in future as follows as per MoEF & CC, Office Memorandum No. F.No.3-50/2017-IA.III(Pt.) dated:30.05.2018 "I/We, the applicant / the Project Proponent, commit to comply with all the statutory requirements and judgments of Hon'ble Supreme Court dated the 2nd August 2017 in Writ Petition (Civil) No.114 of 2014 in the matter of the common cause versus Union of India and Ors. Before grant of ToR/ EC and I am also to commit, not to repeat any such violation in future. In case of any violation of the above the ToR/Environmental Clearances shall be liable to be terminated forthwith".
- 2. The Environment Clearances will not be operational till such time the project proponent complies with all the statutory requirements and the judgment of Hon'ble Supreme Court dated the 2nd August 2017 in writ Petition (Civil) NO .144 of 2014 in the matter of common cause versus Union of India and Ors.
- 3. State Government concerned shall ensure that mining operation shall not commence till the entire compensation levied, if any for illegal mining paid by the project proponent through their respective Department of Mining & Geology in strict compliance of judgment of Hon'ble Supreme Court dated 02.08.2017 in the Writ Petition (Civil) No.114 of 2014 in the matter of common Cause Versus Union of India and Ors.
- 4. Excess quantity mined during the mining period shall be furnished to assess the ecological and other damages from the Department of Mining & Geology.
- 5. The EIA study report shall provide details of proposed and actual mined quantity for the entire mining plan period from the competent Authority.
- 6. As per the order of the Hon'ble Madras High Court dated 13.10.2017 in WP.No.11189 of 2017, public hearing is mandatory for all violation proposals.
- 7. The report for green belt developed with necessary photographs.

The proponent shall furnish the brogrammer fencing around the project site.

9. EIA study shall match proceed mining schen

FEB 2019

MEMBER SECRETARY

- 10. Details of EMP compliance for the existing activities shall be furnished.
- 11. Copy of the consent for establishment, consent to operate and latest renewal obtained from the TNPCB.
- 12. Details of study on social impact, including livelihood of local people.
- 13. EIA report should strictly follow the EIA mining manual.
- 14. Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.
- 15. The EIA study report shall include the surrounding mining activity
- 16. Modeling study for Air, Water and noise shall be carried out and incremental increase in the above study shall be substantiated with mitigation measures.
- 17. A study on the geological resources available shall be carried out and reported.
- 18. A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals, adjoining reserve forest, etc. Details on Bio diversity plan and impact on bio diversity to be elaborated.
- 19. Reserve funds should be earmarked for proper closure plan existing areas near the forest or other areas.
- 20. A specific study on agriculture & livelihood shall be carried out and reported.
- 21. Impact on ponds, rivers and other water bodies to be elaborated. Impact of soil erosion, soil physical chemical and biological property changes may be assumed.

Additional TOR specified by the SEAC to deal with the violation aspects of the mining projects

SECTION A

As per the MoEF & CC Notification S.O. 1030 (E) dated: 08.03.2018,

1. "The cases of violations will be appraised by the Expert Appraisal Committee at the Central level or State or Union territory level Expert Appraisal Committee constituted under sub-section (3) of section 3 of the Environment (Protection) Act, 1986 with a view to assess that the project has been constructed at a site which under prevailing laws is permissible and expansion has been done which can run sustainably under compliance of environmental norms with adequate environmental safeguards, and in case, where the

MEMBER SEØRETARY

- findings of Expert Appraisal Committee for projects under category A or State or Union territory level Expert Appraisal Committee for projects under category B is negative, closure of the project will be recommended along with other actions under the law.
- 2. In case, where the findings of the Expert Appraisal Committee or State or Union territory level Expert Appraisal Committee on point at sub-paragraph (4) above are affirmative, the projects will be granted the appropriate Terms of Reference for undertaking Environment Impact Assessment and preparation of Environment Management Plan and the Expert Appraisal Committee or State or Union territory level Expert Appraisal Committee, will prescribe specific Terms of Reference for the project on assessment of ecological damage, remediation plan and natural and community resource augmentation plan and it shall be prepared as an independent chapter in the environment impact assessment report by the accredited consultants, and the collection and analysis of data for assessment of ecological damage, preparation of remediation plan and natural and community resource augmentation plan shall be done by an environmental laboratory duly notified under the Environment (Protection) Act, 1986, or a environmental laboratory accredited by the National Accreditation Board for Testing and Calibration Laboratories, or a laboratory of the Council of Scientific and Industrial Research institution working in the field of environment."

After the appraisal of the project, the SEAC decided that the Para No.2 stated above is applicable to the project. Hence, the propohent is directed to prepare appropriate reports as contained in the Para 2.

While complying with the specific aspects of the MoEF & CC directions as stated in the Para 2 above, the following steps should be followed:

A T FEB 2019

Step 1: Enumerate the aspects of Violation:

- a) The proponent should enumerate the violations as applicable to the project.
- b) Furnish a description of each violation with quantitative and qualitative data.
- c) Violation categories are to be decided taking into consideration the stage at which the project execution stands.

Step 2: Ecological Damage Assessment:

a) For each aspect of numerated in step (1), identify the resultant environmental may have been caused.

b) Furnish a description of the environmental damages with quantitative and qualitative data.

Step 3: Remediation Plan:

- a) For the Environmental damage(s) identified in the step (2) above, prepare the remediation plan for the each or combination of damages.
- b) The remediation plan should essentially consists of problem statement, target to be achieved (quantity), standards, technology/ procedure for remediation, equipment and machinery to be used, time schedule and remediation cost(direct and indirect cost, capital as well as O&M costs).

SECTION B

- 1. Natural resource Augmentation:
 - a) The resources that should be considered for augmentation should essentially consist of land, biota, air, water and other resources as applicable.
 - b) Proponent may choose one or more of the resource augmentation as applicable and provide a description of the augmentation proposal in detail for each resource.
 - c) The proponent should also furnish the cost for each augmentation scheme.
- 2. Community resource Augmentation:
 - a) The proponent should prepare a plan of action for addressing the needs of the community in terms of resources in the sectors of education, health and sports primarily and other such resources as applicable to the community in the vicinity of the project.
 - b) The community resource augmentation plan should consist of rehabilitation of houses and people budget allocation and time schedule for completing the activity.

SECTION C

The proponent should prepare content for the ecological damage assessment, remediation plan, natural resource augmentation and community resource augmentation separately in a chapter and include in the EIA / EMP report.

MEMBEŔ SECRETARY

SECTION D

- a) After the appraisal of the EIA / EMP report submitted by the proponent, the SEAC will make a judgement of the quality of the content in the EIA / EMP report specifically with reference to the chapter covering the ecological damage assessment, remediation plan, natural resource augmentation and community resource augmentation.
- b) In the judgement of SEAC, if the quality of the content in the chapter is not satisfactory, the SEAC may direct the proponent to further revise the chapter and resubmit the EIA/EMP report.
- c) If SEAC concludes that the technical part is satisfactory and the costing aspect is not satisfactory then the SEAC may revert to legal provisions, MoEF & CC guidelines and similar expert committee recommendations for finalizing the cost aspects or the SEAC may use its own expertise and experience in finalizing the cost.

SECTION E

The proponent is directed to furnish data as per the questionnaire appended in Annexure I. It will help the SFAC in arriving the ecological damage and the associated cost.

SECTION F

In compliance with the Supreme Court order stated in MoEF & CC letter F.No. 3-50/2017 IA.III-pt dated: 05th January 2018, the proponent is required to submit the No Objection Certificate obtained from the Department of Geology and Mining, Government of Tamil Nadu regarding payment of 100% cost of illegally mined mineral under section 21(5) of MMDR Act 1957 which would account for mining operations in violation of the following:

- a) Without Environmental Clearance (EC), or in excess of the quantity approved in EC
- b) Without Consent to Operate (CTO) or in excess of the quantity approved in CTO and

or in excess of the quantity approved in c) Without mining plan mining plan / sche of mining

- d) Without Forest Clearance
- e) Any other violation

List out the details of reserve forest and wildlife sanctuary nearby the project site (the details should also include other districts which are nearby the project site) and also furnish the detail of distance between the project site and reserve forests/wildlife sanctuary.

Whether the project site attracts the HACA clearance? If so, also furnish the HACA clearance for the mining from the competent authority.

The proponent is instructed to fill in the form contained in Annexure 1 to work out the details of the ecological damage during the violation period.

A. STANDARD TERMS OF REFERENCE

- Year-wise production details since 1994 should be given, clearly stating the highest 1) production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
- A copy of the document in support of the fact that the Proponent is the rightful lessee of 2) the mine should be given.
- All documents including approved mine plan, EIA and Public Hearing should be 3) compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- All corner coordinates of the mine lease area, superimposed on a High Resolution 4) Imagery/ topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating 5) geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.

T FEB 2019

Details about the land proposed for making activities sho 6)

be given with information as

- to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- It should be clearly stated whether the proponent Company has a well laid down 7) Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.
- Issues relating to Mine Safety, including subsidence study in case of underground mining 8) and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
- Land use of the study area delineating forest area agricultural land, grazing land, wildlife 10) sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- Details of the land for any Over Burden Dumps outside the mine lease, such as extent of 11) land area, distance from mine lease, its land use, R&R issues, if any, should be given.
- 12) A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department Secret Appraisal Committees.

8 7 FEB 2019

- Status of forestry clearance for the broken up area and virgin forestland involved in the 13) Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- Implementation status of recognition of forest rights under the Scheduled Tribes and other 14) Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.
- The vegetation in the RF / PF areas in the study area, with necessary details, should be 15) given.
- A study shall be got done to ascertain the impact of the Mining Project on wildlife of the 16) study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.
- A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
- Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come 19) under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Department should be secured and furnished to the effect that the propositivities could be considered.

FEB 2019

- Similarly, for coastal Projects, A CRZ map duly authenticated by one of the authorized 20) agencies demarcating LTL. HTL, CRZ area, location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).
- 21) R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.
- One season (non-monsoon) [i.e. March-May (Summer Season); October-December (post 22) monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per

CPCB Notification of 2009, water quality noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the predominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.

Air quality modeling should be carried out for prediction of impact of the project on the 23) air quality of the area. It should also take into account the impact of movement of Vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The state of the wing pre-dominant wind direction may also be indicated on the map

7 FEB 2019

MEMBER SÉCRETARY SEIAA-TN

Jank

- 24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should be indicated.
- Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.
- 26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- Impact of the Project on the water quality, both surface and groundwater, should be 27) assessed and necessary safeguard measures, if any required, should be provided.
- 28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
- Details of any stream, seasonal or otherwise, passing through the lease area and 29) modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
- 30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
- A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form 31) (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.

FEB 2019

- 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.
- 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
- 35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 36) Public health implications of the Broject and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 38) Detailed environmental management plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
- 39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.

40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project and Spiven.

- The cost of the Project (capital cost and recurring cost) as well as the cost towards 41) implementation of EMP should be clearly spelt out.
- A Disaster management Plan shall be prepared and included in the EIA/EMP Report. 42)
- Benefits of the Project if the Project is implemented should be spelt out. The benefits of 43) the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- Besides the above, the below mentioned general points are also to be followed:-44)
 - a) Executive Summary of the EIA/EMP Report
 - All documents to be properly referenced with index and continuous page b) numbering.
 - Where data are presented in the Report especially in Tables, the period in which the c) data were collected and the sources should be indicated.
 - d) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
 - Where the documents provided are in a language other than English, an English e) translation should be provided.
 - f) The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
 - g) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoRF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
 - Changes, if any made in the basic scope and project parameters (as submitted in h) Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the TOR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
 - i) As per the circular no. J-11011/618/2010-IA.II(I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the environment clearance for the existing operations of the project should be obtained from the Regional

- Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
- The EIA report should also include (i) surface plan of the area indicating contours of **i**) main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

In addition to the above, the following shall be furnished:-The Executive summary of the EIA/EMP report in about 8-10 pages should be prepared incorporating the information on following points:

- Project name and location (Village, District, State, Industrial Estate (if applicable). 1)
- 2) Products and capacities. If expansion proposal then existing products with capacities and reference to earlier EC.
- 3) Requirement of land, raw material, water, power, fuel, with source of supply (Quantitative)
- 4) Process description in brief, specifically indicating the gaseous emission, liquid effluent and solid and hazardous wastes
- 5) Measures for mitigating the impact on the environment and mode of discharge or disposal.
- 6) Capital cost of the project, estimated time of completion.
- Site selected for the project Nature of land Agricultural (single/double crop), barren, 7) Govt,/ private land, status of is acquisition, nearby (in 2-3 km.) water body, population, with in 10km other industries, forest, eco-sensitive zones, accessibility, (note - in case of industrial estate this information may not be necessary)
- 8) Baseline environmental data - air quality, surface and ground water quality, soil characteristic, flora and fauna, socio economic condition of the nearby population

9) Identification of hazards in addling, processing and storage of hazardous material and

9 7 FEB 2019

MEMBER SECRETAR

safety system provided to mitigate the risk.

- Likely impact of the project on air, water, land, flora-fauna and nearby population 10)
- Emergency preparedness plan in case of natural or in plant emergencies 11)
- Issues raised during public hearing (if applicable) and response given 12)
- 13) CER plan with proposed expenditure.
- 14) Occupational Health Measures
- Post project monitoring plan 15)

Besides the above, the below mentioned general points should also be followed:-

- a. A note confirming compliance of the TOR, with cross referencing of the relevant sections / pages of the EIA report should be provided.
- b. All documents may be properly referenced with index, page numbers and continuous page numbering.
- c. Copy of permission related to Port facility, Desalination plant, wind mill /solar power plant from competent Authority.
- d. Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.
- e. While preparing the EIA report the instructions for the proponents and instructions for the consultants issued by MoEF vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry should also be followed.
- f. The consultants involved in the preparation of EIA/EMP report after accreditation with Quality Council of India (QCI)/National Accreditation Board of Education and Training (NABET) would need to include a certificate in this regard in the EIA/EMP reports prepared by them and data provided by other organization/Laboratories including their status of approvals etc. In this regard circular no F. No.J -11013/77/2004-IA-II(I) dated 2nd December, 2009,18th March 2010, 28th May 2010, 28th June 2010, 31st December 2010 & 30th September 2011 posted on the Ministry's website http://www.moef.nic.in/ may be referred.

After preparing the generic structure prescribed in Appendix-III of the EIA Notication, 2006) ing the above mentioned points, the

proponent will take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.

- The final EIA report shall be submitted to the SEIAA, Tamil Nadu for obtaining Environmental Clearance
- The TORs prescribed shall be <u>valid for a period of three years</u> from the date of issue, for submission of the EIA/EMP report as per OMNo.J-11013/41/2006-IA-II(I)(part) dated 29th August, 2017.

The receipt of this letter may be acknowledged.

MEMBER SECRETARY
SEIAA-TN

Copy to:

- 1. The Principal Secretary to Government, Environment & Forests Dept, Govt. of Tamil Nadu, Fort St. Georges Chennal
- 2. The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- 3. The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennal 600 032
- 4. The APCCF (C), Regional Office Ministry of Environment & Forest (SZ), 34, HEPC Building, 1st & 2nd Floor, Cathedral Garden Road, Nungampakkam, Chennai -34.
- 5. Monitoring Cell, I A Division, Ministry of Environment & Forests, Paryavaran Bhavan, CGO Complex, New Delhi 110003
- 6. Stock File.

Annexure 1 Additional information for considering EC for mining projects

S.No.	Details to be provided						Page	
								no.
1)	Name of the project lease & owner							
2)	Lease Extent							
3)	Lease Validity			· · · ·				
4)	Approved Minir	ng Plan/Sch	eme – Re	view				
	a) Specify whe	ther DSR is	s provided	l (applicabl	e in case o	f minor min	erals	
5)	Specify - Nature	and type o	f violatior	1				
,	I. V	Without EC	or in exce	ess of quanti	ity approve	ed in EC	<u> </u>	
	II.	Without CT	O or in e	xcess of qua	ntity appro	oved in CTC)	1
	III. Without mining plan/Scheme of mining or in excess of quantity approved in Mining plan/Scheme of mining.							
	IV. Without forest Clearance							
	V. Any other violation							
6)	Violation period							
	I. Number of months							
	II. Number of Years							
7)	Exploitation/Excavation quantity- Reserves proved through exploration by							
	drilling							
8)	Give details of production from the date of execution of the lease deed / since						/ since	
	Year and	2010-11*		2011-12*		2012-13*		1
	quantity	Planned	Actual	Planned	Actual	Planned	Actual	
	Ore/mineral							
	/granite							
	blocks							
	(tonnes)	JUEN	TIMPACTAS					
	Waste	* AND CONTROL	1					

87. FEB 2019

	(tonnes/cu.		ļ					
	m) ·							
	* year of minin	g operation	··,.				<u> </u>	
9)	Quantity mined out during the violation period & if, yes indicate the violated							
	quantity, in term of % of consented quantity.							
	Year and	2010-11		2011-12		2012-13		
	quantity	Planned	Actual	Planned	Actual	Planned	Actual	
	mined out							
	during the							
	violation							
	period							
	Ore/mineral/g						 	
	ranite blocks		;					
	(tonnes)							
	Waste					<u> </u>	╁	
	excavation							
	(tonnes/cu.m)			Adam.				
0)	State illegal minin	g/encroach	nents out	side the leas	se bounda	ry? Percent	age of	
	quantity mined ou	t outside the	lease bo	undary.				
1)	Method of working							
	I .	tegory type:	(a) Mech	ánised (b) S	emi – Me	chanised (c)	
	Manual II. Construction and design of haul roads							
	a) Dimension as per the statutory requirements which							
,	were followed or otherwise							
	b) Number of vehicles plying on the main haul roads							
	inside the mine and the approach road to the pit located outside the mine, if any.							
	c) Are any measures taken to minimise fugitive dust							
	generated form mine haul roads? Does it comply with							
	the CPCB/PCB Guidelines?							
		, d) Is th	ere a pos	sibility that	air polluta	ants emitted	l from	
		th	Met ar	do no	ot comply	with air qu	ality	

2.53.0 ha

19A

. !	standards as per CPCB/PCB?	
12)	Mechanized / Semi – Mechanized Method of Mining	
	(i) Number of loading / excavating equipments as per approved mining	
	plan and capacity.	
	(ii) Number of loading / excavating equipments actually being deployed	
	and	
	capacity.	
	(iii) Type and number of transporting equipments.	
	(iv) Type of transporting system used – (a) trucks	
	(b) Any other mode	
	(v) Capacity and Number of trucks used as per approved mining plan (vi) Capacity and Number of trucks used actually in the mine.	
	(vii) Number and capacity of loading equipments and trucks used not in	
	line with approved mining plan.	
	Capacity Numbers	
-	(m^3)	
	Excavator	
	Trucks	
	(viii) Impact of excess deployment of loading equipments (excavators)	
	and transporting equipments on environment.	
	(a) Air pollutants	
	(b) Water Quality	
	(c) Land Quality	
	(d) Noise level	
	(ix) Does the deployment of loading equipments (excavators) and	
	trucks fulfil the statutory requirements as per MMR 1961, with respect to the site conditions?	
13)	Method of Rock Breaking/Material preparation for the excavation:	
13)		
	(i) Methodology adopted—	
	a) Drilling and blasting	
	b) Rock breakers	
	c) Rippers	
	d) Surface miners	
	e) Direct mucking by excavators	
	f) Manual means	
	g) Any other methods or combination of above	
	(ii) In case of drilling and blasting method:	
	Type of bleating: short hole or deep hole	

		
	(b) Whether controlled blasting technique adopted? If	
	yes, specify the technique with details of study, year	
	of study	
	(c) Impacts due to blasting defined as per the studies, if	-
	any carried out previously as indicated	
	(d) Dust pollution	-
	(e) Noise level (dB(A))	-
	(f) Ground vibration studies and Fly rock projection	1
	(iii) Impact of preparation of Ore and waste on environment-	-
	a) Air Pollution	4
	b) Noise Pollution	:
	c) Water Pollution	-
	d) Safety standards	1
	e) Traffic density	<u> </u>
	f) Road Condition (vulnerability)	}
14)	Construction and Design of Dumps.	İ
	a) Place/Location	<u> </u>
	b) Approach to Dump form the mine distance and safety	
	standards.	
	c) Area of extent occupied	
	d) Dimension of Dump and No. of terrace with heights	
	(benches)	
	e) Vegetation covered; If yes, specify the details of plants	
15)	Construction and Design of Waste Dumps	
	(i) Numbers and Location of Dumps as per approved Mining Plan	
	(ii) Specify whether reject dumps are located within or outside mining lease	
	(iii) Area occupied in excess of the approval mining plan.	
	(iv) Dimension of Terracing, Light, shapes, etc., Dump as per approved	
	Mining Plan (v) Fresh/Existing Dimension Height, shape, width. etc., of Dumps in the	
	mine.	
	(vi) Volume/Quantity adde down during the violated period.	
	(vii) Approach to the Durge Dimension, distance	
		

	(viii) Number of and type of equipments deployed in Dump.	
	(ix) Provision of Garland drains around the Dumps.	
	(x) Any vegetation made on the slopes.	
	(xi) Provision of safety standards.	
	(xii) Impact of Waste/Dumps on environment.	
	a) Air pollution	
	b) Water pollution	
	c) Dust pollution	_
	d) Noise pollution	
	(xiii) Terracing	
16)	Construction and Design of Ore and sub grade ore/mineral Stacks:-	
	(i) Number and Location of Ore stacks.	
	(ii) Dimension of Ore/sub grade Stacks as per the Approved Mining Plan	
	(iii)Volume/Quantity added during the violation period.	
	(iv)Any Screening plant or any other loading equipment engaged during the	
	violated period	
	(v) Approach to Ore / sub grade stack—Distance, hazards.	
	(vi)Safety standards adopted while operation.	
	(vii) Impact of ore/sub grade on environment	
	a. Air pollution	
	b. Water pollution	
	c. Dust pollution	
	d. Noise pollution]
17)	Mine Pit Water	1
	(i) Intersection of Ground water table, specify the measures taken.	7
	(ii) Ground water table as per hydro geological Studies (Pumping test).	1
	(iii) Provision of Garland drains around pit and dumps	
	(iv) Water pollution	
	(v) Management of mine water.	
	(vi) Ultimate pit limit, w.r.t Ground water intersection and management of	
	drainage of ground water.	
18)	Diversion of General Drainage/River/Nallah course for mining	

19)	Clearing of vegetation before the commencement of mining operation- Number	T
	of trees (species wise)	
20)	Man Power	
	(a) Statutory management	<u> </u>
	(b) Regular (Non -statutory) Manpower	
21)	Occupational Health and Safety.	
	(a) Periodical monitoring of health standards of persons employed as	
	per Mine Act, 1952.	
,	(b) Failure to inform statutory bodies periodically, if any	
22)	Population (Nearby Habitation)	
	(i) Population/Significant Population/Dense Population within the buffer	
	zone of 10 Kms.	
	(ii) People displacement due to mining activities	
	(iii) Location/ Existence of habitation near the river or any other	
	historical/sensitive/ forest distance.	
	(iv)Impact of mining on Surrounding and habitation-Air, Water, Noise,	
	Pollution.	
	(v) Socio Economic aspects of mining.	ļ
23)	CSR	
	(a) Field ground Activities or studies. Actual amount spent towards CSR and the future proposal.	1
24)	NOC from DMG for quantity clarification in respect of settlement of all the	
	amount payable against identified violation.	:
25)	For the Clearance of EC, Public Hearing is mandated as per MoEF & CC	ļ ļ
	Notification.	
26)	Conceptual post mining land use/restoration	
27)	Litigation/court cases, if any pending	
28)	Disaster management plan for the mine	

MEMBER SECRETARY
SELAA

THIRU.DEEPAK S.BILGI, I.F.S. MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY-TAMILNADU

3rd Floor, Panagal Maaligai, No.1, Jeenis Road, Saidapet, Chennai - 600 015. Phone No. 044-24359973 Fax No. 044-24359975

TERM OF REFERENCE-EXTENSION Lr. No.SEIAA-TN/F.No.6253/TOR-604/2018/A/ Dated:07.12.2022

To

M/s. Sivam Mines 6/209, Main Road, Sirungudi post Nathanm Taluk Dindigul

Sir/Madam,

Sub: SEIAA-TN -Existing Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P), 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, by M/s. Sivam Mines-Terms of Reference issued-issue of Extension Validity - Regarding.

- Ref:
- Earlier ToR issued by SEIAA-TN vide Lr. No.SEIAA-TN/F.No.6253/ToR-604/2019, dated: 07.02.2019 Under Violation Category.
- MoEF&CC Notification S.O. 221(E) 18.01.2021.
- Tor Extension Under Violation issued vide SEIAA Lr. No. SEIAA-TN/F.No.6253 /TOR-604/A/ dated: 29.10.2021
- 4. Minutes of the 471st SEIAA meeting held on 20.10.2021
- Online Proposal No. SIA/TN/MIN/268975/2022, dated: 21.04.2022
- Your application for Extension of Validity of Terms of Reference dated:
 26.04.2022 Under Violation Category.

MEMBER SECRETARY SEIAA-TN

2

Page 1 of 5

- Minutes of the 331stSEAC meeting held on 24.11.2022
- Minutes of the 576thSEIAA meeting held on 07.12.2022.

In the reference 1st cited above, the Terms of Reference was accorded to M/s. Sivam Mines for the Existing Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P), 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, Tamil Nadu vide SEIAA Lr. No.SEIAA-TN/F.No.6253/ToR-604/2019, dated: 07.02.2019...

Now the Project Proponent, M/s. Sivam Mines has applied for extension of validity of Terms of Reference vide online application No. SIA/TN/MIN/268975/2022, dated: 21.04.2022.

Details of SEAC Remarks:

Proposed for Existing Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P), 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, by M/s. Sivam Mines- Extension of validity for the Terms of References "Under Violation".(SIA/TN/MIN/268975/2022,dated: 21.04.2022)

The proposal was placed in this 331st Meeting of SEAC held on 24.11.2022. The details of the project furnished by the proponent are available in the website (parivesh.nic.in).

The SEAC noted the following

- The Project Proponent, M/s. Sivam Mines has applied for Extension of validity for the Terms of References for the proposed Limestone Quarry over an extent of 2.53.0 Ha at S.F.No. 693/5A(P), 696/2, 3(P). 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, Tamil Nadu.
- The proposed quarry/activity is covered under Category "B" "Under Violation" of Item 1(a) "Mining Projects" of the Schedule to the EIA Notification, 2006.
- The PP had applied for ToR to carry out the EIA study under violation vide Proposal No. SIA/TN/MIN/23074/2018, dated: 03.04.2018.
- The ToR for carrying out EIA study under violation issued vide SEIAA. Lr. No.SEIAA-TN/F.No.6253/ToR-604/2019, dated: 07.02.2019.
- As per MoEF&CC O.M Dt: 29.08.2017, the validity of ToR shall be 4 years for all the projects/activities and 5 years for River Valley and HEP Projects.

- Now the PP has applied online through Parivesh portal vide Proposal No. SIA/TN/MIN/268975/2022 dated: 21.04.2022 for the extension of validity of ToR with all required documents.
- The PP has submitted that we were unable to complete the EIA EMP Studies and Violation Studies awaiting for clarification regarding-
 - Awaiting for Guidelines regarding preparation of Ecological Damage Assessment Plan, Remediation Plan, Natural Resource & Community Resource Augmentation Plan.
 - ii. Applicability of Public Consultation for the project.
 - iii. Awaiting for clarification regarding penalty to be paid for violation projects as S.O.P Case No W.P(MD) No. 11757 2021 titled Fatima Vs Union of India Stayed order 15th July 2021 with Honourable High Court of Madras.
 - iv. The PP has also submitted that unfortunately the outbreak of the Coronovirus (covid-19) and subsequent lockdowns had put the studies initiated as a part of EIA on hold and they were unable to proceed further to submit the final EIA report in time.

The SEAC had observed that as per MoEF&CC Notification 8.O. 221(E), dated the 18th January, 2021, ".....the period from the 1st April, 2020 to the 31st March, 2021 shall not be considered for the purpose of calculation of the period of validity of Prior Environmental Clearances granted under the provisions of this notification in view of outbreak of Corona Virus (COVID-19) and subsequent lockdowns (total or partial) declared for its control, however, all activities undertaken during this period in respect of the Environmental Clearance granted shall be treated as valid....."

Hence, the SEAC after detailed discussions decided to confirm that the ToR issued is (deemed to be) valid up to 06.02.2024 as per the aforesaid MoEF Notifications.

Therefore, the project proponent is requested to submit Public Hearing minutes, EIA/EMP report along with required details on the following – (i) facets of violation, (ii) assessment of ecological damage, remediation plan and natural and community resource augmentation plan which shall be prepared as an independent chapter in the environment impact assessment.

MEMBER SECRETARY SEIAA-TN

2

Details of SEIAA Remarks:

The proposal was placed in the 576th Authority meeting held on 07.12.2022. The Authority accepted the recommendation of 331st SEAC minutes held on 24.11.2022 with a validity of the ToR issued is valid up to 06.02.2024as per the MoEF Notification dated 18.01.2021.

Therefore, the project proponent is requested to submit Public Hearing minutes, EIA/EMP report along with required details on the following.

- i. facets of violation.
- assessment of ecological damage, remediation plan and natural and community resource augmentation plan which shall be prepared as an independent chapter in the environment impact assessment report.
- iii. The compliance report on the violation ToR issued earlier.

Along with this, additionally the Project Proponent will study in detail the following:

- The limestone quarry involves raw material extraction, transportation and comminution.
 Therefore, large quantity of diesel and electricity are supposed to be consumed in the production. The diesel fuel and electricity to be consumed to be furnished.
- What are the green mining technologies to be adopted for reducing GHG/Co₂ emissions and lowering the carbon footprint in the limestone mining.
- 3. Strategies adopted for safety and healthy mining operations.
- What are the transparency and accountability system in place during the operation and post-operation period of the project.
- What are the In-House environmental performance and evaluation tools to understand negative impacts of mining.
- Detailed study to be made on material flow analysis and Life Cycle Assessment (LCA) in the process of production.
- Through a chart Illustration, clarify the cradle to grave approach for extraction of limestone and anticipated emissions, environmental threats in every stage and mitigation strategy at every stage.
- Project Proponent to study impacts on human health viz respiratory impacts, toxicity impacts and radiation impacts.

MEMBER SECRETARY SELAA-TN

D

- Study to be made on aquatic, terrestrial toxicity, aquatic eutrophication including detailed terrestrial toxicity and their impacts of wildlife and biodiversity.
- What is the total water withdrawal consumption, likely temperature rises and climate change impacts.

What are the chemical exposures in the limestone mining and risks anticipated to environmental and human health

MEMBER SECRETARY

Copy to:

- 1. The Secretary, Ministry of Mines, Government of India, ShastriBhawan, New Delhi.
- The Principal Secretary to Government, Environment and Forests Department, Tamil Nadu.
- 3. The Principal Secretary to Government, Industries Department, Tamil Nadu.
- The Additional Principal Chief Conservator of Forests, Regional Office (SZ), 34, HEPC Building, 1st& 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai – 34.
- The Chairman, Central Pollution Control Board, Parivesh Bhawan, CBD-Cum-Office Complex, East Arjun Nagar, New Delhi-110 032.
- 6. The Chairman, TNPC Board, 76, Mount Salai, Guindy, Chennai-32
- 7. The District Collector, DindigulDistrict
- 8. The Commissioner of Geology and Mines, Guindy, Chennai-32
- 9. El Division, Ministry of Environment & Forests, Paryavaran Bhawan, New Delhi.
- 10. Spare.

Industries - Mines and Minerals - Limestone - Dindigul Distriof - Netham Taluk -ABSTRACT Sirugudi Village - S.F. No. 693/5A, 696/2, 696/3 (Part), 4 (Part) and 5, and 698/1, 2, 3 4A, 4B, 4C and 5 over an extent of 2.53.0 hectares - Transfer of mining lease granted to Thiru. S. Asai Alangaram to M/s. Sivam Mines - Orders - Issued.

INDUSTRIES (MMA.1) DEPARTMENT

G.O. (D) No. 171

Dated: 03.11.2014 திருவள்ளனர் ஆண்டு 2045 ஐய வருப்பு அப்பசி திங்கள் 17

Read:

G.O. (3D) No.91, Industries (MMA.2) Department, dated: 13.6.1997. Representation of Thriu. S. Asal Alangaram, dated: 25.1.2010. 2.

From the District Collector, Dindigul, Roc. No. 52/2010/Mines, dated: 3.3.2010.

From the Commissioner of Geology and Mining, Letter Rc. No. 3010/MM4/2010, dated: 9.4.2010.

Government Letter No. 6939/MMA1/2010-1, dated: 14.3.2012 and 11.10.2013.

From the Commissioner of Geology and Mining, Letter No. 3010/MM4/2010, dated: 24.12.2013.

ORDER.

In the Government Order first read above, orders have been issued granting mining lease in favour of Thiru S.Asai Alangaram, Dindigul District for mining limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3(P), 4(P) & 5 and 698/1,2,3,4A, 4B, 4C & 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years. The lease period is from 27.11.1997 to 26.11.2017.

- In his letter second read above Thiru. S. Asai Alangaram has stated that he is willing to develop the mines in a scientific manner using scientific methods and hence he and his brother Thiru. S. llangovan have agreed to transfer their leases to pertnership concern under rule 37 of Mineral Concession Rules, 1960 in the name and style of "M/s. Sivam Mines" having its registered office at 6/209, Pudupatti, Sirugudi Village, Natham Taluk, Dindigul District and requested to transfer the lease granted in the name of Thiru, S. Asai Alangaram to the above said partnership firm M/s. Sivam Mines.
- *3. The District Collector, Dindigul in his letter third read above has stated that on parusing the records based on rule 37 of the Mineral Concession Rules, 1960, it was found that both the transferor and transferee have submitted the affidavit towards income-tax, mining dues, and also details about the mining lease in the State of Tamil Nadu. Further, the lessee has also produced no mining dues certifying in respect of Dindigul District and transferee firm have also produced the affidavit to bear the liabilities of the lessee and the partnership firm was registered on 25.01.2010 by the Registrar of Firms, Dindigul. The District Collector, Dindigul has recommended the application for name transfer from Thiru. S. Asai Alangaram to the partnership concern that is in the name of "M/s, Sivam Mines".

- Based on the recommendation of the District Collector, Dindigul, " Commissioner of Geology and Mining in his letter fourth and sixth read above ha stated that Thiru. S. Asai Alangaram has furnished the mining due clearance certificate issued by the District Collector, Dindigul for the year 2012-2013 and recommended the application preferred by Thiru. S. Asal Alangaram for transfer of mining lease granted to him in Government Order first read above for mining limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3 (Part), 4 (Part) and 5 and 698/1 2, 3, 4A, 4B, 4C and 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years from 27.11.1997 to 26.11.2017 in the name of M/s. Sivam Mines object to condition that the transferee should scrupulously follow the Mining Plen/Scheme of Mining approved by Indian Bureau of Mines in respect of the said lease hold area as provided under rule 37 of Mineral Concession Rules, 1960.
- After careful examination, the Government have decided to accept the recommendation of the District Collector, Dindigul and the Commissioner of Geology and Mining. Accordingly, the mining lease granted in the Government Order first read above for limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3(P), 4(P) & 5 and 698/1,2,3,4Å, 4B, 4C & 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years is transferred from Thiru S.Asai Alangaram to M/s. Sivam Mines upto the valid lease period (i.e. 27.11.1997 to 26.11.2017) subject to the condition that the transferee should scrupulously follow the Mining Plan/Scheme of Mining approved by Indian Bureau of Mines in respect of the said lease hold area as provided under rule 37 of Mineral Concession Rules, 1960.
- The District Collector, Dindigul is requested to take further action and collect the latest mining dues if any pending from the transferee. The original application of transfer of mining lease is returned herewith for follow up action.

(BY ORDER OF THE GOVERNOR)

C.V. SANKAR

The Commissioner of Geology and Mining, Chennai-600 032.

The District Collector, Dindigul. (w.e.)

The Controller General, Indian Bureau of Mines,

New Secretariat Buildings, Nagpur.

The Regional Controller of Mines, Indian Bureau of Mines,

29, Vijayaragava Road, T. Nagar, Chennai-600 017.

Thriu. S. Asai Alangaram, S/o. K.A. Semban Chettiar,

Sirugudi (PO), Natham Taluk, Dindigul Dt-624.404 Mrs. Sivam Mines, 6/209, Podupatti, Sirugudi Village,

Natham Taluk, Dindigul District.

Copy to:

Office of the Hon'ble Minister for Industries, Chennal-600 009. Industires (OP.II) Department, Chennal-600 009. SF/SCs

// Forwarded / By order // *

புவியியல் மற்றும் சுரங்கத்துறை

ந.க.எண்.618/2019(கனிமம்)

மாவட்ட ஆட்சியர் அலுவலகம், திண்டுக்கல்

நாள். .07.2019

குறிப்பாணை

பொருள் :

கனிமங்களும், சுரங்கங்களும் - திண்டுக்கல் மாவட்டம் - நத்தம் வட்டம், சிறுகுடி கிராமம், புல எண்கள். 693/5ஏ மற்றும் சிலவற்றில் 2.53.0 ஹெக்டேர் பரப்பு - சுண்ணாம்புக்கல் குவாரி உரிமம் வழங்கப்பட்டது - சுற்றுச்சூழல் இசைவு சமர்பிக்காமல் குவாரிப்பணி மேற்கொண்டது - கனிமத் தொகை செலுத்தக் கோருவது - தொடர்பாக.

பார்வை :

- அரசாணை 3(டி) எண்.91, தொழில்(எம்.எம்.ஏ2) துறை நாள்: 13.06.1997
- 2. அரசாணை 3(டி) எண்.171, தொழில்(எம்.எம்.ஏ2) துறை நாள்: 03.11.2014
- அரசணை எண். (MS) எண் 79 தொழில் (MMC.I) துறை நாள் 06.04.2015.
- மாண்பமை உச்சநீதிமன்ற தீர்ப்புரை நாள். 02.08.2017 வழக்கு எண். W.P.(Civil) No.114 of 2014.
- சுற்றுச்சூழல் அமைச்சகம், இந்திய அரசின் வனம் மற்றும் பருவ நிலைமாற்றம், அறிவிக்கை S.O.141(E) நாள்.15.01.2016.
- இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, சென்னை அவர்களின் கடித ந.க.எண். 1375/LC/2016, நாள்.20.08.2018.

திண்டுக்கல் மாவட்டம், நத்தம் வட்டம், சிறுகுடி கிராமம், புல எண்கள். 693/5ஏ மற்றும் சிலவற்றில் 2.53.0 ஹெக்டேர் பரப்பில் பார்வை 1-ல் கண்டுள்ள அரசாணையின்படி 27.11.1997 முதல் 26.11.2017 வரை 20 வருடங்களுக்கு குத்தகை உரிமம் வழங்கப்பட்டு Deemed Extention முறையில் குத்தகை காலம் நடைமுறையில் உள்ளது.

இந்நிலையில் உச்சநீதிமன்ற வழிகாட்டுதலின் படி குத்தகை உரிமம் பெற்ற குவாரிதாரர்கள் மத்தியÆமாநில சுற்றுச்சூழல் பாதுகாப்பு குழுமத்தின் இசைவினைப் பெறவும் பார்வை 2ல் கண்ட அரசாணை அமலுக்கு வந்த நாளிலிருந்து 90 தினங்களுக்குள் (அதாவது 04.07.2015 க்குள்) வரைவு சுரங்கத்திட்டத்தினை, உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை அவர்களிடம் சமர்ப்பிக்குமாறு ஆணை பிறப்பிக்கப்பட்டுள்ளது.

எனவே, 1959ம் வருட தமிழ்நாடு சிறுகனிம விதி 42 ன்படி மத்தியÆமாநில சுற்றுச்சூழல் பாதுகாப்பு குழுமத்தின் இசைவினைப் பெற்று சமர்ப்பிக்குமாறு பார்வை 3ல் காணும் குறிப்பாணையில் கேட்டுக்கொள்ளப்பட்டது.

பார்வை 4ல் காணும் உச்சநீதிமன்ற தீர்ப்பில் சுற்றுச்சூழல் இசைவு பெறாமல் குவாரிப்பணி மேற்கொண்ட குத்தகைதாரர்களிடமிருந்து 100% கனிமத் தொகையினை வசூல் செய்ய உத்தரவிடப்பட்டுள்ளது. மேலும் பார்வை 5ல் காணும் 15.01.2016 நாளிட்ட அறிவிக்கையில் அனைத்து வகை கனிமக் குவாரிகள் / சுரங்கங்கள் சுற்றுச்சூழல் இசைவிணை பெற்று குவாரிப்பணி மேற்கொள்ளப்பட வேண்டும் என தெரிவிக்கப்பட்டுள்ளது.

அதன்படி தாங்கள் 15.01.2016 முதல் 10.01.2017 முடிய சுற்றுச்சூழல் இசைவு இன்றி குவாரிப்பணி மேற்கொண்டு குவாரியிலிருந்து எடுத்துச் சென்ற கனிமத்திற்கு உண்டான கனிமத்தொகை பின்வருமாறு கணக்கிடப்பட்டுள்ளது.

வ. எ ன ்	கால வரையறை	எடுத்துச் செல்லப்பட்ட கனிமத்தின்அளவு	செலுத்த வேண்டிய கனிமத் தொகை
1.	15.01.2016 முதல் 10.01.2017	4100	2129200
	மொத்தம்	4100	2129200

எனவே மேற்படி கனிமத் தொகையான ரூ.21,29,200/- (ரூபாய் இருபத்து ஒரு இலட்சத்து இருபத்து ஒன்பதாயிரத்து இருநூறு மட்டும்) இக்குறிப்பாணை கிடைக்கப்பெற்ற 15 தினங்களுக்குள் கீழ்க்கண்ட தலைப்பில் செலுத்தி அசல் சலாணை இவ்வலுவகத்தில் சமாபிக்குமாறு கேட்டுக்கொள்ளப்படுகிறது.

> மாவட்ட ஆட்சியருக்காக, உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, திண்டுக்கல்

பெறுநர்: தி/ன்.சிவம் மைன்ஸ், சிறுகுடி கிராமம், நத்தம் வட்டம், திண்டுக்கல் மாவட்டம். My 8/19

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES OFFICE OF THE REGIONAL CONTROLLER OF MINES

Telephone no.: 044-2491/4461/1570 Telefax no. 044-24911295 Email ID: ro.chennal@ibm.gov.in C-4-A Rajaji Bhavan CGO complex, Besant Nagar Chennai – 600 090.

No. TN/DGL/LST/ROMP-1464.MDS

Dated : 12..2017

To:

M/s. Sivam Mines 6/209 Main Road Sirugudi Post, Natham Taluk Dindigul – 624404. May 1917

Sub.: Approval of Review of Mining Plan (including Progressive Mine Closure Plan) for Sirugudi Limestone Mine over an extent of 2.53.0 hectares in S.F.Nos. 693/5A(P), 696/2, 3(P), 4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu under Rule 17(1) of MCR. 2016.

Ref.: Qualified Person letter no.Nil dated 8.12.2017.

Sir,

In exercise of the powers delegated to me under Rule 16 of Minerals (Other than Atomic & Hydro Carbon Energy Minerals) Concession Rules, 2016 vide Gazette Notification No. S.O. 1857(E) dated 18.5.2016 issued by the Controller General, Indian Bureau of Mines under F.No. T-43004/CGBM/MM(DR)/2015, I hereby approve the above said Review of Mining Plan for Limestone mineral only. This approval is subject to the following conditions.

 That the Review of Mining Plan (including Progressive Mine Closure Plan) is approved without prejudice to any other law applicable to the mine/area from time to time whether made by the Central Government, State Government or any other authority.

2) That this approval of the Review of Mining Plan (including Progressive Mine Closure Plan) does not in any way imply the approval of the Government in terms of any other provision of the Mines & Mineral (Development & Regulation) Act, 2015 or the Mineral Concession Rules, 2016 or any other law including Forest (Conservation) Act, 1960, Environment Protection Act, 1986 and the rules made there under.

 That this Review of Mining Plan (including Progressive Mine Closure Plan) is approved without prejudice to any other order or direction from any court of competent jurisdiction.

4) Provisions of the Mines Act, 1952 and Rules & Regulations made thereunder including submission of notice of opening, appointment of manager and other statutory officials as required by the Mines Act, 1952 shall be complied with.

 The Provisions made under MM(D&R) Act, 2015 (Amended) and Rules made thereunder shall be complied with.

6) The contents of circular No. 2/2010 issued by the Chief Controller of Mines, IBM, Nagpur vide his letter No. 11013/3/MP/90-CCOM Vol. VII dated 06.04.2010 shall be complied with.

 The execution of Mining Plan / Review of Mining Plan shall be subjected to vacation of prohibitory orders / notices, if any.

8) This approval of mining operations and associated activities is restricted to the mining lease area only. The mining lease area is as shown on the statutory plans under rule 32 of Mineral Conservation and Development Rules, 2017, by the lessee. Indian Bureau of Mines does not take any responsibility regarding correctness of the boundaries of the lease shown on the ground with reference to the lease map and other plans furnished by the lessee. 9) The Environmental Monitoring Cell of the Company shall continue monitoring ambient air quality, dust fall rate, water quality, soil sample analysis and noise level measurements on various stations established for the purpose both in the core zone and buffer zone, as per Department of Environment guidelines and keeping in view IBM's Circular No.3/92, season-wise every year or by engaging preferably the services of an Environmental laboratory approved by MOEF/CPCB. The data so generated shall be maintained in a bound paged register kept for the purpose and the same shall be made available to the inspecting officer on demand.

10) If anything is found to be concealed as required by the Mines Act in the contents of Review of Mining Plan and proposal for rectification has not been made, the approval shall be

deemed to have been withdrawn with immediate effect.

11) Yearly report as required under Rule 26(2) of MCDR,2017 setting for the extent of protection and rehabilitation works carried out as envisaged in the approved progressive mine closure plan and if there is any deviations, reasons thereof shall be submitted before 1st July of every year to the regional office, IBM, Chennai.

12) The Review of Mining Plan is approved for the proposals contained therein and as applicable from the date of approval of the document for the mining activities to be carried out within the mining leasehold. The earlier instances of irregular mining/illegal mining, if

any, shall not be regularized through the approval of this document.

13) The financial assurance submitted should be renewed before expiry of the same.

14) In case mining lease falls within a radius of 10 kms. of National Park/Sanctuary, recommendations of NBWL have to be obtained as per the orders of the Hon'ble Supreme Court in I.A. No. 460/2004.

15) This approval is subject to the mining operations as per the proposals shall be carried out only after obtaining necessary clearances from MOEF, Pollution Control Board, Forest

Department etc.

Encl. Copy of approved Review of Mining Plan (including Progressive Mine Closure Plan) Yours faithfully,

(V. Jaya Krishna Babu) Regional Controller of Mines

Copy for information to:-

 Dr. P. Thangaraju, Qualified Person, Old No.260-B, New No.17, Advaitha Ashram Road, Alagapuram, Salem – 636 004.

 The Commissioner of Geology & Mining, Government of Tamilnadu, Guindy, Chennai – 600 032 along with copy of the approved Review of Mining Plan.

Encl : As above.

(V. Jaya Krishna Babu) Regional Controller of Mines

REVIEW OF MINING PLAN & PROGRESSIVE MINE CLOSURE PLAN FOR SIRUGUDI LIMESTONE MINE

(PRIVATE /"B" CATEGORY /ROMP & PMCP /NON-FOREST/ PATTA LAND)

MINING PLAN PERIOD - [2017-18 ffrom 27.11.2017) to 2021-22] [Lease period: 20 Years (from 27.11.1997 to 26.11.2017)] (As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047)

Mine Code: 38TMN33006

(SUBMITTED UNDER RULE 17(1) OF MCR 2016 AND RULE 23 OF MCDR, 2017)

Registration Number Under Rule 45 - IBM / 5284/2011, Dated: 25.11.2011.

LOCATION OF THE MINE

EXTENT : 2.53.0 HA.

: 693/5A (P), 696/2, S.F.NOS

> 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5.

VILLAGE : SIRUGUDI

TALUK : NATHAM

DISTRICT : DINDIGUL

STATE : TAMILNADU

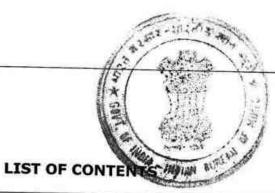
MINE OWNER/LESSEE

M/s. Sivam Mines.,

6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District.

PREPARED BY

Dr. P. THANGARAJU, M.Sc., Ph.D.,


Qualified Person

Old.No.260-B, New No. 17,

Advaitha Ashram Road, Alagapuram, Salem - 636 004. Cell: 94422 78601, 94433 56539.

E-mail: ifthiahmed@gmail.com, geothangam@gmail.com

S.NO		DESCRIPTION	PAGE.NO			
		INTRODUCTORY NOTES	1			
1.0	GEN	GENERAL				
2.0	LOC	ATION AND ACCESSIBILITY	2			
3.0	DET. PLAI	6				
	1.0	GEOLOGY AND EXPLORATION	10			
	2.0	MINING	17			
		A. OPENCAST MINING	17			
		B. UNDERGROUND MINING	27			
	3.0	MINE DRAINAGE	27			
	4.0	STACKING OF MINERAL REJECT/SUB GRADE MATERIAL AND DISPOSAL OF WASTE	28			
	5.0	USE OF MINERAL AND MINERAL REJECT	29			
	6.0	PROCESSING OF ROM AND MINERAL REJECT	30			
	7.0	OTHER	30			
	8.0	PROGRESSIVE MINE CLOSURE PLAN- UNDER RULE 23 OF MCDR'2017	31			
		PART -B				
	9.0	Certificates /Undertakings/Consents				
		A. Consent Letter/Undertaking/ Certificate From The Lessee	47-48			
		Certificate From QP	49			

	LIST OF ANNEXURES		S28
SL. No.	Description	Andexur e no	Page no
1.	FEASIBILITY REPORT OF SIRUGUDI LIMESTONE MINE	J.	50-68
2.	RESOURCES AND RESERVES BY UNFC SYSTEM	IA	69-89
3.	PHOTOS WORK OF THE MINE	IB	90-92
4.	COPY OF G.O.Ms. NO. 171.	II	93-94
5.	COPY OF FMB COPY OF PATTA COPY OF ADANGAL COPY OF 'A' REGISTER	III IIIA IIIB IIIC	95-97 98-108 109-110 111-123
6.	COPY OF COMBINED SKETCH	IV	124
7.	COPY OF CHEMICAL ANALYSIS REPORT	V	125
8.	COPY OF TRANSFER OF MINING LEASE	VI	126-131
9.	COPY OF LEASE DEED COPY OF ID PROOF	VIA	132-141
۶.	COPT OF 1D PROOF	VII	142
10.	COPY OF PARTNERSHIP DEED	VIII	143-149
11.	COPY OF FORM-I AND FORM-J	IX	150-155
12.	COPY OF PRIOR SOM APPROVAL LETTER FROM IBM	x	156-157
13.	COPY OF MoEF & CC ACKNOWLEDGEMENT LETTER	XI	158
14.	COPY OF EXPLOSIVE AGREEMENT	XII	159-160
	COPY OF EXPLOSIVE LICENCE	XIIA	161-168
15.	COPY OF MONITORING REPORT FOR AIR COPY OF MONITORING REPORT FOR NOISE COPY OF MONITORING REPORT FOR GROUND VIBRATION	XIII XIIIA XIIIB	169-172 173-174
	COPY OF MONITORING REPORT FOR WATER	XIIIC	176-177
16.	COPY OF QP CERTIFICATE	XIV	178-180
17.	COPY OF BANK GUARANTEE	xv	181-183

PART-B 10.0 LIST OF PLANS AND SECTIONS

		A-Inp	111
SL.NO.	DESCRIPTION	SCALE	PLATE NO.
1.	LOCATION PLAN	Not to Scale	I
2.	ROUTE MAP	Not to Scale	IA
3.	KEY PLAN	1:50,000	IB
4.	MINE LEASE PLAN	1:1000	п
5.	SURFACE PLAN	1:1000	ш
6.	GEOLOGICAL PLAN AND SECTIONS	Plan: 1:1000 Section: HOR-1:1000 VER:1:1000	IV
7.	YEARWISE DEVELOPMENT & PRODUCTION PLAN	Plan: 1:1000 Section : HOR-1:1000 VER:1:1000	V
8.	MINE LAYOUT, LAND USE & AFFORESTATION PLAN	1:1000	VI
9.	FINANCIAL AREA ASSURANCE PLAN	1:1000	VII
10.	ENVIRONMENT PLAN	1:5000	VIII
11.	CONCEPTUAL PLAN AND SECTIONS	Plan: 1:1000 Section : HOR-1:1000 VER:1:1000	IX

REVIEW OF MINING PLAN AND PROGRESSIVE MINE CLOSURE PLAN FOR SIRUGUDI LIMESTONE MINE

OVER AN EXTENT OF 2.53.0 HA IN S.F.NOS. 693/ (P), 696/2, 3 (P), 4 (0, 5, 698/1, 2, 3, 4A, 4B, 4C & 5 IN SIRUGUDI VILLAGE, NA MATALUK, DINDIGUL DISTRICT

Mining plan period - [2017-18 (from 27 2017) to 2021-22]

(PRIVATE/"B" CATEGORY/ NON-FOREST /PATRALAND

(SUBMITTED UNDER RULE 17(1) OF MCR, 2016 AND RULE 23 OF MCDR, 2017) Registration Number under Rule 45: IBM /5284/2011, Dated: 25.11.2011.

Mine Code: 38TMN33006

INTRODUCTION

REGIONAL CONTROLLER OF MINES INDIAN BUREAU OF MINES

This Review of Mining Plan and Progressive Mine Closure Plantfor Sirugudi Limestone Mine, over an extent of 2.53.0 hectares in S.F. Nos: 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu State, has been prepared for M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District, Tamilnadu.

M/s. Sivam Mines is a Partnership Firm. When the Transfer of mining lease was granted in the year 2014, the partners of the firm are Thiru. S.Asaialangaram, Thiru. S. Ilangovan, Thiru. I.Vijay Alangar and Selvi. I.Sempon manickam. Thiru. S. Ilangovan is the Managing Partner of the firm. The partners of the firm have very good knowledge and experience in Limestone mining for more than three decades. (Please refer Annexure No.VIII).

Initially, the mining lease for limestone was granted to Thiru.S.Asaialangaram, Dindigul district vide G.O. 3(D).No. 91, dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997.

The Mining plan was approved by Indian Bureau of Mines, vide letter no. TN/D.A/MP/LST-963-MDS, dated: 07.08.1997.

The first scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-283-MDS, dated: 14.12.2005.

The second scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-757-MDS, dated: 20.02.2013.

The third scheme of mining [2014-15 to 2017-18 (upto 26.11.2017)] was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-1103.MDS, dated: 04.08.2014 and it is valid upto 26.11.2017 and a Copy of prior SOM approval letter of the same is enclosed as Annexure No.X.

Then the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Inds (MMA.1) dept., dated 03.11.2014. (Please refer Annexure No.II & VI).

As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047.

Hence, this Review of Mining Plan along with Progressive Mine Closure Plan [2017-18 (from 27.11.2017) to 2021-22] is being prepared now & submitted under Rule 17(1) of MCR, 2016 and Rule 23 of MCDR, 2017.

THE DOLL LET ROMP - HIGH-MDS H: 18/12/2017.

-1-

Particulars of number of state wise leases already held by the lessee:

The lessee has another four mining leases held by the lessee in Tamilnadu is given below. He does not hold any other mining leases outside Taminadu State.

Table - 1

				Iau	6-1	1	200	All .
SI No	Lease reference no. & date	Area in Ha	Location	Type of mineral	Working/ Non- Working	Status of approval of MP/MS	Pate of execution & Date of expiry	Remark
1.	G.O.(D).No.174 , dated 05.11.2014	0.24.29 Ha.	Sirugudi Village, Natham Taluk, Dindigul District	Limeston e	Working	MP- TN/DGL/MP/ LST- 1971.MDS dated, 30.03.2016	17.04.1996 & 16.04.2016	Period of 20 years
2.	G.O.(D).No.141 , dated 22.09.2014	0.94.5 Ha.	Sirugudi Village, Natham Taluk, Dindigul District	Limeston e	Working	MP- TN/DGL/MP/ LST- 1970.MDS dated, 30.03.2016	17.04.1996 & 16.04.2016	Period of 20 years
3.	G.O.(D).No.173 , dated 05.11.2014	1.70.0 Ha.	Sirugudi Village, Natham Taluk, Dindigul District	Limeston e	Working	MP- TN/DGL/MP/ LST- 1969,MDS dated, 30.03,2016	28.02.1996 & 27.02.2016	Period of 20 years
4.	G.O.(D).No.170 , dated 03.11,2014	0.94.0 Ha.	Sirugudi Village, Natham Taluk, Dindigul District	Limeston e	Working	ROMP- TN/DGL/LST/ ROMP- 1407.MDS dated, 17.03.2017	27.11.1997 & 26.11.2017	Period of 20 years

1.0 GENERAL

Name of applicant /lessee/Rule 45 registration no. a)

Name of the lessee

: M/s. Sivam Mines.,

(Thiru. S. Ilangovan, B.E., Managing Partner)

Address

: 6/209, Main Road, Sirugudi Post,

Natham (Tk),

Dindigul District.

District

: Dindigul

State

: Tamilnadu.

Pin code

: 624 404

Telephone

: 04544-267632

Mobile No.

: 94430 67632

Email id.

Rule 45 registration no.

: ilangovanmadhavi4.9@gmail.com

: IBM /5284/2011

Copy of ID proof is enclosed as Annexure No. VII.

b) Status of applicant/lessee

M/s. Sivam Mines is a Partnership Firm. When the Transfer of mining lease was granted in the year 2014, the partners of the firm are Thiru. S.Asaialangaram, Thiru. S.Ilangovan, Thiru. I.Vijay Alangar and Se I.Sempon Manickam. Thiru. S.Ilangovan is the Managing Partner of the firm. The partners of the firm have very good knowledge and experience in Limestone mining for more than three decades. (Please refer Annexure No.VIII).

The details of the partners are given below:

Т	a	b	le	-2

SI.N o.	Name & Address	Designation	Cell no.	e-mail address
1.	Thiru. S. Ilangovan, S/o. K.A. Semban chettiar, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Managing Partner	94430 67632	ilangovanmadhavi4.9@gm ail.com
2.	Thiru. S. Asaialangaram, S/o. K.A. Semban chettiar, Door No.1/174, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94430 67632	vijayalangar@gmail.com
3.	Thiru. I.Vijay Alangar, S/o. S.Ilangovan, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94430 67632	vijayalangar@gmail.com
4.	Selvi. I.Sempon Manickam, D/o. S.Ilangovan, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94430 67632	ilangovanmadhavi4.9@gm ail.com

c) Mineral(s) which is / are included in the prospecting license (For Fresh grant)

Not applicable.

- d) Mineral(s) which is / are included in the letter of Intent / lease deed Not applicable.
- e) Mineral(s) which is the applicant /lessee intends to mine:

The mining lease was granted for Limestone only and the lessee intends to mine only limestone.

Name of Qualified Person under rule 22C of MCR,1960 or a Person employed under clause (c) of Sub rule (1) of rule 42 of MCDR, 1988(Applicable for Scheme of Mining only) preparing Mining Plan

Name

: Dr. P. Thangaraju, M. Ph.D.,

Qualified Person

Address

: Old.No.260-B, New No. 17.

Advaitha Ashram Road, Wagapu

Salem - 636 004.

Tele Fax

: 0427- 2431989 (Office)

Cell Phone Nos

: 94433 56539 & 94422 78601.

2.0 LOCATION AND ACCESSIBILITY

Lease Details (Existing Mine) a)

Name of the Mine

: Sirugudi Limestone Mine

Lat/long of boundary point : 10° 14′ 32.55″N, 78° 17′37.39″E

Date of grant of lease

: 13.06.1997

Period/Expiry Date

: 20 years with effect from 27.11.1997

(i.e. from 27.11.1997 to 26.11.2017)

As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047.

Name of the leaseholder

: M/s. Sivam Mines.,

(Thiru. S.Ilangovan, B.E., Managing Partner)

Address

: 6/209, Main Road, Sirugudi Post.

Natham (Tk), Dindigul District.

District

: Dindigul

State

: Tamilnadu

Pin code

: 624 404

Telephone

: 04544-267632

Mobile No.

: 94430 67632

Email id.

: ilangovanmadhavi4.9@gmail.com

Table-3

b) Details of applied /lease area with location map (fresh area /mine)

Forest		Non-forest		
Forest (specify)	Area (ha) Nil	i). Waste land ii).Grazing land iii).Agriculture land iv).Other (specify)	Area (ha) 2.53.0 Ha	

Table-4

District & State	Village & Taluk	S.F.No.	Extent in hectares
		693/5A (P)	0.89.5
1		696/2	0.24.5
		696/3 (P)	0.13.0
		696/4(P)	0.11.0
		696/5	0.07.0
Dindigul &	Sirugudi & Natham	698/1	0.14.0
Tamilnadu		698/2	0.11.5
		698/3	0.09.5
		698/4A	0.54.5
		698/4B	0.05.5
	00	698/4C	0.05.5
		698/5	0.07.5
	Total		2.53.0 Ha

Whether the area falls under Coastal Regulation Zone(CRZ)? Not applicable.

Existence of public road/railway line, if any nearby and approximate distance

The lease area is about 3.0 km SW from Sirugudi village. The area is located at a distance of about 3.0km north from Kottampatty – Natham Road (SH-35). The area is located at a distance of about 10km west from Trichy – Madurai Road (NH-45B) (Please refer Key Map-IB for the location of the lease area).

Table-5

S.No	Particulars	Location	Direction	Approximate Distance in Km
1	Nearest Post office	Sirugudi	NE	3.0
2	Nearest Town(D.H)	Dindigul	NW	37
3	Nearest Police Station	Natham	SW	7.5
4	Nearest Govt. Hospital	Sirugudi	NE	3.0
5	Nearest School	Thethampatti	NE	1.0
6	Nearest DSP Office	Dindigul	NW	37
7	Nearest Railway Station	Dindigul	NW	36
8	Nearest Airport	Madurai	sw	50
9	Nearest Seaport	Tuticorin	S	166

Please refer Location plan (Plate No.I), Route Map (Plate No.IA), Key plan (Plate No.IB)

Drinking Water, rest shed, store room, public convenience and mines office are available in temporary semi permanent structure within the lease area. Please refer Plate No. VI.

Toposheet No. with latitude & longitude of all corner boundary point/pillar

The Area falls in Toposheet no.58-J/08 of Geological Survey of India.

Table-6

BOUNDARY CO-ORDINATES on WGS-84 from Southern Corner					
Point Id.	Latitude	Longitude	Point Id.	Latitude	Longitude
1.	10°14′28.23″N	78 ⁰ 17'36.33" E	15.	10°14′28.64″N	78°17'39.88" E
2.	10°14′29.70″N	78º17'36.09" E	16.	10°14′28.54″N	78°17'39.56" E
3.	10°14′30.85″N	78°17'36.14" E	17.	10 ⁰ 14'28.31"N	78°17'37.21" E
4.	10°14′31.07″N	78°17′36.84″ E	18.	10°14′29.14″N	78º17'44.12" E
5.	10 ⁰ 14'32.02"N	78º17'36.77" E	19.	10 ⁰ 14'29.41"N	78 ⁰ 17'44.12" E
6.	10°14′32.55″N	78°17'37.39" E	20.	10 ⁰ 14'32.12"N	78º17'45.26" E
7.	10 ⁰ 14'32.54"N	78 ⁰ 17'37.87" E	21.	10°14′32.83″N	78°17'46.16" E
8.	10°14′32.02″N	78°17'40.10" E	22.	10 ⁰ 14'32.70"N	78°17'48.27" E
9.	10 ⁰ 14'31.70"N	78°17'40.22" E	23.	10 ⁰ 14'31.64"N	78 ⁰ 17'48.10" E
10.	10°14′31.53″N	78°17'40.60" E	24.	10°14′31.95″N	78°17'46.96" E
11.	10°14′31.20″N	78 ⁰ 17'41.60" E	25.	10 ⁰ 14'30.71"N	78°17'46.72" E
12.	10°14′29.97″N	78 ⁰ 17'41.71" E	26.	10°14′30.66″N	78 ⁰ 17'46.82" E
13.	10°14′28.93″N	78°17'41.80" E	27.	10 ⁰ 14'28.35"N	78 ⁰ 17'46.13" E
14.	10°14′29.07″N	78°17'39.93" E	28.	10 ⁰ 14'28.48"N	78 ⁰ 17'45.59" E

Please refer Mine Lease Plan - Plate No.II.

c). Attach a general location map showing area and access routes. It is preferred that the area be marked on a Survey of India topographical map or a cadastral map or forest map as the case may be. However, if none of these are available, the area may be shown on an administrative map.

Please refer Location plan (Plate No.I)

3.0 DETAILS OF APPROVED MINING PLAN / SCHEME OF MINING (If any)

3.1 Date and reference of earlier approved MP SOM

The Mining plan was approved by Indian Bureau of Mines, vide letter no. TN/D.A/MP/LST-963-MDS, dated: 07.08.1997.

The first scheme of mining was approved by Ind Bukeak of Mines, vide letter no. TN/DGL/LST/MS-283-MDS, dated: 14.12.2005.

The second scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-757-MDS, dated: 20.02.2013.

The third scheme of mining [2014-15 to 2017-18 (upto 26.11.2017)] was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-1103.MDS, dated: 04.08.2014 and it is valid upto 26.11.2017 and a Copy of prior SOM approval letter of the same is enclosed as Annexure No.X.

Then the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Inds (MMA.1) dept., dated 03.11.2014. (Please refer Annexure No.II & VI).

As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047.

Hence, this Review of Mining Plan along with Progressive Mine Closure Plan [2017-18 (from 27.11.2017) to 2021-22] is being prepared now & submitted under Rule 17(1) of MCR, 2016 and Rule 23 of MCDR, 2017.

- 3.2 Details of last modifications if any (for the previous approved period) of approved MP/SOM, indicating date of approval, reason for modification Not Applicable.
- 3.3 Give review of earlier approved proposal (if any) in respect of exploration, excavation, reclamation etc.

i. Exploration:

In the previous approved scheme period [2014-15 to 2017-18 (upto 26.11.2017)] nine core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-I & II (Block-1, Western Band) and four wagon drills in working pit and two core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-III (Block-2, Eastern Band) general ground level as drilling at particular 50m grid interval for confirm the depth continuity of the limestone. This wagon and core bore hole will be made after first year (2014-15) was proposed, but nine boreholes upto 25.0m depth was carried out by the lessee during the previous Scheme period, to find out the grade of limestone, lateral variations and vertical in homogeneities of the limestone formation and depth persistence. The lease area comprises of two Blocks – Block-I & Block-II. At Present there are two existing pit and its dimension are given below.

Existing Pit Geometry:

Table-7

Pit	Length In Meter	Width In Meter	Depth In Meter	Area In Ha.	Dip®	Strike
I	72 (max)	40 (max)	16 (max)	2 452173	50.025-0	1 20 20
II	105 (max)	43 (max)	8 (max)	0.73.9	85°SE	N60°E- S60°W

With the datas analyzed from the drilled boreholes and existing pit, the deposit has been proved upto 25m depth with an average of 1m topsoil. The boreholes logging datas are furnished below.

Litho log of drilled b	oreholes:
------------------------	-----------

		Ta	ble-8	the same	30 3.A
No. of bore holes	atitude lengthide lengthide		boreholes	Depth of deposition of Limestone (RL)	Strata
DBH-1	10° 14' 31.34"N	78° 17' 39.02"E	12.3	200.3m 188.0m	Limestone
DBH-2	10° 14′ 31.04″N	78° 17' 37.77"E	25.1	213 to 212.3m 212.3m 188.0m	Topsoil Limestone
DBH-3	10° 14' 30.62"N	78° 17' 39.64"E	25.0	213.0m-214.9m/50/ 211.9m-188.0m	Topsoil
DBH-4	10° 14' 30.36"N	78° 17' 40.87"E	25.2	213.2m-211.8m 211.8m-188.0m	Topsoil Limestone
DBH-5	10° 14' 29.45"N	78° 17' 39.23"E	25.1	213.1m-212.2m 212.2m-188.0m	Topsoil Limestone
DBH-6	10° 14' 30.12"N	78° 17' 37.05"E	25.2	213.2m-212.1m 212.1m-188.0m	Topsoil Limestone
DBH-7	10° 14' 28.82"N	78° 17' 36.75"E	9.0	213.0m-211.8m 211.8m-204.0m	Topsoil Granite-Gneis
DBH-8	10° 14' 29.62"N	78° 17' 45.27"E	8.1	208.1m-200.0m	Limestone
DBH-9	10° 14' 31.48"N	78° 17' 46.02"E	8.9	208.9m-200.0m	Limestone

Locations of drilled boreholes are marked in the geological plan and sections and year wise plan and sections (Refer Plate No.IV & V). Copy of Form-I and Form-J is enclosed as annexure no.IX.

The lessee with his consultant geological team thoroughly studied the area and demarcated the attitude of the band. It is inferred that the limestone is cement grade and in the form of band running from $N60^{\circ}E-S60^{\circ}W$ direction with dipping $85^{\circ}SE$.

Regular sampling and analysis during the past mining activities has revealed that the limestone mineral is of cement grade (the mineral was also analyzed in NABL laboratory as per the circular issued by the CCOM, Nagpur). The recovery of 60% was discussed in the previous approved scheme and the same 60% recovery was achieved by lessee during the previous approved scheme period. Hence the same 60% recovery is discussed during the present plan period.

The past mining experience gained by the lessee from the limestone mining is sufficient for calculating the mineral reserves and resources related to G1, F1, E1 Axis of United Nations Framework Classification Systems and to satisfy the latest circular No. 4/2009 dated 21.10.2009 issued by the CCOM, Nagpur.

The mine has reached maximum 16m depth in Pit -1 and 8m depth in Pit -2. The depth of the mineralization has been proved upto 25m depth with an average of 1m topsoil by based on the existing pit and drilled bore holes in Block-I and the depth of the mineralization has been proved upto 16m depth with an average of 1m topsoil by based on the drilled bore holes in Block-II. Hence, the reserves and resources are estimated as given below during the present plan period.

Table-9

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

ii. Mine development:

During the time of previous approved scheme period [2014-15 to 2017-18 (upto 26.11.2017)], mining operation was proposed to be carried out in the Centre portion of the lease area in Block-I to a maximum depth of 6m and Northern portion of the lease area in Block-II to a maximum depth of 13.5m . The mining operation was carried out in centre portion of the lease area. At present there are two existing pits and its dimension are Pit-I [72m (max) x 40m (max) x 16m (d) (max)] and Pit-II [105m (max) x 43m (max) x 8m (d) (max)].

Handling of waste and ore & Places of working:

The wastes include mineral rejects and Topsoil. The mineral rejects which includes rock fragments, impurities etc. The mineral rejects are generated during the previous plan period was stored in the southeastern side of Block-I. The generation of topsoil during the previous plan period was stored separately and was also utilized for afforestation purposes.

iii. Exploitation:

Proposed and actual production as per previous approved mining scheme [2014-15 to 2017-18 (upto 26.11.2017)]:

			Table -10			
		Propos	sal (Tonnes)		Actual ((Tonnes)
Year	Year Rom Limestone (60%) Ts		Mineral Rejects (40%) Ts			Mineral Rejects Ts
2014-15	13520	8112	5408	3950	2370	1580
2015-16	19227	11536	7691	5200	3120	2080
2016-17	16497	9898	6599	8348	5009	3339
2017-18 (upto 26.11.2017)	11661	6997	4664	(#V		

Total 60905 36543 24362 17498 10499 6999

iv.Reserves estimated in the earlier approved scheme of mining [2014-15 to 2017-18]

(upto 26.11.2017)] with grade. During the previous approved mining scheme period [2014-15 to 2017-18 (upto 26.11.2017)], the reserves were estimated upto 13.5m depth with an average of 1.0m topsoil.

The grade of the limestone is of cement grade. The bulk density of the mineral was taken as 2.6.

Table-11
Reserves estimated in the earlier approved scheme of mining [2014-15 to 2017-18 (upto 26.11.2017)]

Description of reserves	ROM (tones)	Limestone (60%)Recovery (Ts)	Category	UNFC Code	Grade
Geological Resources (insitu)	254068	152441	Proved & Probable	111 & 222	Cement Grade
Mineable reserves	101592	60955	Proved	111	Limestone

Sirugudi Limestone Mine

Depletion of Reserves

The insitu reserve depleted during the previous approve cheme period [2014.15 to 2017-18 (upto 26.11.2017)]

	Table -12	11.00.1
Year	ROM in Ts	Limestene in Ts
2014-15	3950	2310
2015-16	5200	3120
2016-17	8348	5009
2017-18 (upto 26.11.2017)	20	
Total	17498	10499

Total Mineable reserves as per the previous approved Scheme period [2014-15 to 2017-18 (upto 26.11.2017)] @ 60% recovery = 60,955 Ts

Reserves depleted during the previous approved Scheme period [2014-15 to 2017-18 (upto 26.11.2017)] @ 60% recovery = 10,499 Ts

The reason for deviation in production of ROM:

Production during the previous plan period was lower than the anticipated and the reason was due to poor in market demand, Global recession and non-obtaining of Environmental Clearance.

v. Afforestation programme:

During the previous plan period, it was proposed to plant 15 neem/karuvela saplings covering an area of 75 sq.m with 50% survival rate every year in the northeastern boundary barrier of the lease area. Afforestation was carried out and the survival rate of the plants was about 20%, due to poor rainfall.

Expected Actual Name of No. of trees Year Survival Rate % Survival Rate the Species Planned & No. % & No. 2012-13 Neem 15 50 26 4 2013-14 Neem 15 50 8 26 4 2014-15 Neem 15 50 8 3 20 2015-16 Neem 15 50 8 20 3

50

8

20

3

Table-13

15

vi. Reclamation & rehabilitation:

2016-17

No reclamation and rehabilitation was proposed and hence neither reclamation nor rehabilitation was carried out during the previous approved scheme period. The mineral rejects are generated during the previous plan period was stored in the southeastern side of Block-I. The generation of topsoil during the previous plan period was stored separately and was also utilized for afforestation purposes.

vii. Control of dust & vii. Noise & ground vibrations:

Neem

The Atmospheric air in the area is quite fresh, the method of mining is by opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The shot hole with shallow depth is performed for hard strata in related to wind direction. Hence, the dust was minimal well within the prescribed limits.

3.4 Give status of compliance of violations pointed out by IBM No Violation was pointed by the IBM.

3.5 Indicate and give details of any suspension /closure/ prohibitory order issued by any Government agency under any rule or Court of law

No suspension /closure/ prohibitory order was issued by any Government agency under any rule or Court of law.

3.6 In case the MP/SOM is submitted under rules 9 and 10 of the MCDR'88 or under rule 22(6) of the MCR'1960 for approval of modification, specify reason and justification for modification under these rules.

No MP/SOM was submitted under rules 9 and 10 of the MCDR'88 or under rule 22(6) of the MCR'1960 for approval of modification.

PART - A

1.0 GEOLOGY AND EXPLORATION:

 a) Briefly describe the topography, drainage pattern, vegetation, climate, rainfall data of the area applied/mining lease area.

The area is almost plain terrain. The general drainage pattern of the area is of sub-dendritic and dentritic pattern. Only seasonal cultivation is done. In some areas agriculture is done with lift irrigation. The main crops are groundnut, paddy etc. There is no thick vegetation. Water table is found at a depth of 40m during summer and 35m during rainy season. The area exhibits a tropical climate and the temperature goes upto 38°C in summer and falls down to 25°C in December – January. The wind direction is NE-SW and vice-versa. Average annual rainfall is about 850 mm in northeast monsoon season.

Brief descriptions of Regional Geology with reference to location of lease/applied area.

The area comprises crystalline Archaean rocks of deep seated metamorphic origin which include mainly calc-gneiss, cordierite-sillimanite Gneiss, Biotite gneiss and granite gneiss. The gneisses appear to have resulted by migratizations of the pre existing sediments by intrusive of high grade metamorphism viz. High temperatures and pressures. In addition, younger intrusive such as granites, pegmatites and quartz veins are found within the limestone. The above said different types of metamorphosed rocks occur in the form of long, narrow, parallel bands which are traceable over a long distance. Limestone, band is noticed with prominent outcrops.

The area was surveyed in detail to prepare a Geological map in the scale of 1:1000 showing the various formations and attitude of the deposit. It is inferred that the Limestone mineral is of cement grade and in form Band running N60°E – S60°W with dipping 85° SE. Reddish soil cover upto a depth in about 1.0m. Recovery of minerals is estimated as 60% of the total excavation of the ore body. The recovery percentage is based on the knowledge gained from the present mine workings and adjacent working mine in this region, by the field tests carried out in the lease area and analysis done in NABL Laboratories.

The general geological sequence of the limestone deposits is as follows:

Order of Super position:

AGE

Recent - Reddish Soil

Archaean - Crystalline Limestone

Calc-gneiss.

The physical attitude of the limestone band is demarked as follows:

Block-I

Strike length (m) : 417 Width (m) : 97 (avg)

Depth (m) Proved : 25m with an average of 1m topsoil

Strike direction : N60°E - S60°W

Dip amount and direction : 85° SE.

The deposit is covered by 1.0m thickness of topsoil followed by 24m thickness of Limestone bed.

Block-II

Strike length (m)

Width (m)

: 133

Depth (m) Proved

: 63 (avg)

Strike direction

: 16m with an average : N60°E - S60°W

Dip amount and direction

: 85° SE.

The deposit is covered by 1.0m thickness of topsoil followed by 15m thickness of Limestone bed.

c) Detailed description of geology of the lease area such as shape and size of the mineral/ore deposit, disposition various litho-units indicating structural features if any etc. (Applicable for Mining Plan for grant & renewal and not for Scheme of Mining/Modifications in the approved mining plan/scheme of Mining).

Not applicable.

d) (i) Name of prospecting /exploration agency

Name

: M/s. Geo Exploration and Mining Solutions

(ii) Address

: Old.No.260-B, New No: 17,

Advaitha Ashram Road, Alagapuram,

Salem - 636 004.

(iii) Email id & Phone No.:

Email id

: geothangar.1@gmail.com, ifthiahmed@gmail.com

Tele Fax

: 0427- 2431989 (Office)

Cell Phone Nos

: 94433 56539 & 94422 78601

- e) Details of prospecting/exploration already carried out :
- (i) Number of pits and trenches indicating dimensions, spacing etc along and across the strike/foliation with reference to geological plan.

Nil.

(ii). Number of boreholes indicating type (Core/RC/DTH), diameter, spacing, inclination, Collar level, depth etc with standard borehole logs duly marking on geological plan/sections.

Table-14

Boreholes No	Туре	Diameter	Spacing	inclination	Strike/foliation
9 nos. of Boreholes (DBh1 to DBh-9)	DTH	110 mm	50m grid interval	Vertical	N60°E- S60°W

(iii). Details of samples analysis: Grade of Limestone:

Samples were collected from the existing mining pit and drilled boreholes for NABL laboratory for testing and analysis and to find out the chemical and physical properties of the limestone mineral. It was inferred that the grade of limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6. The average analysis of the limestone from the lease area is given below.

Ta	ble - 15	83.31
LIM	ESTONE	150
Parameter	Composition %	7 - 3 X
Cao	41.74	/ may to the
Mgo	4.24	() ()
Fe ₂ O ₃	0.47	
Al ₂ O ₃	0.92	
SiO ₂	8.14	
LOI	44.47	4 - Iyene

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations. Chemical analysis report of the limestone is enclosed as Annexure – V.

(iv) Expenditure incurred in various prospecting operations.

Total expenditure incurred for the exploration already carried out is given below:

	Table-16
Total length of the hole/pit shaft:	9 holes [upto 25m depth] - DTH drill
	DBh-1 - 12.3m
	DBh-2 - 25.1m
	DBh-3 - 25.0m
₹	DBh-4 - 25.2m
	DBh-5 - 25.1m
	DBh-6 - 25.2m
	DBh-7 - 9.0m
	DBh-8 - 8.1m
	DBh-9 - 8.9m
	Total meterage - 163.9m
Total operating expenditure	DTH drills - Rs. 400/m.
incurred :	(163.9m x Rs. 400) = Rs.65,560/-

f) The surface plan of the lease area may be prepared on a scale of 1: 1000 or 1: 2000 with contour interval of maximum of 10 m depending upon the topography and size of the area duly marked by grid lines showing all features indicated under Rule 32(1)(a) of MCDR 2017.

Please refer to the Surface Plan - Plate No. III.

g) For preparation of geological plan, surface plan prepared on a scale of 1: 1000 or 1: 2000 scale specified under para 1.0 (f) of Part A of the format may be taken as the base plan. The details of exploration already carried out along with supporting data for existence of mineral, locations proposed exploration, various litho units along with structural features, mineralized/ore zone with grade variation if any may be marked on the geological plan along with other features indicated under Rule 32 (1)(b) of MCDR 2017.

The mining lease area is a plain terrain and the mining operations were carried out for more than 3 decade.

The Geological plan and sections were prepared in 1:1000 scale considering all the geological parameters of the formation including the strike of the formation. This geological plan is based on the surface plan, which was prepared in 1:1000 scale with help of total station survey instrument and relevant software. Please refer to the surface plan and geological plan in Plate No. III & IV.

2021-22]

 h) Geological sections may be prepared on natural scale of geological plan at suitable interval across the lease area from boundary to boundary.

The longitudinal and traverse section of the limes are is clearly marked in the geological plan and sections (Plate No.IV) and yearwise development and production plans (Plate No.V), the proposed production for the next five years [2017-18 (from 27.11.2017) to 2021-22] are also marked with dimensions and different colours for the easy understanding.

i) Broadly indicate the future programme of exploration with due justification(duly marking on Geological plan year wise location in different colours) taking into consideration the future tentative excavation programme planned in next five years:

		NAME AND
Total meterage	No. of Pits dimensions and volume	No. of Trenches dimensions
		and volume
		meterage dimensions

The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

j) Reserves and Resources as per UNFC with respect to the threshold value notified by IBM may be furnished in a tabular form as given below: (Area explored under different level of exploration may be marked on the geological plan and UNFC code for area considered for different categories of reserve/resources estimation may also be marked on geological cross sections).

The grade of the limestone is of only one grade i.e. cement grade.

Reassessed Mineral Reserves and Resources as per UNFC System as on 13.09.2017 Table-18

Summary of Reserves & Resources

Description	Block	Section	ROM (Ts)	Limestone @ 60% recovery (Ts)	Mineral Rejects @40% (Ts)	Side burden (Ts)	Total Waste (Mineral Rejects @ 40% + Side burden) Ts	Top Soil (Ts)	
	assum — mode	XY-AB	46925	28155	18770	7870	26640	5876	
A. Mineral	Block-I	XY-CD	88741	53244	35496	3440	38936	2668	
Reserves		XY-EF	42760	25656	17104	-	17104	5856	
(111)	Block-II	X1Y1-GH	36309	21785	14524	102	14524	1428	
	T	otal	214734	128840	85894	11310	97204	15828	
B. Mineral Resources	Block-I	Block-I	XY-AB	85706					10020
			XY-CD	43727	· *		2		
		XY-EF	106798				-		
	Block-II	X1Y1-GH	35911	980				7.0	
	. Te	otal	272142	(A)				-	
locked up in benches (221) C. Mineral Resources	Blo	ock-I	176842	106105	70737		-	5668	
locked in	Blo	ock-II	140712	84427	56285	(* .)	*	7216	
7.5m safety barrier (221)	To	otal	317554	190532	127021			12884	

Please refer Geological Plan & Sections - Plate No. IV.

k) Furnish detailed calculation of reserves/resources section wise (When the mine is fully mechanized and deposit is of complex nature with variation of size, shape of mineralized zones, grade due to intrusion within ore zone etc, an attempt may be made to estimate reserves/resources by slice plan method). In case of deposits where underground mining is proposed, reserve/resources may be estimated by level plan method, as applicable, as per the proposed mining parameters.

The estimation of mineral reserves is done by cross sections method. For Reserve calculation the length and width of the deposit is shown in the Geological plan & cross sections. (Please Ref. IV). The recovery percentage of limestone in this mine is 60% which is well inferred by the experience gained by the lessee during the previous mining activity and also by the field tests carried out in the lease area and analysis done in NABL Laboratories. The bulk density has been reckoned as 2.6.

As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations. These mineral rejects does not have any commercial value and is considered as waste.

Table-19

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

Reassessed Mineral Reserves and Resources as per UNFC System as on 13.09.2017

Table-20

A. Mineral Reserves (111)

Block				Dim	ension			2011	Limestone	Mineral	Тор
Block	Section	Bench	L(m)	W(m)	D(m)	Volume (cum)	Bulk density	ROM (Ts)	@60% Recovery (Ts)	Rejects @40% (Ts)	Soil (Ts)
Block-I		1	26	113	1	2938	2	-		-	5876
		11	25	86/	3	6450	2.6	16770	10062	Rejects @40% (Ts)	-
		111	22	80 /	3	5280	2.6	13728	8237		-
	XY-AB	IV	15	73	3	3285	2.6	8541	5125	3416	2
	751.750	V	9	67	3	1809	2.6	4703	2822	1881	
		VI	3	54	3	486	2.6	1264	758	505	
		VII	6	41	3	738	2.6	1919	1151	768	+
			Total					46925	28155	18770	5876
Block-I		1	23	58	1	1334	2			-	2668
		11	23	44	3	3036	2.6	7894	4736	- 26	
		10	33	55	3	5445	2.6	14157	8494	5663	
		IV	33	54	3	5346	2.6	13900	8340	Rejects @40% (Ts) - 5 6708 5491 3416 1881 505 768 18770 5663 5560 5092 6443 5476 3095 1011	
	XY-CD-	V	34	48	3	4896	2.6	12730	7638	5092	
		VI	35	59	3	6195	2.6	16107	9664	6443	
		VII	39	45	3	5265	2.6	13689	8213		-
		VIII	31	32	3	2976	2.6	7738	4643	3095	-
		IX	18	18	3 '	972	2.6	2527	1516	1011	F
		,		T	otal			88741	53244		2668

Review of Mining I	Plan	&	PMCP
--------------------	------	---	-------------

Review	of Mini	ng Plai	n & PN	1CP					ugudi Li	mestone	Mine
		1	48	61	1	2928	2	- 45	1		5856
	1	11	45	56	3	7560	2.6	19650	11794	7862	171
	XY-EF	Ш	38	43	3	4902	2.6	127 5	7647	5098	11.2
	ZAT-CI	IV	32	29	3	2784	2.6	7238	4343	2895	See it
		V	25	16	3	1200	2.6	3120	1872	1248	# ?.
				1	otal			42760	25656	-17104 S	5856
		1	34	21	1	714	2	- 1	-	THE STATE OF	1428
1851 - Total (1)	X1Y1-	IV	34	84	3	8568	2.6	22277	12360	0010	-
Block-II	GH	V	20	70	3	4200	2.6	10920	6552	4368	
	J.,	VI	7	57	3	1197	2.6	3112	1867	1245	
				T	otal	1		36309	21785	14524	1428
			Grand	Total				214734	128840	85894	15828

Table-21

	-	100
Side	But	rrion

Block	Section	Donoh		Dimension		Volume	220000 00 00	
DIOCK	Section	Bench	L (m)	W(m)	D(m)	(cum)	Bulk density	ROM (Ts)
		II	25	22	3	1650	2.6	4290
		HI	22	15	3	990	2.6	2574
	XY-AB	IV	15	8	3	360		936
Block-I		V	9	1	3	27	TO THE PERSON NAMED IN COLUMN 1	70
Sioon I					Total			7870
		- 11	23	12	3	828	2.6	2153
	XY-CD	111	33	5	3	495		1287
					Total		Bulk density	3440
			Gra	nd Total				11310

Table-22

B. Mineral Resources locked up in benches (2)	3.	. IVIII	nerai	Kesources	locked L	ID IN	benches	(221
---	----	---------	-------	-----------	----------	-------	---------	------

Block	Section	Bench		Dimension		Volume	D				
Jioon	Geotion	1752455557211	L (m)	W(m)	D(m)	(cum)	Bulk density	ROM (Ts			
			2	3	- 3	18	2.6	47			
			8	10	3	240	2.6	624			
		IV	15	16	3	720	2.6	1872			
	guaraunness.	V	21	23	3	1449	2.6	3767			
	XY-AB	VI	28	36	3	3024	2.6	7862			
		VII	35	50	3	5250	2.6	13650			
		VIII	41	90	3	11070	2.6	28782			
	1	IX	41	91	3	11193	2.6	29102			
					Total	MANAGES.		85706			
			23	7	3	483	2.6	1256			
		Ш	33	8	3	792	2.6	2059			
		IV	33	10	3	990	2.6	2574			
		V	34	18	3	1836	2.6	4774			
Block-I	XY-CD	VI	35	32	3	3360	2.6	8736			
		VII	7	46	3	966	2.6	2512			
		VIII	14	59	3	2478	2.6	6443			
	1 1	IX	27	73	3	5913	2.6	15374			
					Total			43727			
		11	3	6	3	54	2.6	140			
		111	10	20	3	600	2.6	1560			
	1	IV	16	32	3	1536	2.6	3994			
	1	V	23	46	3	3174	2.6	8252			
	XY-EF	VI	48	62	3	8928	2.6	23213			
	1 1	VII	48	62	3	8928	2.6	23213			
	1 1	VIII	48	62	3	8928	2.6	23213			
	1 1	IX	48	62	3	8928	2.6	23213			
					Total			106798			
		- 11	4	22	3	264	2.6	686			
		III	5	24	3	360	2.6	936			
Block-II	X1Y1-	IV	15	34	3	1530	2.6	3978			
DIOCK-II	GH	V	28	48	3	4032	2.6	10483			
		VI	41	62	3	7626	2.6	19828			
		Total									
			Gran	d Total				35911 272142			

C. Minera	al Resource	s locked in	7.5m safety	Table-23 barrier (221)	3			
Block	Area in S.qm	Depth in (m)	Volume (cum)	Bulk Density	ROM (Ts)	Limestone @/60% tecovery (Ts)	Mineral Rejects @40% (Ts)	Top soil (Ts)
	2834	1	2834	2	-	1171	1070 (13)	- 5668
Block-I	2834	24	68016	2.6	176842	106105	70737 - 5	3000
		To	otal		176842	106105	70737	5668
	3608	4	3608	2		100,00	100 mg	7216
Block-II	3608	15	54120	2.6	140712	84427	56285	1210
Block-I 2834 24 68016	otal		140712	84427 ///	TAN 56285	7216		
		Grand Total	al		317554	190532	127021	12884

Table-24

Summary	of	Reserves	&	Resources
---------	----	----------	---	-----------

Description	Block	Section	ROM (Ts)	Limestone @ 60% recovery (Ts)	Mineral Rejects @40% (Ts)	Side burden (Ts)	Total Waste (Mineral Rejects @ 40% + Side burden) Ts	Top Soil (Ts)
THE PERSON OF TH	variation extract	XY-AB	46925	28155	18770	7870	26640	5876
A. Mineral	Block-I	XY-CD	88741	53244	35496	3440	38936	2668
Reserves	(1	XY-EF	42760	25656	17104	0.0	17104	5856
(111)	Block-II	X1Y1-GH	36309	21785	14524		14524	1428
	To	otal	214734	128840	85894	11310	97204	15828
B. Mineral		XY-AB	85706	-	1.0		-	13020
Resources	Block-I	XY-CD	43727					
locked up in		XY-EF	106798	(4)				-
benches (221)	Block-II	X1Y1-GH	35911					- 20
55 35 MMC	To	otal	272142	.20				-
C. Mineral Resources	Blo	ck-l	176842	106105	70737	-		5668
locked in	Blo	ck-II	140712	84427	56285			7216
7.5m safety barrier (221)	To	otal	317554	190532	127021	-		12884

The Mineral reserves still available in this mine would be 2,14,734 tonnes of ROM, 1,28,840 tonnes of Limestone (60% of ROM).

I) Mineral Reserves/Resources:

Mineral Resources: (Mineral resources may be estimated purely based on level of exploration, with reference to the threshold value of minerals declared by IBM)

Table-25

	10010 25	
Level of exploration	Resources in Million tons	Grade
G1 – Detailed exploration	0.804	Cement grade
G2 - General Exploration	-	-
G3 - Prospecting		
G4 - Reconnaissance	_	

	Tab	le-26	A CONTRACTOR OF THE PARTY OF TH
	UNFC code	Quantity in million	Grade
A.Total Mineral Reser	ve	115	THE PARTY OF THE P
Proved Mineral Reserve	111	0.212	Cement grade
Probable Mineral Reserve	121and 122	12/	(J.
B.Total Remaining Re	sources	14	
Feasibility mineral Resource	211		Marian SUFL
Prefeasibility mineral resource	221 and 222	0.590	Cement grade
Measured mineral resource	331	*	-
Indicated mineral resource	332	-	4
Inferred mineral resource	333	-	
Reconnaissance mineral resource	334		
Total Reserves + Resources		0.804	Cement grade

2.0 MINING

A. OPEN CAST MINING:

a). Briefly describe the existing as well as proposed method for excavation with all design parameters indicating on plans /sections.

The method of mining is opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The pit geometry is designed according to the operating conditions of machinery. The drilling is carried out with jack hammer of small diameter (30-32 mm) at shallow depth is performed and blasted with class 2 slurry explosives with Charge 0.2 to 0.3kgs per hole. The imitation system is done with controlled blasting techniques under the supervisation of competent personnel's.

Drilling and Blasting:

Drilling Source:-

Jack hammer operated by the compressed air from tractor mounted compressor or Portable compressors.

Drilling parameters:-

Burden 0.7m spacing 0.8m depth 1.5m

Charge pattern:-

Charge 0.2 to 0.3kgs per hole. Stemming is 1/3 and explosives 2/3.The stemming material is moisture clay/pyroxenite mixed waste.

Initiation System:-

Bottom initiation system with safety fuses and ordinary or /plain electric detonators.

No of blast hole:

Number of the hole required per day is 80, based on the above said parameters.

Powder factor:

Powder factor is reported as 6 tonnes per kg of explosives

Explosive required:

As stated above, the ROM requirements are 143 tons/day, based on the past experience the Powder factor is 6 tonnes/kg of explosive inclusive of blasting.

Hence the daily requirement of explosives is 143/6 = 24kg/day.

Secondary Blasting:

Secondary Blasting is not needed, since the primary blasting itself will take care of the required fragmentation of Waste rock and mineral body.

Storage of explosives:

No Portable magazine is available for storing explosives. Agreement is made with explosive authorized dealer for supply of explosives under Form-22 at mine site and blasting will be done by the qualified blaster. Hence question for storage of Explosives does not arise. Please refer annexure Nos.XII & XIIA.

Explosive Van:

The authorised explosive supplier will bring our requirements of explosive in his approved van and take away the balance explosive after blasting if any.

Mining:

There are two existing pits and its dimension are Pit-I [72m (max) \times 40m (max) \times 16m (d) (max)] and Pit-II [105m (max) \times 43m (max) \times 8m (d) (max)].

One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.

In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

The proposed average annual production ROM will be about 42,947 tonnes with 300 working days in a year.

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block -II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

Afforestation is proposed in the 7.5m boundary barrier. Nearly 240 sqm/year is proposed for afforestation on the Southern boundary barrier of Block-I.

The existing mineral rejects, side burden and topsoil will be loaded manually into small tippers for transporting it to the backfilling area. Labours will be provided with mine helmet, safety shoes and respirator. During rainy seasons mine workings will be restricted in the top benches, the seepage water and rain water will be drained by 5HP portable pumps.

The working is planned in such a way that after complete exploitation of limestone, the excavation will be partially backfilled and partially allowed to collect rain water which will act as a temporary aquifer.

Haul roads will be conformed to statuary standards for smooth transport of mineral and waste.

The sequence of working proposed for next five years is indicated in plate no. V. If there is any change in the system of mining, the same will be intimated to Indian Bureau of Mines and the mining plan will be suitably modified for subsequent clearance and approval.

The year wise production and development schedule proposed for the present plan period under (UNFC 111) is tabulated below.

Table-27

Proposed yearwise [2017-18 to 2021-22]

Ore to	waste					2012424 GEORGE	1:0.97						1.0 87	5					1.0.75			-0		de	1:0.67		-
		tion of adva nce ment													W-E					A	ť	N.		1	-	7	
- 62		Mineral Rejects @ 40% (Ts)		2952	1997	456		824	1716	505	8911	4368	1245		4892		2970	2098	The second	多数の	3947	5054	2895	1248	5092	6443	5476
non		- 5 ≥	,			,	i		Ŀ			7,	,	,	70			*	-	(1		4.2.4			1	
Production	(£)	Lime- stone @ 60% (Ts)		4427	2995	683		1236	2574	758	13366	6552	1867		7338		4455	7647	•	3501	5920	75827	4846	188	1638	9664	8213
	Reco	very % in pit or benc h- wise	,	%09	%09	%09		%09	%09	%09	%09	%09	%09		%09		%09	%09		%09	%09	%09	%09	%09	%09	%09	%09
COM	gra	de Ben effici	į.			,		9	0			i	્			,		۴	æ		î	ì	i	9		,	1
		Quantit y (t)	5	7379	4992	1139		2059	4290	1264	22277	10920	3112		12230	,i	7426	12745	•	5834	9867	12636	7238	3120	12730	16107	13689
fine and	KOM Mineral	Volu me (m³)		2838	1920	438		792	1650	486	8568	4200	1197		4704	×	2856	4902	•	2244	3795	4860	2784	1200	4896	6195	5265
1110	S	ΞŒ	ı	60	m	3	ı	3	က	က	3	3	3		3		3	က	ï	3	က	e	က	3	3	3	3
		≯ (Ē)		98	88	73		44	55	54	84	20	22		56	×	99	43	٠	44	55	54	59	16	48	59	45
		(<u>a</u>)		1,1	80	2	7	9	10	3	34	20	7		28		17	38	i	17	23	30	32	25	34	35	39
6.0		Quantit y (t)		1888	936	125		562	390		Legi	i	·	•			•	(1	•	1591	897	•				•	
Side hurden in m3		Volu (m.)	•	726	360	48		216	150	8	•	3.	•	ı	ø	10		,		612	345		(0)	×	x		
A P		I~E~		3	9	3	•	3	က		.0		,)	3000				r	3	3	514					
U	000	≥ (E)		22/	15/	8		12	2		,				•	ř.	¥	5		12	2				,	ų	•
		J~E~	,	;	œ	2		9	9				r		٠			,		17	23		,	10		٠	×
		Quantit y (t)	2712	•		*	812		A.	•	(<u>*</u>		9	4026		1830			1856	100				*6		ī	,
Topsoil in m3		Volu me (m³)	1356		•		406		ě				Û	2013	į.	915	•		928		٠	,			Æ		
oppo	200	IĘ~	-		i	š	•		•				•	-	,	-	ě.	,	-				4				
		≩ (£)	113				58	,			i	1		61		61	,		28	o.		,	3	,	,		
		, T (W)	12				7		i	٠	4	1		33	î.	15	è		10			×.			6.	A.	,
		Beuch,		=	=	2	-	≥	2	2	≥ :	> 5	5	-	=	-	=	= -	-	=	=	≥	2	>	> 3	>	5
		Section		XY-AB)		r	XY-CD)		X171-	F	970577	XY-FF			XY-EF			XY-CD -	-		XY-FF	i	-	XX-CD	
		Year			2017-18	+						07 0700	61-8107					00 000	02-8102						2020-21		

-20-

				1.0.85					1.0 75
28	3756	3494	2961	1881	505	768	3095	1011	85894
13					1			•	
•	5635	5242	4441	2822	758	1151	4643	1516	128840
,	%09	%09	%09	%09	%09	%09	%09	%09	
Z)k			•	38.	×	10		×	
	9391	8736	7402	4703	1264	1919	7738	2527	214734
	3612	3360	2847	1809	486	738	2976	972	
	60	က	e	m	က	3	9	6	
è	86	80	73	67	54	41	32	18	
*	14	14	13	6	3	9	31	18	
*	2402	1638	811	20		. 1			11310
*0	924	630	312	27	·	ä	į.		
ŧ	3	က	3	3	•		,		
•	22	15	8	,	7.40	·		i	
•	14	14	13	6		,		,	
3164			:W	·	•		•		14400
1582	×		4	(• S	Ta(
	ac.	æ	ì		D	¥		•	
113	*	,	,	1	r	í		•	
14	r	¥.	¥			1	Ť	,	_
	=	=	≥	>	5	₹	=	×	Total
		0.0000000000000000000000000000000000000	XY-AB				N. CD	3	
			10000	2021-22					Total 14400

* During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

Table-28 Summary of yearwise [2017-18 (from 27.11.2017) to 2021-22]

Year	ROM(Ts)	Limestone @ 60% (Ts)	Mineral Rejects @ 40% (Ts)	Side burden (Ts)	Total Waste (Mineral Rejects @ 40% + Side burden) Ts	Topsoil (Ts)	Ore waste ratio
2017-18	21122	12673	8449	3900	12349	3524	1:0.97
2018-19	48539	29124	19416		19416	4026	1:0.67
2019-20	48508	29105	19403	2488	21891	3686	1:0.75
2020-21	52884	31730	21154	40	21154		1,0.67
2021-22	43680	26208	17472	4922	22394	3164	1:0.85
Total	214734	128840	85894	11310	97204	14400	1:0.75

-21-

b).Indicate year-wise tentative Excavation in Cubic Meters indicating development, ROM, pit wise as in table below.

at amored refredered Excavation	Ι.	Insitu	Tentative	Excavation
---------------------------------	----	--------	-----------	------------

				Table-29	9		With the same of	(str
					ROM	2	Total	123
Year	Pit No.	Total tentative excavation [cum]	Topsoil [cum]	OB/SB/IB [cum]	Ore [Limestone @ 60% recovery] [cum]	legt [640%] [cum]	Waste (Mineral Rejects @40% + Side burden) (cum)	ROM Waste Ratio
. 1	2	3	4	5	6	7	8	9
2017-18		8124	1762	1500	4874/	3250	4750	1;0.97
2018-19	1&	18669	2013	(8)	11201/	7468	7468	1:0.67
2019-20		18657	1843	957	11194/	7463	8420	1;0.75
2020-21	2	20340	-		12204 /	8136	8136	1;0.67
2021-22		16800	1582	1893	10080	6720	\ 8613	1:0.85
Total		82590	7200	4350	49554	33036	37386	1;0.75

II. Dump rehandling (for the purpose of recovery of mineRed) MAL CONTROLLER OF MINES Estimated available material (Cum)

		Tab	le-30	~	CHEMNA
Dump Identification /	Yearwise	e handling of reject	mineral	Estimated recovery of saleable Material	Mineral Rejects
No.	Year	In Cum	In Ts	(Cum) @ 60% (limestone)	@ 40% (Cum)
Existing mineral reject temporary dump (max)	2010 10	4400	10010	Nil	Nil
52m X 20m X 4m(h) (Southeast of Block-I)	2018-19	4160	10816	Removed and shifted the northern side	

Note: Bulk density of mineral reject-2.6.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area where the Existing Mineral reject dump of dimension [52m X 20m X 4m(h)] is situated in the southeastern side of the Block-I. Hence, the dump will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation, then the mineral will be removed. The yearwise proposal to rehandle the waste/topsoil is given in table no.30.

c) Enclose Individual year wise development plans and sections showing pit layouts, dumps, stacks of mineral reject, if any, etc in case of 'A' category mines. Composite development plans showing pit layouts, dumps, stacks of mineral reject, if any, etc. and year wise sections in case of 'B' category mines.

Please refer Plate No.V.

 d) Describe briefly giving salient features of the proposed method of working indicating Category of mine,

The method of mining is opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The pit geometry is designed according to the operating conditions of machinery. The drilling is carried out with jack hammer of small diameter (30-32 mm) at shallow depth is performed and blasted with class 2 slurry explosives with Charge 0.2 to 0.3kgs per hole. The imitation system is done with controlled blasting techniques under the supervisation of competent personnel's:

There are two existing pits and its dimension are Pit-1 2m (max) x 40m (max) x 16m (d) (max)] and Pit-II [105m (max) x 43m (max) x 8m (d) (max)

One bench is proposed on the topsoil with 1.0m and 1.5width with 45° slope.

In mineral, eight benches are proposed with 31 height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

Extent of mechanization

Drilling machines:

Only jackhammer operated by compressor mounted to tractor will be used for drilling.

Table - 31

Туре	No of Jack Hammer	Dia. Of hole	Compressor Capacity	Make	Motive power	н.Р
Tractor mounted compressor	1	32mm	140cfm	Atlas copco	Diesel	45
Portable Compressor	2	32 mm	250/150	Atlas copco	Diesel	210

Table - 32

Type	Nos.	Size/Capacity	Make	Motive power	H.P.
Small Tipper	1	5 tonnes	Ashok Leyland	Diesel	50

A list of mining machinery under use/proposed along with projected norms of performance/output for individual main items of equipment/machinery.

No heavy earth machinery is deployed for excavation of Limestone. Small tipper of 5 tonnes capacity is used for transporting the ROM from the working pit head to processing plant and to the dump yard.

e). Describe briefly the layout of mine workings, pit road layout, the layout of faces and sites for disposal of overburden/waste along with ground preparation prior to disposal of waste, reject etc. A reference to the plans and sections may be given. UPL or ultimate size of the pit is to be shown for identification of the suitable dumping site.

Layout of mine workings:

Since it is an active mine, land utilization proposed to be carried out for next five years and end of life of mine is given below:

Table-33

S.No	Description	Present Area (Ha)	Additional Area required during the present MP Period (Ha) [2017-18 (from 27.11.2017) to 2021-22]	Area at the end of life of Mine (Ha)
1	Area under Mining	0.73.9	1.03.5	1.77.4
2.	Waste dump	0.10.4	0.06.0*	0.06.0*
3.	Office & infrastructure	0.01.0	0.01.0	0.01.0
4.	Processing plant	(*)		0.02.0
5.	Mineral stack processing yard	-	-	
6.	Sub grade mineral stacks	-		
7.	Mine roads	0.03.0	Nil	0.03.0
8.	Areas under plantation	0.07.0	0.12.0	0.19.0
9.	Un utilized area	1.57.7	0.46.6	0.46.6
10.	Total	2.53.0	0.10.0	2.53.0

^{*} Dumps are proposed to be backfilling

The area granted for mining lease is being used for mining, waste dumping, afforestation and other mining related purpose. Layout of mine workings, for next five years end of life of mine is shown in Plate No VI.

f) Conceptual Mine planning upto the end of lease period taking into consideration the present available reserves and resources describing the excavation, recovery of ROM, Disposal of waste, backfilling reclamation and rehabilitation showing on a plan with few relevant sections. i). Excavation

Detailed exploration including geological mapping, geophysical prospecting, geochemical prospecting and technological prospecting and periodical sampling has been carried out by lessee and consulting Geological Team to establish the Mineral Reserves and resources under UNFC systems.

The mine has reached maximum 16m depth in Pit -1 and 8m depth in Pit -2. The depth of the mineralization has been proved upto 25m depth with an average of 1m topsoil by based on the existing pit and drilled bore holes in Block-I and the depth of the mineralization has been proved upto 16m depth with an average of 1m topsoil by based on the drilled bore holes in Block-II. Hence, the reserves and resources are estimated as given below during the present plan period.

Table-34

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

The depth of mineralization has been already proved onto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-I of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

There are two existing pits and its dimension are Pit-I [10 max) x 40m (max) x 16m (d) (max)] and Pit-II [105m (max) x 43m (max) x 8m (d) (max)

One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.

In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

ii).Recovery of ROM

The mining lease area consists of 2.53.0Ha, after leaving 7.5m boundary barrier only 1.75.9Ha could be mined. Out of this only 1.54.3Ha is proposed for an optimum depth of maximum 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II has been taken into consideration for the utilization of the mineral in the present plan period, keeping in the view of mineral conservation, preservation and development. Anticipating the market demand this present quantity of exploitation is proposed during the present plan period.

UNFC 111 (re-assessed on 13.09.2017) = 214734 tonnes
Proposed annual production ROM = 42947 tonnes
Anticipated life of the mine = 214734 /42947 = 5 years

No. of working days in a year = 300 daysAverage Monthly production = 42947/12= 3579 tonnes

Anticipated Daily production = 3579/25 = 143 tonnes

No. of working hours per day = 8.00 AM to 5.00 PM with 1 hour lunch interval

Total no. of labours to be engaged = 18

Daily production

Available mineral reserves ROM

OMS = = = 143 /18= 8.0 tonnes No. of workers

Geological plans and sections:

The mining lease area is the part of crystalline formation of Sirugudi limestone mine. The area is almost a flat terrain. Geological plan and sections in the scale of 1:1000 was prepared based on the surface plan (which was carried out with help of total station survey 1:1000 scale) to attribute all the geological parameters. Please refer plate No. IV) for geological plan and sections.

The ultimate pit dimensions will be as under:

1200			100	125
Ta	-	-	7	_
10	ы	-		_

Dimensions	Present	size of pit		after five		Dimension at
	Pit-1	Pit-2	Pit-1	Pit-2	# Pjt-1	Pit-2
Length (m)	72 (max)	105 (max)	135 (max)	105 (max)	135 (max)	105 (max)
Width (m)	40 (avg)	43 (avg)	98 (avg)	43 (avg)	98 (avg)	43 (avg)
Depth (m)	16 (max)	8 (max)	25 (max)	16 (max)	25 (max)	16 (max)

Please refer Plate No. IX.

iii).Disposal of waste

There is no sub grade mineral in the mine. The anticipated waste during the present plan period is about 97,204 tonnes (40% mineral rejects + side burden).

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

This aspect has been considered and accordingly Conceptual Mining Plan is drawn.

Proposed generation of waste for next five years [2017-18 (from 27.11.2017) to 2021-22]

Table-36

Year	ROM(Ts)	Mineral Rejects @ 40% (Ts)	Side burden (Ts)	Total Waste (Mineral Rejects @ 40% + Side burden) Ts	Topsoil (Ts)	Ore waste ratio
2017-18	21122	8449	3900	12349	3524	1:0.97
2018-19	48539	19416	(#)	19416	4026	1;0.67
2019-20	48508	19403	2488	21891	3686	1;0.75
2020-21	52884	21154		21154	•	1;0.67
2021-22	43680	17472	4922	22394	3164	1;0.85
Total	214734	85894	11310	97204	14400	1;0.75

Dimension of the waste dumps during the present plan period

Table -37

Existing Mineral reject Temporary dump (Rehandle)	60m (max) X 10m (max) X 7m(h) (max)	Northern side of Block-II
Proposed backfilling	63m X 45m X 16m(h)	Block-II

The quantities of generation of wastes at the end of the mine life of the mine

Table - 38

Category	ROM (Ts)	Mineral Rejects @40% (Ts)	Side burden (Ts)	Topsoil (Ts)
Proved 111	214734	85894	11310	15828

Northern side

of Block-II

Block-II

Dimension of dumps during the end of the life of the mine Table -39

Existing Mineral reject
Temporary dump (Rehandle)

Proposed backfilling

60m (max) X 10m (max) X 7m
63m X 45m X 16m

The waste does not consists any toxic substance in the form of solid, liquid and

iv).Backfilling of voids

gas.

The backfill is proposed in Block-II of the lease area in this plan period (i.e the Block-II will be exploited to the ultimate pit level). The Proposed backfilling area is 63m X 45m X 16m (h).

v).Reclamation and rehabilitation

No reclamation and rehabilitation was proposed during the previous scheme period. As there is an insufficient quantity of waste for filling the mined out pit in Block-II during the present plan period, Hence there is no proposal for reclamation and rehabilitation. Reclamation and rehabilitation will be carried out at the end of the life of the mine, when the mine reaches its ultimate pit limit.

After complete exploitation of the mineral upto economic limit, the mined out pit will be backfilled with the waste at the end of the life of the mine and after backfilling the mined out pit, the area will be reclamated for four seasons and then the rehabilitation process will be carried out. After due approval from the IBM officers the land will be used for green belt development by planting suitable species with the help of inhouse environmental management team.

If the waste does not fill the mined out pits completely the left out pits will be fenced for collection of water which will be utilized for maintaining the afforestation all along the lease boundaries, besides the collection of rain water will also enrich the water table in and around the area.

B. UNDERGROUND MINING

Not applicable.

3. MINE DRAINAGE

a) Minimum and maximum depth of water table based on observations from nearby wells and water bodies

The area receives rains only during North-East monsoon. The average annual rainfall in and around this area is 850mm. There would not be any serious problem due to inundation. The water table is found at a depth of 35m in rainy season and at 40m in summer. The depth of water table fluctuation is verified by observing the water levels in the above seasons in the nearby wells.

Since the water table is below 35m, the mining activity will not have any impact on drainage. However, in the rainy season, there may be seepage of water. To pump-out the seepage and rain water, a 5 HP Diesel Pump will be kept ready. This pump will be provided at the deepest level (sump) of the working face to collect the water. Suitable earthen bunds will be formed around the area to protect the entry of rain water from outside.

Indicate maximum and minimum depth of Workings.

The mine has reached maximum 16m depth. It is proposed to carry out the mining operations to a depth of about only 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II. The water table in this area is found at the depth of 35m during rainy seasons.

Depth of the mine at present (maximum)

Average Depth proposed during the plan period:

160

25m [from RL 213.0m to RL 188.0m] in Block-I 9m [from RL 209.0m to RL 200.0m] in Block-II

c) Quantity and quality of water likely to be encountered, the pumping arrangements and places where the mine water is finally proposed to be discharged

The mining operation for the plan period is proposed to restrict well above the water table. Hence, the water is not likely to encounter during the course of mining operations. The water table is found at the depth of 35m in the rainy season and 40m in the summer. The water table fluctuation is verified by observing the water level in the nearby wells.

d) Describe regional and local drainage pattern. Also indicate annual rain fall, catchments area, and likely quantity of rain water to flow through the lease area, arrangement for arresting solid wash off etc.

The rain water flow towards catchment area is not flowing through the lease area as garland drains are made around the lease area. Hence, solid wash off will not occur.

4.0 STACKING OF MINERAL REJECT /SUB GRADE MATERIAL AND DISPOSAL OF WASTE

a) Indicate briefly the nature and quantity of top soil, overburden / waste and Mineral Reject to be disposed off.

(i) Nature and quality of Topsoil

The topsoil is red gravelly earth. It occurs to a depth of 1.0m. About 14,400 Ts of top soil that would be generated during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

(ii) Nature of Overburden

Topsoil is the only overburden found in the lease area.

(iii) Mineral waste likely to be generated during the plan period:

There is no sub grade mineral in the mine. The anticipated waste during the present plan period is about 97,204 tonnes (40% mineral rejects + side burden).

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

			Tabl	e-40					
	Topsoil	(cum)	Mineral rejects (cum)			Mineral rejects (cum)		Side burden	
Year	Reuse / spreading	Storage	Backfilling	Storage	Blending	Beneficial	Backfilling		
2017-18	3524 Ts		8449 Ts		- Y	4750	3900 Ts		
2018-19	4026 Ts		19416 Ts	-	10 M	200 1	17.0		
2019-20	3686 Ts		19403 Ts	*	- AND -	(4:1-	2488 Ts		
2020-21		B .	21154 Ts	2	E.E.	12"	37.6		
2021-22	3164 Ts		17472 Ts		11-1	6. 5000	492. Ts		
Total	14,400 Ts	=	85894 Ts		100	2240012	1,1310 Ts		

Note: Bulk density of mineral rejects and Side burden -2.6, topsole

b) The proposed dumping ground within the lease area be proved for presence or absence of mineral and be outside the UPL unless simultaneous backfilling is proposed or purely temporary dumping for a short period is proposed in mineralized area with technical constraints & justification.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area where the Existing Mineral reject dump of dimension [52m X 20m X 4m(h)] is situated in the southeastern side of the Block-I. Hence, the dump will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation, then the mineral will be removed.

c) Attach a note indicating the manner of disposal of waste, configuration and sequence of year wise build up of dumps along with the proposals for protective measures.

The waste generated during the present plan period will be loaded manually into tippers and dumped on the proposed temporary waste dump and backfilled area. The slope of the dump is always maintained below 30°. Proper haul roads and slopes are maintained in the dump for the transportation of vehicles. The proposed year wise dumps are marked in the year wise development production plan plate No. V.

5.0 USE OF MINERAL AND MINERAL REJECT

a). Describe briefly the requirement of end-use industry specifically in terms of physical and chemical composition.

The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

Sale price of mineral

The viability may vary, since the market of Limestone depends upon the grade and requirement of cement, which are governed the market demand. The economically viability at present market conditions tabulated below:

	Table - 41	- Times
S.No.	Particulars	Cost of production
1.	Labour charges	MA RS#65
2.	Royalty paid to Mines & Geology	/ S / RS:82
3.	National Mineral Exploration Trust	Rs.2
4.	Explosives expenses	Rs.26
5.	Drilling expenses	Rst 20://-
6.	Transport from mine head to Stockyard (loading & unloading)	Rs.60
	Total	Rs/854
7.	Miscellaneous and over heads	A Service Control
	Total	Rs.282
8.	Sale value of the Limestone for commercial cement grade	Rs. 400

The cost of production is Rs. 282/ton and selling prize for cement grade is Rs.400/ton. Hence, the mining is economically viable at present market conditions.

b). Give brief requirement of intermediate industries involved in upgradation of mineral before its end-use.

No up gradation is done.

c). Give detail requirements for other industries, captive consumption, export, associated industrial use etc.

It is not exported to any foreign countries. The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

d). Indicate precise physical and chemical specification stipulated by buyers

Chemical specifications:

CaO :

40 to 50%

MgO :

4.0 to 4.5%

Physical specification:

Colour:

Creamy White

Size :

100 mesh

e). Give details of processes adopted to upgrade the ROM to suit the user requirements.

No up gradation is done.

6.0 PROCESSING OF ROM AND MINERAL REJECT

Except hand sorting, no other method is proposed for beneficiation. Hence, this chapter is not applicable.

7.0 OTHER

Describe briefly the following:

a).Site services :

Infrastructure facilities in the form of office, storeroom, first aid room, restroom, toilet etc. are available in temporary semi permanent structure within the lease area. Please refer Plate No. VI.

b) Employment potential:

The details of employment are given below.

Mining is carried out by opencast method. 300 days in a year are assumed as effective working days.

Tabl	e -42	II S	500
Present Employment position		Additional during the	requirements
Mining engineer (part time)	1	11/2	1
Geologist (part time)	1	19	MANUEL STORES
Mines Office Clerk(full time)	1		Detroit and the second
Skilled Labour (Mate/Supervisor)	1		2
Semi-Skilled (Drivers)	3		-
Un skilled Labour	11		
Total	18		2

The proposed output per man shift:

Tabl	- A	~
lab	H-4	ാ

	M Production expected per next five years		42947 Ts
No. of days I	ikely to be worked		300 days
	M production per day under r insitu deposit		143 Ts
OMS =	Daily Production	143 =8.0	
	No. of Workers	18	

8.0 PROGRESSIVE MINE CLOSURE PLAN UNDER RULE 23 OF MCDR'2017 8.1 Environment Base line information: Attach a note on the status of baseline information with regard to the following.

Base Line Information:

The area is a plain topography. There is no Public Building, Places of Worship, National Monuments or Places of Archaeological interest near the area within 2km radius. The general drainage pattern of the area is dentritic pattern.

M/s. Global Lab and Consultancy Services., has carried out studies on base line data of air, water, noise level, ground vibration during the time of scheme period and the same information is discussed in the report. The monitoring will be assess all parameters and the same will be submitted to IBM for subsequent clearance and approval.

i) Existing Land Use Pattern

The lease area is an existing mine. Mining is only by opencast manual method, the mining operations involve with minimum shot hole drilling, having 1.5 meter depth, and controlled blasting technique will be adopted with class 2 slurry explosives. The land use pattern in and around the mine have no adverse effect in the environment changes. An Environment Management Plan will be prepared if required.

The present land use pattern is as under:

Table -44

S.No	Description	Present Area (Ha)
1	Mining (Quarry)	0.73.9
2.	Waste dump	0.10.4
3.	Office & infrastructure	0.01.0
4.	Processing plant	
5.	Mineral stack processing yard	
6.	Sub grade mineral stacks	
7.	Mine roads	0.03.0
8.	Areas under plantation	0.07.0
9.	Un utilized area	1.57.7
10.	Total	2.53.0

ii).Water Regime

The water table is found at 35m in rainy season and 40m in dry season the area receives rainfall during north-east monsoon, the average being 850mm, one tank is situated on the southern side of the lease area within 500m radius. There is no other Nullah, lake, reservoir or river nearby. The water is found to be obtable and good for drinking it is available in the nearby community wells. Water samples are collected and analyzed as per statutory norms of IBM.

iii).Air Quality

Based on the baseline data generated and reported, a Maximum SPM value of 59.3 microgram/m³ was recorded in the NE corner and it was well within the prescribed limits, a maximum Particle Matter (size<2.5 μ m) value is 25.3 μ g/m³ was recorded in NE Corner and it was well within the prescribed limits according to NAAQ standards issued by CPCB and maximum Particle Matter (size<10 μ m) value is 47.8 μ g/m³ was recorded in NE corner and it was well within the prescribed limits according to NAAQ standards issued by CPCB. SO₂ and NO₂ values are less than 17.5 μ g/m³ which is far below the permissible limit of 80 μ g/m³. The NH₃' O₃ and CO level in the ambient air samples was found to be below detecting level the same is shown below the table. Please Refer Annexure No. XIII.

Table-44A

Details of Air Quality survey:

SI. NO.	TEST PARAMETER	UNITS	NAAQ (2009)* LIMITS	RESULTS			
				SW Corner	NW Corner	NE Corner	
1	Suspended particulate matter (SPM)	μg/m³		54.7	55.9	59.3	
2	Particulate Matter(size < 2.5µm)	µg/m³	60	20.6	22.3	25.3	
3	Particulate Matter (size <10µm)	µg/m³	100	41.4	43.8	47.8	
4	Sulphur dioxide as SO ₂	μg/m ³	80	4.2	4.7	5.9	
5	Nitrogen Dioxide as NO ₂	µg/m³	80	15.5	17.1	17.1	
6	Ammonia as NH ₃	µg/m³	180	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	
7	Ozone as O ₃	µg/m³	400	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	
8	*Carbon Monoxide as CO	mg/m ³	4.0	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	

iv).Noise Level & Vibration Levels (Due To Blasting)

Loading operation, movement of tippers, operation of compressor is upto 68.2 dBA at the Northwest of the mine. The minimum levels recorded are 45.1dBA at the Northeastern side of the mine.

In general the noise levels in the buffer zone of mines where movement and other human activities are there, the minimum and maximum recorded values are 45.1 dBA and 68.2dBA respectively. The noise will be reduced by proper maintenance and placement of compressors away from the workers. Earmuffs are being provided to the workers to prevent them from noise environment. Hence the change in noise will be minimal well within the prescribed limits. The below readings was measured every 60 Minutes. Please Refer Annexure No. XIIIA.

Details of Noise level survey:

Table-44B

Location Name		Southwest corner of the Mine			Northwest corner of the Mir		
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leq dB(A)	Min dB(A)	Max dB(A)	Leg de (A
1	10:00	61.2	64.7	63.3	612	64.6	-63.2
2	11:00	60.8	66.8	64.8	60/8	66.8	64.8
3	12:00	60.7	67.2	65.1	60.7	67.9	65.7
4	13:00	61.3	66.9	64.9	61.3	7 - 66.9 W	64.9
5	14:00	50.7	58.5	56.2	50.4	56.5	56.1
6	15:00	60.7	68.2	65.9	60.7	68.2	65.9
7	16:00	61.2	66.9	64.9	61.2	66.4	64.5
8	17:00	60.1	67.5	65.2	60.1	67.5	65.2
			Mean dB(A)	63.8	Da	y Mean dB(A)	63.7
_imits :	as per The Noi 2010 of MoEF	ise Pollution (CC / CPCB (In	Regulation & ndustrial)	Control)	5.50	y Time : 75 dB	

Table-44C

Location Name S		Souther	ast corner of the	ne Mine	Northe	ast corner of th	e Mine
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leq dB(A)	Min dB(A)	Max dB(A)	Leq dB(A
1	10:00	51.1	58.7	56.4	51.3	58.9	56.6
2	11:00	50.9	58.6	56.3	50.5	58.7	56.3
3	12:00	50.3	57.3	55.1	50.3	57.7	55.4
4	13:00	50.8	58.4	56.1	50.5	58.2	55.9
5	14:00	45.3	54.2	51.7	45.1	54.7	52.1
6	15:00	45.9	54.8	52.3	45.2	54.5	51.9
7	16:00	50.3	58.6	56.2	50.1	58.4	55.9
8	17:00	50.7	58.9	56.5	50.7	58.2	55.9
			y Mean dB(A)	55.1	Da	y Mean dB(A)	55.0
∟imits a Rules, 2	s per The Nois 2010 of MoEFC	se Pollution (I	Regulation & C dustrial)	Control)		y Time : 75 dB	(A)

Ground vibration

A blast were conducted at source area from close distance and was found that the peak particle velocities were less than 1.2mm/sec. Reading was measured at a distance of 285m from the blasting site. During the blasting around 3 kg of explosives were blasted with a charge per hole of 0.3kg for 11 holes, the PPV value was measured as 1.1 mm/sec was recorded. Hence the change in vibration will be minimal well within the prescribed limits. Please Refer Annexure No. XIII B.

Details of Ground Vibration survey:

Table-44D

SI.No	DETAILS OF MONITORING	UNIT	RESULTS
1	Direction from blasting location		North
2	Distance	m	285
3	Bench Height	m	7
4	Diameter of Hole	mm	32
5	Depth of Hole	m	1.5
6	Number of Holes	*:	11
7	Average Burden	m	1.0
8	Type of Explosive Used	-	Slurry
9	Maximum Charge / Day	kg	3
10	Peak Particle Velocity (PPV)	mm/s	1.1
	-Directorate General of Mines Safety um Permissible Limit of PPV	mm/s	10

Monitoring locations and methodology

Bore well water sample were collected from specified location to assess the water quality of the study area and analyzed for physical, chemical, bacteriological parameters as per Indian Standards IS 10500 specifications. Additional parameters like bio chemical oxygen demand, total suspended solids, oil and grease, ferric and ferrous ion were analyzed as per standard procedure given in IS: 3025 and standard method for examination of water and waste water ED 20, jointly published by APHA, WWA and WPCF.

Table-44E

Details of water sampling location

SI.No.	Location	Sample Quantity.	Type and sources
1.	Sirugudi Mine	2 litres	Bore well water:

Bore well water

pH values varies 7.65 while turbidity ranged from 0.5 NTU Dissolve olids varied 1596 mg /l while total alkalinity ranged from 555 mg /l Total hardness based 574 mg/l. Chloried values varied from 300mg/l. Calcium values varied from 1 mg/l and magnesium values varied 96 mg/l. Sulphate values varied 155mg/l, nitrite values varied 0.1mg/l, Sodium values varied 150mg/l, Potassium values varied 21mg/l, CaCO₃ values varied 4mg/l, Fluoride values varied 0.5mg/l and Silica (Sio₂) values varied 32.5mg/l. while Iron, Ammoniacal Nitrogen, Total Kjeldhal Nitrogen, Boron, Free Residual Chlorine, Manganese, Phosphate and Nitrate have been observed below detection limit. Escherichia Coli and Coliform Bacteria (per 100 ml) values have been observed as absent. Results reveal that the prescribed limit of IS 10500, is found that the ground water of the study area is fit for potable purposes as alternate source. No toxic effluent is generated from mine and hence there is no need for any treatment of water from mine. Please Refer Annexure No. XIII C.

v) Flora and Fauna:

The lease area is an existing mine. Only mining activity is being carried out in and around the area. In some areas agriculture is done with lift irrigation. The main crops being ground nut, paddy etc. are grown as seasonal crops. There is no Forest or Animal Sanctuaries near the area.

vi) Climatic Conditions

The area exhibits a subtropical climate and the temperature that goes upto 38°C in summer and falls down to 25°C in December – January. The wind direction is NE-SW and vice-versa.

vii) Human Settlement

Basic amenities and local administrative office are found in Sirugudi village which is about 3.0kms NE from the lease area. The villages depend upon seasonal vegetation and most of the people are employed. The details regarding nearest hamlets and their population along with distance and direction from the lease area is furnished below:

Table - 45

S.NO	Name of Hamlets	Distance in Km	Population	Direction
1	Sirugudi	3.0	950	Northeast
2	Samudrapatty	3.0	550	Southeast
3	Uralipatti	4.5	500	Southwest
4	Avichchipatti	3.5	450	West

viii) Public Building, Places of worship and Monuments:

There are no Public Buildings or Places or National Monuments near the area.

ix). Indicate any sanctuary is located in the vicinity of leasehold

There are no sanctuaries near the area.

8.2 Impact Assessment: Attach an Environmental Impact Assessment Statement describing the impact of mining and beneficiation on environment on the following:

i) Land area indicating the area likely to be degrated due to quarrying, dumping, roads, workshop, processing plant, tailing pond dam, township etc.

The present and	post mining	land use	pattern is as under
-----------------	-------------	----------	---------------------

		Table	-46	2000 and 13
S.No	Description	Present Area (Ha)	Additional required during present MP Period (Ha) [2017-18 (from 27.11.2017) to 2021-22]	life of Wine (Ha)
1	Area under Mining	0.73.9	1.03.5	1.77.4
2.	Waste dump	0.10.4	0.06.0*	0.06.0*
3.	Office & infrastructure	0.01.0	0.01.0	0.01.0
4.	Processing plant	-		-
5.	Mineral stack processing yard			
6.	Sub grade mineral stacks	-		*
7.	Mine roads	0.03.0	Nil	0.03.0
8.	Areas under plantation	0.07.0	0.12.0	0.19.0
9.	Un utilized area	1.57.7	0.46.6	0.46.6
10.	Total	2.53.0	133//21/2	2.53.0

^{*} Dumps are proposed to be backfilling

ii) Air quality

Drilling, loading & unloading, other equipments, domestic fuel consumption, traffic emission are the main activities that have an impact of ambient air quality of the area. SPM, No₂ and So₂ are the major pollutants. The main source of air pollutant is SPM in mining activities. The generation of No₂ and So₂ results obtained are well within the prescribed limits. Dust is a particulate contaminant suspended in the atmosphere. Gravitational effects govern the upper size limit of dust particles. The distinction between the respirable and non-respirable dust is scientifically valid that it is clear that both sizes can impair lung functions when inhaled over a time. Use of diesel powered equipment for mining may produce emissions that are hazardous like hydro carbons, oxides of nitrogen and sulphur etc. which would cause respiratory disorders. Hence practice of protective equipments, dust suppressive techniques while drilling are undertaken to minimize the impacts. The generation of the dust will be suppressed by means of water sprinkler then and there by mechanical means. The generation of dust during the transportation is suppressed at source by means of dust extractors.

Proposed Mitigation measures to control air quality within the limits:

- Use of dust collectors in drilling and bag filters at crusher are being used as dust control measures.
- Well designed blast by effective stemming and use of millisecond delay detonators-every blast shall be properly designed to see that the optimum breakage occurs without generating fines.
- Avoiding blasting during high wind periods where the fine dust is carried away easily affecting the ambient air quality of villages enroute.
- Development of green barriers along the roads, ultimate pit limit along the lease boundary, waste dumps and around statutory buildings.
- v. Mobile equipments.

Dust emanated due to the movement of equipments is generally suppressed by the surfacing of internal roads, Dust suppression by water sprays and rows of trees would be planted

iii) Water quality

Water Quality: Ground water

The area is dry for most part of the year and receives rainfall during the NE monsoon period from October- December. There is no lake, reservoir or river nearby.

Water table is found at a depth of 40m during summer and 35m during rainy season. The present working has reached maximum 16m depth in the lease area. The maximum depth proposed for mining is 25m, hence the water table will not encounter during the course of mining activity. There will be seepage of ground water during the rainy season, the same will be pumped out with the help of 5HP motor pumps when there is a considerable accumulation of seepage water.

There will be no toxic effluent generated due to mining operation in the form of solid liquid or gas. The water will not be contaminated by the limestone mining by any means. Since the limestone occurrence is below 1.0m depth and there will be no problem to the ground water. The mine waste will not produce any toxic effluent. However, minor pollutant may occur during mining operation and it will be within the permissible limits. Periodically water samples will be collected and analyzed as per statutory norms of IBM.

iv) & v). Noise Level & Vibration Levels (Due To Blasting)

The mining operation does not produce any adverse environmental impacts. The mining operations involve with minimum shot hole drilling, having 1.5 meter depth, and controlled blasting technique will be adopted with class 2 slurry explosives. The noise is kept under control by undertaking abatement measures and implementing the same. Periodical noise monitoring was conducting and observed in the range of 45.1 to 68.2 dBA and the noise level are well and within the prescribed limits for residential areas. No noise is generated above 75 dBA sound levels. Ground vibration is minimized by using mille second delay detonators, controlled blasting and adopting a proper geometry of blast holes. Control measures like provision of noise proof cabins for operators, ear muffs, proper maintenance of machineries, green belt development will be undertaken that would minimize the adverse impacts that would arise out of mining operations. Plantation on periphery of the mines with species of tall evergreen trees, fleshy leaf plants would provide a protective mask and absorb noise. However, noise and ground vibration will be carried out as per the statutory standards.

Proposed Mitigation measures to control Noise and Ground vibration within the limits:

- a) Row of trees with thick flora will be planned to act as acoustic barriers along the roadside and mine periphery.
- b) Proper preventive maintenance schedules will be drawn and implemented for the machinery to eliminate noise as far as possible.
- c) In order to reduce vibration, machines will be kept in balanced and properly aligned conditions.
- Ear muffs/ear plugs will be provided to workers at noise prone zone.
- A noise data maintained for all noise prone activities and noise exposure records of the workers.
- f) Blasting noise reduced by using optimum burden, charge and use of milli-second delay detonators with initiation of charges by sequential blasting machine.
- g) Stemming column more than the burden to avoid blown out shots and all blast carefully planned and supervised.

vi) Water regime

The water table is found at 35m in rainy season and 10m in dry season the area receives rainfall during north-east monsoon, the average being 850mm. There is no Nullah, lake, reservoir or river nearby. The water is found to be potable and good for drinking it is available in the nearby community wells.

vii) Acid mine drainage

Does not arise.

viii) Surface subsidence

Not Applicable.

vii) Socio-economics

The mining operation will create awareness for the importance of minerals and of their value in the market. It will create an urge to search and prospect for the same or different minerals in the other areas. Mining, whether it is small or big is an avenue of employment. It will improve the standard of living and will change the life style of village habitants.

viii) Historical monuments etc.

There are no places of historical monuments near the area.

8.3 Progressive reclamation Plan:

8.3.1. Mined-Out Land:

a) Area covered by existing pit

: 0.73.9Ha

b) Area covered in next five years of Mining plan period : 1.03.5Ha

It is a working mine. During the end of the life of the mine, when the mine reaches its ultimate pit limit, the pit will be partially backfilled and partially act as a good storage for water. The spring water and seepage water will prove to be a viable source for water supply to agriculture lands nearby.

Along the permanent roads and vacant places, afforestation is being carried out at present. Before closure of the mine, a parapet wall will be constructed to prevent inadvertent entry of cattle and human beings.

The dumps will be vegetated to prevent slitting and always maintained at 45degree slope. After closure of the mine, the pit will be allowed to collect seepage and rainwater which will help to charge the nearby agricultural wells.

Reclamation:

No reclamation and rehabilitation was proposed during the previous scheme period. During the present plan period also there is no proposal for reclamation and rehabilitation. Reclamation and rehabilitation will be carried out at the end of the life of the mine, when the mine reaches its ultimate pit limit.

The backfill is proposed in Block-II of the lease area in this plan period (i.e the Block-II will be exploited to the ultimate pit level). The Proposed backfilling area is $63m \times 43m \times 17m$ (h).

After complete exploitation of the limestone mineral from the lease area, the mined out pit will be partially backfilled and partially allowed to collect the rain water which will act as a temporary aquifer, this temporary storage of water will act as an artificial recharge pond which will enhance the near ground water level and the static level of the nearby wells.

Adequate measure will be taken care for constructing wall around the mined out area with 2mts height and fenced as per the rules.

A watchman (Security guard) will be posted around the clock to prevent inherent entry of public an cattle which are growing in and around the area.

The accumulated/stagnated water will be pumped out by means of temporary electric source with 5 hp motor and the water will be utilized for afforestation program.

Table-47	A STATE OF THE STA
Area proposed for reclamation during the end of present plan period [2017-18 (from 27.11.2017) to 2021-22]	Area to de reclaimed at the end/of life at mine
Nil	1.77.4 Ha!!

Please refer to the mine layout and afforestation plan (Plate No. VI & VIII)

8.3.2 Topsoil Management:

The topsoil is red gravelly earth. It occurs to a depth of 1.0 m. About 14,400 Ts of top soil that would be generated during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

8.3.3 Tailings Dam Management:

There is no proposal of tailing dam in the mine. The mining operation is carried out by simple opencast manual mining with 3m bench height with 5m bench width, the mining operation for the proposed plan period is restricted to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II, the water table in the area is around 35m - 40m. Hence, the question of tailing dam management does arise.

8.3.4 Acid mine drainage, if any and its mitigative measures.

Does not arise.

8.3.5 Surface subsidence mitigation measures through backfilling of mine voids or by any other means and its monitoring mechanism.

The information on protective measures for recognition and rehabilitation works during the period [2017-18 (from 27.11.2017)].

Summary of Yearwise Proposal

Items	Details	Proposed	Actual .	Remarks		
Dump	Area afforested	Tropodod				
Management	(ha)					
	No of saplings		Ser	-/Norman		
	planted		-	7		
	Cumulative no of					
	plants					
	Cost including watch and care during the year			<u></u>		
Management of worked out	Area available for rehabilitation (ha)					
benches	Afforestation done(ha)					
	No of saplings planted in the year					
	Cumulative no of plants					
	Any other method of rehabilitation (specify)	The backfilling is not proposed during the year. Reclamation and rehabilitation is not proposed in this present plan period. It will be carried out at the end of the life of the mine when the mine reaches its ultimate pit limit.				
	Cost including watch and care during the year					
Reclamation and Rehabili- lation by backfilling	Void available for Backfilling (L x B x D) pit wise /stope wise					
	Void filled by waste /tailings					
	Afforestaion on the backfilled area					
	Rehabilitation by making water reservoir					
	Any other means (specify)					
Rehabili-tation	Area available (ha)					
of waste land	Area rehabilitated					
vithin lease	Method of rehabilitation	Afforestation (Green land building) 240 sq.m-15 neem		Rs.1500/-		
		saplings				
there (enecify)						

Environmental monitoring (core zone & buffer zone)

	Table-49		
Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
1500	850	900	750

The information on protective measures for reclamation and rehabilitation works during the period [2018-19].

Summary of Yearwise Proposal

Items	Details	Proposed	Actual	Sales .	Remarks		
Dump Management	Area afforested (ha)		/*/		~		
	No of saplings planted		15				
	Cumulative no of plants		12		/\$/		
	Cost including watch and care during the year		1	I'AN SHELL	S		
Management of worked out	Area available for rehabilitation (ha)				*		
benches	Afforestation done(ha)						
	No of saplings planted in the year						
	Cumulative no of plants	The best-fill					
	Any other method of rehabilitation (specify)	The backfilling is proposed in the Block-II of the lease area. The proposed backfilling area is 63m X 45m X 5.5m (h). Reclamation and rehabilitation is not proposed in this present					
	Cost including watch and care during the year	plan period. It will mine when the min	be carried e reaches it	out at the o	end of the life of the it limit		
Reclamation and Rehabili- tation by backfilling	Void available for Backfilling (L x B x D) pit wise /stope wise						
	Void filled by waste /tailings						
	Afforestaion on the backfilled area						
	Rehabilitation by making water reservoir						
	Any other means (specify)						
Rehabili-tation	Area available (ha)						
of waste land	Area rehabilitated						
within lease	Method of rehabilitation	Afforestation (Green land building) 240 sq.m-15 neem saplings	1		Rs.1500/-		
Others (specify)		Cupinigo	-				

Environmental monitoring (core zone & buffer zone)
Table-51

Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
1500	850	900	750

Rs.1500/-

The information on protective measures for reclamation and rehabilitation works during the period [2019-20].

Summary of Yearwise Proposal

Items	Details	Table-52
Dump	Area afforested	Proposed Actual Remarks
Management	(ha)	2 7777
	No of saplings planted	
	Cumulative no of plants	
	Cost including watch and care during the year	
Management of worked out	Area available for rehabilitation (ha)	
benches	Afforestation done(ha)	
	No of saplings planted in the year	
	Cumulative no of plants	The healesting is a second to the Division of the second to the second t
	Any other method of rehabilitation (specify)	The backfilling is proposed in the Block-II of the lease area. The proposed backfilling area is 63m X 45m X 9m (h). Reclamation and rehabilitation is not proposed in this present
	Cost including watch and care during the year	plan period. It will be carried out at the end of the life of the mine when the mine reaches its ultimate pit limit
Reclamation and Rehabili- tation by backfilling	Void available for Backfilling (L x B x D) pit wise /stope wise	
240000000000000	Void filled by waste /tailings	(*)
	Afforestaion on the backfilled area	
	Rehabilitation by making water reservoir	
	Any other means	

Environmental monitoring (core zone & buffer zone)

(specify)

Method of

rehabilitation

Area available (ha)

Area rehabilitated

Rehabili-tation

Others (specify)

of waste land

within lease

	Table-33		
Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
1500	850	900	750

240 sq.m-15 neem

Afforestation

land

(Green

building)

saplings

The information on protective measures for reclamation and rehabilitation works during the period [2020-21].

Summary of Yearwise Proposal

Items	Details	Table-54 Proposed	citial	Remarks			
Dump	Area afforested		2/ 300	Titoliaino			
Management	(ha)	II.		121			
	No of saplings		71				
	planted Cumulative no of	113		121			
	plants	1		1 /5 1			
	Cost including	1 3		188			
	watch and care		1111	The second second			
	during the year		NAME OF THE PARTY	A CONTROLL			
Management of	Area available for		The state of the s	The state of the s			
worked out	rehabilitation (ha)			3			
benches	Afforestation done(ha)]					
	No of saplings planted in the year						
	Cumulative no of plants	The backfilling is pro	posed in the Di				
	Any other method of rehabilitation (specify)	The backfilling is proposed in the Block-II of the lease area. The proposed backfilling area is 63m X 45m X 12.5m (h). Reclamation and rehabilitation is not proposed in this present					
	Cost including watch and care during the year	plan period. It will be carried out at the end of the life of the mine when the mine reaches its ultimate pit limit					
Reclamation and Rehabili- tation by backfilling	Void available for Backfilling (L x B x D) pit wise /stope wise						
	Void filled by waste /tailings						
	Afforestaion on the backfilled area						
	Rehabilitation by making water reservoir						
	Any other means (specify)						
Rehabili-tation	Area available (ha)						
of waste land	Area rehabilitated						
within lease	Method of rehabilitation	Afforestation (Green land building) 240 sq.m-15 neem		Rs.1500/-			
1		saplings		(1)			

Environmental monitoring (core zone & buffer zone)

	Tubic 33		
Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
1500	850	900	750

and rehabilitation

The	information	on	protective	measures	for	re
wor	ks during the	per	iod [2021-2	2].		4
1000						- 400

Summary of Yearwise Proposal

Items	Details	Table-56 Proposed	ectual	1385-2	Domestic #	
Dump Management	Area afforested (ha)	Proposed	i Figal		Remarks	
management	No of saplings planted		(10)	NAME OF THE PARTY	\$1/	
	Cumulative no of plants		-	WEIGH W		
	Cost including watch and care during the year					
Management of worked out	Area available for rehabilitation (ha)					
benches	Afforestation done(ha)					
	No of saplings planted in the year		v			
	Cumulative no of plants		STREET, ALT LUB FOR AND			
	Any other method of rehabilitation (specify)	The backfilling is pro The proposed backfill Reclamation and ref	lling area is nabilitation i	63m X 45	m X 16m (h). osed in this preser	nt
	Cost including watch and care during the year	plan period. It will be mine when the mine	e carried o	ut at the e	nd of the life of th	е
Reclamation and Rehabili- tation by backfilling	Void available for Backfilling (L x B x D) pit wise /stope wise					
	Void filled by waste /tailings					
	Afforestaion on the backfilled area	-				
	Rehabilitation by making water reservoir					
	Any other means (specify)					
Rehabili-tation	Area available (ha)					
of waste land	Area rehabilitated					
within lease	Method of rehabilitation	Afforestation (Green land building) 240 sq.m-15 neem saplings			Rs.1500/-	
Others (specify)		ouplings				_

Environmental monitoring (core zone & buffer zone)
Table-57

Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
1500	850	900	750

Summary of information on target and achievement proposals as per Rule 23(E)2 made of protective measures undertaken for environmental protection during the period [2017-18 to 2021-22]

			Table-58	Elich-/	40.510	A March
ITEMS			DETAILS	AREA (Ha)	QUANTITY	EXPENDITURE (RS.)
			Best Hoveles	Proposal	Proposal	Prodosal
A)	Reclamation & Rehabilitation of mined out area			NII		A)
B)	Stabilisation & Rehabilitation of dumps			Nil	MI NO	
C)	Rehabilitation of barren area within lease	i)	Afforestation (Green land building on boundary barrier)	1200 Sq.m	75 saplings	Rs.7500/-
		lii)	Others - watchman		Nil	

Table-59

Air quality (Rs. / sample)	Water quality (Rs. / sample)	Noise (Rs. / area)	Ground vibration (Rs. / area)
7500 x 2 (Core+ buffer zone)	4250 x 2 (Core+ buffer zone)	4500 x 2 (Core+ buffer zone)	3750 x 2 (Core+ buffer zone)

Budget Provision for the present plan period

Afforestation cost	=	Rs. 7500/-
Air Quality Sampling	=	Rs. 15000/-
Water Quality Sampling	=	Rs. 8500/-
Noise Monitoring	=	Rs. 9000/-
Ground vibration test	=	Rs. 7500/-
Total Cost	=	Rs. 47500/-

a. Disaster Management and Risk Assessment:

The mining operation is very small in nature and is in an flat terrain with opencast workings, the anticipated mining depth is limited. There is no nullah or river near the area, the stratigraphy is hard in nature, the chances for disaster due to landslide, subsidence, flood, inundation etc., is to the barest minimum and is almost nil.

Thiru. S.Ilangovan (Managing Partner of M/s. Sivam Mines), is in charge for disaster management and monitors all activities related to disaster management/risk assessment in case of any such situations.

The name and postal address of the person in charge for disaster management is as under.

Name : M/s. Sivam Mines.,

(Thiru. S.Ilangovan, B.E., Managing Partner)

Address : 6/209, Main Road, Sirugudi Post,

Natham (Tk),

Dindigul District.

 State
 : Tamilnadu.

 Cell No.
 : 94430 67632

Copy of ID proof is enclosed as annexure - VII.

8.5 Care and maintenance during temporary discontinuance:

In case, of any temporary closure or discontinuous of mining operations, the following steps are proposed.

- Watchman will be posted round the clock to prevent any unauthorized or inadvertent entry of public.
- b. Works on stabilization of dumps to provided vegetal cover would be taken up.

- Construction of garland or retraining walls around the dumps will be attempted.
- d. Watering of plants in the afforested area will be considered.

8.6 Financial Assurance:

Table indicating the break-up of areas in the Mining Lease for calculation of Financial Assurance under Rule 27 of MCDR-2017.

			Table-60	- 40	Mary or Stall or	
SI. No.	Head	Area put on use at start of Plan (ha)	Additional requirement during this plan period (ha)	Total Area (ha)	Area considered as fully reclaimed & rehabilitated (ha)	Net area considered for calculation (ha)
1.	Area under mining	0.73.9	1.03.5	1.77.4	<u>a</u> , 2	1.77.4
2.	Storage for top soil	:00		-	(4)	N#5
3.	Waste dump site	0.10.4	0.06.0*	0.06.0*		0.06.0*
4.			-			0.00.0
5.	Infrastructure – workshop, administrative	0.01.0	0.01.0	0.01.0	-	0.01.0
					-	5.51.5
		(4)			2/	-
	building etc.	20				Ve:
6.	110000	0.03.0		0.03.0		0.03.0
7.	Railways					720
8.	Tailing pond			- E		
9.	Effluent Treatment Plane	E.	-	¥31	•	
10.	Mineral Separation Plane			*	*	*
11.		-			Δ.	- 5
12.	Others (to specify) Green belt	0.07.0	0.12.0	0.19.0	-	0.19.0
G	Grand total	0.95.3	1.22.5	2.06.4		2.06.4

Dumps are proposed to be backfilling.

The Mining lease area put to use for mining and allied activities is about 2.06.4 Ha. The financial assurance for 2.06.4 hectares at the rate of Rs. 2,00,000/- per ha works out to Rs. 4,12,800/-.

Hence, the financial assurance in the form of Minimum Bank Guarantee for B-Category mines is Rs. 5,00,000/-(Rs. Five lakhs only) is enclosed as Annexure No.XV.

Certificate:

The lessee undertakes a closure plan certificate to comply all statutory rules and regulations, order made by the Central or State Government, statutory organizations, court etc. all these will be taken into consideration and wherever any specific permission is required the lessee will approach the concerned authorities. The lessee also undertakes to implement all the measures proposed in the closure plan in a time bound manner.

Plan and Sections:

The Following plans and sections are enclosed.

- 1. Location plan (Plate No.I)
- 2. Route Map (Plate No.IA)
- 3. Key plan (Plate No.IB)
- 4. Mine lease Plan (Plate No.II)
- 5. Surface plan (Plate No.III)
- Geological plan and Sections (Plate No.IV)
- 7. Year wise development & production plan and sections (Plate No.V)
- 8. Mine layout, land use and afforestation plan (Plate No.VI)
- 9. Financial area Assurance Plan. (Plate No.VII)
- 10. Environment plan (Plate No.VIII)
- 11. Conceptual plan and sections (Plate No.IX)

Signature of the Qualified Person

Dr. P. THANGARAJU, M.Sc., Ph.D.,

Place: Salem

Date: 08.12.2017

REGIONAL CONTROLLER OF MINES

CRENMAI

79A

	20	PART-B
9.0	Certific	cates/ Undertakings/Consents
	A.	CONSENT LETTER/ UNDERTAKING/ CERTIFICATE FROM THE
		APPLICANT
M/s. S	ivam Mir	nes.,
		oad, Sirugudi Post,
Nathar	n (Tk), Di	indigul District.
1.	of 2.53. under Ri Dr. P. Th This	The Review of Mining Plan in respect of Sirugudi Limestone Mine over an are .0Ha, in Sirugudi Village, Sirugudi Post Office, Dindigul District, Tamilnadu .ule 17(1) of MCR 2016 & 23 of MCDR, 2017 has been prepared by hangaraju, M.Sc., Ph.D., is is to request the Regional Controller of Mines, Indian Bureau of Mines, to make any further correspondence regarding any correction of the Review g Plan with the said Qualified Person at his address below:
	Old.No.2 Advaitha	hangaraju, M.Sc., Ph.D., 260-B, New No: 17, a Ashram Road, Alagapuram, - 636 004.
	of Minin	e hereby undertake that all modification/updating as made in the said Review og Plan by the said Qualified Person may be deemed to have been made wit wledge and consent and shall be acceptable on us and binding in all respects.
2.		t is certified that the CCOM Circular No-2/2010 will be implemented and with when any authorized agency is approved by the State Government.
3.	Mine of rules, R organiza specific	It is certified that the Progressive Mine Closure Plan of Sirugudi Limeston M/s. Sivam Mines., over an area of 2.53.0Ha. complies with all Statutor Regulations, Orders made by the Central or State Government, Statuar ation, court etc. which have been taken into consideration and wherever an permission is required the lessee will approach the concerned authorities. The information furnished in the Progressive Mine Closure Plan is true and to the best of our knowledge and records.
4.	been ob District i	The provisions of Mines Act, Rules and Regulations made there under have been used in the Review of Mining Plan over an area of 2.53.0Ha in Dindiguin Tamilnadu State belonging to Sirugudi Limestone Mine, and where specifications are required, the lessee will approach the D.G.M.S. Further, standard

- I Shri. S.Ilangovan, (Managing Partner of M. Sivam Mines.) Owner of the Mining Lease G.O. (D) No.171 Industries (MMA.1) epartinent dated 03.11.2014 for a remaining period of the Mining Lease in Singuid Village, Natham Taluk, Dindigul District, Tamil Nadu State, over an extent of 13.0Ha. for Limestone mineral hereby undertake that no matter is pending against a said lease/applied mining lease area on the following issues.
 - a) Issues related to illegal mining with State Government
 - b) Royalty and revision matter with the State Government.
 - c) Safety & Environment issues of General Public Concern.
 - d) Public interest litigation (PIL) and court cases, etc.

If anything is found wrong in the declaration and found incorrect during the period of document, suitable action may be initiated including withdrawal of the approval of the document.

Signature of Lessee For M/s. Sivam Mines., For M/s SIVAM MINES

> Managing Partner, (Managing Partner)

Place: Dindigul Date: 11.09.2017 Dr. P. Thangaraju, M.Sc., Ph.D.,

Old.No.260-B, New No: 17,

Advaitha Ashram Road, Alagapuram,

Salem - 636 004.

CERTIFICATE FROM THE QUALIFIED PERSON

The provisions of the Mineral Conservation and Development Rules, 2017 have been observed in the preparation of the Review of Mining Plan for Sirugudi Limestone Mine over an area of 2.53.0Ha of M/s. Sivam Mines., in Sirugudi Village, Sirugudi Post Office, Dindigul District of Tamilnadu State and whenever specific permission are required, the lessee will approach the concerned authorities of Indian bureau of Mines.

The information furnished in the Review of Mining Plan is true and corrected to the best of our Knowledge.

Signature of the Qualified Person

angaraju, M.Sc., Ph.D.,

Place: Salem

Date: 68. 12.2017

FEASIBILITY REPORT OF SIRUGUOI LIMESTONE MINE

PREAMBLE:

This abstract of feasibility report is Sirugudi Limestone Mine, over an extent of 2.53.0 hectares in S.F. Nos: 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu State, has been prepared for M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District, Tamilnadu, to estimate the resources and reserves of limestone mineral in Patta land by U.N.F.C system.

Initially, the mining lease for limestone was granted to Thiru.S.Asaialangaram, Dindigul district vide G.O. 3(D).No. 91, dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997.

The Mining plan was approved by Indian Bureau of Mines, vide letter no. TN/D.A/MP/LST-963-MDS, dated: 07.08.1997.

The first scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-283-MDS, dated: 14.12.2005.

The second scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-757-MDS, dated: 20.02.2013.

The third scheme of mining [2014-15 to 2017-18 (upto 26.11.2017)] was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-1103.MDS, dated: 04.08.2014 and it is valid upto 26.11.2017 and a Copy of prior SOM approval letter of the same is enclosed as Annexure No.X.

Then the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Inds (MMA.1) dept., dated 03.11.2014. (Please refer Annexure No.II & VI).

As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047.

Hence, this Review of Mining Plan along with Progressive Mine Closure Plan [2017-18 (from 27.11.2017) to 2021-22] is being prepared now & submitted under Rule 17(1) of MCR, 2016 and Rule 23 of MCDR, 2017.

1.0 General Mine Description

Name of the lessee : M/s. Sivam Mines.,

(Thiru. S. Ilangovan, B.E., Managing Partner)

Address : 6/209, Main Road, Sirugudi Post,

Natham (Tk),

Dindigul District.

District : Dindigul
State : Tamilnadu.
Pin code : 624 404

Pin code : 624 404
Telephone : 04544-267632

Mobile No. : 94430 67632

Email id. : ilangovanmadhavi4.9@gmail.com

Rule 45 registration no. : IBM /5284/2011

Copy of ID proof is enclosed as Annexure No. VII.

Status of the lessee:

M/s. Sivam Mines is a Partnership Firm. When the Transfer of mining lease was granted in the year 2014, the partners of the firm are Thiru. S.Asaialangaram, Thiru.S. Ilangovan, Thiru. I.Vijay Alangar and Selvi. I. Sempon Manickam. Thiru. S. Ilangovan is the Managing Partner of the firm. The partners of the firm have very good knowledge and experience in Limestone mining for more than three decades. (Please refer Annexure No.VIII).

The d	letails of the partners are giv	en below: Table-1		
SI.N	Name & Address	Designation	Cell ne	e-mail address
1.	Thiru. S. Ilangovan, S/o. K.A. Semban chettiar, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Managing Partner	4430 6	ilangovanmadhavi4.9@gm ail.com
2.	Thiru. S. Asaialangaram, S/o. K.A. Semban chettiar, Door No.1/174, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94130.62092	vijayalangar@gmail.com
3.	Thiru. I.Vijay Alangar, S/o. S.Ilangovan, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94430 67632	vijayalangar@gmail.com
4.	Selvi. I.Sempon Manickam, D/o. S.Ilangovan, Door No.6/208, Main Road, Sirugudi post, Natham Taluk, Dindigul District.	Partner	94430 67632	ilangovanmadhavi4.9@gm ail.com

2.0 Exploration:

In the previous approved scheme period [2014-15 to 2017-18 (upto 26.11.2017)] nine core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-I & II (Block-1, Western Band) and four wagon drills in working pit and two core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-III (Block-2, Eastern Band) general ground level as drilling at particular 50m grid interval for confirm the depth continuity of the limestone. This wagon and core bore hole will be made after first year (2014-15) was proposed, but nine boreholes upto 25.0m depth was carried out by the lessee during the previous Scheme period, to find out the grade of limestone, lateral variations and vertical in homogeneities of the limestone formation and depth persistence. The lease area comprises of two Blocks – Block-I & Block-II. At Present there are two existing pit and its dimension are given below.

Existing Pit Geometry:

Table-2

			I GOIC 2			
Pit	Length In Meter	Width In Meter	Depth In Meter	Area In Ha.	Dip°	Strike
1	72 (max)	40 (max)	16 (max)	0.73.9	85°SE	N60°E- S60°W
II	105 (max)	43 (max)	8 (max)	0.75.5	00 00	1,300 - 500 1

With the datas analyzed from the drilled boreholes and existing pit, the deposit has been proved upto 25m depth with an average of 1m topsoil. The boreholes logging datas are furnished below.

Litho	log o	f drilled	borehole	es:
-------	-------	-----------	----------	-----

		Та	ble-3	77.5	40
No. of bore holes	Latitude	Longitude	Depth of boreholes (m)	Depth of deposition of Limestone (Rt.)	Strata
DBH-1	10° 14' 31.34"N	78° 17' 39.02"E	12/8	200 m-188.0m	Limestone
DBH-2	10° 14' 31.04"N	78° 17' 37.77"E	25.12	213.1m-212.3m = 212.3m-188.0m	Topsoil Limestone
DBH-3	10° 14' 30.62"N	78° 17' 39.64"E	25.0 🐇	213.0m-211.9m 211.9m-188.0m	Topsoil Limestone
DBH-4	10" 14' 30.36"N	78° 17' 40.87"E	25.2	243.2m-211.8m 2478h-188.0m	Topsoil Limestone
DBH-5	10° 14' 29.45"N	78° 17' 39.23"E	25.1	213-1m-212.2m 212.2m-188.0m	Topsoil Limestone
DBH-6	10° 14' 30.12"N	78° 17' 37.05"E	25.2	213.2m-212.1m 212.1m-188.0m	Topsoil Limestone
DBH-7	10° 14' 28.82"N	78° 17' 36.75"E	9.0	213.0m-211.8m 211.8m-204.0m	Topsoil Granite-Gneis:
DBH-8	10° 14' 29.62"N	78° 17' 45.27"E	8.1	208.1m-200.0m	Limestone
DBH-9	10° 14' 31.48"N	78° 17' 46.02"E	8.9	208.9m-200.0m	Limestone

Locations of drilled boreholes are marked in the geological plan and sections and year wise plan and sections (Refer Plate No.IV & V). Copy of Form-I and Form-J is enclosed as annexure no.IX.

The lessee with his consultant geological team thoroughly studied the area and demarcated the attitude of the band. It is inferred that the limestone is cement grade and in the form of band running from N60°E- S60°W direction with dipping 85°SE.

Regular sampling and analysis during the past mining activities has revealed that the limestone mineral is of cement grade (the mineral was also analyzed in NABL laboratory as per the circular issued by the CCOM, Nagpur). The recovery of 60% was discussed in the previous approved scheme and the same 60% recovery was achieved by lessee during the previous approved scheme period. Hence the same 60% recovery is discussed during the present plan period.

The past mining experience gained by the lessee from the limestone mining is sufficient for calculating the mineral reserves and resources related to G1, F1, E1 Axis of United Nations Framework Classification Systems and to satisfy the latest circular No. 4/2009 dated 21.10.2009 issued by the CCOM, Nagpur.

The mine has reached maximum 16m depth in Pit -1 and 8m depth in Pit -2. The depth of the mineralization has been proved upto 25m depth with an average of 1m topsoil by based on the existing pit and drilled bore holes in Block-I and the depth of the mineralization has been proved upto 16m depth with an average of 1m topsoil by based on the drilled bore holes in Block-II. Hence, the reserves and resources are estimated as given below during the present plan period.

Table-4

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

a. Geological Mapping (Topographical and Contour map in 1: 1000 Scale)

The area was surveyed in detail by total station survey instrument with relevant software for preparation of geological map in the scale of 1:1000 showing the various formations, attitude of the deposits and the reserve position.

b. Geo-Physical Prospecting in the way of Vertical Electrical Sounding

Geophysical survey in the form of vertical electrical sounding (VES), was conducted in the lease area to assess the lateral variations, vertical in homogeneities and the sub surface geology with respect to the availability of resources and reserves of limestone deposits.

c. Geo-Chemical Prospecting

Samples were collected from the existing mining pit for NABL laboratory for testing and analysis and to find out the chemical and physical properties of the limestone mineral. It was inferred that the grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6.

Grade of Limestone:

The average analysis of Limestone as analyzed in the NABL laboratory is tabulated below and Chemical analysis report is enclosed as Annexure No.V.

LIM	IESTONE
Parameter	Composition %
Cao	41.74
Mgo	4.24
Fe ₂ O ₃	0.47
Al ₂ O ₃	0.92
SiO ₂	8.14
LOI	44 47

Table - 5

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations.

d. Technological Prospecting

Pitting:

Since the mine is active and the depth of the mine has already reached about maximum 16m, there is no additional formation of pits in the existing mine. The mining pit indicates the limestone deposit and direction of the band. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Refer Plate No.IV & V).

Trenching .

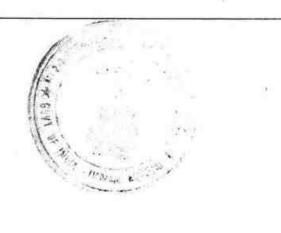
As discussed above, there is no requirement of trenching in the existing mine. The existing pits evidences sufficient data's required for the occurrence and distribution of limestone.

Drilling

The mine has reached maximum 16m depth. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-II and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area, is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Please refer Plate No.IV).

3.0 Reserves Assessment

The U.N.F.C consists of three-dimensional system with the following three axes.


- GEOLOGICAL Axis (G1- Detailed exploration)
- FEASIBILITY Axis (F1- Feasibility Study)
- ECONOMIC Axis (E1- Economics)

The reserves and resources under UNFC system of classification, is DESCRIBED IN DETAIL IN ANNEXURE 1A.

Side burden in m ³				Topsoil in m³ Side burden in	
	Quanti (m W (ty (t)) (m) m))	Volu Quanti L W (me ty (t) (m m m) m	Volu Quanti L W (me ty (t) (m m) m	H Volu Quanti L W (m me ty (t) (m m) (m³) ty (t)) (m) m	H Volu Quanti L W (m me ty (t) (m m) (m³) ty (t)) (m) m
2712		1356 2712	2712	1 1356 2712	1356 2712
22 3	22 3	11 22 3	- 11 22 3	11 22 3	11 22 3
8	8 15 3	8 15 3	- 8 15 3	8 15 3	8 15 3
	- 2 8 3	2 8 3	2 8 3	2 8 3	2 8 3
812		406 812	812	1 406 812	406 812
12	12 3	6 12 3	12 3	6 12 3	6 12 3
- 10 5 3 150	10 5 3	10 5 3	- 10 5 3	10 5 3	10 5 3
	•	•	•	•	
	•				
-	i		i		
3 4026		4026	4026	1 2013 4026	4026
+	*		*		
1830	•	1830	1830	1 915 1830	1830
	4	,	4	,	,
+		1			
1856		1856	1856	1 928 1856	1856
12 3	12 3	- 17 12 3	- 17 12 3	- 17 12 3	17 12 3
- 23 5 3 345	23 5 3	23 5 3	- 23 5 3	23 5 3	23 5 3
*		*		*	
	*	*	*	*	*
	(i)	(*)	a.	(*)	i i
				-	
	10				

				1:0.85					1:0.75
٠	3756	3494	2961	1881	505	768	3095	1011	85894
٠		,	•		i	i			
•	5635	5242	4441	2822	758	1151	4643	1516	128840
	%09	%09	%09	%09	%09	%09	%09	%09	
٠	ı				ij	î		•	
	9391	8736	7402	4703	1264	1919	7738	2527	214734
	3612	3360	2847	1809	486	738	2976	972	
٠	ဗ	က	3	3	က	3	3	3	
	98	80	73	67	54	41	32	18	
	14	14	13	6	က	9	31	18	
	2402	1638	811	70	•	(*)	æ		11310
r.	924	630	312	27			*		
	3	3	9	3	•	#.;	,	•	
	22	15	8	,	ť	r			
	14	14	13	6			×		
3164	3.	*	370			*			14400
1582		•	0		-	*	ŧ	•	
-			•	٠	•	i			
113	(*)		7.5%	•			٠	•	
14	·					¥.	r	٠	
_	=	=	2	>	5			×	Total
			XY-AB				2000	2010	
				2021-22					

* During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

99

5.0 Mining Method:

The method of mining is opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The pit geometry is designed according to the operating conditions of machinery. The drilling is carried out with jack hammer of small diameter (30-32 mm) at shallow depth is performed and blasted with class 2 sturry explosives with Charge 0.2 to 0.3kgs per hole. The imitation system is done with controlled blasting techniques under the supervisation of competent personnel's.

Drilling and Blasting:

Drilling Source:-

Jack hammer operated by the compressed air from tractor mounted compressor or Portable compressors.

Drilling parameters:-

Burden 0.7m spacing 0.8m depth 1.5m

Charge pattern:-

Charge 0.2 to 0.3kgs per hole. Stemming is 1/3 and explosives 2/3.The stemming material is moisture clay/pyroxenite mixed waste.

Initiation System:-

Bottom initiation system with safety fuses and ordinary or /plain electric detonators.

No of blast hole:

Number of the hole required per day is 80, based on the above said parameters.

Powder factor:

Powder factor is reported as 6 tonnes per kg of explosives.

Explosive required:

As stated above, the ROM requirements are 143 tons/day, based on the past experience the Powder factor is 6 tonnes/kg of explosive inclusive of blasting.

Hence the daily requirement of explosives is 143/6 = 24kg/day.

Secondary Blasting:

Secondary Blasting is not needed, since the primary blasting itself will take care of the required fragmentation of Waste rock and mineral body.

Storage of explosives:

No Portable magazine is available for storing explosives. Agreement is made with explosive authorized dealer for supply of explosives under Form-22 at mine site and blasting will be done by the qualified blaster. Hence question for storage of Explosives does not arise. Please refer annexure Nos.XII & XIIA.

Explosive Van:

The authorised explosive supplier will bring our requirements of explosive in his approved van and take away the balance explosive after blasting if any.

Mining:

There are two existing pits and its dimension are Pit-I [72m (max) x 40m (max) x 16m (d) (max)] and Pit-II [105m (max) x 43m (max) x 8m (d) (max)].

One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.

In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

The proposed average annual production ROM will be about 42,947 tennes with 300 working days in a year.

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

Afforestation is proposed in the 7.5m boundary barrier. Nearly 240 sqm/year is proposed for afforestation on the Southern boundary barrier of Block-I.

The existing mineral rejects, side burden and topsoil will be loaded manually into small tippers for transporting it to the backfilling area. Labours will be provided with mine helmet, safety shoes and respirator. During rainy seasons mine workings will be restricted in the top benches, the seepage water and rain water will be drained by 5HP portable pumps.

The working is planned in such a way that after complete exploitation of limestone, the excavation will be partially backfilled and partially allowed to collect rain water which will act as a temporary aquifer.

Haul roads will be conformed to statuary standards for smooth transport of mineral and waste.

The sequence of working proposed for next five years is indicated in plate no. V. If there is any change in the system of mining, the same will be intimated to Indian Bureau of Mines and the mining plan will be suitably modified for subsequent clearance and approval.

6.0 Mineral Beneficiation:

Except hand sorting of limestone mineral, no other process is involved.

7.0 Marketing Type:

It is not exported to any foreign countries. The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

The viability may vary, since the market of Limestone depends upon the grade and requirement of cement, which are governed by the market demand. The economically viability at present market conditions are tableted below.

	Table -7	
S,No.	Particulars	Cost of production Per ton
1.	Labour charges	Rs. 65
2.	Royalty paid to Mines & Geology	Rs.82.
3.	National Mineral Exploration Trust	RS.Z /
4.	Explosives expenses	Rs.25.
5.	Drilling expenses	WRS 20
6.	Transport from mine head to Stockyard (loading & unloading)	Rs.60
	Total	Rs.254
7.	Miscellaneous and over heads	Rs.28
	Total	Rs.282
8.	Sale value of the Limestone for commercial cement grade	Rs. 400

The cost of production is Rs. 282/ton and selling prize for cement grade is Rs.400/ton. Hence, the mining is economically viable at present market conditions.

8.0 INFRASTRUCTURE:

The lease area is about 3.0 km SW from Sirugudi village. The area is located at a distance of about 3.0km north from Kottampatty – Natham Road (SH-35). The area is located at a distance of about 10km west from Trichy – Madurai Road (NH-45B) (Please refer Key Map-IB for the location of the lease area).

-	-	5 1	1000	-
- 1	-	n	le-	. 12
- 13	a	u		.O

S.No	Particulars	Location	Direction	Approximate Distance in Km
1	Nearest Post office	Sirugudi	NE	3.0
2	Nearest Town(D.H)	Dindigul	NW	37
3	Nearest Police Station	Natham	SW	7.5
4	Nearest Govt. Hospital	Sirugudi	NE	3.0
5	Nearest School	Thethampatti	NE	1.0
6	Nearest DSP Office	Dindigul	NW	37
7	Nearest Railway Station	Dindigul	NW	36
8	Nearest Airport	Madurai	SW	50
9	Nearest Seaport	Tuticorin	S	166

Please refer Location plan (Plate No.I), Route Map (Plate No.IA), Key plan (Plate No.IB).

Drinking Water, rest shed, store room, public convenience and mines office are available in temporary semi permanent structure within the lease area. Please refer Plate No. VI.

9.0 ENVIRONMENTAL REQUIREMENTS:

Environmental impact assessment (EIA) studies/environmental(EMP)

Base Line Information:

The area is a plain topography. There is no Public Building, Places of Worship, National Monuments or Places of Archaeological interest near the area within 2km radius. The general drainage pattern of the area is dentritic pattern.

M/s. Global Lab and Consultancy Services., has carried out studies on base line data of air, water, noise level, ground vibration during the time of scheme period and the same information is discussed in the report. The monitoring will be assess all parameters and the same will be submitted to IBM for subsequent clearance and approval.

i) Land Use Pattern:

The mining lease area is an existing mine. The mining is by opencast manual method. The land use pattern in and around the mine have no adverse effect in the environment changes. An Environment Management Plan will be prepared if required.

ii) Water Regime:

The water is found to be potable. The water available in nearby village public bore wells is used for drinking and other domestic purpose for ages without any adverse health effects.

Water table is found at a depth of 40mts in summer and at 35mts in rainy seasons. Average annual rainfall is about 850mm during NE monsoon.

iii) Flora and Fauna:

The mining lease area is an existing mine. Only mining activity is being carried out in and around the area. In some areas agriculture is done with lift irrigation. The main crops being ground nut, paddy etc. are grown as seasonal crops. There is no Forest or Animal Sanctuaries near the area.

iv) Quality of Air:

Based on the baseline data generated and reported, a maximum SPM value of 59.3 microgram/m³ was recorded in the NE corner and it was well within the prescribed limits, a maximum Particle Matter (size<2.5 μ m) value is 25.3 μ g/m³ was recorded in NE Corner and it was well within the prescribed limits according to NAAQ standards issued by CPCB and maximum Particle Matter (size<10 μ m) value is 47.8 μ g/m³ was recorded in NE corner and it was well within the prescribed limits according to NAAQ standards issued by CPCB. SO₂ and NO₂ values are less than 17.5 μ g/m³ which is far below the permissible limit of 80 μ g/m³. The NH₃' O₃ and CO level in the ambient air samples was found to be below detecting level the same is shown below the table. Please Refer Annexure No. XIII.

Details of Air Quality survey:

Table-8A

SI.	Name to the Value of State of	Contractor	NAAQ		RESULTS	
NO.	TEST PARAMETER	UNITS	(2009)* LIMITS	SW Corner	NW Corner	NE Corner
1	Suspended particulate matter (SPM)	µg/m³	-	54.7	55.9	59.3
2	Particulate Matter(size < 2.5µm)	µg/m³	60	20.6	22.3	25.3
3	Particulate Matter (size <10µm)	µg/m³	100	41.4	43.8	47.8
4	Sulphur dioxide as SO ₂	μg/m³	80	4.2	4.7	5.9
5	Nitrogen Dioxide as NO ₂	µg/m³	80	15.5	17.1	17.1
6	Ammonia as NH ₃	µg/m³	180	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)
7	Ozone as O ₃	µg/m³	400	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)
8	*Carbon Monoxide as CO	mg/m ³	4.0	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)

v) Noise Level:

Loading operation, movement of tippers, operation of compressor is upto 68.2 dBA at the Northwest of the mine. The minimum levels recorded are 45.1dBA at the Northeastern side of the mine.

In general the noise levels in the buffer zone of mines where movement and other human activities are there, the minimum and maximum recorded values are 45.1 dBA and 68.2dBA respectively. The noise will be reduced by proper maintenance and placement of compressors away from the workers. Earmuffs are being provided to the workers to prevent them from noise environment, Hence the change in noise will be minimal well within the prescribed limits. The below readings was measured every 60 Minutes. Please Refer Annexure No. XIIIA.

Details of Noise level survey:

Table-8B

Location Name		Southwest corner of the Mine			Northwest corner of the Mine		
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leq dB(A)	Min dB(A)	Max dB(A)	Leg dB(A)
1	10:00	61.2	64.7	63.3	61.2	64.6	63.2
2	11:00	60.8	66.8	64.8	60.8	66.8	64.8
3	12:00	60.7	67.2	65.1	60.7	67.9	65.7
4	13:00	61.3	66.9	64.9	61.3	66.9	64.9
5	14:00	50.7	58.5	56.2	50.4	58.5	56.1
6	15:00	60.7	68.2	65.9	60.7	- 68.2 4	65.9
7	16:00	61.2	66.9	64.9	61.2	66.4	64.5
8	17:00	60.1	67.5	65.2	60.1	₩67.5°	65.2
			Mean dB(A)	63.8		y Mean dB(A)	63.7
imits:	as per The No	ise Pollution (Regulation &	Control)	19580	original co-co-com all s	2000

Limits as per The Noise Pollution (Regulation & Control)
Rules, 2010 of MoEFCC / CPCB (Industrial)

Day Time: 75 dB (A)

Ta	bl	0-	8	C
			•	•

Location Name		Southeast corner of the Mine			Northeast corner of the Mine		
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leq dB(A)	Min dB(A)	Max dB(A)	Leg dB(A)
1	10:00	51.1	58.7	56.4	51.3	58.9	56.6
2	11:00	50.9	58.6	56.3	50.5	58.7	56.3
3	12:00	50.3	57.3	55 1	50.3	57.7	55.4
4	13:00	50.8	58.4	56.1	50.5	58.2	55.9
5	14:00	45.3	54.2	51.7	45.1	54.7	52.1
6	15:00	45.9	54.8	52.3	45.2	54.5	51.9
7	16:00	50.3	58.6	56.2	50.1	58.4	55.9
8	17:00	50.7	58.9	56.5	50.7	58.2	55.9
Day Mean dB(A)				55.1	12.535	y Mean dB(A)	55.0
Limits a Rules, 2	s per The Noi: 2010 of MoEFC	se Pollution (I	Regulation & C	Control)	15	y Time : 75 dB	

Vi) Ground vibration:

A blast were conducted at source area from close distance and was found that the peak particle velocities were less than 1.2mm/sec. Reading was measured at a distance of 285m from the blasting site. During the blasting around 3 kg of explosives were blasted with a charge per hole of 0.3kg for 11 holes, the PPV value was measured as 1.1 mm/sec was recorded. Hence the change in vibration will be minimal well within the prescribed limits. Please Refer Annexure No. XIII B.

Details of Ground Vibration survey:

Table-8D

SI.No	DETAILS OF MONITORING	UNIT	RESULTS
1	Direction from blasting location		North
2	Distance	m	285
3	Bench Height	m	7
4	Diameter of Hole	mm	32
5	Depth of Hole	m	1.5
6	Number of Holes	741	11
7	Average Burden	m	1.0
8	Type of Explosive Used	(4)	Slurry
9	Maximum Charge / Day	kg	3
10	Peak Particle Velocity (PPV)	mm/s	1.1
	-Directorate General of Mines Safety um Permissible Limit of PPV	mm/s	10

vii). Monitoring locations and methodology:

Bore well water sample were collected from specified location to assess the water quality of the study area and analyzed for physical, chemical, bacteriological parameters as per Indian Standards IS 10500 specifications. Additional parameters like bio chemical oxygen demand, total suspended solids, oil and grease, ferric and ferrous ion were analyzed as per standard procedure given in IS: 3025 and standard method for examination of water and waste water ED 20, jointly published by APHA, WWA and WPCF.

Table-8E

Details of water sampling location

SI.No.	Location	Sample Quantity.	Type and sources
1. 9	Sirugudi Mine	2 litres	Bore well water

Bore well water

pH values varies 7.65 while turbidity ranged (em <0.50 Ft). Dissolved solids varied 1596 mg /l while total alkalinity ranged from 555 mg /l. Total hardness varied 574 mg/l. Chloried values varied from 300mg/l. Calcium values varied from 71 mg/l and magnesium values varied 96 mg/l. Sulphate values varied 155mg/l, nitrite values varied 0.1mg/l, Sodium values varied 150mg/l, Potassium values varied 21mg/l, CaCO3 values varied 4mg/l, Fluoride values varied 0.5mg/l and Silica (Sio.) values varied 32.5mg/l. while Iron, Ammoniacal Nitrogen, Total Kjeldhal Nitrogen, Boron, Free Besidual Chlorine, Manganese, Phosphate and Nitrate have been observed below detection limit. Escherichia Coli and Coliform Bacteria (per 100 ml) values have been observed as absent. Results reveal that the prescribed limit of IS 10500, is found that the ground water of the study area is fit for potable purposes as alternate source. No toxic effluent is generated from mine and hence there is no need for any treatment of water from mine. Please Refer Annexure No. XIII C.

viii) Climatic Conditions

The area exhibits a subtropical climate and the temperature goes upto 38°C in summer and falls down to 25°C in December – January. The wind direction is NE-SW and vice-versa.

ix) Human Settlement

Basic amenities and local administrative office are found in Sirugudi village which is about 3.0kms NE from the lease area. The villages depend upon seasonal vegetation and most of the people are employed. The details regarding nearest hamlets and their population along with distance and direction from the lease area is furnished below:

		Table - 9		
S.NO	Name of Hamlets	Distance in Km	Population	Direction
1	Sirugudi	3,0	950	Northeast
2	Samudrapatty	3.0	550	
3	Uralipatti	4.5	7-2-2-	Southeast
4	Avichchipatti		500	Southwest
	ritterreimpatti	3.5	450	West

x) Public Building, Places and Monuments:

There is no public building, places of worship or archaeological or national monuments near the area.

viii) Whether the lease area falls under notified water (Prevention & Control of Pollution) act of 1974

No. There is no toxic effluent discharge due to mining, hence the surface water or ground water is not contaminated in any means. Water is not used for any beneficiation, the water table in and around the area is 35m during rainy season which is observed from the nearby agricultural wells. Periodically water samples will be collected and analyzed as per statutory norms of IBM.

Environment impact assessments statement:

The opencast mining operation adopted here does not cause any impact to the forest or agricultural land. It does not produce any harmful effluent in the form of gas or liquid. The mined out pit will be allowed to collect the rain water which will act as a temporary aquifer, this temporary storage of water will act as an artificial recharge pond which will enhance the near ground water level and the static level of the nearby wells at the end of the Mining lease period, when the mine reaches its ultimate pit limit. No beneficiation is done for limestone mineral. As such, mining operation will not have any impact on environment both biotic and abiotic.

i) Existing Land Use Pattern

The mining lease area is an existing mine. The land use pattern in and around the mine have no adverse effect in the environment changes. The mining is by opencast method. Jackhammers with compressors are deployed for drilling. Manual labours are engaged for jackhammer drilling, sorting of waste and for loading the limestone into trucks. Blasting is carried out occasionally with controlled initiation system. An Environment Management Plan will be prepared if required.

WHILE SUPE

ii) Air Quality

Drilling, loading & unloading, other equipments, domestic fuel consumption, traffic emission are the main activities that have an impact of ambient air quality of the area. SPM, No_2 and So_2 are the major pollutants. The main source of air pollutant is SPM in mining activities. The generation of No_2 and So_2 results obtained are well within the prescribed limits. Dust is a particulate contaminant suspended in the atmosphere. Gravitational effects govern the upper size limit of dust particles. The distinction between the respirable and non-respirable dust is scientifically valid that it is clear that both sizes can impair lung functions when inhaled over a time. Use of diesel powered equipment for mining may produce emissions that are hazardous like hydro carbons, oxides of nitrogen and sulphur etc. which would cause respiratory disorders. Hence practice of protective equipments, dust suppressive techniques while drilling are undertaken to minimize the impacts. The generation of the dust will be suppressed by means of water sprinkler then and there by mechanical means. The generation of dust during the transportation is suppressed at source by means of dust extractors.

iii) Water Quality

The area is dry for most part of the year and receives rainfall during the NE monsoon period from October- December. There is no lake, reservoir or river nearby.

Water table is found at a depth of 40m during summer and 35m during rainy season. The present working has reached maximum 16m depth in the lease area. The maximum depth proposed for mining is 25m, hence the water table will not encounter during the course of mining activity. There will be seepage of ground water during the rainy season, the same will be pumped out with the help of 5HP motor pumps when there is a considerable accumulation of seepage water.

There will be no toxic effluent generated due to mining operation in the form of solid liquid or gas. The water will not be contaminated by the limestone mining by any means. Since the limestone occurrence is below 1.0m depth and there will be no problem to the ground water. The mine waste will not produce any toxic effluent. However, minor pollutant may occur during mining operation and it will be within the permissible limits. Periodically water samples will be collected and analyzed as per statutory norms of IBM.

iv) & v). Noise Level & Vibration Levels (Due To Blasting)

The mining operation does not produce any adverse environmental impacts. The mining operations involve with minimum shot hole drilling, having 1.5 meter depth, and controlled blasting technique will be adopted with class 2 slurry explosives. The noise is kept under control by undertaking abatement measures and implementing the same. Periodical noise monitoring was conducting and observed in the range of 45.1 to 68.2 dBA and the noise level are well and within the prescribed limits for residently areas. No noise is generated above 75 dBA sound levels. Ground vibration is minimined by using mille second delay detonators, controlled blasting and adopting a proper geometry of blast holes. Control measures like provision of noise proof cabine for operators, ear muffs, proper maintenance of machineries, green belt development will be undertaken that would minimize the adverse impacts that would arise out of mining operations. Plantation on periphery of the mines with species of tall evergreen trees, fleshy leaf plants would provide a protective mask and absorb noise. However, noise and ground vibration will be carried out as per the statutory standards.

vi) Water Regime

Water table is found at a depth of 40m in summer and at 35m in rainy seasons. Average annual rainfall is about 850mm during NE monsoon. There is no Nullah, lake, reservoir or river nearby. The water is found to be potable and good for drinking it is available in the nearby community wells and also one borehole will be proposed if required within the site area.

vii) Socio-economics

The mining operation will create awareness of the importance of minerals and of their value in the market. It will create an urge to search and prospect for the same or different minerals in the other areas. Mining, whether it is small or big, it is an avenue of employment. It will improve the standard of living and will change the life style of village habitants. Regular medical checkup for the workers will be conducted as per statutory norms. Workers will be provided with safety implements and will be well trained in VT programs to observe and use them.

viii) Public Buildings, Places and Historical Monuments

There are no public buildings or places of historical monuments near the area.

ENVIRONMENT MANAGEMENT PLAN:

Temporary storage and utilization of topsoil

The topsoil is red gravelly earth. It occurs to a depth of 1.0m. About 14,400 Ts of top soil that would be generated during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the filled area.

Year wise proposal for reclamation of land affected by mining activities during and at the end of mining lease:

Mining operation during the present Plan period is proposed for an optimum depth of maximum 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II. The mined out pit will be allowed to collect the rain water which will act as a temporary aquifer, this temporary storage of water will act as an artificial recharge pond which will enhance the near ground water level and the static level of the nearby wells at the end of the Mining lease period, when the mine reaches its ultimate pit limit.

Programme of afforestation:

During the first five years it is proposed to plant 15 neem saplings in the Southern side of the Block-I. The plantation is shown in the table below.

			Table-10	100	14		
Year	Area to be covered (sq.m)	No of saplings	Type of saplings	Location	Space between saplings	Surviva	
2017-18	240	15	Neem	13	3mx3m	70%	
2018-19	240	15		Southern side of ,		3mx3m	70%
2019-20	240	15			3my 3m	70%	
2020-21	240	15			3mx3m	70%	
2021-22	240	15	1	the Block-I	3mx3m	70%	

Stabilization and vegetation of dumps:

The dump will be stabilized in such a manner that the slopes are always maintained below 30°. These dumps will be cleared and utilized for construction of bunds around the mined out pits at the end of the life of the mine when the mine reaches its ultimate pit limit. Afforestation is proposed in the 7.5m boundary barrier on the Southern side of the Block-II. Nearly 1200 sqm is proposed for afforestation during the present plan period.

Protective Measures for Air quality/dust suppression:

Activities that pollute air are drilling, blasting, loading & unloading and transportation equipments. The generation of the dust will be suppressed by means of water sprinkler then and there by mechanical means. The generation of dust during the course of drilling is suppressed at source by means of wet drilling or dust extractors. The periodical environmental monitoring test is proposed to be carried out as per statutory norms of IBM.

Proposed Mitigation measures to control air quality within the limits:

- Use of dust collectors in drilling and bag filters at crusher are being used as dust control measures.
- ii. Well designed blast by effective stemming and use of millisecond delay detonators-every blast shall be properly designed to see that the optimum breakage occurs without generating fines.
- Avoiding blasting during high wind periods where the fine dust is carried away easily affecting the ambient air quality of villages enroute.
- Development of green barriers along the roads, ultimate pit limit along the lease boundary, waste dumps and around statutory buildings.
- v. Mobile equipments.

Dust emanated due to the movement of equipments is generally suppressed by the surfacing of internal roads, Dust suppression by water sprays and rows of trees would be planted.

Treatment and disposal of waste from mine:

Since mining operation does not generate any harmful waste, question of treatment does not arise.

Measures for Adverse Effects of Mining on Water Regime:

The water table in and around the area is about 35m below the ground level. The present working has reached maximum 25m depth. The maximum depth proposed for mining is about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II, hence the water table will not encounter during the course of mining activity.

There will be seepage of ground water during the rainy season; the same will be pumped out with the help of 5HP motor pumps when there is a considerable accumulation of seepage water. Mining operation or mineral rejects does not produce any harmful effluent in the form of liquid, which will affect the water regime.

Measures For Minimizing Adverse Effects On Water Regime Does not arise.

Protective Measures For Ground Vibrations/Air Blast Caused By Blasting:

Since it is a very small open cast manual mine, the mining operation are proposed to be carried out by manual opencast method. Jackhammer and tractor mounted compressors are deployed for development activities. The pit geometry is designed according to the operating conditions of machinery. The drilling of hole is carried out with jack hammer and small diameter (30-32 mm) at shallow depth and blasted with class 2 slurry explosives with Charge 0.2 to 0.3kgs per hole. The initiation system is done with controlled blasting techniques under the supervisation of competent personnel's. During blasting minimal vibration will be created and it will be within permissible limits.

Proposed Mitigation measures to control Noise and Ground vibration within the limits:

- a) Row of trees with thick flora will be planned to act as acoustic barriers along the roadside and mine periphery.
- b) Proper preventive maintenance schedules will be drawn and implemented for the machinery to eliminate noise as far as possible.
- In order to reduce vibration, machines will be kept in balanced and properly aligned conditions.
- Ear muffs/ear plugs will be provided to workers at noise prone zone.
- e) A noise data maintained for all noise prone activities and noise exposure records of the workers.
- f) Blasting noise reduced by using optimum burden, charge and use of milli-second delay detonators with initiation of charges by sequential blasting machine.
- g) Stemming column more than the burden to avoid blown out shots and all blast carefully planned and supervised.

Measures For Protecting Historical Monuments

There are no public buildings or places of historical monuments near the area. Hence protecting measures does not arise.

Socio economic benefits arising out of mining.

Since it is an open cast mining, it is not applicable. No adverse changes are visualized on the traditional way on the habitants in the nearby villages.

Monitoring schedules for different environmental components:

Periodical Environment Monitoring, at least for one season, will be carried out for the following

a. Air

Weather parameters like Temperature, Wind Direction, Relative Humidity and Rainfall will be monitored regularly.

b. Noise

Using sound pressure level meter, the sound level will be monitored once in a month to check that it is within the prescribed limits and efforts will be taken to keep it as low as possible.

c. Water

There is no effluent generation in the form of liquid or solid from the mines. There is no river, reservoir, lake and stream near the area.

d. Land

Since mineral rejects and side burden are the solid-waste generated and that too will be utilized for backfilling purposes during the end of the life of the mine when the mine reaches its ultimate pit limit and the land will not get degraded at all. Once in a season samples will be collected and analyzed for monitoring. Afforestation will be carried out as discussed earlier. The green belt development will be closely monitored using parameters like species of trees, soil quality, growth rate etc.

e. Monitoring Cell

Environmental monitoring of Air Quality, Air pollution source Water quality, Impact of noise, Impact of soil, Impact on flora and fauna, Degradation of land, Impact on health, safety and solid waste, Rehabilitation and Afforestation, Socio-economic factors etc., will be monitored by the Mines Manager/permit manager. He will keep a close watch on the performance of the pollution control equipment, emissions from the source and the quality of surrounding environment in accordance with the monitoring programme. He will also be responsible for the development and maintenance of green

10.0 Legal Factors:

The lease area is a patta land and it is not covered under forest of any category. Therefore, the lessee has surface rights over the lease area.

Tribal issues, national monuments, etc,

There is no Tribal Issues, Public Building, Places of Worship, National Monuments or Places of Archaeological interest near the area.

11.0. Economic Evaluation:

The cost of land/Ha. is Rs. 2,00,000 X 2.53.0 ha. = 5,06,000/

The total cost production/ton is Rs. 282.

Total Mineral reserves (proved 111) @ 60% recovery will 1,28,840 To

The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints prubber. PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the rearby lime based industries which are located within a radius of 35Km ham the man te. Limestone is being proposed for exploitation and transportation by the trucks. Depending upon the market demand for cement, the limestone mine is economically viable at present market conditions.

Signature of the Qualified Person

Dr. P. THANGARAJU, M.Sc., Ph.D.,

Place: Salem

Date: 08.12.2017

RESOURCES AND RESERVES BY UNFO SYSTEM

THE RESERVES AND RESOURCES WERE ASSESSED BASED ON THE UNITED NATIONS FRAME WORK CLASSIFICATIONS AS AMENDED IN THE MINERAL CONSERVATION AND DEVELOPMENT RULES (SECOND AMENDMENT)RULE 2003 AND IN EXERCISE OF THE POWERS CONFERRED BY SECTION 18 OF THE MINES AND MINERALS (DEVELOPMENT AND REGULATIONS) ACT 1957(67 OF 1957) AND SUBSEQUENTLY TO THE CCOM CIRCULAR NO.4 2009 DATED 21.10.2009

- In order to implement UNFC System, Mineral Deposits are classified into SEVEN types and accordingly exploration norms/field guidance have been formulated to assign different level of Geological codes.
- The Seven types of deposit classification proposed in UNFC is intended to assist in finding reasonable degree of detail of exploration of mineral deposits by providing clear definitions of individual categories of reserves/resources according to the criteria accepted.

I. STRATIFORM, STRATA BOUND AND TABULAR DEPOSITS OF REGULAR HABIT

Characteristics of deposits

Of irregular habit and/or with faults of large measures, shear zones, solution cavities, irregular erosion and weathering (oxidation) features, partings and bifurcations, igneous intrusive, facies changes, etc.

Principal kinds of minerals

Coal seams, lignite beds, iron ore formations and cappings, manganese horizons in Sedimentary limestone and **meta-sedimentary limestone** sequences, thick bauxite cappings, regional chromite lodes in large ultramtics, **limestone**, dolomite, barites, gypsum, evaporates including polash and saltbelts, chalk and fireclay, fullers earth, gold in banded iron formation, platinum group of elements in chromite or in chromite bearing rocks and molybdenum in shear – controlled zones.

UNFC IN A NUTSHELL

UNFC designed as an umbrella system, which is internationally applicable and acceptable to harmonize existing different terminologies and definitions by using 3 Digit numerical codification system. This has resulted improvements in the comparability of mineral statistics and ultimately facilitate National Mineral Inventory, international trade and provide efficient link between market economy.

The U.N.F.C consists of three-dimensional system with the following three axes.

- GEOLOGICAL Axis (G1- Detailed exploration)
- FEASIBILITY Axis (F1- Feasibility Study)
- ECONOMIC Axis (E1- Economics)

GEOLOGICAL AXIS (G1)

(Detailed Exploration)

Initially, the mining lease for limestone was granted to Thiru.S.Asalalangaram, Dindigul district vide G.O. 3(D).No. 91, dated: 13.06.1997 for a period of 20 years from 27.11.1997 to 26.11.2017 and the lease deed was executed on 27.11.1997.

The Mining plan was approved by Indian Bureau of Mines, vide letter no. TN/D.A/MP/LST-963-MDS, dated: 07.08.1997.

The first scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-283-MDS, dated: 14.12.2005.

The second scheme of mining was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-757-MDS, dated: 20.02.2013.

The third scheme of mining [2014-15 to 2017-18 (upto 26.11.2017)] was approved by Indian Bureau of Mines, vide letter no. TN/DGL/LST/MS-1103.MDS, dated: 04.08.2014 and it is valid upto 26.11.2017 and a Copy of prior SOM approval letter of the same is enclosed as Annexure No.X.

Then the lease was transferred to M/s. Sivam Mines., 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District vide G.O.(D) No.171 Inds (MMA.1) dept., dated 03.11.2014. (Please refer Annexure No.II & VI).

As per MMDR Amendment Act 2015, the validity of lease period is extended upto 26.11.2047.

Hence, this Review of Mining Plan along with Progressive Mine Closure Plan [2017-18 (from 27.11.2017) to 2021-22] is being prepared now & submitted under Rule 17(1) of MCR, 2016 and Rule 23 of MCDR, 2017.

The lessee with his consultant geological team carried out the detailed exploration to ascertain the reserves and resources and all the parameters required under UNFC System.

Geological survey:

(i) Mapping a) coal - 1:5000 b) For other minerals - 1:1000 or larger scale; Geological Mapping (1:1000 Scale)

The geological mapping deals with surface geology; existing features of vegetation cover, soil cover etc. such as study of the detailed geological mapping in the scale of 1:1,000 has been prepared.

ii) Topography:

The Toposheet map is correlated with the mapping carried out by the lessee's consultant geological team in the local map scale 1:1000 with help of total station survey and micro station software, to prepare the Topographical cum geological plan of Sirugudi Limestone Mine (S.F. Nos: 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5, 2.53.0Ha.) Natham Taluk and Dindigul District. This map reflects the topographical features, geological features and surface features of the area such as surface exposures, structural features, existing pit, exploratory boreholes, contour of the area. Please refer plate No.III (Surface plan) and plate No. IV (Geological plan and sections).

Geochemical survey:

Detailed litho geochemical analysis.

The lessee collected samples from the existing mining pit, drilled boreholes and after coning and quartering one representative sample was sent to NABL laboratory for testing and analysis to find out the chemical and physical properties of the limestone mineral.

Grade of Limestone:

The grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6. Please refer annexure –V. The average analysis of Limestone as analyzed in the NABL laboratory is tabulated below:

Table - 1

LIMESTONE				
Parameter Composition %				
Cao	41.74			
Mgo	4.24			
Fe ₂ O ₃	0.47			
Al ₂ O ₃	0.92			
SiO ₂	8.14			
LOI	44.47			

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations.

Geophysical survey:

Geophysical prospecting in the form of vertical electrical sounding (VES), was conducted in the lease area to ascertain the lateral variations, vertical in homogeneities and the sub surface geology with respect to the availability of resources and reserves of limestone deposits. Based on the results obtain by the geophysical prospecting i.e. electric resistivity testing and the depth persistence of each station were formulated with the help of total station survey.

4. Technological:

Pitting:

Since the mine is active and the depth of the mine has already reached about maximum 16m, there is no additional formation of pits in the existing mine. The mining pit indicates the limestone deposit and direction of the band. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Refer Plate No.IV & V).

Trenching

As discussed above, there is no requirement of trenching in the existing mine. The existing pits evidences sufficient data's required for the occurrence and distribution of limestone.

Drilling

The mine has reached maximum 16m depth. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Please refer Plate No.IV).

Sampling- Core and sludge, pits samples for grade analysis of peneficiation, bulk samples for laboratory scale / pilot plant investigation;
SAMPLING TECHNIQUE:

Sampling is done to ascertain the grade of mineral values that vary in proportion from one place to another. One single sample taken from one part of the ore body generally does not provide a representative picture of the grade of the entire mineral deposits. A large number of well-spaced samples are required in ascertaining the average grade with an acceptable amount of accuracy.

Normally, no amount of sampling will give a truly representative picture of the mineral deposits. There is always some degree of error between the actual value and the value computed from the samples.

The aim of sampling is only to reduce the error to the minimum possible level.

In addition to know the grade of the mineral, sampling also reveals the pattern of mineralization within the ore body. A systematic mine sampling program can demarcate the richer and leaner mineral deposits. Similarly, the limits of mineralization towards both the hanging and footwall contacts can also be precisely defined by careful sampling.

Sampling is also necessary to determine the processing and extractability characteristics of the mineral. For this purpose, bulk/grab representative/simulated samples representing the quality and type of material to be treated is collected.

More than 10 samplings were collected from the existing pit and drilled boreholes to ascertain the quality of Limestone. All the samples collected from the existing pit and drilled boreholes had been packed carefully and taken to the investigation site of office.

These samples are gathered to for (Coning and Quartering which is as follows).

First the material is thoroughly mixed, then it is heaped by pouring the material at one single point which will ultimately be the center of the heap for this it will be helpful if a tall peg is fixed into the plate on which sampling is done, so that the material is always poured down all round the top of the peg to obtain uniform distribution when all the material is heaped top of the cone in flattened gently by a plate. Then the top is divided into four quarters as shown. Now, the opposite quarters are scooped out and rejected. The remaining portion represents approximately one-half of the original samples. (A basic technique used for sampling).

Again, it is passed through control sorting, mixing and the sample sent to the NABL laboratory for calculating the parameters required for mineral assemblages. This sampling technique was adopted to find out the concentration of calcium carbonate in the sedimentary limestone deposit.

Grade of Limestone

Composite samples were taken from the mining lease area and after coning and quartering one representative sample were analyzed in the NABL laboratory.

The grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6. Please refer annexure –V. The average analysis of Limestone as analyzed in the NABL laboratory is tabulated below:

Table - 2

LIMESTONE					
Parameter Composition %					
Cao	41.74				
Mgo	4.24				
Fe ₂ O ₃	0.47				
Al ₂ O ₃	0.92				
SiO ₂	8.14				
LOI	44.47				

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations.

Beneficiation:

No beneficiation of ore is necessary for this mine.

Pilot plant:

No captive plant. The lessee has local market and utilizes for domestic purpose

(v)Collection of abiotic geo- environmental data - its further refining and analysis

The lessee with his consulting geological team carried out the abiotic environmental data like collecting of flora and identify the fauna around the mining lease area, besides also conducting the geo hydrological studies, water analysis, air quality monitoring etc., which is required for the environmental management plan and environmental impact assessment (This chapter is discuss in detail in feasibility report which is enclosed annexure – I).

Petrographic:

Study of petrographic characters of rock and study of useful minerals

The area forms part of Archean complex of peninsular gneiss. The geological formations consist of Biotite-Schist and Crystalline limestone intruded by younger granites. The Biotite – Schist and Crystalline Limestone represent ancient calcareous sediments, which have suffered repeated metamorphism, intrusion by granites and folding during Archean. The regional trend of the band in the area is N60°E – S60°W with Dip 85° SE. The limestone in Sirugudi is a band, which is fine-grained crystalline limestone, and is mainly made-up of aggregates of calcite with sub – ordinate amount of Limestone and silicate minerals. The depositional sequence of the crystalline limestone is very well inferred by the adjacent limestone mine.

6. <u>Geostatistical analysis of borehole data thickness of ore waste</u> encountered in holes, assay values of samples if considered necessary.

More than 10 samplings were collected in the existing mining pit and drilled boreholes to ascertain the quality and grade of Limestone. The mine has reached maximum 16m depth. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Please refer Plate No.IV).

FEASIBILITY AXIS

F1

(Feasibility Study)

Geology:

Geology of area and project, detailed exploration, closed spaced drilling; ore body modeling, bulk samples for beneficiation, geotechnical and ground water & surface waters studies.

Geology of the area

The area comprises crystalline Archaean rocks of deep seated metamorphic origin which include mainly calc-gneiss, cordierite-sillimanite Gneiss, Biotite griess and granite gneiss. The gneisses appear to have resulted by migratizations of the pre existing sediments by intrusive of high grade metamorphism viz. High temperatures and pressures. In addition, younger intrusive such as granites, pegmatites and quartz veins are found within the limestone. The above said different types of metamorphosed rocks occur in the form of long, narrow, parallel bands which are traceable over a long distance. Limestone, band is noticed with prominent outcrops.

The area was surveyed in detail to prepare a Geological map in the scale of 1:1000 showing the various formations and attitude of the deposit. It is inferred that the Limestone mineral is of cement grade and in form Band running N60°E – S60°W with dipping 85° SE. Reddish soil cover upto a depth in about 1.0m. Recovery of minerals is estimated as 60% of the total excavation of the ore body. The recovery percentage is based on the knowledge gained from the present mine workings and adjacent working mine in this region, by the field tests carried out in the lease area and analysis done in NABL Laboratories.

The general geological sequence of the limestone deposits is as follows:

Order of Super position:

AGE

ROCKFORMATION

Recent

Reddish Soil

Archaean

Crystalline Limestone

Calc-gneiss.

The physical attitude of the limestone band is demarked as follows:

Block-I

Strike length (m)

: 417

Width (m)

: 97 (avg)

Depth (m) Proved

: 25m with an average of 1m topsoil

Strike direction

: N60°E - S60°W

Dip amount and direction

: 85° SE.

The deposit is covered by 1.0m thickness of topsoil followed by 24m thickness of Limestone bed.

Block-II

Strike length (m)

: 133

Width (m)

: 63 (avg)

Depth (m) Proved

: 16m with an average of 1m topsoil

Strike direction

: N60°E - S60°W

Dip amount and direction

: 85° SE.

The deposit is covered by 1.0m thickness of topsoil followed by 15m thickness of Limestone bed.

Grade of Limestone

Composite samples were taken from the mining lease area and after coning and quartering one representative sample were analyzed in the NABL laboratory.

The grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6. The average analysis of Limestone as analyzed in the NABL laboratory is tabulated below:

Table - 3

LIMESTONE			
Parameter	Composition %		
Cao	41.74		
Mgo	4.24		
Fe ₂ O ₃	0.47		
Al ₂ O ₃	0.92		
SiO ₂	8.14		
LOI	44.47		

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO3 is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations.

Ground water & surface waters studies:

The area is dry for most part of the year and receives rainfall during the NE monsoon period from October- December. There are no major monsoon river courses in the area. Water table is found at a depth of 40m during summer and 35m depth during rainy season and the maximum depth proposed for mining is 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II. During the rainy season, which would not pose any problem for mining operations.

Suitable earth bunds will be formed around the area to protect the entry of rain water from outside. A small portable 5 HP diesel pump will be maintained and kept ready for de-watering the mine after the monsoon season period and as when it's required.

There will be no toxic effluent generated due to mining operation in the form of solid liquid or gas. The water will not be contaminated by the Limestone mining by any means. Since the Limestone occurrence is below 1.0m and there will be no problem to the ground water. The mine waste will not produce any toxic effluent. But, minor pollutant may occur during the mining operation and it will be within the permissible limits. Periodically water samples will be collected and analyzed as per statutory norms of IBM.

Mining: 2.

Methods with special emphasis on detailed geotechnical test work/site characterization studies, safely measures; mining plan, mine recoveries and efficiency with variability due to structural complexities like close folds and faults; detailed estimates of manpower.

The method of mining is opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The pit geometry is designed according to the operating conditions of machinery. The drilling is carried out with jack hammer of small diameter (30-32 mm) at shallow depth is performed and blasted with class 2 slurry explosives with Charge 0.2 to 0.3kgs per hole. The imitation system is done with controlled blasting techniques under the supervisation of competent personnel's.

Drilling and Blasting:

Drilling Source:-

Jack hammer operated by the compressed air from tractor mounted compressor or Portable compressors.

Drilling parameters:-

Burden 0.7m spacing 0.8m depth 1.5m

Charge pattern:-

Charge 0.2 to 0.3kgs per hole. Stemming is 1/3 and explosives 2/3.The stemming material is moisture clay/pyroxenite mixed waste.

Initiation System:-

Bottom initiation system with safety fuses and ordinary or /plain electric detonators.

No of blast hole:

Number of the hole required per day is 80, based on the above said parameters.

Powder factor:

Powder factor is reported as 6 tonnes per kg of explosives.

Explosive required:

As stated above, the ROM requirements are 143 tons/day, based on the past experience the Powder factor is 6 tonnes/kg of explosive inclusive of blasting.

Hence the daily requirement of explosives is 143/6 = 24kg/day.

Secondary Blasting:

Secondary Blasting is not needed, since the primary blasting itself will take care of the required fragmentation of Waste rock and mineral body.

Storage of explosives:

No Portable magazine is available for storing explosives. Agreement is made with explosive authorized dealer for supply of explosives under Form-22 at mine site and blasting will be done by the qualified blaster. Hence question for storage of Explosives does not arise. Please refer annexure Nos.XII & XIIA.

Explosive Van:

The authorised explosive supplier will bring our requirements of explosive in his approved van and take away the balance explosive after blasting if any.

Mining:

There are two existing pits and its dimension are Pit-I [72m (max) \times 40m (max) \times 16m (d) (max)] and Pit-II [105m (max) \times 43m (max) \times 8m (d) (max)].

One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.

In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

The proposed average annual production ROM will be about 42,947 tonnes with 300 working days in a year.

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block -II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

Afforestation is proposed in the 7.5m boundary barrier. Nearly 240 sqm/year is proposed for afforestation on the Southern boundary barrier of Block-I.

The existing mineral rejects, side burden and topsoil will be loaded manually into small tippers for transporting it to the backfilling area. Labours will be provided with mine helmet, safety shoes and respirator. During rainy seasons mine workings will be restricted in the top benches, the seepage water and rain water will be drained by 5HP portable pumps.

The working is planned in such a way that after complete exploitation of limestone, the excavation will be partially backfilled and partially allowed to collect rain water which will act as a temporary aquifer.

Haul roads will be conformed to statuary standards for smooth transport of mineral and waste.

The sequence of working proposed for next five years is indicated in plate no. V. If there is any change in the system of mining, the same will be intimated to Indian Bureau of Mines and the mining plan will be suitably modified for subsequent clearance and approval.

3. Environmental:

(i) <u>Environmental impact assessment (EIA) studies/environmental(EMP) including socio-economic impacts;</u>

Please refer para 9.0 in Annexure No.I.

(ii) Rehabilitation of project affected persons, and waste disposal/ reclaimation ; detailed land use data.

Topsoil:-

The topsoil is red gravelly earth. It occurs to a depth of 1.0m. About 14,400 Ts of top soil that would be generated during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

Mined Waste:

There is no sub grade mineral in the mine. The anticipated waste during the present plan period is about 97,204 tonnes (40% mineral rejects + side burden).

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease are after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the renumn proposed period of the present plan period will be removed and proposed to be the the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

This aspect has been considered and accordingly Conceptual Mining Plan is drawn.

Proposed generation of waste for next five years [2017-18 (from 27.11.2017) to 2021-22]

			Table-4	<u> </u>		
Year	ROM(Ts)	Mineral Rejects @ 40% (Ts)	Side burden (Ts)	Total Waste (Mineral Rejects @ 40% + Side burden) Ts	Topsoil (Ts)	Ore waste ratio
2017-18	21122	8449	3900	12349	3524	1;0.97
2018-19	48539	19416		19416	4026	1;0.67
2019-20	48508	19403	2488	21891	3686	1:0.75
2020-21	52884	21154		21154		1:0.67
2021-22	43680	17472	4922	22394	3164	1;0.85
Total	214734	85894	11310	97204	14400	1;0.75

The quantities of generation of wastes at the end of the mine life of the mine

		Table -5		
Category	ROM (Ts)	Mineral Rejects @40% (Ts)	Side burden (Ts)	Topsoil (Ts)
Proved 111	214734	85894	11310	15828

Land chosen for disposal of waste:

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II. The generation of mineral rejects and side burden during present plan period will be backfill on the Block-II of the lease area. Please refer Plate Nos. VI, VII and VIII.

Manner of disposal of waste:

The waste will be loaded manually into tippers and occasionally by loaders and dumped in respective places ear-marked for the same. The dumps will be given steps if necessary.

Stabilization of dumps

 Periodically sprinkling/spraying water on roads leading from working face to waste dumps, so that these areas are always kept wet to prevent emission of air borne dust.

- ii) The waste dumps has been maintained at the angle of 30⁰ slope to prevent sliding.
- iii) The height and width of the waste dump will be maintained.

The size of the dumps for next five years will be as follows:

Table-6

Dimension of the waste dumps during the present plan period

Existing Mineral reject Temporary dump (Rehandle)	60m (max) X 10m (max) X 7m(n) (max) Northern side
Proposed backfilling	63m X 45m X 16m(h) Block-II

Table - 7

Dimensions of the waste dumps during the end of the life of the mine

Existing Mineral reject Temporary dump (Rehandle)	60m (max) X 10m (max) X 7m(h) (max)	Northern side of Block-II	
Proposed backfilling	63m X 45m X 16m(h)	Block-II	

There is a proposal for backfilling the mined out pit in this plan period. Backfilling will be carried out at the present plan period when the mine reaches its ultimate pit limit. The waste does not consists any toxic substance in the form of solid, liquid and gas. The waste is only the contamination of secondary minerals in the limestone mineral which cannot be separated.

4. Processing:

Details of proven pilot plant scale/ industrial scale investigations, appended with layout design, equipment list fuel/power consumption, specification for product/ by-product, disposal of tailings, effluent and future remedical measures.

No mineral processing is proposed during the mining plan period. The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

5. Infrastructure and services and construction activities: Full details.

The lease area is about 3.0 km SW from Sirugudi. The area is located at a distance of about 3.0km north from Kottampatty – Natham Road (SH-35). The area is located at a distance of about 10km west from Trichy – Madurai Road (NH-45B) (Please refer Key Map-IB for the location of the lease area).

Table-8

S.No	Particulars	Location	Direction	Approximate Distance in Km
1	Nearest Post office	Sirugudi	NE	3.0
2	Nearest Town(D.H)	Dindigul	NW	37
3	Nearest Police Station	Natham	SW	7.5
4	Nearest Govt, Hospital	Sirugudi	NE	3.0
5	Nearest School	Thethampatti	NE	1.0
6	Nearest DSP Office	Dindigul	NW	37
7	Nearest Railway Station	Dindigul	NW	36
8	Nearest Airport	Madurai	sw	50
9	Nearest Seaport	Tuticorin	S	166

Please refer Location plan (Plate No.I), Route Map (Plate No.IA), Key plan (Plate No.IB)
Drinking Water, rest shed, store room, public convenience and mines office are
available in temporary semi permanent structure within the lease area. Please refer Plate
No. VI.

6. Costing:

Detailed breakup of capital and operating costs details of working capital

Since it is an opencast mining, jack hammers, compressors, drill rods, hoses, spades, axes, showels and semi skilled labours are the only capital investment which is around Rs.3,00,000/- and the working capital may not exceed Rs. 5,00,000/-.

7. Marketing:

Overview, specific market aspects.

The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, RVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

8. Economic viability:

Cash flow forecast, inflation effects, sensitivity studies.

The viability may vary, since the market of Limestone depends upon the grade and requirement of cement, which are governed by the market demand. The economically viability at present market conditions are tabulated below:

Table -9

S.No.	Particulars	Cost of production Per ton
1.	Labour charges	Rs. 65
2.	Royalty paid to Mines & Geology	Rs.82
3.	National Mineral Exploration Trust	Rs.2
4.	Explosives expenses	Rs.25
5.	Drilling expenses	Rs. 20
6.	Transport from mine head to Stockyard (loading & unloading)	Rs.60
	Total	Rs.254
7.	Miscellaneous and over heads	Rs.28
	Total	Rs.282
8.	Sale value of the Limestone for commercial cement grade	Rs. 400

The cost of production is Rs. 282/ton and selling prize for cement grade is Rs.400/ton. Hence, the mining is economically viable at present market conditions.

Other factors:

Statutory provisions (labour, land, mining, taxation etc).

Since the mining lease area falls on the backward village of Dindigul district were the agricultural activities mainly depend upon the rainfall plenty of labours and land is available. The mine is proposed to carried out by simple opencast manual method. The taxes for the wages and mineral will be paid as per government norms.

ECONOMIC AXIS

E1

(Economic)

Detailed exploration.

In the previous approved scheme period [2014-15 to 2017-18 (upto 26.11.2017)] nine core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-I & II (Block-1, Western Band) and four wagon drills in working pit and two core drills to virgin area of 100 mm dia. To a depth of about 20m from working pit-III (Block-2, Eastern Band) general ground level as drilling at particular 50m grid interval for confirm the depth continuity of the limestone. This wagon and core bore hole will be made after first year (2014-15) was proposed, but nine boreholes upto 25.0m depth was carried out by the lessee during the previous Scheme period, to find out the grade of limestone, lateral variations and vertical in homogeneities of the limestone formation and depth persistence. The lease area comprises of two Blocks – Block-I & Block-II. At Present there are two existing pit and its dimension are given below.

Existing Pit Geometry:

Table-10

Pit	Length In Meter	Width In Meter	Depth In Meter	Area In Ha.	Dip°	Strike	
1	72 (max)	40 (max)	16 (max)	1211112 - 112211		- Direct Annabation	30.000.000.000.000.000.000
II	105 (max)	43 (max)	8 (max) 0.73.9	85°SE	N60°E- S60°W		

With the datas analyzed from the drilled boreholes and existing pit, the deposit has been proved upto 25m depth with an average of 1m topsoil. The boreholes logging datas are furnished below.

Litho log of drilled boreholes:

Table-11

No. of bore holes	Latitude	Longitude	Depth of boreholes (m)	Depth of deposition of Limestone (RL)	Strata
DBH-1	10° 14' 31.34"N	78° 17' 39.02"E	12.3	200.3m-188.0m	Limestone
DBH-2	10° 14' 31.04"N	78° 17' 37.77"E	25.1	213.1m-212.3m	Topsoil
MEMOR	10 17 01.07 11	10 II STATE	25.1	212.3m-188.0m	Limestone
DBH-3	10° 14' 30.62"N	78° 17' 39.64"E	25.0	213.0m-211.9m	Topsoil
	10 14 30.02 14			211.9m-188.0m	Limestone
DBH-4	10° 14' 30.36"N	78° 17' 40.87"E	25.2	213.2m-211.8m	Topsoil
Partition.				211.8m-188.0m	Limestone
DBH-5	10° 14' 29.45"N	78° 17' 39.23"E	25.1	213.1m-212.2m	Topsoil
	15 11 20:10 11			212.2m-188.0m	Limestone
DBH-6	10° 14' 30.12"N	78° 17' 37.05"E	25.2	213.2m-212.1m	Topsoil
(0.500 to 20.50)	10 11.00112 11			212.1m-188.0m	Limestone
DBH-7	10° 14' 28.82"N 78° 17' 36.75"E	78° 17' 36 75"E	9.0	213.0m-211.8m	Topsoil
-		9.0	211.8m-204.0m	Granite-Gneiss	
DBH-8	10° 14' 29.62"N	78° 17' 45.27"E	8.1	208.1m-200.0m	Limestone
DBH-9	10° 14' 31.48"N	78° 17' 46.02"E	8.9	208.9m-200.0m	Limestone

Locations of drilled boreholes are marked in the geological plan and sections and year wise plan and sections (Refer Plate No.IV & V). Copy of Form-I and Form-J is enclosed as annexure no.IX.

The lessee with his consultant geological team thoroughly studied the area and demarcated the attitude of the band. It is inferred that the limestone is cement grade and in the form of band running from $N60^{0}E-S60^{0}W$ direction with dipping $85^{0}SE$.

Regular sampling and analysis during the past mining activities has revealed that the limestone mineral is of cement grade (the mineral was also analyzed in NABL laboratory as per the circular issued by the CCOM, Nagpur). The recovery of 60% was discussed in the previous approved scheme and the same 60% recovery was achieved by lessee during the previous approved scheme period. Hence the same 60% recovery is discussed during the present plan period.

The past mining experience gained by the lessee from the limestone mining is sufficient for calculating the mineral reserves and resources related to 61, F1, E1 Axis of United Nations Framework Classification Systems and to satisfy the latest circular No. 4/2009 dated 21.10.2009 issued by the CCOM, Nagpur.

The mine has reached maximum 16m depth in Pit -1 and 8m depth in Pit -2. The depth of the mineralization has been proved upto 25m depth with an average of 1m topsoil by based on the existing pit and drilled bore holes in Block-I and the depth of the mineralization has been proved upto 16m depth with an average of 1m topsoil by based on the drilled bore holes in Block-II. Hence, the reserves and resources are estimated as given below during the present plan period.

Table-12

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period.

a. Geological Mapping (Topographical and Contour map in 1: 1000 Scale)

The area was surveyed in detail by total station survey instrument with relevant software for preparation of geological map in the scale of 1:1000 showing the various formations, attitude of the deposits and the reserve position.

b. Geo-Physical Prospecting in the way of Vertical Electrical Sounding

Geophysical survey in the form of vertical electrical sounding (VES), was conducted in the lease area to assess the lateral variations, vertical in homogeneities and the sub surface geology with respect to the availability of resources and reserves of limestone deposits.

c. Geo-Chemical Prospecting

Samples were collected from the existing mining pit and drilled bore hole for NABL laboratory for testing and analysis and to find out the chemical and physical properties of the limestone mineral. It was inferred that the grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6.

Grade of Limestone:

The average analysis of Limestone as analyzed in the NABL laboratory is tabulated below and Chemical analysis report is enclosed as Annexure No.V.

Table - 13

LIN	IESTONE
Parameter	Composition %
Cao	41.74
Mgo	4.24
Fe ₂ O ₃	0.47
Al ₂ O ₃	0.92
SiO ₂	8.14
LOI	44.47

The quality of Limestone ranges between 40 to 42% of CaO, $8 tb^2 85\%$ of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations. Chemical analysis report of the limestone is enclosed as Annexure – V.

d. Technological Prospecting

Pitting:

Since the mine is active and the depth of the mine has already reached about maximum 16m, there is no additional formation of pits in the existing mine. The mining pit indicates the limestone deposit and direction of the band. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Refer Plate No.IV & V).

Trenching

As discussed above, there is no requirement of trenching in the existing mine. The existing pits evidences sufficient data's required for the occurrence and distribution of limestone.

Drilling

The mine has reached maximum 16m depth. The depth of mineralization has been already proved upto 25m depth in Block-I and 16m Depth in Block-II, moreover the bench formation below 25m depth in the Block-I and bench formation below 16m depth in the Block-II of the lease area would be difficult as the lease area is narrow and irregular, and hence no further exploration is proposed during the present plan period. (Please refer Plate No.IV).

The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site.

The anticipated annual production ROM (proved 111) would be about 7636 tonnes/year (avg.) and for the end of the life of the mine is 38181 Ts of ROM (proved 111), when the Mine is fully developed.

2.0 Mining report /mining plan / working mines.

The method of mining is opencast manual method and the excavation is not made by the system of deep hole blasting along with heavy earth moving machinery. The pit geometry is designed according to the operating conditions of machinery. The drilling is carried out with jack hammer of small diameter (30-32 mm) at shallow depth is performed and blasted with class 2 slurry explosives with Charge 0.2 to 0.3kgs per hole. The imitation system is done with controlled blasting techniques sunder the supervisation of competent personnel's.

Drilling and Blasting:

Drilling Source:-

Jack hammer operated by the compressed air from tractor mounted compressor or Portable compressors.

Drilling parameters:-

Burden 0.7m spacing 0.8m depth 1.5m

Charge pattern:-

Charge 0.2 to 0.3kgs per hole. Stemming is 1/3 and explosives 2/3.The stemming material is moisture clay/pyroxenite mixed waste.

Initiation System:-

Bottom initiation system with safety fuses and ordinary or /plain electric detonators.

No of blast hole:

Number of the hole required per day is 80, based on the above said parameters.

Powder factor:

Powder factor is reported as 6 tonnes per kg of explosives.

Explosive required:

As stated above, the ROM requirements are 143 tons/day, based on the past experience the Powder factor is 6 tonnes/kg of explosive inclusive of blasting.

Hence the daily requirement of explosives is 143/6 = 24 kg/day.

Secondary Blasting:

Secondary Blasting is not needed, since the primary blasting itself will take care of the required fragmentation of Waste rock and mineral body.

Storage of explosives:

No Portable magazine is available for storing explosives. Agreement is made with explosive authorized dealer for supply of explosives under Form-22 at mine site and blasting will be done by the qualified blaster. Hence question for storage of Explosives does not arise. Please refer annexure Nos.XII & XIIA.

Explosive Van:

The authorised explosive supplier will bring our requirements of explosive in his approved van and take away the balance explosive after blasting if any.

Mining:

There are two existing pits and its dimension are Pit-I [72m (max) \times 40m (max) \times 16m (d) (max)] and Pit-II [105m (max) \times 43m (max) \times 8m (d) (max)].

One bench is proposed on the topsoil with 1.0m height and 1.5width with 45° slope.

In mineral, eight benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-I and five benches are proposed with 3m height & 5m width slope maintained as 60° from horizontal in Block-II.

Footpaths and roads are suitably formed for easy movement of men and materials for manual workings.

During the present plan period [2017-18 (from 27.11.2017) to 2021-22], the mine working is proposed to be carried out in the entire portion of the mining lease area, in West-East direction, to a depth of about 25m from RL 213.0m to RL 188.0m in Block-I and to a depth of about 9m from RL 209.0m to RL 200.0m in Block-II.

During the first year of this plan period (27.11.2017 to 31.03.2018) is proposed for the rectification of such unscientific mining.

The proposed average annual production ROM will be about 42,947 tonnes with 300 working days in a year.

The existing mineral reject temporary dump is situated in the southeastern side of Block-I of the lease area will be removed and shifted to dumped on the Northern side of Block –II in the year 2018-19, where the area is very narrow for recovering the deposit in systematic operation.

The generated mineral rejects and side burden for the proposed first two years of present plan period will be dumped temporarily in the lease area, after the deposit has been exploited upto the ultimate pit depth in Block-II, the same will be removed and proposed to be backfill the excavated area.

The generated mineral rejects and side burden for the remaining proposed period of the present plan period will be removed and proposed to be backfill the excavated area of Block-II. The same has been discussed in plate no.VI.

The generation of topsoil during the present plan period is proposed to be utilized for afforestation purposes and also spreading on the top of the backfilled area.

Afforestation is proposed in the 7.5m boundary barrier. Nearly 240 sqm/year is proposed for afforestation on the Southern boundary barrier of Block-I.

The existing mineral rejects, side burden and topsoil will be loaded manually into small tippers for transporting it to the backfilling area. Labours will be provided with mine helmet, safety shoes and respirator. During rainy seasons mine workings will be restricted in the top benches, the seepage water and rain water will be drained by 5HP portable pumps.

The working is planned in such a way that after complete exploitation of limestone, the excavation will be partially backfilled and partially allowed to collect rain water which will act as a temporary aquifer.

Haul roads will be conformed to statuary standards for smooth transport of mineral and waste.

The sequence of working proposed for next five years is indicated in plate no. V. If there is any change in the system of mining, the same will be intimated to Indian Bureau of Mines and the mining plan will be suitably modified for subsequent clearance and approval.

3.0 Specific end-use grades of reserves (above economic cut-off grade).

The entire mined out mineral is being sold to the nearby lime based industry in the name of M/s. Air Mineral Enterprises which is located in Sirugudi, 3.0kms from mining lease area for grinding the mineral in different mesh size ranging from 80 mesh to fine mesh i.e upto 10 microns and supplied to paints, rubber, PVC Compounding, fertilizer, feed industries and Coffee and tea plantations and also sold to the nearby lime based industries which are located within a radius of 35Km from the mine site. No subgrade mineral is encountered.

Grade of Limestone

Composite samples were taken from the mining lease area and after coning and quartering one representative sample were analyzed in the NABL laboratory.

The grade of Limestone is found to be of cement grade and the recovery percentage of limestone mineral is 60% and the bulk density is 2.6. Please and provide a percentage of limestone as analyzed in the NABL laboratory is tabulated below:

Table - 14

LIM	IESTONE
Parameter	Composition %
Cao	41.74
Mgo	4.24
Fe ₂ O ₃	0.47
Al ₂ O ₃	0.92
SiO ₂	8.14
LOI	44.47

The quality of Limestone ranges between 40 to 42% of CaO, 8 to 8.5% of SiO₂ and 0.3 to 0.5% of Fe₂O₃. As analyzed by NABL laboratories limestone which has more than 70% CaCO₃ is best suited for cement and other lime based industries, the grade below 20% of CaCO₃ with contaminations of calc gneiss waste are considered as mineral rejects in these particular formations.

The reserve above cutoff grade is tabulated below:

MINERAL RESERVE & LIFE OF THE MINE:

Reserves estimation of mineral is done by cross sections method. For Reserve calculation, the length and width of the deposit is shown in the Geological plan & cross sections. (Please Refer Plate. IV). The recovery percentage of Limestone in this mine is 60% which was well inferred by the experience gained by the lessee during the previous mining activity and the bulk density has been reckoned as 2.6.

Table - 15

Depth of estimation of the reserves and resources during the present Mining plan period [2017-18 (from 27.11.2017) to 2021-22]

25m [1m topsoil + 24m limestone (proved 111)]	Block-I
16m [1m topsoil + 15m limestone (proved 111)]	Block-II

Reassessed Mineral Reserves and Resources as per UNFC System as on 13.09.2017

Table-16

A. Mineral Reserves (111)

Block Section		Bench	Dimension					5611	Limestone	Mineral	Тор
	Section		L(m)	W(m)	D(m)	Volume (cum)	Bulk density	ROM (Ts)	@60% Recovery (Ts)	Rejects @40% (Ts)	Soil (Ts)
		3	26	113	1	2938	2	2.74	(#A)	-	5876
		- 11	25	86	3	6450	2.6	16770	10062	6708	
	(39)	111	22	80	3	5280	2.6	13728	8237	5491	•
Block-I	XY-AB	IV	15	73	3	3285	2.6	8541	5125	3416	
DIOUN-1	AT-AD	٧	9	67	3	1809	2.6	4703	2822	1881	9
		VI	3	54	3+	486	2.6	1264	758	505	-
		VII	6	41	3	738	2.6	1919	1151	768	
	300		Total					46925	28155	18770	5876

			Grand	Total				214734	128840	85894	15828
			72	THE VENTER	otal			36309	21785	14524	1428
	X-11	VI	7	57	3	1197	2.6	3112	1867	1245	A
Block-II	GH	V	20	70	3	4200	2.6	10920	6552	4368	*
	X1Y1-	IV	34	84	3	8568	2.6	22277	13366	8911	E - W. L.
		1	34	21	1	714	2			100	1428
				1	otal			42760	25656	17104	5856
		V	25	16	3	1200	2.6	3120	1872	1248	5013
	V1.77	IV	32	29	3	2784	2.6	7238	4343	2895	sand.
	XY-EF	111	38	43	3	4902	2.6	12745	7647	5098	De A
	Ì	11	45	56	3	7560	2.6	19656	11794	7862	- 1
			48	61	1	2928	2	-	- H.	/ -	5850
				Т	otal			88741	53244	35496	2668
		IX	18	18	3	972	2.6	2527	1516	1011	wari 9
		VIII	31	32	3	2976	2.6	7738	4643	3095	7.0
	1	VII	39	45	3	5265	2.6	13689	8213	5476	
	XY-CD	VI	35	59	3	6195	2.6	16107	9664	6443	12
	VVCD	V	34	48	3	4896	2.6	12730	7638	5092	
	l	IV	33	54	3	5346	2.6	13900	8340	5560	-
		111	33	55	3	5445	2.6	14157	8494	5663	()-
	I	- 11	23	44	3	3036	2.6	7894	4736	3157	-
		1	23	58	1	1334	2		(#)		2668

Table-17

Block	Section	Bench		Dimension		Volume	Bulk density	DOM (Ta)	
DIOCK	Section		L (m)	W(m)	D(m)	(cum)	Bulk density	ROM (Ts)	
	XY-AB	- 11	25	22	3	1650	2.6	4290	
		111	22	15	3	990	2.6	2574	
		IV	15	8	3	360	2.6	936	
Block-I		V	9	1	3	27	2.6	70	
DIOCK-I		Total							
		11	23	12	3	828	2.6	2153	
	XY-CD	111	33	5	3	495	2.6	1287	
		Total							
			Gra	nd Total				11310	

Table-18

Block	Section	Bench		Dimension		Volume	Bulk density	DOM (Ta)		
DIOCK	Section	bench	L (m)	W(m)	D(m)	(cum)	Bulk density	ROM (Ts)		
		l li	2	3	3	18	2.6	47		
		10	8	10	3	240	2.6	624		
		IV	15	16	3	720	2.6	1872		
	Pavadone	V	21	23	3	1449	2.6	3767		
	XY-AB	VI	28	36	3	3024	2.6	7862		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VII	35	50	3	5250	2.6	13650		
		VIII	41	90	3	11070	2.6	28782		
		IX	41	91	3	11193	2.6	29102		
			Total							
			11-	23	7	3	483	2.6	1256	
		111	33	8	3	792	2.6	2059		
Disale I		IV	33	10	3	990	2.6	2574		
Block-I	XY-CD	V	34	18	3	1836	2.6	4774		
		VI	35	32	3	3360	2.6	8736		
		VII	7	46	3	966	2.6	2512		
		VIII	14	59	3	2478	2.6	6443		
	2	IX	27	73	3	5913	2.6	15374		
					Total		-	43727		
		11	3	6	3	54	2.6	140		
		III	10	20	3	600	2.6	1560		
	VVEE	IV	16	32	3	1536	2.6	3994		
	XY-EF	V	23	, 46	3	3174	2.6	8252		
		VI	48	62	3	8928	2.6	23213		
		VII	48	62	3	8928	2.6	23213		

		VIII	48	62	3	8928	2.6	23213	
	l i	IX	48	62	3	8928	2.6	23213	
				A	Total		1.00	106798	
	X1Y1-	н	4	22	3	264	2.6	686	
		101	5	24	3	360	2.6	936	
Block-II		IV	15	34	3	1530	2.6	3978	
DIOCK-II	GH	V	28	48	3	4032	2.6	10483	
		VI	41	62	3	7626	2.6	19828	
			35911						
	Grand Total								

Table-19
C. Mineral Resources locked in 7.5m safety barrier (221)

Block	Area in S.qm	Depth in (m)	Volume (cum)	Bulk Density	ROM (Ts)	Limestone @ 60% recovery (Ts)	Mineral Rejects @40% (Ts)	Top soil (Ts)
	2834	1	2834	2	-		-48	B068
Block-I	2834	24	68016	2.6	176842	106105	7073	
		To	Total 176842 106105	106105	70737	5666		
	3608	1	3608	2	-		Marie A	6
Block-II	3608	15	54120	2.6	140712	84427	56285	450
		To	otal		140712	84427	56285	7.16
		Grand Tot	al		317554	190532	£127021	12884
		Grand Tot	al		317554	190532	#127021	

Table-20

Summary o	Reserves	& Resources
-----------	----------	-------------

				Limestone	Mineral	Side	Total Waster (Mineral		
Description	Block	Section	ROM (Ts)	@ 60% recovery (Ts)	Rejects @40% (Ts)	burden (Ts)	Rejects @ 40% + Side burden) Ts	Soil (Ts)	
A. Mineral Reserves (111)		XY-AB	46925	28155	18770	7870	26640	5876	
	A. Mineral	Block-I	XY-CD	88741	53244	35496	3440	38936	2668
	10-10-10-10-10-10-10-10-10-10-10-10-10-1	XY-EF	42760	25656	17104		17104	5856	
	Block-II	X1Y1-GH	36309	21785	14524		14524	1428	
	T	otal	214734	128840	85894	11310	97204	15828	
	Block-I	XY-AB	85706						
B. Mineral		XY-CD	43727	(€)		-	(#/i		
Resources		XY-EF	106798		**	×			
locked up in benches (221)	Block-II	X1Y1-GH	35911				-		
Delicites (221)	T	otal	272142	J (#E) (#C)		-	(a)	(+)	
C. Mineral Resources	Ble	ock-I	176842	106105	70737		(2)	5668	
locked in 7.5m safety barrier (221)	Blo	Block-II		84427	56285	S	(a)	7216	
	Т	otal	317554	190532	127021	i.el	5 4 01	12884	

The Mineral reserves still available in this mine would be 2,14,734 tonnes of ROM, 1,28,840 tonnes of Limestone (60% of ROM).

The actual Mineral reserves @ 60% recovery is estimated about 1,28,840 tonnes after giving due allowance for boundary barriers of the lease area. The recovery percentage of Limestone is calculated as 60% with an annual production of about 25,768 tonnes, the life of the mine is expected to be around 1,28,840 /25,768 = 5.0 years.

After thorough exploration of the field and after re-estimating the reserve, the life of the mine may be extended or shortened.

After obtaining necessary permission under Regulation 111(3) of MMR, 1961, Limestone in the boundary barrier will be exploited up to the lease boundary line to extend the life of the mine.

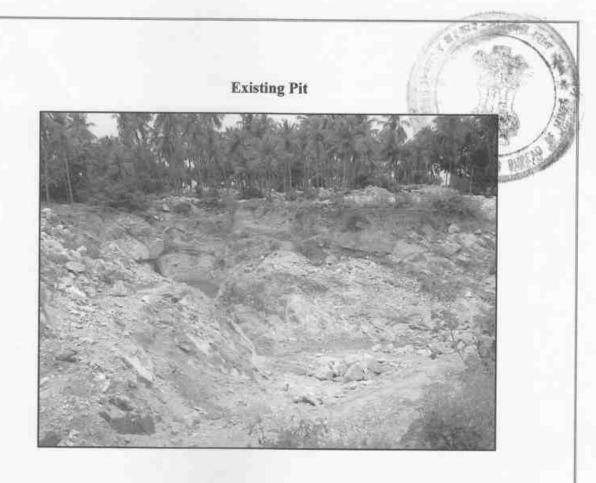
4.0 Specific knowledge of forest/non-forest and other land use data

The lease area is a patta land and it does not fall under forest of any category. Therefore, the lessee has surface rights over the lease area.

The present and post mining land use pattern is given as under Table -21

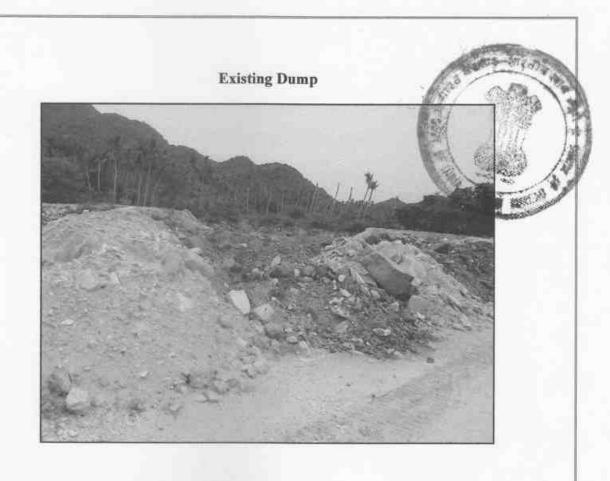
S.No	Description	Present Area (Ha)	Additional Area required during the present MP Period (Ha) [2017-18 (from 27.11.2017) to 2021-22]	Area at the end of
1	Area under Mining	0.73.9	1.03.5	1.77.4
2.	Waste dump	0.10.4	0.06.0*	0.06:0
3.	Office & infrastructure	0.01.0	0.01.0	0.010
4.	Processing plant		R T	SAME AND ADDRESS OF THE PARTY O
5.	Mineral stack processing yard	18		
6.	Sub grade mineral stacks	-	· ·	2 3
7.	Mine roads	0.03.0	Nil	0.03.0
8.	Areas under plantation	0.07.0	0.12.0	0.19.0
9.	Un utilized area	1.57.7	0.46.6	0.46.6
10.	Total	2.53.0		2.53.0

^{*} Dumps are proposed to be backfilling

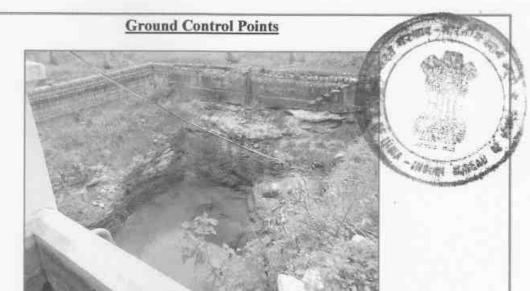

Based on the economical axis it is inferred that the mine is economically viable to exploit the limestone mineral at present market scenario.

Signature of the Qualified Person

Dr. P. THANGARAJU, M.Sc., Ph.D.,


Place: Salem

Date: 08.12.2017


Existing Pit

Overall view with Environmental Status of the area

GCP-1 - Open well-55m southeast from Block-I of the lease area

GCP-2 - Open well-110m West from Block-I of the lease area

GCP-3 - House-235m Northeast from Block-II of the lease area

Industries - Mines and Minerals - Limestone - Dindigul Distriof - Nelham Taluk -ABSTRACT Sirugudi Village - S.F. No. 693/5A, 696/2, 696/3 (Part), 4 (Part) and 5, and 698/1, 2, 3 4A, 4B, 4C and 5 over an extent of 2.53.0 hectares - Transfer of mining lease granted to Thiru. S. Asai Alangaram to M/s. Sivam Mines - Orders - Issued.

INDUSTRIES (MMA.1) DEPARTMENT

G.O. (D) No. 171

Dated: 03.11.2014 திருவள்ளனர் ஆண்டு 2045 ஐய வருப்பு அப்பசி திங்கள் 17

Read:

G.O. (3D) No.91, Industries (MMA.2) Department, dated: 13.6.1997. 2.

Representation of Thriu. S. Asal Alangaram, dated: 25.1.2010.

From the District Collector, Dindigul, Roc. No. 52/2010/Mines, dated: 3.3.2010.

From the Commissioner of Geology and Mining, Letter Rc. No. 3010/MM4/2010, dated: 9.4.2010.

Government Letter No. 6939/MMA1/2010-1, dated: 14.3.2012 and 11.10.2013.

From the Commissioner of Geology and Mining, Letter No. 3010/MM4/2010, dated: 24.12.2013.

ORDER.

In the Government Order first read above, orders have been issued granting mining lease in favour of Thiru S.Asai Alangaram, Dindigul District for mining limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3(P), 4(P) & 5 and 698/1,2,3,4A, 4B, 4C & 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years. The lease period is from 27.11.1997 to 26.11.2017.

- In his letter second read above Thiru. S. Asai Alangaram has stated that he is willing to develop the mines in a scientific manner using scientific methods and hence he and his brother Thiru. S. llangovan have agreed to transfer their leases to partnership concern under rule 37 of Mineral Concession Rules, 1960 in the name and style of "M/s. Sivam Mines" having its registered office at 6/209, Pudupatti, Sirugudi Village, Natham Taluk, Dindigul District and requested to transfer the lease granted in the name of Thiru, S. Asai Alangaram to the above said partnership firm M/s. Sivam Mines.
- *3. The District Collector, Dindigul in his letter third read above has stated that on parusing the records based on rule 37 of the Mineral Concession Rules, 1960, it was found that both the transferor and transferee have submitted the affidavit towards income-tax, mining dues, and also details about the mining lease in the State of Tamil Nadu. Further, the lessee has also produced no mining dues certifying in respect of Dindigul District and transferee firm have also produced the affidavit to bear the liabilities of the lessee and the partnership firm was registered on 25.01.2010 by the Registrar of Firms, Dindigul. The District Collector, Dindigul has recommended the application for name transfer from Thiru. S. Asai Alangaram to the partnership concern that is in the name of "M/s, Sivam Mines".

- Based on the recommendation of the District Collector, Dindigul, " Commissioner of Geology and Mining in his letter fourth and sixth read above ha stated that Thiru. S. Asai Alangaram has furnished the mining due clearance certificate issued by the District Collector, Dindigul for the year 2012-2013 and recommended the application preferred by Thiru. S. Asai Alangaram for transfer of mining lease granted to him in Government Order first read above for mining limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3 (Part), 4 (Part) and 5 and 698/1 2, 3, 4A, 4B, 4C and 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years from 27.11.1997 to 26.11.2017 in the name of M/s. Sivam Mines object to condition that the transferee should scrupulously follow the Mining Plen/Scheme of Mining approved by Indian Bureau of Mines in respect of the said lease hold area as provided under rule 37 of Mineral Concession Rules, 1960.
- After careful examination, the Government have decided to accept the recommendation of the District Collector, Dindigul and the Commissioner of Geology and Mining. Accordingly, the mining lease granted in the Government Order first read above for limestone over an extent of 2.53.0 hectares of patta lands in S.F. No.693/5A, 696/2, 696/3(P), 4(P) & 5 and 698/1,2,3,4Å, 4B, 4C & 5 of Sirugudi Village, Natham Taluk, Dindigul District for a period of 20 years is transferred from Thiru S.Asai Alangaram to M/s. Sivam Mines upto the valid lease period (i.e. 27.11.1997 to 26.11.2017) subject to the condition that the transferee should scrupulously follow the Mining Plan/Scheme of Mining approved by Indian Bureau of Mines in respect of the said lease hold area as provided under rule 37 of Mineral Concession Rules, 1960.
- The District Collector, Dindigul is requested to take further action and collect the latest mining dues if any pending from the transferee. The original application of transfer of mining lease is returned herewith for follow up action.

(BY ORDER OF THE GOVERNOR)

C.V. SANKAR

The Commissioner of Geology and Mining, Chennai-600 032.

The District Collector, Dindigul. (w.e.)

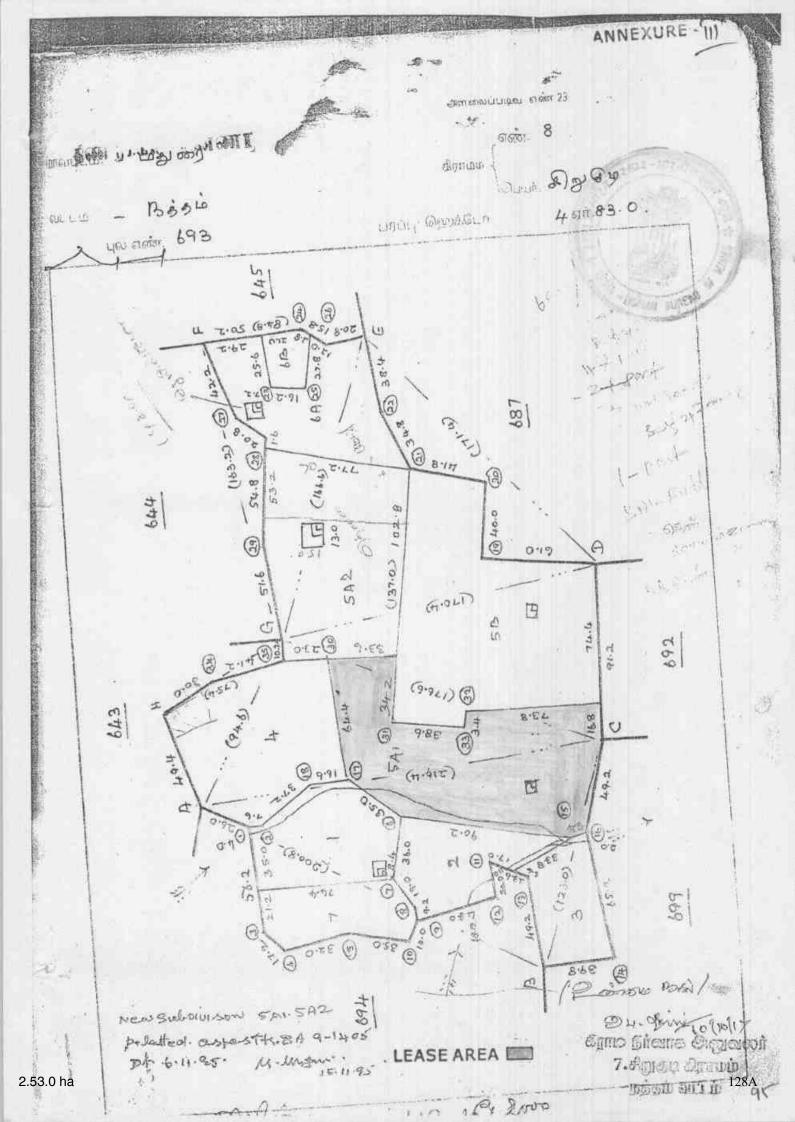
The Controller General, Indian Bureau of Mines,

New Secretariat Buildings, Nagpur.

The Regional Controller of Mines, Indian Bureau of Mines,

29, Vijayaragava Road, T.Nagar, Chennai-600 017.

Thriu. S. Asai Alangaram, S/o. K.A. Semban Chettiar,


Sirugudi (PO), Natham Taluk, Dindigul Dt-624.404 Mrs. Sivam Mines, 6/209, Podupatti, Sirugudi Village,

Natham Taluk, Dindigul District.

Copy to:

Office of the Hon'ble Minister for Industries, Chennal-600 009. Industires (OP.II) Department, Chennal-600 009. SF/SCs.

// Forwarded / By order // *

வாவார் முத்தை 61660T 8 Quini Flo 614 (5 8 a) 26 GUL L LD 1 60 . 52.8 पूछा हालंग 696 LIDOU; GISEDEGLA D 1872 120% (20) 3.0 55% 2.4 C B 694 1030 full out 80.4 6.6 83 62.4 2.0 (4) 22.0 4 134 2 17-2 572 9 1 0 43.8 28-2 8.8 57.2 26.0 16.6 (20) எ. 26. குகுத் திறாபட்டி 69 3.0 11:0 2 C B 220.8 197.6 12.4 3 1806 26.8 21.0 1544 (6) 21.4 (25) 18.8 150-6 141.4 14.6 1 (Fi 132.0 40.2 (18) 30-4 36.2 123.2 (103.9) 1226 26.0 1160 1078 45-21 1044 340 (1) 697 928 266 SOLDER BOANS 35.4 92.2 19.6 91-6 80.8 38.8 April Diene Concor 62.0 15.0 7- சிறுத்து தொடும் 3 LEASE AREA 28.0 7-8 Dogin malli 11-4 27.0

Compared By: P. Shunman sout 120.16 = 2000 20.18

96

			அளமைப்படிவ என் 23
sau'i in	10.5.mr		எண். 8
restartion for EAST	-0		and a
	e e e d		DAG.
	நேர்நம்		12 12 12
ń	ou eтейт. 69	8	பரப்பு மெலுக்டேப் 🤰 🐧 பர். 63
T			
	c		
	19.6		
	3.0 7.8 3		
	D		사 레보이 보다 마리를 받는다.
	195.4	1	*
	176.2		694
	135.0		914.60
		28)A	
3 17.2	109-0		MINISTER STATE OF THE STATE OF
29 15.8 29 11.4	70-4		36.2 24.0 0 HB 214 22.2 B
10.0	36.6	a C	38 0 00 5 00 5 00 1
	В		9- 10 3
	188-6		
3 12.0	160-6		© 572000 E
24·2 2 0·2	78.6		1 57.0 M
0	D		00 1 (10) 80
	220.8		4 696
@ 12.4	197-6	1	010 010 00 00 00 00 00 00 00 00 00 00 00
1 21.4	154.4	6017	F SA DESTRUCTIONS
18.8 19 36.2	150.6	100	A 2213 (26) 99%
1 26.0	122.6	Brece.	232 4 (2) 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
B 46.2		1 6	P 29.2 0 W
W 35.4		J. S.	29.2 n N
38.		L.A.	
	62.0 /s-0 28.0 7.8	(2)	
	27-0 11-4	6	3 184 6
	A		W.
	144-8	N. Starte	697
1 1	1134 25-1		12 simon Bisin /
9 13.		· (0)	
(9) 13. (6) 29.			Du Amy wolfell In
® 13-			WILLIO PROME CAPTIONERS
	44.2 20	-	7. சிறுகுடி சிராமம்
	43.0 9.1	0	நத்தம் வட்டம்
@ 13.	CHOTCH-CODE	o O LEAS	SE AREA AND
	135		130A

2.53.0 ha

தமிழக அரசு வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வருவாய் கிராமம் : சிறுகுடி

வட்டம் : நத்தம்

பட்டா எண்: 3100

உரிமையாளர்கள் பெயர்

	1.	செம்பன் செட்டியார்	மகன்	இளங்கோவன்
--	----	--------------------	------	-----------

		நன்செய்		புன்செய்		மற்றவை	
_		սցնգ	தீர்வை	பரப்பு	தீர்வை	սյմպ	தீர்வை
புல எண்	உட்பிரிவு	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - பை
698	4A	0 - 54.50	4.21	**	*	(**)	1.00
631	8	0 - 4.50	0.62			-	7.5
642	2C			0 - 5.00	0.19		177
642	2F			0 - 4.00	0.15		*
642	23			0 - 3.00	0.11	-	
642	3A			0 - 6.00	0.15		
642	4D			0 - 7.00	0.19	1924	-
642	5D		**	0 - 1.50	0.06	144	- 24
631	4	**		0 - 1.50	0.06		
631	6		**	0 - 15.50	0.43		-
631	11	55	2,000	0 - 30.00	0.83		
693	3			0 - 24.00	0.66		
693	1			0 - 37.50	1.04		
693	7		-	0 - 22.50	0.84	-	
693	2	-		0 - 29.00	0.81		-
693	4			0 - 57.00	1.58		-
693	5A1	-	* ***	0 - 82.00	2.27		40
ui-i		0 - 59.00	4.83	3 - 25.50	9,37		

குறிப்பு2 :

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/03100/30734 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

2. இத் தகவல்கள் 06-10-2017 அன்று 01:14:47 PM நேரத்தில் அச்சடிக்கப்பட்டது.

3. கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

தமிழக அரசு வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

வருவாய் கிராமம் : சிறுகுடி

பட்டா எண் : 1736 _

пиелетеп	: D10001	Page

		2,000,000,000,000	Joseph Allemin
1.	கருப்பட்டி அம்பலம்	மகன்	வெள்ளைச்சாமி
2.	செம்பன் செட்டியார்	மகன்	எஸ். ஆசைஅலங்காரம்
3.	கருப்பட்டி அம்பலம்	மகன்	சின்னக் கருப்பன்
4.	கருப்பட்டி அம்பலம்	மகன்	பெரய கருப்பன்
-			

		நன்செய்		புன்செய்		மற்றவை	
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	սյմւկ	தீர்வை
புல என்	உட்பிரிவு	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - பை
693	5A2			0 - 75.00	2.07	-	
				0 - 75,00	2.07	TEFF	

குறிப்பு2 :

- மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/01736/10797 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- 2. இத் தகவல்கள் 06-10-2017 அன்று 01:28:48 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- 3. கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

தமிழக அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

வருவாய் கிராமம் : சிறுகுடி

பட்டா என் : 2425

உரிமையாளர்கள் பெயர்

1. செம்பன்செட்டியார் மகன் இளங்கோவன்

		நன்செய்		புன்செய்		மற்றவை	
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	பரப்பு	தீர்வை
प्रक तहांच	உட்பிரிவு	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - டை
630	1A			0 - 18.00	0.50	**	
630	1B	**		0 - 4.00	0.10		77
686	2A		.55	0 - 58.50	1.61		
696	2	-		0 - 24.50	0.53	-	- 11
				1 - 5.00	2.74		-

குறிப்பு2:

- 1. மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/02425/20783 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- 2. இத் தகவல்கள் 06-10-2017 அன்று 01:13:26 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- 3. கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

தமிழக அரசு வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வருவாய் கிராமம் : சிறுகுடி

வட்டம் : நத்தம்

பட்டா எண் : 995

உரிமையாளர்கள் பெயர்

1.	செம்பன் செட்டியார்	மகன்	ugn

		நன்செய்		புன்	புன்செய்		மற்றவை	
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	பரப்பு	தீர்வை	
புல என்	உட்பிரிவு	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரூ - பை	
696	3	0 - 50.50	3.90			-		
696	6	0 - 13.00	1.00				**	
698	1.0	0 - 10.50	0.81	*	192	also .	**	
698	7	0 - 6.00	0.47		44	24	***	
698	8	0 - 3.00	0.22	24	**	**	1, 11 1991	
698	9	0 - 3.50	0.28		**			
699	11	0 - 3.00	0.25	44		- - F		
699	12	0 - 5.50	0.41	**	**		1757.0	
699	13	0 - 3,50	0.28	**		-	-	
699	5	0 - 19.50	1.50		-		-	
699	9	0 - 4.50	0.34	77		1+		
669	13	***		0 - 43.00	1.19		122	
687	12B	27		0 - 20.50	0.57			
687	6A	n 20.		0 - 56.50	1.57		-	
689	- 2			0 - 42.50	1.18	441	**	
690	4	-		0 - 41.50	1.15	-	-	
691	2		-	0 - 14.00	0.39	85 HA	**	
		1 - 22.50	9,46	2 - 18.00	6.05			

குறிப்பு2 :

 மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/00995/90783 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

- 2. இத் தகவல்கள் 06-10-2017 அன்று 01:18:28 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- கைப்பேசி கேமராவின் 2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

தமிழக அரசு வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

வருவாய் கிராமம் : சிறுகுடி

பட்டா எண் : 156

உரிமையாளர்கள் பெயர்

1. செம்பன் செட்டியார

மகன்

இளங்கோவன்

	நன்செய்		சப்	புன்செய்		மற்றவை	
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	идіц	தீர்வை
புல என்	உட்பிரிவு	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - டை
618	1B	0 - 96.00	6.53	199		#	**
641	2	0 - 30.00	2.31				11 %
696	4	0 - 23.50	1.81	*1			**
696	7	0 - 27.50	2.12				**
698	1	0 - 14.00	1.09	24			**
698	11	0 - 8.50	0.66	34	1944		
698	6	0 - 23.50	1.81	(44)			-
699	10	0 - 3.00	0.22	**	**		
699	6	0 - 34.00	2.62		**	101 44	277
699	7	0 - 6.00	0.47	7000	**	**	
616	1B1			0 - 1.50	0.06	1977	
631	10	- C	27	0 - 36.50	1.01		
687	2	***		0 - 17.00	0.47	2	
689	1		**	0 - 39.00	1.08	-	**
689	3		-	0 - 60.00	1.66	-	(94)
	450	2 - 66.00	19.64	1 - 54.00	4.28		

குறிப்பு2:

- மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/00156/10792 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- 2. இத் தகவல்கள் 06-10-2017 அன்று 01:14:23 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- 3.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வருவாய் கிராமம் : சிறுகுடி

வட்டம் : நத்தம்

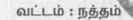
பட்டா எண் : 841

உரிமையாளர்கள் பெயர்

_				_
1.	பொன்னழகன் செட்டியார்	மகன்	பொன்னழகன் செட்டியார்	
2.	விரக்காளை அம்பலம்	மகன்	பொன்னையா	
3.	விரக்காளை அம்பலம்	TO 49 egt	நல்லான்	
4.		14	சி எழுவனம்பலம்	
5.		1981	வீ.பொன்னி	
6.		(***)	பொன் கணேசன்	

		நன்ே	செய்	ЦейС	சய்	மற்றவை			
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	սյմպ	தீர்வை		
புல எண்	உட்பிரிவு	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ന്ദ്ര - ബവ		
696	5	0 - 7.00	0.53	**	**		1999		
		0 - 7.00	0.53						

குறிப்பு2 :


- 1. மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/00841/80743 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- 2. இத் தகவல்கள் 06-10-2017 அன்று 01:28:04 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வருவாய் கிராமம் : சிறுகுடி

பட்டா எண் : 2867

உரிமையாளர்கள் பெயர்

செம்	பன்செட்டியா	t		மகள்	இளங்கே	ாவன்	
		நன்)சய்	புன்	சய்	மற்ற	ഞഖ
		பரப்பு	தீர்வை	սյմւկ	தீர்வை	սյմւկ	தீர்வை
पुरु तळा	உட்பிரிவு	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரூ - டை
698	2	0 - 11.50	0.87		-		

0.87

0 - 11.50

குறிப்பு2 :

- பேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/02867/20703 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- இத் தகவல்கள் 06-10-2017 அன்று 01:30:06 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- 3.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

பட்டா எண் : 2456

வருவாய் கிராமம் : சிறுகுடி

உரிமையாளர்கள் பெயர்

1.	செம்பன்செட்டியார்	
	AND CONTROL WITH THE MAINING	

மகன்

எஸ்.இளங்கோவன்

		நன்செய்		புன்	ใชน์ม	மற்றவை			
		பரப்பு	தீர்வை	பரப்பு	தீர்வை	սյմւլ	தீர்வை		
प्रश्च	<u> </u>	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரூ - பை	ஹெக் - ஏர்	ரு - பை		
698	3	0 - 9.50	0.75				**		
		0 - 9.50	0.75			70			

குறிப்பு2 :

- மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/02456/20797 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.
- 2) இத் தகவல்கள் 06-10-2017 அன்று 01:29:56 PM நேரத்தில் அச்சடிக்கப்பட்டது.
- 3. கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

வருவாய் கிராமம் : சிறுகுடி

வட்டம் : நத்தம்

பட்டா எண் : 3101

உரிமையாளர்கள் பெயர்

1.	செம்பன் செட்டியார்	மகன்	இளங்கோவன்

		ьыс)சய்	पुलंद)ฮน์ว	மற்றவை			
	1-	பரப்பு தீர்வை		பரப்பு	தீர்வை	սյմւկ	தீர்வை		
புல என்	<u> ខ កុព្យប្បិ</u> ថា	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் - ஏர்	ரு - டை		
698	4C	0 - 5.50	0.41	-			**		
698	5	0 - 7.50	0.56	44	**		**		
698	4B	0 - 5.50	0.44	-+	-	**			
644	4			0 - 35.00	0.96		**		
		0 - 18.50	1.41	0 - 35.00	0.96				

குறிப்பு2 :

பெற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 13/13/007/03101/30745 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

இத் தகவல்கள் 06-10-2017 அன்று 01:16:30 PM நேரத்தில் அச்சடிக்கப்பட்டது.

3.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

ANNEXURE - III B

	hannigge, n'Ollmonnin villus 8.	3															
கழ்க்கள் கண்கரில் பறிப்பாகத் உள்ள நிலத்தின் தன்னம் முழுந் பரப்பின் விவரங்கள் ஒவ்வொரு நின		Horam Whom Warred	- der (b.th.s.)	-do-		1901	-90-		- op-	100		199		San San	100	- at 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	100
OPLICATION TO THE PROPERTY OF	The ministration where the ministration of the	Gain									1631		A. III		Cont.	11. 12.	122
	நாம். சுர்கையே ह இரக்மும்																
Quesil.	destina mannen esti de E	1								- 0							
mb du	B militar / Monumenton								A								
Brimmin	S wante subsur §	800			102			I I		No.							
প্র	Armicont. An order Chronololic Signoser Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chrosen Signoser Chromatolic Chromatolic Signoser Chromatolic Chromatolic Signoser Chromatolic Chromatolic Signoser Chromatolic Chromatolic Chromatolic Signoser Chromatolic C											031					

7. Aggress electron

E SOccurrent Control and the control and th micentery Brack Basinal q S. INT. IS U.S. mid ou site INDIAN BUIL 出 न கைப்பற்று சாஞ்பிடி (Dinesiegylda augu aund speaning tomps destroide E seelaha maaamin ee S Aanaga S Chartesia Tinun E Sprin, at B udditter Gumit என் 2 கிராஷ்தில் உ 7, 30000 Algean (B. E digrand dample munices of the Anthales on equinu E 189 (010101001100170) TO en'cin Curreia. 100 THE WORLD chipton. 16 53,0 (6) Littleft de Groon Anno Chand Okyalooil
7. Anjist an in Cinngages See Cinngages See Cinngages See See See 10 - 1800 ON PARTY SOUTH BENEFIT BUT SOUTH BUT BUT HEFFER arental Court Local. מוריווים ומו III.A.10-10,00,000 Cps.-GBP.-MDU-7,-2016. E Creminary son Can Action of the control Descriptions of Mulher of Boniceien (0) 67 841 distant. DA Mada down De E N Son turling St. L. Soffetture, speak Bullink Glunti. 6113 1427- min vershilling rouspf E 1.25 107.44 thoan @ 380/44-R.F. was manager & 646 and married and E 110

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

1. புல என்	693	9. மண் வயனமும் ரகமும்	8-1
2. உட்பிரிவு எண்	5A1	10. மண் தரம்	4
3. பழைய புல உட்பிரிவு எண்	693-5A	11. தீர்வை (ரூ - ஹெ)	
4. பகுதி	P	12. பரப்பு (ஹெக்டேர் - ஏர்)	
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	2.27
6. நிலத்தின் வகை	புஞ்சை	14. பட்டா எண்	3100
7. பாசன ஆதாரம்		15. குறிப்பு	
300			

குறிப்பு 1:

8. இரு போகமா

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60734 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

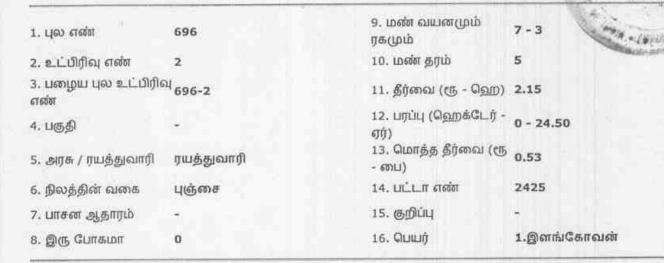
16. பெயர்

1.இளங்கோவன்

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

1. புல என்	693	9. மண் வயனமும் ரகமும்	8-1
2. உட்பிரிவு எண்	5A2	10. மண் தரம்	4
3. பழைய புல உட்பிரிவு என்	693-5A	11. தீர்வை (ரூ - ஹெ)	
4, பகுதி	р	12. பரப்பு (ஹெக்டேர் - ஏர்)	
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	2.07
6. நிலத்தின் வகை	புஞ்சை	14. பட்டா என்	1736
7. பாசன ஆதாரம்		15. குறிப்பு	-
8. இரு போகமா	0	16. பெயர்	வெள்ளைச்சாமிமற்றும் 3பேர்


குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60797 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

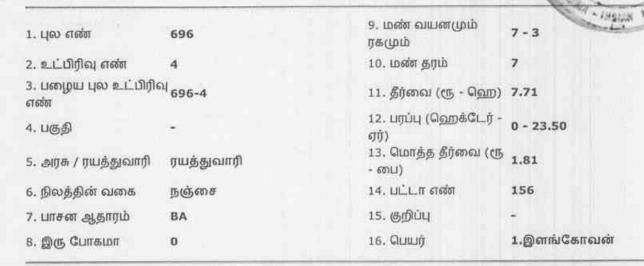
குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60783 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

1.	696	ரகமும் ரகமும்	7 - 3
2. உட்பிரிவு எண்	3	10. மண் தரம்	7
3. பழைய புல உட்பிரிவ எண்	^Ц 696-3	11. தீர்வை (ரூ - ஹெ)	7.71
4. பகுதி	- 1	12. பரப்பு (ஹெக்டேர் - ஏர்)	0 - 50.50
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	3.90
6. நிலத்தின் வகை	நஞ்சை	14. பட்டா என்	995
7. பாசன ஆதாரம்	ВА	15. குறிப்பு	*
8. இரு போகமா	0	16. பெயர்	1.ຫຼາຊຕ

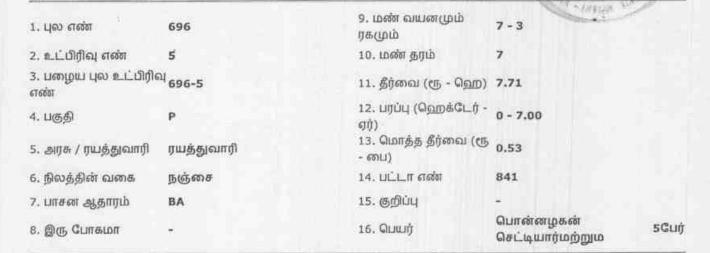

குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60783 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

குறிப்பு 1:

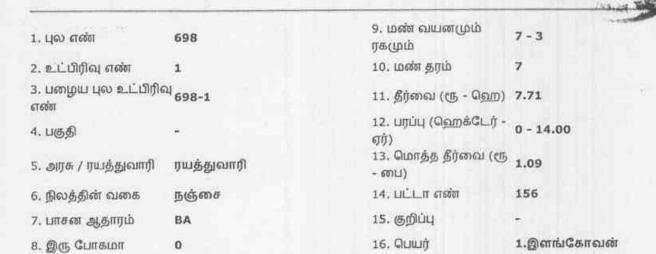


மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60792 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

கிராமம் : சிறுகுடி


குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60743 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60792 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

கிராமம் : சிறுகுடி

. HOU 676001

698

2. உட்பிரிவு எண்

3. பழைய புல உட்பிரிவு ₆₉₈₋₂

टाळंडा

4. பகுதி

5. அரசு / ரயத்துவாரி

ரயத்துவாரி

6. நிலத்தின் வகை

நஞ்சை

7. பாசன ஆதாரம்

BA 0

8. இரு போகமா

9. மன் வயனமும் ரகமும்

10. மண் தரம்

11. தீர்வை (ரூ - ஹெ) 7.71

12. பரப்பு (ஹெக்டேர் - 0 - 11.50

13. மொத்த தீர்வை (ரூ

- ഞப)

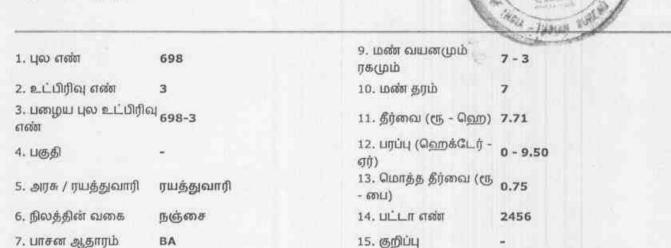
14. பட்டா என்

2867

15. குறிப்பு

16. பெயர்

1.இளங்கோவன்


குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60703 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

குறிப்பு 1:

8. இரு போகமா

0

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60797 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

1.எஸ்.இளங்கோவன்

16. பெயர்

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம் கிராமம் : சிறுகுடி

1. புல என்	698	9. மண் வயனமும் ரகமும்	7 - 3
2. உட்பிரிவு எண்	4A	10. மண் தரம்	7
3. பழைய புல உட்பிரில எண்	¹ 698-4A	11. தீர்வை (ரூ - ஹெ)	
4. பகுதி	p	12. பரப்பு (ஹெக்டேர் - ஏர்)	
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	4.21
6. நிலத்தின் வகை	நஞ்சை	14. பட்டா எண்	3100
7. பாசன ஆதாரம்	ВА	15. குறிப்பு	
8. இரு போகமா	*	16. பெயர்	1.இளங்கோவன்

குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60734 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

வட்டம் : நத்தம்

கிராமம் : சிறுகுடி

1, புல என்	698
------------	-----

2. உட்பிரிவு எண் 4B

3. பழைய புல உட்பிரிவு _{698-4B}

नळंग

4. பகுதி

5. அரசு / ரயத்துவாரி ரயத்துவாரி

6. நிலத்தின் வகை

நஞ்சை

7. பாசன ஆதாரம்

BA 0

8. இரு போகமா

9. மண் வயனமும்

ரகமும்

10. மண் தரம்

11. தீர்வை (ரூ - ஹெ) 7.71

12. பரப்பு (ஹெக்டேர் - 0 - 5.50

எர்)

13. மொத்த தீர்வை (ரு. 0.44

- ഞu)

14. பட்டா என்

3101

15. குறிப்பு

16. பெயர்

1.இளங்கோவன்

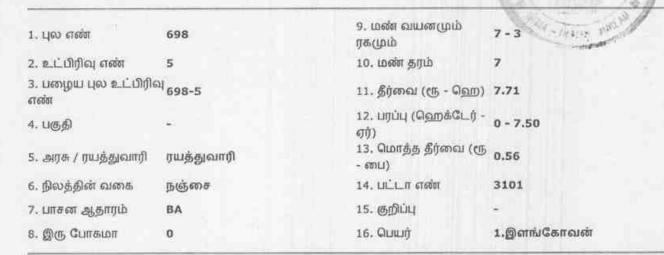
குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60745 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்

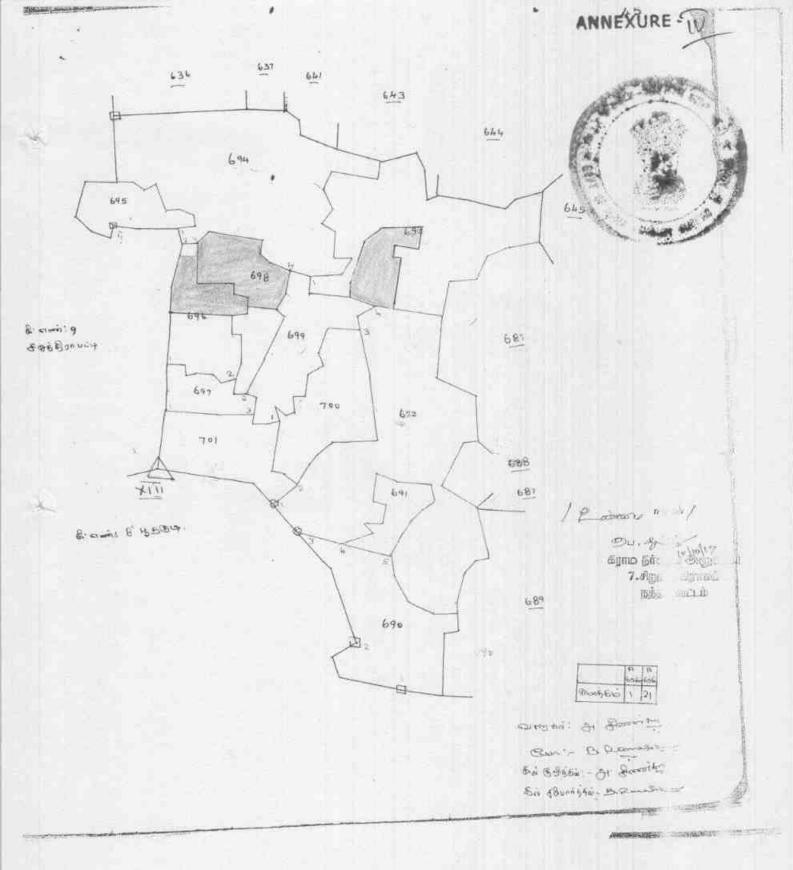
வட்டம் : நத்தம் கிராமம் : சிறுகுடி

1. புல என்	698	9. மண் வயனமும் ரகமும்	7-3 -1/2.48 50
2. உட்பிரிவு எண்	4C	10. மண் தரம்	7
3. பழைய புல உட்பிரிவு எண்	698-4C	11. தீர்வை (ரூ - ஹெ)	7.71
4. பகுதி	·	द्या)	0 - 5.50
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	0.41
6. நிலத்தின் வகை	நஞ்சை	14. பட்டா எண்	3101
7. பாசன ஆதாரம்	BA	15. குறிப்பு	4
8. இரு போகமா	0	16. பெயர்	1.இளங்கோவன்


குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60745 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

மாவட்டம் : திண்டுக்கல்


வட்டம் : நத்தம் கிராமம் : சிறுகுடி

குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 60745 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

LEASE AREA

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laberatory)

S.F No.92/3A2, Geetha Magar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.in

Report Number: GLCS/TR/325/2017-18

Report Date: 18.09.2017

Issued To:	M/s.Sivam Mines, 6/209, Main Road, Strugudi Post, Natham (Tk), Dindigul District.				
Attention	Mr.S.Ilangovan, Managing Partner.		Sample Receipt condition	Ambient - Good	
Customer Ref. No.	TRF No : 137		Sample Quantity	1 Kg	
Sample Name	Limestone		Sampled by	Client	
Sample description	Solid		Sampling Method	Olietti	
Sample Code	GLCS / 348		Date of Analysis	15.09.2017	
Sample Receipt Date	15.09.2017		Date of Completion	18.09.2017	
Sample Number	1	Sample Location	S.F.No: 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C, & 5, Sirugudi Villagi Natham Taluk, Dindigal District.		

	TEST PARAMETERS	TEST METHOD	UNIT	RESULTS
1	Calcium as CaO	IS 1760 (Part 3) :1992 (Reaffirmed - 2006)	%	41.74
2	Magnesium as MgQ	IS 1760 (Part 3) :1992 (Reaffirmed - 2006)	%	4.24
3	Silica as SiO ₂	IS 1760 (Part 2) :1991 (Reaffirmed - 2006)	%	8.14
4	Iron as Fe ₂ O ₃	IS 1760 (Part 3) :1992 (Reaffirmed - 2006)	%	0.47
5	Alumina as Al ₂ O ₃	IS 1760 (Part 3) :1992 (Reaffirmed - 2006)	%	0.47
6	Loss On Ignition		-	44.47
lotor	Loss On Ignition	IS 1760 (Part 1) :1991 (Reaffirmed - 2006)	%	

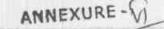
Note:

Prepared

For Global Lab and Consultancy Services

R. Ruj y.

Authorised Signatory


R. RAJESH Technical Manager

*****End of Report*****
Page 1 of 1

Laboratory

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory is not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained here on reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

CORPORATE OFFICE: No.17, Advaitha Ashram Road, Fairlands, Salem - 636 004. Ph;0427 - 4055989; E-mail: info@glcs.in

SHAM WIT

ক. 500

पाँच सौ रुपये

FIVE HUNDRED

Rs. 500

INDIA NON JUDICIAL

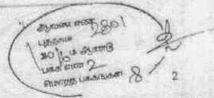
தமிழ் நாடு तमिलनाडु TAMILNADU 5590

13-12-2014

MIS SIVAM MINES AIRUGUDI

20 1 1 mm FORM O TRANSFER OF MINING LEASE (See rule 37-A)

Y 932927 P. Radha Schn


ப. ராதாவுசல்வி William elizarunui. 134, டேரிய கடை வீதி. Dur Jasi I. e bigmil Edinorus 24531.5 111997-35

When the transferor is an individual, S.ASAI ALANGARAM This indenture made this I' day of DECEMBER 2014 between S. Asai alangaran . K.A. Semaban (Late), 1/174, Main Road, Sirugudi (Poj. Natharn (Tk), Dindigul (Dt), Pin code:624404 and the Occupation as Agriculturist.

When transferce is a registered partnership firm and the Partner's are as follows,

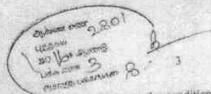
1.8 Assidangaram, S/o.K.A.Semban Chettiar,1/174 Main Road, Strugudi[Po]. Natham(Tk), Dindigut(Dt),

DINDIGUL.

2.S. Ilangovan, S/o K.A. Semban Chettiar Sirugudi(Po), Natham(Tk), Dindigul(Dt), ,6/208, Main

a Road,

3.1. VijayAlangar, S/o. S. Hangovan, 5/208, MainRoad, Sirugadi (Po), Natham (Tk), Dindigul (Dt),


4.I.SemponManickam, D/o, S.Bangovan, 6/208, MainRoad, Sirugudi (Po), Natham (Tk), Dindigul (Dt).,

carrying on business in partnership under the firm name and style of M/s.SIVAM MINES registered under the Indian Partnership Act, 1932 (9of 1932) with Regn No:11/2010.dated 25:01:2010 and having registered office at 6/209.Main Road.Sirugudi(Po).Natham(Tk),Dindigul(Dt)-624404

And the Governor of TAMILNADU (hereinafter referred to as the "State Government" which expression shall where the context so admits be deemed to include the successors and sasigns) of the third part.

Whereas by virtue of an indenture of lease dated the G.O.(3D) No. 91.Ind(MMA.2) dept/dt.13.6.1997 and not registered in any Sub-Registrar office (hereinafter referred to as lease) the original whereof is attached hereto and marked "A" entered into between the State Government (therein called the lesser) and the transferor (therein called the lessee), the transferor is entitled to search for, win and work the mines and minerals in respect of Limestone in the land described in Schedule thereto and also in Schedule annexed hereto for the term and subject to the payment of the rents and royalties and observance the term and subject to the payment of the rents and royalties and deed of lease reserved and contained including a covenant not to assign the lease or lease reserved and contained including a covenant not to assign the lease or any interest, there under without the previous sanction of the State Government.

And whereas the transferor is now desirous of transferring and assigning the lease to the transferce and the State Government has, at the request of the transferor, granted (with the prior approval of the Central Government) permission to the transferor vide order No G.O.(D) No.171/Industries/(MMA, 1)Dept/ dated 03.11.2014 to such a transfer and

essignment of the lease upon the conditions of the transferees entering into an agreement is and containing the terms and conditions hereinafter setforth.

Now this Deed Witnesseth as follows:

- The transferee hereby covenants with the State Government that from and after the transfer and assignment of the lease the transferee shall be bound by, and be liable to perform, observe and conform and be subject to all the provisions of all the covenants stipulations and conditions contained in said he embefore recited lease in the same manner in all respects as if the lease had been granted to the transferce as the lessee thereunder and he had originally executed it such.
- 2. It is further hereby agreed and declared by the transferor of the one part and the transferee of the other part that -
- (i) The transferor and the transferee declare that they have ensured that the mineral rights over the area for which the mining lease is being transferred vest in the State Government.
- (ii) The transferor hereby declares that he has not assigned subject, mortgaged or in any other manner transferred the mining lease now being transferred and that no other person or persons has any right, title or interest whereunder in the present mining lease being transferred.
- (iii) The transferor further declares that he has not entered into or made any agreements, contract or understanding whereby he has been or is being directly or indirectly financed to a substantial extent by or under which the transferor's operation or understandings ere or are being substantially controlled by any person or body of persons other than the transferor.
- (iv) The transfered hereby declares that he/she has accepted all the conditions and liabilities which the transferor was having in respect of such mining lease.

The transferee further declares that he is financially capable of and will directly undertake mining operations.

(vi) The transfered further declares that he has filed an affidavit stating that he has filed up-to-date income-tax returns, paid the income-tax assessed on him and paid the income-tax on the basis of self-assessment as provided in the Income-tax Act, 1961 (43 of 1961)

(vii) The transferor has supplied to the transferor the original or certified copies of all plans of abandoned workings in the area and in a belt 65 meters wide surrounding it.

(viii) The transferce hereby further declares that as a consequence of this transfer, the total area while held by him under mineral concessions are not in contravention of section 6 of the Mines and Minerals (Regulation and Development) Act, 1957 or rule 35 of the Mineral Concession Rules, 1960.

(ix) The transferor has paid all the rents, royalties, and other dues towards Government till the date, in respect of this lease.

In witness whereof the parties herete have signed on the date and year first above written.

LESSEE

|Managing Partner M/s. Siyam Mines, Sirugudi Villae, Nathary Taluk Dindin

Natham Taluk, Dindigul

M. P. Hunger (M. Pottel en)

MICHEROHAITE DINLYW DE

The production

3 to abound the stand that a thought that a thought of the stand of th

DISTRICT COLLECTOR

ASSISTANT DIRECTOR GEOLOGY AND MINING DINDIGUL.

2

Assistant Geologist, Geology and Mining, Dindigus.

SPECIAL DEPUTY TAHSILDAR GEOLOGY AND MINING DINDIGUL

P56/2015/BK1

முத்தினர்கட்டம் பிரிவு 42-ன் கிழான சமன்று

w. sterit 3/2/ 2015

சிறு இடித்த இடித்து வளிக்கும் நிருவாள் இளவ்வோவள் என்பவரிடமிருந்து முத்தினர்க் கட்டம் முறையான குறைவு முத்தினைக்கட்டனர்க் ரூ. 18710 (முயம் பகிறவைக்கு) மட்டும்) வகுவிக்கப்பட்டது என மனதிறைவடைந்து என்றவிக்கிறேன்.

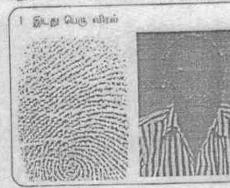
enula: Natham Bush: 23/10/2015

wind wight முத்திரைச்சட்டம் பிரிவு என் கழ் ஆட்சியர்

Natham சார்பதிவாளர் அலுவலகத்தில் 23/10/2015 அன்று 6 / மணிகளுக்கின பில் தாக்கம் செய்து கட்டணம் ரூ 18820 Gergyighumit

மேல் விவரம் ஆவண் வாசகப்படி

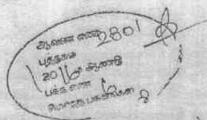
எழுதிக் கொடுத்ததாக ஒப்புக்கொண்டவர்


இவ்வாவணத்தை எழுதிக் கொடுத்த / வாய்கிய திருவாளர் 1 பதிவுச்சட்டம் பிரிவு 88 (1)-ன்படி தேரில் ஆறாவதிவிருந்து விவக்களிக்கப்பட்டுள்ளார் என மனநிறைவடைந்து சான்றுளிக்கிறேன்.

> LISSYIN acilos sumo US - SEAL S SHED MANAGE

Sheet no. 1 of 2

எழுதிக் கொடுத்தநாக ஒப்புக்கொண்டவர்



இன்னாரென் றருபித்தவர்

18. Asmid _____ Oun : 15. Dome And Notition of winds cywon, Dow Gy.

2 Man grant : 2 m. har of sen of som complete natiques, so suby-

2015 id Assi (i) Add Ruth Strices 23 id Hash

1908 கேட்டம் மிருவ் படுவர்கள் முற்றும் கட்டம் முறிவு குடிகள் மாகாட்டப் படுவளைகளில் இவ்வக்கு கிருவ் படுவியில் வருவியில் நடக்க சிலக் விடியி விடியி படுவியில் கிறுவிக்கு வருவர்கள் கிறுவக்கு விக்கு விக்கும் கிறுவிக்கு விக்குவத்து விக்குவத்து விக்குவத்து விக்குவத்து விக்குவத்து விக்குவியியில் மிக்குவத்து விக்குவியில் முல்குவில் இவ்குவத்து விக்குவியில் மில்கையில் படுவிக்குவத்து விக்குவத்து விக்குவியில் மில்கையில் படுவிக்குவத்து விக்குவத்து விக்கு விக்குவத்து விக்குவத்து விக்குவத்து விக்குவத்து விக்குவத்து விக்க

PUN: 4.11. 5010

20|6 ம் ஆண்டு | புத்தமை 280 | எள்ளைகள் பதிவு செய்யாடு : உது

Sheet no. 2 of

14184

6. அறை அலங்கோரம் சிலுமிழை A. அழகர்சாயி, ஸ்டாஸ்பு வெண்டர், உரியம் எண்: 7827 / 62-A 25, பெயின் ரேஷி. திண்டுக்கம், தமிழ்தாடு. போல்: 24696

NORM - L + NOR 1960 MINIME LEASE DEED

G. C. 3(D) NO. 9 1/IND/MMA2/DEFT. DT. 13, 6, 97

THE INDERTURE made time 27th day of November 1997 between the governor of Tamil Hadu (merchanter referred as the estate governments which expression shall where the context so sand to be despet to include the successors and excising of the one purt and Thirty E. Assishingaram 5/c. K. A. Sember Crestic; Sirugudi village, Relies Tailes, Minimus District (hereing ter

8. Asmid Im

LESSEE

LESSOR COLLECTOR,

1000 Rs.

3 . சிறைது செலான் தாரும் 25, மெயில் ரோடு, திண்டுக்கல், அறுகும்.

A. Austeru. வூடாம்பு வெண்டர்.

multimin or sin: 7827 / 62-A கமிற்நாடு. போன்: 24696

1/21/

referred to as wins is seen which expression bould Where the context so wamens be desired to include their heirs, executors, commissioners, representatives and permitted assigns, on the other part.

WHEREAS the leased has upplied to the state dovernment in -co ruinade with treplineral goncession Rules 1960 (hereinafter referred to as the said rules) for a fresh grant of states been for limestone of the langs described in part ; of the schedule hersunder written has/have as estudy with the State government the sum of Hs. 2000/- (Rupuss Two thousand only), as Souther by. he 45 166A'S

17-11.97

5 . ആയാട് ഉത്ത്യ ജന്വാഗ് ഇതാക്കും, A. அழகர்சாரி, ஸ்டாம்பு வெண்டர்,

உரியம் எண்: 7827 / 62-A 25, பெயின் ரோடு தண்டுக்கும் தமிழ்நாடு. போன்: 24696

17.311

one royalties, convenents and agreements by and in these presents and the actuable internest written reserved and contained and on the part of the bases to be puid, observed and performed, the grace devertment with the approvance of the general government with the approvance of the general government, nereby grants and desires unto the lessess.

All those wines, weds, veins, seems of Linserers (investmenter and in the achecula referred to the said winerals) siduated, Lying and waing in or under the Leng watch are referred to impart I of the said schedule together with the Alberties, wowers and

8. As mial 1mm LESSEE LESSOR COLLECTOR, DINDISUL DISTRICT 1314

ஸ்டோம்பு வெண்டர். ± flumio 57 x531: 7827 / 62-A

25, மெயின் ரோடு, திண்டுக்கல் 8. திரை அமை காமும் தமிழ்நாடு. போன்: 24696

用如何的,

11411

privileges to be exercised or enjoyed in commented, derewith which are mentioned in part II of the said schedule subject to the restrictions and conditions as to the exercise and unjoyment of such liberties, powers and privileges which are mentioned in part III of the said schedule except and reserving out of the desiss, unto the State government the diserties, powers, and privileges mentioned in part IV of the said acheanle to hold the pressures hereby granted and dend see that the Assess from 27.11.97 to 26.11.2017 for the term of Twenty Jeurs mence make ensuing, yielding and paying thereof or unto the State Soverhear the several rests and royalties auntioned In gart you the said schedule at the respective, times therein specified

g. Asmid Jam

14194

9. ஆடை அணை அப்படி

A. அழகர்சாயி, ஸ்டாப்பு கொள்டர், உரிமம் என்: 7827 / 62-A 25, மெயின் ரோடு. திண்டுக்கல் தமிழ்நாடு. போன்: 24696

11211

subject to the provisions contained in Part VI of the said schedule and the lesses hereby covenants with the State Government as in Part VII of the said schedule in expressed and the State Jovannment hereby covenants with the lesses as in Part VIII of the said schedule as expressed and it is hereby mutably agreed between the parties hereby as in Part IX of the said schedule is expressed.

IN WITHESS WHINGOF these presents have been executed in manuer hereunder appearing and day and your first acove written.

S. As wish ____.

LESSOR
COLLECTOR,
DINDIGUL DISTRICT,
DINDIGUL

17-11-97

A. systerů,

ஸ்டோம்பு இவன்டர், உரிமும் எண்: 7827 / 62-A

8 - அறைசு அணைப் காரம் 25 மெயிய் போடு நிண்டுக்கல் நமிழ்நாடு போள்: 24696

se colorid.

11 5 11

PART I

THE AREA OF THIS LEASE

Location and area of the lause, -

All that tract of lands situated it dirugud village of Natham Taluk of pincigal pisamet; in Yamil neon in the Red Stration district of pincigal you pistrice at pattern and opering genestral survey so, as detailed.

Slame Taluk Willage S.F.No. Extent Classification granted & surface rent

8. As mi at June

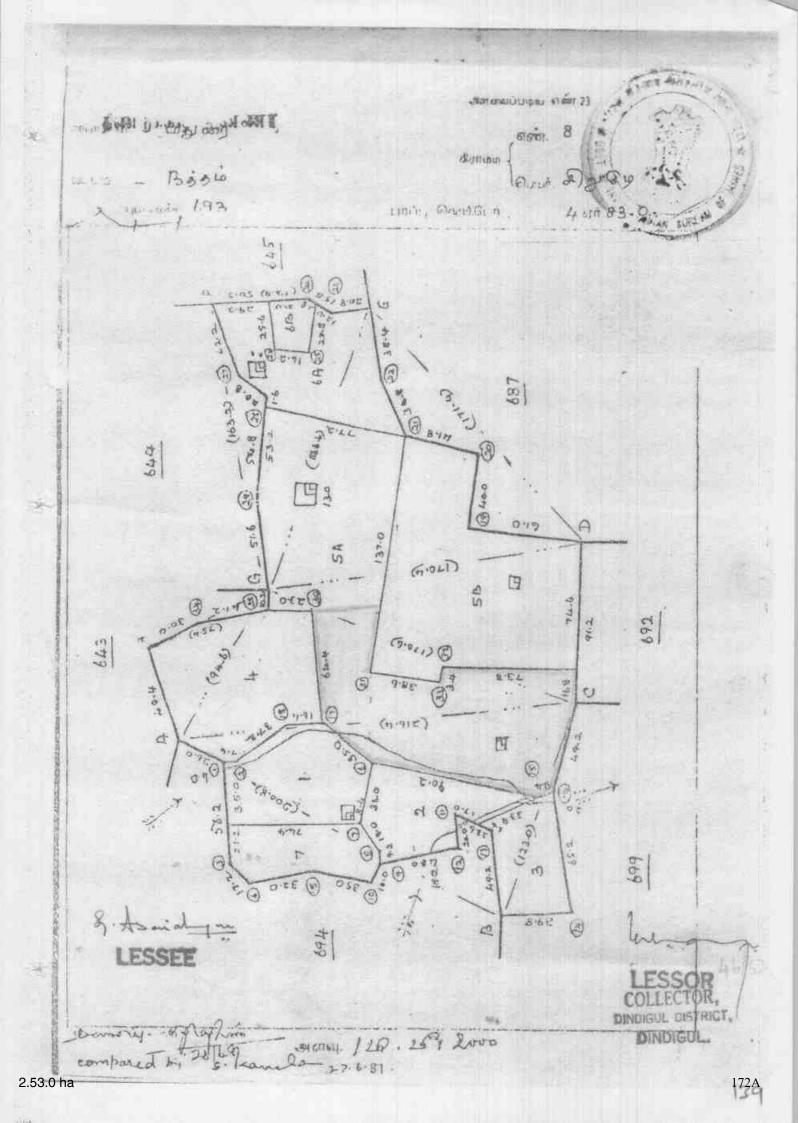
LESSEE

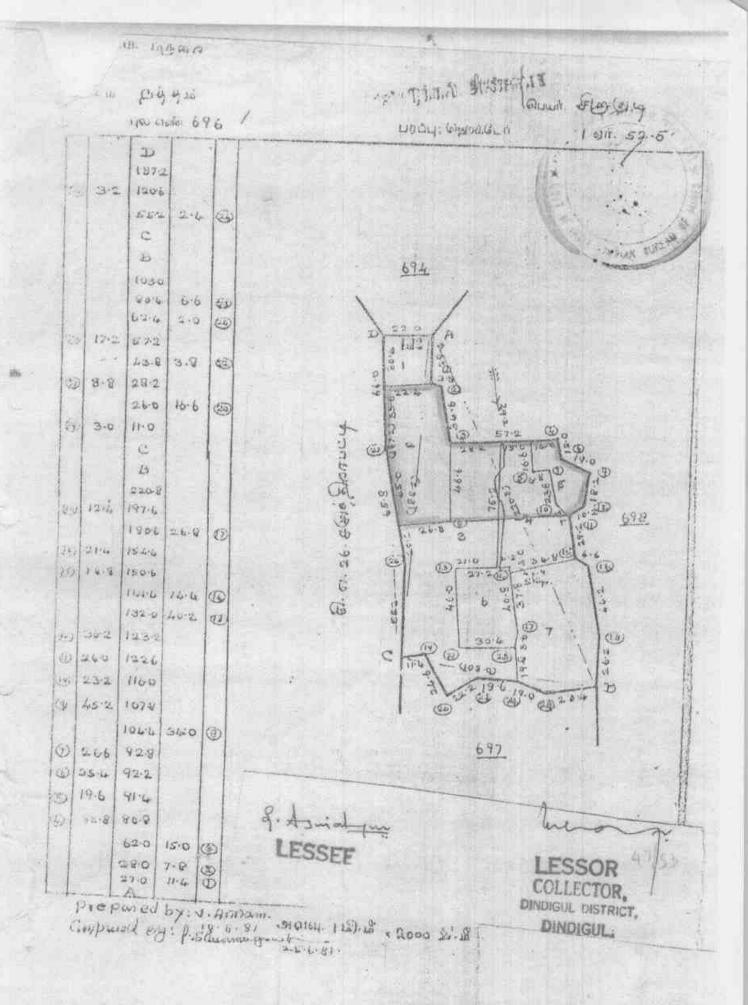
LESSOR

1-11.97

8. Short shoot south Amen,

A. Ayarerd,


ஸ்டாம்பு கொள்டர், a_fisio sroin: 7827 / 62-A 25, மெயில் நேசுடு, நிண்டுக்கல் தமிழ்நாடு. போன்: 24696



11711

le .	Natham	sirugudi	dell'e lige	3% tsal	
			695/2	0. 24.5 200	Patta
			696/3(20	- D) U. 13. C	-
			696/4(Pa	rb, 0. 11. 0	14
			696/5	U. U/. U	п
			698/1	U. 14.0	a.
			698/2	0. 11.5	28
			696/3	0,09,5	- 6
			698/44	0,54,5	41
			698/48	4.05.5	10
			698/4C	0.05.5	
			Agg Ze	117.25	25

To tal

பாலட்டம். 108 வக मार्का ड Con Last 139410 HEU GIESSI. 698 LIGULY Glysunia Li or 63.0 C 19.6 3.0 7.8 3 D 0 1954 7-13 176.0 694 3 @14.6 7:6 135.0 127.8 (20) 17.2 109-0 30 15.2 70-4 7:9 114 686 10.0 36.6 B 1886 12.0 160.6 5723 1 24-2 144-2 0 = E 7.8% D 220.0 3 12.4 197.6 696 154-4 188 699 362 1232 26.0 1226 (3) 45.2 102.8 35 4 922 80.8 62.0 15.0 (12) 280 7-8 (1) 27.0 11.4. A 3 144.8 128.4 697 19.2 (1) 1134 24.2 (4) 0 136 72.0 0 29.8 70-6 130 57-0 44-2 2012 0 43.0 9.6 3 132 424 DINDIGUL DISTRICT. 31.8 4.0 0 DINDIGUL. Fre paned by: V. Ann am signal, 128.18: 2000 10.25

भारतीय विशिष्ट पहचान प्राधिकरण भारत सरकार

Unique Identification Authority of India Government of India

це Сис S anim/Enrolment No.: 2043/88136/07186

g llangovan S (@arki 3an anin Ga)

S/O: Semban, 6/208, East street, Natham, Skugudi, Dindigul, Tamil Nadu - 624402

on make water with Your Aadhaar No.

- 🗷 ஆதார் அடையாளத்திற்கான என்று, குடியுரினங்க்கு அல்ல.
- A அடையாள சான்றை ஆன்மைன் ஆகன்டிகேஷன் முலமாகப் பெறவும்.

நக்கைய்.

இது லைக்ட்ராளிக் செயல்முறை மூலம் தமாரிக்கப்பட்ட கடிதமாகும்.

INFORMATION

- Aedhaar is a proof of identity, not of citizenship.
- # To establish identity, authenticate online.
- a This is electronically generated letter.

9633 9607 2481

எனது ஆகார், எனது அடையானம்.

M

Water

- 🛎 ஆத்சச் தாடு முழுவறிலும் செல்லும்முயாகும்.
- # ஆதார் ஆதார் செயறுவதற்கு ஒரே ஒரு முறை மட்டுமே தீங்கள் விள்ளப்பத்தை பூர்த்தி செய்து பதிவு செய்ய வேண்டிய அவசியம் ஏற்படும்.
- து அவருசெய்து உங்களின் சமீபத்தைய பூறிய வொன்பல் நம்பர் மற்றும் க-பெயில் முக்கமியை பதிவு செய்யவும். இதன்கல் ச க்களுக்கு பல்வேறு வரதிகளை பெற்றுக் கொள்ளும் சௌகரியம் கிடைக்கும்.
- at Addhaar is valid throughout the country.
- # You need to enrol only once for Aadhaar.
- # Please update your mobile number and e-mail address. This will help you to avail various services in future.

भारत सरकार GOVERNMENT OF INDIA

Ante Gairnicht Do Rangovan S. பிறந்த நசன்/ DOB: 05/01/1955 Sam / MALE

भारतीय विशिष्ट पहुंचान ग्राधिकरण

முகவரி: தந்தை / நாய் பொள்: Oxiodr, 6/208, 10956 **印度图、多类系统、产型图件。** Bringsub,

and and - 524402

Address: S/O: Semban, 8/200, East street Nation, Birugudi, Dindigul, Tamil Radu-624402

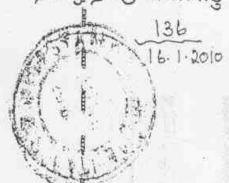
9633 9607 2481

4633 9607 2481

எனது ஆதார், எனது அடையாளம்.

MERA AADHAAR, MERI PEHACHAN

ANNEXURE - VII



INDIANONJUDICIAL

தமிழ்நாடு तमिलनाडु TAMILNADU

स्पृष्ट व्यविष्ट हो M

°K 74487

P. Radhaselni

ப. ருதாசெல்வி.

்த்திரைக்கள் விற்பணையாளர். 124, பேற்ய கடை வீதி. திளர்ந்தகள்–1, தமிழ்நாடு.

a filv is creat : 2453/ 25/V 97_31

DEED OF PARTNERSHIP

This deed of partnership executed on the Eighteenth day of January 2010 between

- 1. Thiru. S.Asaialangaram son of Thiru K.A. Semban chettiar aged about 56 years residing Door No 1/174, Main Road, Sirugudi Post, Natham Taluk, Dindigul Distri
- 2. Thiru, S.Ilangovan son of Thiru K.A.Semban chettiar aged about 54 years residing Door No.6 / 208, Main Road, Sirugudi Post, Natham Taluk, Dindigul Distri
- 3. Thiru. I.Vijay Alangar son of Thiru S. Ilangovan aged about 26 years residing at Do-No 6 / 208, Main Road, Sirugudi Post, Natham Taluk, Dindigul Distri

000

1 g. Armi al_time

Inijan Alugue

Dollald 1764

137

hisadooded F|M

K 744877

P. Rad ha Seln ப. ராதாசெல்வி, முத்திரைந்தாள் விற்பளையாளர். 134. பெரிய கடை வீதி. திண்டுக்கல்-1 தமிழ்நாடு. உரினம் என்: 24537 ஆ.9 97 39

Selvi. I.Sempon Manickam daughter of Thiru S.Ilangovan aged about 22 years residing at Door No.6 / 208, Main Road, Sirugudi Post, Natham Taluk, Dindigul District

WHEREAS the above said parties have entered into partnership and are carrying on the business of mining manufacturing and dealing in limestone and allied products under the name and style f SIVAM MINES at Door No. 6 / 209 Main Road, Sirugudi Post, Natham Taluk, Dindigul District, in partnership in accordance with the following TERMS AND CONDITIONS.

TERMS AND CONDITIONS

1. The partnership business shall be carried on under the name and style of "SIVAM MINES" and or under any other name or names at door No.6 / 209, Main Road, Sirugudi Post, Natham Taluk, Dindigul District and at any other place of places as the partners decided from time to time.

 The partnership commences with effect from Eighteenth day of January 2010 and it shall be determinable at will. Any Partner desirous of leaving the firm shall give not less than three months notice in writing to the other partners.

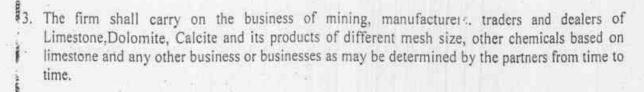
f. As we alm

I Trijan Alagre

177A

138

क्षान्त्र कार्य व्यक्ति है। भ


K-744878

P. RadhaSulni

ப ராதாசெல்வி,

முத்திரைத்தாள் விற்பளையாளர். 134, பெரிய கடை வீதி. திண்டுக்கல்–1. தமிழ்நாடு

உரிமை என் : 2453/ ஆ√ 97_3€

- Partner Thiru S.Asaialangaram who is holding the Mining lease for Limestone granted by the Govt. of Tamilnadu vide
 - G.O.3(D) No.83 / IND(MMA.2) Dept.dt.09.10.1996 for 1.70.5 Hectares (4.21acres) valid up to 27.02.2016.
 - ii) G.O.3(D) No.325 / IND MMA II Dept.dt.09-11.1995 for 0.24.0 Hectares (0.60 acres) valid μp to 16.04.2016.
 - G.O.3(D) No.91 / IND MMA 2 Dept.dt.13.06.1997 for 2.53.0 Hectares (6.25 acres) Valid up to 26.11.2017.
 - iv) Govt.Lr No.6754 / MMA2/1999 2000 dt. 21.02.2003 for 1.92.0
 Hectares(4.75 acres) is pending with the Government for grant and

& Asmid

+ I vijan Alage

145

6

139

कार्कुवाक व्यवसि ह| M

K 74487

P. Redhalelin ப. ராதாசெல்வி,

முத்தினர் தாள் விற்பனையாளர். 134, பெரிய கடை வீதி திண்டுக்கல்-1, தமிழ்நாடு. உரிமை என்: 2453/ ஆ.V 57_39

Partner Thiru S.Ilangovan who is holding the Mining lease for Limestone granted by the Govt. of Tamilnadu vide

- i) G.O.Ms No318 / IND (MMA2)Dept.dt 26.10.1995 for 0.94.5 Hectares (2.34 acres) Valid up to 16.04.2016.
- G.O.3(D) No.89 / IND (MMA2)Dept.dt.17.10.1996 for 0.94.0 Hectares (2.33 acres) Valid up to 03.03.2017.

Both of them do hereby agree to carry out the operations of mining in the name of the firm. All the partners do hereby agree to do the Mining Operations in the name of the firm in the event o their getting Licenses in their individual names.

5. The capital of the firm shall be the total of the credit balance in the accounts of the partners and such credit balance in the accounts of the partners shall carry interest at the rate of 12% per annum. This rate can be changed from time to time as decided by the partners at such other rate as may be prescribed by the Income Tax Act 1961 may be adopted.

g. Asmi al my

I I wignestergy 14/50A

140

M/s තිවර් තරස්ක් අවලාධ K 744880

P. Radhaselm ப. ராதாசெல்வி, முத்திரைத்தாள் விற்பகையாளர். 134, பெரிய கடை வீதி, திண்டுக்கல்-1. தமிழ்நாடு.

உரி அம் எண் : 2453/ ஆV 97_38

- 6. Any further money that may be advanced by the partners other than capital shall be entitled interest at the rate of 12% annum.
- 7. Partner S. Ilangovan shall be the Managing Partner of the firm and discharge duties on general administration and shall also be responsible for carrying out the requisite obligations as is expected of the firm by the statutory authorities. He shall have power in general, to act on behalf of the firm in all matters, transactions and details relating to the firm and in particular, he shall individually have power;
 - a) to represent the firm before all Government, quassi Government, Taxation, Licensing, Excise, Judicial, postal and other authorities,
 - to institute, defend, compromise, abandon or withdraw any suits and legal proceeding on behalf of the firm.
 - c) to receive all registered tapals, VPPs., Money Orders insured post and other postal articles addressed to the firm.
 - d) to receive all money due to the firm and give valid acquittances therefor.

A. Asmid

3 Fujarthay

180A

16.1.2010

MS भिवात कार्किष श्रिष्ठ विष

K 744881

P. Radhalelin Re ப. ராதாசெல்வி, முத்திரைத்தான் விற்பனையாளர். 134. Quifiu கடை வீதி. திண்டுக்கல்-1, தமிழ்நாடு.

உரிமை என் : 2453/ ஆ1/ 97_39

- e) to borrow any amount from Bank, Institutions, individuals etc., on such terms and conditions as security, rate of interest and mode of repayment as he deems fit.
- f) to open accounts with Banks and to operate such accounts and to draw, endorse or otherwise deal with negotiable instruments.
- g) to appoint the necessary staff or agents on such terms and conditions and remuneration /commission deemed fit by him and also to terminate their services, if found necessary, and
- h) to do all such other acts and things as may be necessary. Incidental and conducive to the proper, efficient and profitable conduct of the partnership business.
- He shall be paid a monthly remuneration up to Rs. 15,000/- (Rupees Fifteen thousand only) This remuneration may be increased or decreased with the consent of the partners from time to time.
- 8. Partner S. Asaialangaram shall be in charge of manufacturing activities and he shall be paid a monthly remuneration up to Rs.15,000/- (Rupees Fifteen Thousand only). This remuneration may be increased or decreased with the consent of the partners from time to time.

3 I. vijou Alongo

MA 181A

Proper books of accounts shall be maintained for the purpose of business of the firm and shall be closed of profit and Loss Account for the first time at the end of March 2010 and thereafter at the end of 31st March every Year, The Profit and Loss as ascertained after charging all expenditure of the firm including salary and interest if any paid to the partners shall be divided or borne by the partners in the following ratio.

S. ASAIALANGARAM	-	10%
------------------	---	-----

50% S. ILANGOVAN

20% I. VIJAYALANGAR

I. SEMPON MANICKAM 20%

- 10. The partnership commences with effect from Eighteenth day of January 2010 and it shall be determinable at WILL. Any partner desirous of leaving the firm shall give not less than three months notice in writing to the other partners. Any dispute or difference arising among partners the decision of the Majority of the partners shall be the final and binding on all the partners as conclusive decision.
- 11. Death or retirement of any one of the partners shall not by itself dissolve the firm. In the event of death of my partner; the surviving partners shall continue the business with or without admitting the legal heirs of the deceased partner. In the event of retirement of any partner, the business of the firm shall be continued by the other partners with or without admitting any new partner of partners. In these circumstances the remaining partners may or may not admit minors to the benefits of partnership.
- The Provisions of Indian Partnership act 1932 and its later amendments shall apply to this partnership to the extent to which they are not specifically modified or excluded by the special clauses.

In WITNESS WHERE OF THE partners have set their hands on the day and year first above mentioned.

1. & Asnial In 2. Dogues 3. IvijanAlaga 4. Lellal S

WITNESSES

1. N. Anburoni W/o - Nalloundthan Sirangudi Po., Natham Tk. 2/45 West Street, Strugudi Po., Natham Tk. Dindigul-Dt., Pin-

2. Vtg. Vengalisama Slo V Keilleransonthy, Nathanz V·K. VENGATARAMAN. ZIZY7, Bazar Structinatham. Dindikul-03, Pin-brikhol 149

ANNEXURE - TX

SIVAM MINES

S. ILANGOVAN B.E., Managing Partner 6/209, Main Book, Sirugudi (PO).
Natham (TK), Oradugul (DT).
Pin code: -62 = 104
Cell: 94430 - 6 (632.

Mine code: 38TMN33006 IBM Reg No. IBM /5284/2011

To

The Regional Controller of Mines, Indian Bureau of Mines, C-4-A, Rajaji Bhavan, C.G.O Complex, Bezant Nagar, Chennai – 90.

Sub: Submission of Form I & Form J in respect of our Sirugudi Limestone Mine, over an extent of 2.53.0 Ha. in S.F. Nos: 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu State M/s. Sivam Mines., - Reg.

Sir.

With reference to the subject cited, we herewith enclose Form I & Form J in respect of Sirugudi Limestone Mine, over an extent of 2.53.0 Ha. in S.F.Nos. 693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu State, for your kind perusal.

Thanking You,

Yours faithfully
For Mys Sivam Mines

Managing Partner

S. Ilangovan (Managing Partner)

Place: Dindigul Date: 31.10.2017

Encl: as above.

FORM -I

(See rule 47)

(Notice of sinking shafts and boreholes)

MINE CODE -

- The Controller General, Indian Bureau of Mines, Nagpur - 440 001.
- The Controller of Mines, Indian Bureau of Bangalore, PIN: 560 022.
- The Regional Controller of Mines, Indian Bureau of Chennai PIN: 600 090.
- 4. State Government concerned.

1.	Type of Mineral Concession Mining Lease Prospecting License Prospecting License-cum-Mining lease	Mining Lease
2,		IBM /5284/2011
3.	Unique IBM Concession Number Prospecting License Prospecting License-cum-Mining Lease	
4.	Mining Lease code	
5.	Mine code	38TMN33006
6.	Name of the mineral or minerals for which prospecting license or prospecting license cum mining lease-mining lease has been granted:	Limestone
7.	Name and address of the mineral concession holder	M/s. Sivam Mines., [S. Ilangovan, B.E., Managing Partner] 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District.
8.	Particulars of mineral concession	The Mining lease was granted vide G.O.(D) No.171 Inds (MMA.1) dept., dated U3.11.2014.
9.	Location of the mineral concession	Sirugudi Village

Toposheet Number	-S.F. Nos & Village	Extent Ha	Taluk	District	State
58-3/08	693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 Sirugudi	2.53.0Ha	Natham	Dindigul	Tamil Nadu

10.	Number of shafts-bore holes intended to be sunk or extended (Attach a plan on a scale not less than 1 centimeter = 40 metres indicating the precise location of the shaft borehole).	DTH Hole-9 Nos, From R.L.2213.2m (maximum)
11.	Purpose for which each of the shafts-boreholes is intended to be sunk or extended	To find the depth of mineralization and the ultimate pit limit.
12.	Type of shaft(s)-contemplated and its-their dimension(s)	Vertical DTH Hole Dia = 110 mm
13.	Type of drill used and size of core to be obtained	DTH-No Core
14.	Intended depth upto which shaft-boreholes is to be extended	upto 25metres depth each. [9 DTH Holes - upto 25 metres (maximum)] from working pit level. DTH-1 - 12.3m DTH-2 - 25.1m DTH-3 - 25.0m DTH-4 - 25.2m DTH-5 - 25.1m DTH-6 - 25.2m DTH-7 - 9.0m DTH-8 - 8.1m DTH-9 - 8.9m Total meterage - 163.9m
15.	If the shaft-borehole commences from underground the depth of the level at which the shaft-borehole is sunk	Not applicable
16.	Name and qualification of the geologist or mining engineer in charge of the operation	Dr.P.Thangaraju, M.Sc., Ph.D., (Geologist)
17.	Date of commencement of proposed shaft sinking-drilling operation.	(2016-17) 12.12.2016

Your's faithfully For M/s, Sivam Mines/S SIVAM MINES

Signature : Managing Partner
Name in full: S. Ilangovan

Designation: Managing Partner

Place: Dindigul ... Date: 31.10.2017

[See rule 48 (1)]

(Particulars to be recorded in respect of each bore-hole-pit-shaft)

MINE CODE - 38TMN33006

1.	Type of Mineral Concession Mining Lease Prospecting License Prospecting License-cum-Mining lease	Mining Lease		
2.	IBM Registration Number	IBM /5284/2011		
3.	Unique IBM Concession Number Prospecting License Prospecting License-cum-Mining Lease			
4.	Mining Lease code			
5.	Mine code	38TMN33005		
6.	Name of the mineral or minerals for which prospecting license or prospecting license cum mining lease-mining lease has been granted:	Limestone		
7.	Name and address of the mineral concession holder	M/s. Sivam Mines., [S. Ilangovan, B.E., Managing Partner] 6/209, Main Road, Sirugudi Post, Natham (Tk), Dindigul District.		
8.	Particulars of mineral concession	The Mining lease was granted vide G.O.(D) No.171 Inds (MMA.1) dept. dated 03.11,2014.		
9.	Location of the mineral concession	Sirugudi Village		

Toposheet Number	S.F. No & Village	Extent Ha	Taluk	District	State
58-J/08	693/5A (P), 696/2, 3 (P), 4 (P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 – Sirugudi	2.53.0Ha	Natham	Dindigul	Tamil Nadu

10.	Type and make of the drill and size of core.	Vertical DTH Hole Dia = 110 mm DTH-No Core
11.	Bore hole-pit number and its location (a) Reduced levels at the collar of the borehole-pit (b) Inclination and bearing of the hole (c) Altitude of the formation	R.L.213.2m (maximum) Vertical Band Formation
12.	Duration of drilling-pitting (a) Date of commencement (b) Date of completion	2016-17 12.12.2016 20.12.2016

13.	Total length of the bore hole-pit-shaft	upto 25metres depth each. [9 DTH Holes by 0 25 metres (plaximum f) from working it evel. DTH-1 3m DTH-2 - 25 am DTH-3 - 25 0m DTH-4 - 25 2m DTH-5 - 25 1m DTH-6 - 25 2m DTH-7 - 9.0m DTH-8 - 8.1m DTH-9 - 8.9m Total meterage - 163.9m
14.	Purpose of drilling-pitting-shaft	To find the depth of mineralization and ultimate pit limit, the estimation of resource and reserve as per UNFC norms.
15.	Total operating expenditure incurred (in Rs.)	DTH Hole - Rs. 400/m. (163.9m x Rs.400) = Rs. 65,560/-
16.	Details of intersection (as given below)	

		RUN DE	TAILS	Vall 1	Size of			Analysis	THE PE
SI. No.	From (in metres)	To (in metres)	Width (in metres)	True Width (in metras)	coro/ pil/shaf	Percentage recovery of core	Lithology	Qetails (Major radicals a b o d)	Remar ks
1	2	3	4	5	6	7	8	9	10
1.	200.3m	188.0m	F1880.25	***	110mm	100%			- 1-
2.	213.1m	188.0m	104 0		110mm	100%	Please Refer		10.4
3.	213.0m	188.0m		The Later	110mm	100%			
4.	213.2m	188.0m			110mm	100%			100
5.	213.1m	188.0m		+000	110mm	100%	Table	CaCo ₃	
6.	213.2m	188.0m	1 1	69.	110mm	100%	no.1 for		
7.	213.0m	204.0m			110mm	100%	details		
8.	208.1m	200,0m		3 3 3	110mm	100%			
9.	208.9m	200.0m			110mm	100%			

Details of Exploration:

Locations of DTH are marked in the geological plan and sections. (Refer the Geological Plan Sections).

LITHOLOG OF THE DTH

No. of bore holes	Latitude	Longitude	Depth of boreholes (m)	Depth of deposition of Limestone (B. Fr.	Streta	
DBH-1	10" 14" 31.34"N	78" 17" 39.02"E	12.3	200.3m-188.0m	Limenohe	
DBH-2	10" 14" 31.04"N	78° 17' 37.77°E	25.1	213.1m-212.3m	Topsoil	
And the	10 14 51,04 14	10 11 31.11 1	20.1	212.3m-188.0m	Limestone	
DBH-3	10" 14" 30.62"N	78" 17' 39.64"E	25.0	213.0m-211.9m	Topsoil	
Diplied	10 14 30.02-14	70 17 39.04 C	76 17 39.04 E	0.62	211,9m-188.0m	Limestone
DBH-4	10° 14' 30.36°N	701 471 40 8715	25.2	213.2m-211.8m	Topsoil	
Dane	10 14 30,30 14	.36°N 78° 17' 40.87'E	70.50 N 70 17 40.07 E 25.2	23.2	211.8m-188.0m	Limestone
DBH-5	10" 14' 29.45'N	78" 17' 39.23"E	25.1	213.1m-212.2m	Topsoil	
DBITO	10 14 28,45 14	10 11 00.20 C	20,1	212.2m-185.0m	Limestone	
DBH-6	10" 14' 30.12"N	78° 17' 37.05°E	25.2	213.2m-212.1m	Topsoil	
ESSITED.	10 14 50,12 19	10 11 31,03 12	20,2	212.1m-188.0m	Limestone	
DBH-7	10" 14" 28.82"N	78" 17' 36.75"E	9.0	213.0m-211.8m	Topsoil	
Pipiter	10 14 20,02 19	70 17 30,70 E	3.0	211.8m-204.0m	Granite-Gneis	
DBH-8	10" 14" 29.62"N	78° 17' 45.27'E	8.1	208.1m-200.0m	Limestone	
DBH-9	10" 14' 31.48"N	76* 17' 46.02"E	8.9	208.9m-200.0m	Limestone	

^{*}DTH-Down The Hole

Your's faithfully

For M/s. Sivam Mines For M/S SIVAM MINES

Signature :

Name in full: S. Ilangovan

Designation: Managing Partner

Place: Dindigul Date: 31.10.2017

Government of India Ministry of Mines Indian Bureau of Mines Office of the Regional Controller of Mines

Telefax no. 044-24911295

Email ID: rcomchennai@yahoo.co.in

No. TN/DGL/LST/MS-1103.MDS

To:

Sri S. Asai Alangaram No. 4/174 Main Road Sirugudi East Street, Sirugudi P.O. Natham Taluk Dindigul – 624 404. Resistered Parcel

C4A Rajaji Bhavan Besant Nagar Chennai - 600 090.

Dated: 04 /082014

5 AUG 7147

Sub.: Approval of Scheme of Mining (including Progressive Mine Closure Plan) in respect of Sirugudi Limestone Mine over 2.53,0 hectares in S.F. No. 693/5A(P), 696/2, 3(P),4(P), 5, 698/1, 2, 3, 4A, 4B, 4C & 5 in Sirugudi Village, Natham Taluk, Dindigul District, Tamilnadu State.

Ref.: RQP's letter no. nil dated 12.7.2014.

Sir,

In exercise of the power conferred under sub rule (4) of Rule 12 of Mineral Conservation and Development Rules, 1988, I hereby approve the aforesaid Scheme of Mining (including Progressive Mine Closure Plan). This approval is subject to the following conditions:

(1) The Scheme of Mining (including Progressive Mine Closure Plan) is approved without prejudice to any other law applicable to the area from time to time whether made by the Central Government, State Government or any other authority.

(2) The Scheme of Mining (including Progressive Mine Closure Plan) is approved without

prejudice to any order or direction from any court of competent jurisdiction.

(3) It is also clarified that the approval of your aforesaid Scheme of Mining (including Progressive Mine Closure Plan) does not in any way imply the approval of the Government in terms of any other provision of the Mines and Minerals (Development & Regulation) Act, 1957, or the rules framed there under and any other law.

(4) It is further clarified that the approval of the Scheme of Mining (including Progressive Mine Closure Plan) is subject to the provision of Forest (Conservation) Act, 1980, Forest Conservation Rules, 2003 and other relevant statutes, orders and guidelines as may be

applicable to the lease area from time to time.

(5) Provisions of the Mines Act, 1952 and Rule & Regulations made there under including submission of notice of opening, appointment of manager and other statutory officials as required by the Mines Act, 1952 shall be complied with.

(6) The execution of mining plan/ scheme of mining shall be subjected to vacation of

prohibitory orders/ notices, if any.

- (7) If anything is found to be concealed as required by the Mines Act in the contents of Scheme of Mining and the proposal for rectification has not been made, the approval shall be deemed to have been withdrawn with immediate effect, further at any stage, if it is observed that the information furnished in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- (8) This approval of mining operations and associated activities is restricted to the mining lease area only. The mining lease area is as shown on the statutory plans under rule 28 of Mineral Conservation and Development Rules, 1988, by the lessee/RQP/applicant. Indian Bureau of Mines does not take any responsibility regarding correctness of the boundaries of the lease shown on the ground with reference to the lease map and other plans furnished by the applicant/lessee.

(9) This approval is given for the received proposals as applicable from this date.

- (10) Yearly report as required under Rule 23 E(2) of MCDR, 1988 setting forth the extent of protection and rehabilitation works carried out as envisaged in the approved progressive mine closure plan and if there is any deviations, reasons thereof shall be submitted before 1st July of every year to the regional office, IBM, Chennai.
- (11) The validity period of the financial assurance should be renewed before the expiry of the same.
- (12) The contents of Circular No 2/2010 issued by the Chief Controller of Mines, Indian Burcau of Mines, Nagpur vide his letter No- 11013/3/MP/90-CCOM VOL-VII dated 06.04.2010 shall be complied with.

Yours faithfully,

Encl. Copy of approved Scheme of Mining (including Progressive Mine Closure Plan)

(T.K. Rath) Regional Controller of Mines

Copy for information to:

- Sri S.Dhanasekar, RQP, 8/3 Kullappan Street, Opp. Indian Bank Line, Omalur Taluk, Salem – 636 455.
- The Commissioner of Geology & Mining, Government of Tamilnadu, Guindy, Chennai – 600 032 along with copy of the approved Scheme of Mining.
- The Director of Mines Safety, No. 46 AA Block, 2nd Street, Annanagar, Chennai 600 040 along with a copy of the approved Scheme of Mining.
- The Controller of Mines (SZ), Indian Bureau of Mines, Bangalore, along with a copy
 of the approved Scheme of Mining.

Encl. As above.

(T.K. Rath) Regional Controller of Mines

Acknowledgement Slip for TOR application

monitoring-ec@nic.in <monitoring-ec@nic.in>
To: s.kumar1958@gov.in, sivammine2017@gmail.com
Cc: rb.lal@nic.in, m.knight@gov.in, monitoring-ec@nic.in, khush.singh@gov.in

Sat, Apr 29, 2017 at 12:45 PM

Acknowledgement Slip for TOR

This is to acknowledge that the proposal has been successfully uploaded on the portal of the Ministry. The proposal shall be examined in the Ministry to ensure that required information has been submitted. An email will be sent for seeking additional information , if any, within 5 working days. Once verified, an acceptance letter shall be issued to the project proponent.

Following should be mentioned in further correspondence

Proposal No. : IA/TN/MIN/64272/2017

2. Category of the Proposal : Non-Coal Mining

3. Project/Activity applied for : 1(a) Mining of minerals

4. Name of the proposal M/s. Sivam Mines - Limestone Mine - Area -

2.53.0

5. Date of submission for TOR: 29 Apr 2017

6. Name of the Project proponent along with contact details

a) Name of the proponent : SIVAM MINES b) Mobile No. : 9443067632

c) State : Tamil Nadu d) District : Dindigul

e) Pincode 624404

கமிற்காடு तमिलनाड TAMIL NADU

1890 M/S SIVAM MINES SIRUGIODI

16AB 519846

P. Radhasuli

II. Bushagasi coldephanically community 134, Queller annu. of A). gluin@dani -1, gallinga@. suffere such: 24530,55, 1/1997-39

DEED OF AGREEMENT

This agreement entered in to at Dindigul on this day of 2nd August 2016 between Thiru.S. Hangovan B.E.,, S/o K.A. Semban 6/209, Sirugudi Village, Natham Taluk, Dindigul District, Managing Partner of M/s SIVAM MINES, herein after referred to as party of the First part and S.M. Veeramani, Kannara Street. Dindigul District,

- Licence No.E/SC/TN/22/560(E66405) in Form 22 valid upto 31.3.2018.
- ii) Licence No.E/SC/TN/22/159(E10456) in Form 22 valid upto 31.3,2019, herein after referred to as party of the Second part.

POT M/S SIVAM MINES

Managing Partner

Arms Ammunitions & Explosive Dealer 5, Kannara Street, DINDIGUL - 624 001

The Party of the First part is operating Sunestone Mines in the area S.F.Nos.693/1,2,3,4 & 7 Vide G.O.(D) No 173/ IND(MMA. Dept./ Dt.05322 2014. S.F.No. 644/4(P) Vide G.O.(D) No 174/ IND(MMA.1) Dept/ DL004, 2014, 693/5(P), 696/2,3(P), 4(P), 5,698/1,2,3,4A,4B,4C&5, Vide G.O.(D.004,71 693/5(P), 696/2,3(P),4(P),5,698/1,2,3,4A,4B,4C&5, Vide G.O.(D) Dept./ Dt.03.11.2014, SF Nos. 630/1A,1B,2 & 631/10,11 VideG.O.(D) Dept./ Dt.22.09.2014, SF Nos. 616/1B(P),C,618/1(P),619. Vide G.O.(D) 176/619 Dept./ Dt.03.11.2014. The lessee having the mining Least, for a Period of Twenty Years, and deemed extended for a further period of thirty years as per the Amendment Act 2015 w.e.f. 12.01.2015. •

Whereas the party of the First part required blasting to be done at the mines to excavate the Mineral Limestone. The blasting work is so intensive and large, the party of first part has decided to entrust the supply of explosives material involved, to the party of the second part having valid explosives

- Licence No.E/SC/TN/22/560(E66405) in Form 22 valid upto 31.3.2018.
- ii) Lieence No.E/SC/TN/22/159(E19456) in Form 22 valid upto 31.3.2019 issued by Joint Chief Controller of explosives South curde. Chennai, and hereby undertake the responsibility to supply the explosives materiel.

Payment will be made periodically by the party of the first part for the quantity of explosives supplied. Calculations will be made and settlement to be arrived at every month as marginal cost which includes cost of explosives, Transportation cost and other charges towards the supply of explosives materiels. This agreement is made for all blasting was an applied

by the second part in the above said areas. The second part is having rights to terminate the agreement with the first part if the first part violates or not abide the terms and conditions of the agreement and without prior notice or intimation.

This AGREEMENT is valid from the date of execution till validity of mining leases granted/extended by the STATE GOVT to the party of the First part of terminable by mutual consent earlier with one month notice.

In witness where of both parties signed this Deed on 2nd August 2016.

Party of the First Part:

For M/S SIVAM MINES

Managing Paytows

Place: Dindigul

Date: 02.08:2016==

Party of the Second Part:

S.M. VEERAMANL Arms Aramanitica a Explosive Dealo-

5. Kannara Street,

DINDIGUL - 624 981

Covering Letter

Page 1 of 1

GOVERNMENT OF INDIA

MENISTRY OF COMMERCE & INDUSTRY
PETROLEUM ARD EXPLOSIVES SAPETY ORGANISATION (PESO)
(Formerly Department of Explosives)

PRINC Complex: Near ESI Hospital Strakes West Day Virullianagar (TNI Strakes 626/24 Tale: 254293 Feb. 255283

Email: dynasivakasin explosives gor in

Wast-Syntems

NOTESCHINIZASSOCEASUS)

In. NAT Vertomani, SKonnara Siveri, Bendigui. Dism. DINDIVILI, Brain. Tamil Nada, Pineselv-S. WKH

Suppost

Possession for Use of Explosives from inequation at Survey No. 895.5, Village/Town: Chariful agounds, Distributing and a License No.: 2751/TN 22/560(E66405) granted to Force LE-3 of Explosives Rules, 2009 - Renewal regarding

Swist.

Reference to oner letter No. aid dated, 270/92015, the values' license daily removed upto 31/92018 and respoil at form Land or Explosives Rules, 2008 or Resvanded herewith.

For further tenesical of licence, please submit the following documents so as to reach this office on or before 31/a/2018

- Application in Form RE-1 duly filled to and vignes.
- License for one to five years in the form of decision draft drawn on any Nationalized Heat in Several of the Controller of Explosives, Chemical psychologic Chemical
- Original license with approved plan.
- In this connection, please also refer to Fale 147 or Exploit as Rules, 2008.
- Indeed for purchase of explosives shall be placed in RP-11 with the supplier and every of the same well be sent to this office (not applicable to firently store beauty).
- These solvest quarterly returns of explosives in RE-7 at the end of every quarter so as to resolution of line by 1 offs of the socceeding quarter (Not appropriate for invertex store bouse).
- All blotting operations shall be carried out by a compount person holding a valid that fiver's period gramed under above rules. However, blasting operations in minus coming under the purview of the Mines Act 1952, the obster shall have qualifications prescribed in the regularized under the said Act.

An immun of Rt. 3000/- balance is in your credit, which may be unlisted for future transaction by anothing the reference

Englishmen.

(ILL religipat)

Yours Beidding.

Controller of Explosives partly Chief Countly of Explosives

Sinter

Cupy Forwarded to

District Magistrate, DHNDHGUL (Lacoll Natio) for information

For the Claim Committee of Espainson

Steaking

2.53.0 ha

Course Embrack object tible 10% for Englishing Auto-2009. No Only New year Committee of Englanders Societies in 2102-2012.

LICENCÉ FORM LE-3

(See arricle 3(a) to (d) of Part 1 of Schedule IV of Explosives Rules, 2008)

Licence to possess: (c) for use, explosives of class 1, 2,3,4,5,6 or 7 in a magazine

Literier No. : E/SC/TN/22/560(E66405) Annual Fee Re:7000/-

Licence is hereby granted to :

S.M.Veeramani (Occupier : Sri S.M.Veeramani) 3Kannara Street, Dindigul., Town/Village - Dindigual District-DINDIGUL, State-Tamil Nadu, Pincode - 624001

2. Status of hexasee: Individual

Licence is valid only for the following purpose: possess for ose of Gunpowder, Nitrate Mixture, Safety Fuse, Detunating Fuse, Electric and/or Ordinary Detonators,

4 (a) Licence is valid for the following kinds and quantity of explosives:

Sr. No.	Name and Description Cluss & Division		Sub-division (If any)	Quantity at any one time	
	Gunpowder	1.0	0.	50 Kg.	
2	Nitrate Mixture	2.0	0	1950 Kin	
3.	Safety Fuse	ö. 1	0	Longo Mites	
45)	Detoniting Pose	6.2	-0	Avairs Man	
5	Electric and/or Ordinary Deronators	0.1	0	44000 Nos	

(b) Quantity of explosives to be purchased in a calendar month[applicable for licenor under article 3(b) and (c)]. If times as above.

The licensed premises shall conform to the following drawing(s):

Drawling No : E/SC/FN/22/560(E66405) dated : 17/02/2012

The Scensed premises are sinuated at following address:

Survey No. 695/5 . Town Village : Chinthalagunda, Dindugal-taluk

Police Station : Dindigul

District : DINDIGUL

State: Tumil Nada

Con-

PinCode 624001 Phone

e E-Mail

7. The licensed premises consist of following facilities: One High explosives Magazine, Lobby & Detouator Room

- The licence is granted subject to the provision of Explosives Act 1884 as amended from time to time and the Explosives Rules. 2008 framed there under and the conditions, additional conditions and the following Americans.
 - (1) Drawings (showing site, constructional and other details) as stated in serial No. 5 above.
 - (2) Conditions and Additional Conditions of this licence signed by the licensing authority
 - (3) Charance Form DE-2

This because shall remain valid till 31st day of March 2013

This because is hable to be suspended or revoked for any violation of the Act or Rules framed there under or the conditions of this because as set forth under Set VIII, wherever applicable, referred to in Part 4 of Schedule V or if the because premises are not found conforming to the description shown in the plans and Annexure stracked hereto.

The Date: 17/03/2012

Joint t hief Controller of Explosives South Tirele, Chemna

Endorsement for renewal of licence:

Date of Uxpro -	Signature of licensing anthony
31/03/2018	Dy. Chief-Controller of Explosives, Specials

Dated 26/03/2014

GOVERNMENT OF INDIA MINISTRY OF COMMERCE & INDUSTRY PETROLEUM AND EXPLOSIVES SAFETY ORGANISATION(PESO)

(Formerly Department of Explosives)
No. 140, Ruimint Learningth Road,
Marstallis Road, Egmore, Chemias 600003
Tele: 28514848 Fax: 28514848
Email: ptecebennis@explosives.gov.in

No ESCITADI/159E10456)

TO PREPARENT.
NO S. KANNARA STREET BIG BAZAAR STREET DINDIGUS.
Dinn DINDRICE, Some Tomal Noun, Procede-624061

Subject

Powersion for Use of Explosives from magazine at Survey Notice695/5, Village Town, CHITHALAGENDO taleh, Distr. DINDIGUE, State Tanill Nada Escence No.: E/SC/TN/22/159(E10456) granted in Form LE-3 of Explosives Rules, 2008—Renewal regarding

Sigu.

Reference to your letter No.: x dated: 17/92/2014, the subject because duty reserved upon 38/3/2019 and issued in Form LE-1 of Exphances Rules. 2008 in forwarded herewith.

For further conewal of licence, please submit the following documents so as to reach The Dy. Chief Controller of Explosives, Sivalent on or Science 31/3/2019

- · Application in Form RE-1 duly filled in and signed.
- Licence fees for one to five years in the form of domand draft drawn on any Nationalized Bank in throughof in Chief Controller of Explanation. Chemical psychic at Chemical.
- Original frames with approved plan.
- In this connection, please also refer to Rule 112 of Explosives Rules, 2008.
- Indeed for guestics of explosives shall be placed in RE-LL with the supplies and copy of the same shall be sent to this office (for applicable for fireoder store bouse)
- Please submit quarterly returns of explosives in RE-7 at the end of every quarter so as to reach The Dy. Chief Controller of Explosives, Sociation by 10th of the succeeding quarter (Not applicable for freezies share basise).
- All blasting operations shall be carried out by a competent person holding a valid shot firer's person granted under above enter. However, however, providing operations in major committee ander the purview of the Mines Act 1952, the blaster shall have qualifications prescribed in the regulations frames under the said Act.

An amount of Rs. 480/- hafance is in your credit, which may be utilized for future transaction by qualing this reference.

Enclosures :

- Yours fainfully.

(K Sundaresan)
Deputy Chief Controller of Explosives
For Joint Chief Controller of Explosives
South Circle: Chennal

Copy Forwarded to

District Magistrate, DINDIGUL (Famil Nada) for information

For Joint Chief Controller of Explanees. South Circle Chemist

(Fed materializations of supplifying survey, from that other distable plants who have such as the property gives a pro-

LICENCE FORM DE-3

(See article 3(a) to (d) of Part 1 of Sebedule IV of Explosives Rities, 2008;

Licence to possess : (c) for use, explosives of class 1, 2,3,4,5,6 or 7 in a magazing

Licence No.: ESC/TN/22/159(£10456) Amount Fee Rai 30001.

L. Licence is hereby granted to:

S.M. VEERAMANI (Occupier: S M VEERAMAPH) NO.3, KANNARA STREET, BIG BAZAAR STREET, DI

DINDEGAL

District-DINDIGUL, State-Tamil Nadu, Pincode - 624001

Status of licensee | Individual

Licence is valid only for the following purpose: possess for use of Safety Fuse, Electric and/or Ordinary Detonators, Detonating Fuse, Nitrate Mixture,

(a) Lisence is valid for the following kinds and quantity of explosives

Sr. No.	Name and Description	Class & Division	Sub-division (If any)	Ottoratov at any one time
-	Dittrate Mixture	2.0	10	250.150
2	Safety Fuse	6.1	- 0	25// 1/31
3.	Electric and/or Ordinary Detonators		U.	1500 Mirs
	Detonating Fuse	0.0	0.	11000 Nos.
-	Community Func	6.2	0	1500 Mas

(b) Quantity of explosives to be purchased in a calendar month/applicable for fivence under article 3(b) and (c)): 20 times as

The licensed premises shall conform to the following frawing(s):

Drawing No : E/SC/TN/22/159(E10456) dated : 27/07/1989 The licensed premises are situated at following address.

Survey No(s), 695/5, Town/Villago CHITHALAGUNDL.DINDUGAL taluk

Police Station : DUNDIGUL

Phone : 64512433589

District DINDIGUL.

E-Mail

State Tamil Nada

The ficensed premises consist of following facilities : N/A

The licence is granted subject to the provision of Explosives Act 1884 as amended from time to time and the Explosives Rules. 2008 framed there under and the conditions, additional conditions and the following Annexures.

(1) Drawings (showing site, constructional and other details) as stated in serial No. 5 above. (2) Conditions and Additional Conditions of this ficence signed by the licensing authority.

(3) Distance Form DE-2

PioCode | 624091

9. This licence shall remain valid till 31st day of March 1997.

This licence is liable to be suspended or revoked for any violation of the Act or Rules framed there under or the conditions of this licence as set firth under Set VIII, wherever applicable, referred to in Part 4 of Schedule V or if the licensed premises are not found conforming to the description shown in the plans and Amexore attached hereto.

The Date 27/07/1989

Sal Joint Chief Controller of Explosives South Circle, Chronai

Amenibuents:

- Amendment of Quantity of Explosures/Monthly Purchase Lines dated: 20/01/2012.
- Amenament of Quarmity of Explosives/Monthly Purchase Circle dines. 20/01/2012

Endorsement the renewal of Roence

Date of Renewal Date of Expire

Signature of theerstrig publicity

197A

GOVERNMENT OF INDIA MINISTRY OF COMMERCE & INDUSTRY PETROLEUM AND EXPLOSIVES SAFETY ORGANISATION (FES.).

(Formarly Department of Explosives)
No. 130, Rusmim Lawnipoti Road,
Marshalls Road, Egmore, Chemia 600008
Tale: 28514848 Fax: 28514848
Email: (topponennau/aexplosives.gov/in

No.E/SC/DN/25/882(E83215)

SA Verraman

Konnum Street Dividugal PO & Dr. PIN 624001 Diet DINDIGUT, State Tamil Nache Pincock 624001

Subject

Ruad Van for the carriage of Explosives - Registration No TN-57/AL-3586 License No., E/SC/TN/25/882 (E.83215) granted in Form LE-7 under Explosives Rules, 2008 - Endorsement regarding - Endorsement of License.

Suts

Reference morno No.: E/SC/TN/25/882(E83215) Dated 25/08/2014 from Joint Chief Controller of Explosives, South Circle, Chennal and inspection of the subject premares by an officer of this organization on 28/08/2014.

The unbject became No. E/SC/TN/25/882(E83215) valid upto 31st March 2018 daily endorsed in forwarded forcewith

For further renewal of ficence, please submit following documents so as no reach The Dy. Chief Controller of Explusives. Six shart on or before \$1703/2018.

- Application in Form RE-1 duly filled in and signed
- Unamor fees for one to five years in the form of denimed draft drawn on any Nationalized Bank in favour of Jt. Chief Controller of Explosives, Chennal parable of Chennal.
- · Creatinal Heience with approved plan-
- . In this connection, please also refer to Rule 112 of Explosives Rules, 2008.

Please follow following instructions strictly:

- The records of explosives transported by the licenced Rotalvan shall be maintained in the professor Rives under P in 5
 of schedule V of Explosives Rules 2008.
- Phase ensure that persons whose anticedants verified by the local Police stail only the impleyed with the licensed explosives manyan/compressor mounded track as divisors or classers. I set if such arrivers and gleaners is impossible personal particulars shall be made available to the local police in advance. The re-verification of such stall shall at a he made at least once in a year in compliance to Rule 61(5) or Explosives Roles. 2008.
- Please note that during transportation of explorities, the Rosièves shall always on attended to be a constrained points. It the consegnment of explosives to tiscly us pass through sometive great notified by Ministry of Honor Affairs. It is not be escurted by armed Police escont / grand provided by Disprict Police Administrations as acquired in Rule 6767 of Explosives Pulles 2008.

Your talleton

Duting 28/08/201

the P. K. Rimar

Controller of Explosives For Joint Chief Controller of Explosives

South-Errole (Astrono

Copy Forwarded on

Par John Chen Court by at Physics 1

the wire information regarded study. The professor standing topic of the contract of the contr

Largest Transport under Bulle 10343) of Explanatio Rules, 2008. On this Dr. P. N., Pours, Controllier of Explanation, Character on 28/08/2014.

LICENCE FORM LE-7

(See article no 7 of Part 1 of Schedule IV of Explosives Roles, 2008).

Liceuce to: transport explosives in a road van

Licenza No. : E/SC/TN/25/882(E83215) Annual Fee Rs 25000

Licence is hereby granted to:

S M Veeramani (Occupier : S M Veeran 3, Kannara Street, Dindugal PO & Dt. PIN District-DINDIGUL, State-Tamil Nada, Pic

Status of licensee : Individual

Particulars of the road van:

Registration No.

Make and model of vehicle

Unladen weight

Maximum laden weight

Maximum quantity of explosives permitted for transport

Engine No.

Chassis No.

Description Of Other Fittings.

Quantity Of Explosives permitted to carry

TN-57/AL-3586

MAHINDRA AND MAHINDRA BOLERO

MAXI

1790 Kg(s)

2620 长男8)

830 Kg(s)

TAE4G77617

MATZP2TAKL2G76393

As per the approved drawings attached

830 Kg(s)

4. The licensed premises shall conform to the following drawing(s):

Drawing No : E/SC/TN/25/887(E83215) dated : 28/08/2014

The licence is granted triblect to the provision of Explosives Act 1884 as amended from time to time and the Explosives Rules, 2008 framed thereunder and the conditions and the following annextres.....

(a) Drawings of the road van as stated in serial no.4 above.

(b) Conditions signed by the ficensing authority

This licence shall remain valid till 31st day of March 2018.

This licence is liable to be suspended or revoked for any violation of the Act or rules framed there under or the conditions of this licence as set forth under, wherever applicable, referred to in Part 4 of Schedule V or if the licensed premises are not found conforming to the description shown in the plans and annexure attached

Pho Date: 28/08/2014

Joint Chief Controller of Explosives South Circle, Chesons

Endpresment for renewal of heenee.

Date of Renewal

Date of Expiry

Standard of libensing authority

Statutory Warning : Mishandling and misuse of explosives shall constitute serious critolical offices and or the law.

Date 8 2 3 98 2016

+ GOVERNMENT OF INDIA MINISTRY OF COMMERCE & IND PETROLEUM AND EXPLOSIVES SAFETY ORG

A&D - Wing Block 1-8, Hall Floor, SR 183 26 Hoddens Road, Nungambakkum Che Tele 28281023 Fax: 28284848 Email steeechennar@explosives.go

No.F. &C. (1 N/25/1129(195682)

MITTERRESTING. 3 F. Komeova St. Diradigal. Lovn Fillago - DINTHGUE

tusa DINTHETE I. Stone Tomil Number Principle 624000

Road Van for the earrings of Explosives - Registration No TNS7BBS901 Licence No. JE/SC/TN/25/1129(E05682) granten in Form LE-7 under Explosives Rules, 2008. Endorsement regarding Andorsement of Licence.

511(10)06

Reference memo No. E/SC/TN/2S/1129(F95682) Dated 19/08/2016 from Joint Chief Controller of Explosives. Smoth Circle, Chennal and inspection of the stinger premises by an officer of this organization on 18-08-2016.

The subject licence No. 1/SC (N. 24.) (20) (98687) until upto 31st March 2021 (fully endrised to lors arted

For further renewal of licence, please submit following documents to as to reach The Dy. Chief Controller of Explosives, Sivakusi on in Serio 31.03/2021

- Application in Form R1 = duty filled as and signed.
- Unency fees for one to five years in the form of demand shall drawn on any National year Hank in Tayout of sta Crart Controller of Explosives, Chemiai payable at Chemia.
- Original licence with approved plan.
- In this connection, please also refer to Rule 112 of Exploxives Rules, 2008

Please follow fetherwing instructions strictly:

the records of explosives transported by the huenced Rendson shall be manualized as the amplicant. So 6 under Part 5 of semalate \$1 of hands to es Roller, 1908

Please ensure that persons whose ammediate ventiled by the local bubbs, what thely be amployed with the because explanates made in compression mounded tisses as directs or cleaners. First of seen drivers are a cause's alunque to the personal particulars shall be made available to the forest petition in dispute. The reconflication of such staff shart also be under a lover page in a year in campillance to while affection explanation

Please now that during transportation of explosoves, the Roadvan shall always be attended to be two assessgaineds. If the consequences of expressives as theory to pass through sensitive areas notified by Agin siny of Home Affairs, it should be escarted by armed Politic escart muntil proceeded by clientic Police Agromation as

8 26 21 16

http://doi.org/10.0011/fath.xp/r/9Covering/letter-usp

LICENCE PORM LE-7

(See article no 7 of Part 1 of Schedule FV of Explosives Relast 2004)

Licence to : transport explosives in a road van

Litrence No.: E/SC/TN/25/1129(F/95682)

1. I icence is berely granted to :

S.M. VEERAMANI (Occupies (S.M.VE) 3/5, Kannara St, Dindigul., District-DINDICLL, State-Tamil Man

Sugar of licensee Individual

Destription at Other Finlings

Puriscours of the road van:

Registration No.

TN57BB5991

Mahindra Bolero Maxi Track

As per approved plan agained

1150 Kg(s)

Visic and model of vehicle [470 Kg(s) Maximum laden weight 2620 Kg(s) Maximum quantity of explosives permitted for 1150 Kg(s) transmort. GLG4F61514 MAIZ12GL KGP179781

The licensed premises shall conform to the following drawing(s): Orawing No.: E/SC/LN-25/1129(£95682) dated : 24/08/2016

- The increase is granted subject to the provision of Explosives Act 1884 as unforded from tiese-titime and the Explosives Rules. 2008 framed thereunder and the conditions and the following
 - (a) Drawings of the road van as stated in serial no 4 above.

(ii) Conditions signed by the licensing authority.

Qualities of Explosives permitted to earry

This licence shall remain valid #1/31st day of Warch 2021

this licence is liable to be suspended or revoked for any violation of the Action rules fromed from under or the canditions of this licence as set forth under, wherever applicable inferred to in Pari 4 of Schedule V or if the licensed premises are not found conforming to the description shown in the plant and annexure intached hereto.

The Date: 24/08/2016

Joint Chief Controller of Explosives Smalls Cartar, Chicada)

http://tikib.ic/15/mil/xp/Lorm25/ seence/167 and

National Accreditation Board for Testing and Calibration Laboratories

(A Constituent Board of Quality Council of India)

QCI

CERTIFICATE OF ACCREDITATION

GLOBAL LAB AND CONSULTANCY SERVICES

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

SF. No. 92/3A2, Geetha Nagar, Alagapuram Pudur, Salem, Tamil Nadu

in the field of TESTING

Certificate Number

TC-6060

Issue Date

01/08/2017

Valid Until

31/07/2019

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL.

(To see the scope of accreditation of this laboratory, you may also visit NABL website warm nabl-india.org)

Signed for and on behalf of NABL

N. Venkateswaran

Program Director

Anil Relia

Chief Executive Officer

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.in

-6060

Report Date: 28.11,2017

TEST REPORT

Report Number: GLCS/TR/396/2017-18

Site Address: Issued To: Sirugudi Limestone Mine Project- 2.53.0 Ha M's.Sivam Mines, S.F.No. 693/5A, 696/2, 696/3(P), 6/209. 4(P) & 5 and 698/1.2, 77 AB, 4C & 5, Sirugudi (Po). Sirugudi Village, Natham (Tk). Natham Taluk, Dindigul (Dt) - 624 402. Dindigul District, Tamil Nachi,

Customer Ref.No.	TRF No : 176	Sampled by	Laboratory
Sample Name	Air Quality Monitoring	Sampling Method	GLCS/SOP/AAQ/015
Sample description	Ambient Air Quality	Sample Code	GLCS/417
Location Name	Southwest corner of Quarry	Date of Analysis	25.11.2017
Sampling Hours	09.00 am - 5.00 pm	Date of Completion	28.11.2017
Sampling Date	24.11.2017	Avg Temperature	32.1°C
Sample Receipt Date	25.11.2017	Avg Humidity	61.8 %

SI. NO.	TEST PARAMETER	TEST METHOD	UNITS	RESULT	NAAQ (2009) *LIMIT
1	Suspended Particulate Matter (SPM)	IS 5182 PART 4 :1999(RA 2010)	µg/m³	54.7	1.5
2	Particulate Matter(size < 2.5µm)	GLCS/SOP/AAQ/017	µg/m³	20.6	60
3	Particulate Matter (size <10µm)	IS 5182 PART 23 : 2006(RA 2012)	µg/m³	41.4	100
4	Sulphur dioxide as SO ₂	IS 5182 PART 2 : 2001(RA 2012)	µg/m³	4.2	80
5	Nitrogen Dioxide as NO ₂	IS 5182 PART 6 : 2001(RA 2012)	µg/m³	15.5	80
6	Ammonia as NH ₃	GLCS/SOP/AAQ/001	µg/m³	BDL(DL:5.0)	400
7	Ozone as O ₃	GLCS/SOP/AAQ/002	µg/m³	BDL(DL:5.0)	180
8	*Carbon Monoxide as CO	IS 5182 Part10:1999(RA 2009)	mg/m ³	BDL(DL:1.0)	04

Note: BDL - Below Detection Limit; DL- Detection Limit

Prepared

Verified *****End of Report**** about Page 1 of 1

R. Rui M. Authorised Signatory

For Global Lab and Consultancy Services

R. RAJESH Technical Manager

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratoryis not responsible for authorizing of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

^{*-} Parameter not covered under NABL scope.

NAAQS - National Ambient Air Quality Standard Issued by CPCB (Central Pollution Control Board) in 2009.

Issued To:

Sirugudi (Po),

Natham (Tk).

6209.

M/s. Sivam Mines.

Dindigul (Dt) - 624 402.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.in

TC - 6060

Report Date: 28,11,2017

TEST REPORT

Report Number: GLCS/TR/397/2017-18

Site Addre Sirugudi Lime Mone Mine Project- 2.5 S.F.No. 693 33 696/2 696/3 4(P) & 5 and 693(1,2,8,42 Sirugudi Village

Natham Taluk,

		Dindigul District, Tamil Y	Vetelle
Customer Ref. No.	TRF No : 176	Sampled by	Laboratory
Sample Name	Air Quality Monitoring	Sampling Method	GLCS/SOP/AAQ/015
Sample description	Ambient Air Quality	Sample Code	GLCS/418
Location Name	Northwest corner of Quarry	Date of Analysis	25.11.2017
Sampling Hours	09.15 am - 5.15 pm	Date of Completion	28.11.2017
Sampling Date	24.11.2017	Avg Temperature	32.1°C
Sample Receipt Date	25.11.2017	Avg Humidity	61.8 %

SI. NO.	TEST PARAMETER	TEST METHOD	UNITS	RESULT	NAAQ (2009)* LIMITS
1	Suspended Particulate Matter (SPM)	IS 5182 PART 4 :1999(RA 2010)	µg/m³	55.9	
2	Particulate Matter (size < 2.5µm)	GLCS/SOP/AAQ/017	µg/m³	22.3	60
3	Particulate Matter (size <10µm)	IS 5182 PART 23 : 2006(RA 2012)	µg/m³	43.8	100
4	Sulphur dioxide as SO ₂	IS 5182 PART 2: 2001(RA 2012)	µg/m³	4.7	80
5	Nitrogen Dioxide as NO ₂	IS 5182 PART 6 : 2001(RA 2012)	µg/m³	17.1	80
6	Ammonia as NH ₃	GLCS/SOP/AAQ/001	µg/m³	BDL(DL:5.0)	400
7	Ozone as O ₃	GLCS/SOP/AAQ/002	µg/m³	BDL(DL:5.0)	180
8	*Carbon Monoxide as CO	IS 5182 Part10:1999(RA 2009)	mg/m ³	BDL(DL:1.0)	04

Note: BDL - Below Detection Limit; DL- Detection Limit

Prepared

Verified *****End of Report**** Page 1 of 1

For Global Lab and Consultancy Services R. Ruj my.

> **Authorised Signatory** R. RAJESH Technical Manager

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory is not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained here on reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

^{*-} Parameter not covered under NABL scope.

^{*} NAAQS - National Ambient Air Quality Standard Issued by CPCB (Central Pollution Control Board) in 2009.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025: 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625

E-Mail: lab@glos.in; Web: www.glos.in.

TEST REPORT

Report Number: GLCS/TR/398/2017-18

Report Date: 28.11.2017

Issued To: Mrs. Sivam Mines, 6/209, Sirugudi (Pa), Natham (Tk), Dindigul (Dt) – 624 402.		Site Address: A Sirugudi Limestone Mine Project- 2.53.0 Ha S.F. No. 693/5.4, 696/2, 696/3(P), 4(P) & 5 and 698/1;2,3,4A,4B,4C,& 5, Sirugudi Village, Natham Taluk, Dindigul District, Tamil Nadu		
Customer Ref. No.	TRF No : 176	Sampled by	Laboratory	
Sample Name	Air Quality Monitoring	Sampling Method	GLCS/SOP/AAQ/015	
Sample description	Ambient Air Quality	Sample Code	GLCS/419	
Location Name	Northeast corner of Quarry	Date of Analysis	25.11.2017	
Sampling Hours	09.30 am - 5.30 pm	Date of Completion	28.11.2017	
Sampling Date	24.11.2017	Avg Temperature	32.1°C	
Sample Receipt Date	25.11.2017	Avg Humidity	61.8 %	

SI. NO.	TEST PARAMETER	TEST METHOD	UNITS	RESULT	NAAQ (2009)* LIMITS
1	Suspended Particulate Matter (SPM)	IS 5182 PART 4 :1999(RA 2010)	µg/m³	59.3	
2	Particulate Matter (size < 2.5µm)	GLCS/SOP/AAQ/017	µg/m³	25.3	60
3	Particulate Matter (size <10µm)	IS 5182 PART 23 : 2006(RA 2012)	µg/m³	47.8	100
4	Sulphur dioxide as SO ₂	IS 5182 PART 2: 2001(RA 2012)	µg/m³	5.9	80
5	Nitrogen Dioxide as NO ₂	IS 5182 PART 6 : 2001(RA 2012)	µg/m³	17.1	80
6	Ammonia as NH ₃	GLCS/SOP/AAQ/001	µg/m³	BDL(DL:5.0)	400
7	Ozone as O ₃	GLCS/SOP/AAQ/002	ug/m ³	BDL(DL:5.0)	180
8	*Carbon Monoxide as CO	IS 5182 Part10:1999(RA 2009)	mg/m ³	BDL(DL:1.0)	04

Note: BDL - Below Detection Limit; DL- Detection Limit

Prepared

****End of Report* Page 1 of 1

For Global Lab and Consultancy Services R. Ruj vy

> **Authorised Signatory** R. RAJESH

Technical Manager

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory is not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained here on reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

^{*-} Parameter not covered under NABL scope.

NAAQS - National Ambient Air Quality Standard Issued by CPCB (Central Pollution Control Board) in 2009.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tami! Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.ln

TC - 6060

TEST REPORT

Report Number: GLCS/TR/399 - 400/2017-18

Issued To: M's. Sivam Mines, 6/209, Sirugudi (Po), Natham (Tk), Dindigul (Dt) – 624 402.		Site Address Sirugudi Limes one Mine S.F.No. 693/5A/696/2, 696 4(P) & 5 and 698 1, 23, 13 Sirugudi Village, Natham Taluk, Dindigul District, Tamil N.	(3(e)) 44-4C (4.5)
Customer Ref.No.	TRF No : 176	Sampled by	Laboratory
Sample Name	Noise Level Monitoring	Sampling Method	GLCS/SOP/N/014
Sample description	Sound Pressure Level	Sample Code	GLCS/420 - 421
Sampling Time	Every 60 minutes	Sample Receipt Date	25.11.2017
Carrallian Bata	24 44 2047	Date of Analysis	25.11.2017
Sampling Date	24.11.2017	Date of Completion	28.11.2017

Loca	tion Name	Southwe	Southwest corner of the Quarry			Northwest corner of the Quarry			
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leg dB(A)	Min dB(A)	Max dB(A)	Leg dB(A)		
1	10:00	61.2	64.7	63.3	61.2	64.6	63.2		
2	11:00	60.8	66.8	64.8	60.8	66.8	64.8		
3	12:00	60.7	67.2	65.1	60.7	67.9	65.7		
4	13:00	61.3	66.9	64.9	61.3	66.9	64.9		
5	14:00	50.7	58.5	56.2	50.4	58.5	56.1		
6	15:00	60.7	68.2	65.9	60.7	68.2	65.9		
7	16:00	61.2	66.9	64.9	61.2	66.4	64.5		
8	17:00	60.1	67.5	65.2	60.1	67.5	65.2		
		Day	Mean dB(A)	63.8	Da	y Mean dB(A)	63.7		
	as per The No 2010 of MoEF			& Control)		/ Time : 75 dB	DAY TO		

Note: MoEFCC - Ministry of Environment Forest and Climate Change;

CPCB - Central Pollution Control Board

For Global Lab and Consultancy Services

Prepared

Verified *****End of Report** Page 1 of 1

. R. Ruj y.

Authorised Signatory

R. RAJESH Technical Manager

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reborting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory is not responsible for authorities of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the laboratory's hading at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by its can be verified by submitting on E-mail request with report number and report date along with report copy.

Issued To:

Sirugudi (Po).

Natham (Tk),

6/209.

M/s. Sivam Mines,

Dindigul (Dt) - 624 402.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625

E-Mail: lab@glcs.in; Web: www.glcs.in

6060

TEST REPORT

Report Number: GLCS/TR/401 - 402/2017-18

Site Address:

Sirugudi Limestone Mine roject-2

S.F.No. 693/5A, 696/2, 696/3(P).

4(P) & 5 and 698/1,2,3,4A,4B,4C & 5,

Report Date: 28.1

Sirugudi Village, Natham Taluk.

Dindical District Tennil Nada

		Lineagur Listrica, Semine Protein		
Customer Ref.No.	TRF No : 176	Sampled by	Laboratory	
Sample Name	Noise Level Monitoring	Sampling Method	GLCS/SOP/N/014	
Sample description	Sound Pressure Level	Sample Code	GLCS/422 - 423	
Sampling Time	Every 60 minutes	Sample Receipt Date	25.11.2017	
Tax Tax Tax	24 44 2247	Date of Analysis	25,11.2017	
Sampling Date	24.11.2017	Date of Completion	28.11.2017	

Loca	ationName	Southeas	Southeast corner of the Quarry			Northeast corner of the Quarry		
S.No	Time (Hrs)	Min dB(A)	Max dB(A)	Leq dB(A)	Min dB(A)	Max dB(A)	Leq dB(A)	
1	10:00	51.1	58.7	56.4	51.3	58.9	56.6	
2	11:00	50.9	58.6	56.3	50.5	58.7	56.3	
3	12:00	50.3	57.3	55.1	50.3	57.7	55.4	
4	13:00	50.8	58.4	56.1	50.5	58.2	55.9	
5	14:00	45.3	54.2	51.7	45.1	54.7	52.1	
6	15:00	45.9	54.8	52.3	45.2	54.5	51.9	
7	16:00	50.3	58.6	56.2	50.1	58.4	55.9	
8	17:00	50.7	58.9	56.5	50.7	58.2	55.9	
		Day	Mean dB(A)	55.1	Da	y Mean dB(A)	55.0	
	as per The No 2010 of MoEF	ise Pollution	(Regulation	& Control)	Day	y Time : 75 dB	(A)	

Note: MoEFCC - Ministry of Environment Forest and Climate Change;

CPCB - Central Pollution Control Board

For Global Lab and Consultancy Services

Prepared

Verified

****End of Report**

Page 1 of 1

R. Kui y

Authorised Signatory R. RAJESH

Technical Manager

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory's not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

Issued To:

Sirugudi (Po).

Natham (Tk),

6/209.

M.s. Sivam Mines,

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO 9001 : 2015 certified organization)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625

E-Mail: lab@glos.ln; Web: www.glos.in

Report Date: 28.11.20

TEST REPORT

Report Number: GLCS/TR/404/2017-18

Site Address: Sirugudi Limestone Mine Project- 2.53:0 Ha S.F.No. 693/5A, 696/2, 696/3(P) 1(P) & 5 and 698/1,2,3,4A,4B,46 &

Sirugudi Village, Natham Taiuk

Dindigul (Dt) - 624 402.		Dindigul District, Tamil Nadu.		
Customer Ref.No.	TRF No : 176	Sampled by	Laboratory	
Sample Name	Vibration	Sampling Method	GLCS/SOP/AAQ/015	
Sample description	Vibration Monitoring	Sample Code	GLCS/425	
Location Name	South side of Quarry	Sample Receipt Date	25.11.2017	
Sampling Time	01.15 pm	Date of Analysis	25.11.2017	
Sampling Date	24.11.2017	Date of Completion	28.11.2017	

SI.No	DETAILS OF MONITORING	UNIT	RESULTS
1	Direction from blasting location		North
2	Distance	m	285
3	Bench Height	m	7
4	Diameter of Hole	mm	32
5	Depth of Hole	m	1.5
6	Number of Holes	+	11
7	Average Burden	m	1.0
8	Type of Explosive Used		Slurry
9	Maximum Charge / Day	kg	3
10	Peak particle Velocity (PPV)	mm/s	1.1
	orate General of Mines Safety	mm/s	10

For Global Lab and Consultancy Services

Prepared

R. luj y.

Authorised Signatory

R. RAJESH Technical Manager

*****End of Report***** Page 1 of 1

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Periohable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratory is not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the luboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu. India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.in

- 6060

TEST REPORT

Report Number: GLCS/TR/403/2017-18

Report Date: 28.11

Issued To : M/s. Sivam Mines, 6/209 , Sirugudi (Po), Natham (Tk), Dindigul (Dt) – 624 402.		Site Address: Sirugudi Limestone Mine Project 2,53,9168 S.F.No. 693/5A, 696/2, 696/3/42 4(P) & 5 and 698/1,2,3,4A,4B,4C & 5, Sirugudi Village, Natham Taluk, Dindigul District, Tamil Nadu.		
Customer Ref. No.	TRF No : 176	Sample Quantity	2Litres	
Sample Name	Borewell water	Sampled by	Laboratory	
Sample description	Liquid	Sampling Method	GLCS/SOP/W/028	
Sampling Time	04.00 pm	Sample Code	GLCS/424	
Sampling Date	24.11.2017	Date of Analysis	25.11.2017	
Sample Receipt Date	25.11.2017	Date of Completion	28.11.2017	

SI. No.	Section of the Contract of the	TEST METHOD	UNIT	RESULTS	IS 10500:2012 Drinking Water	
	TEST PARAMETERS				Acceptable Limit	Permissible Limit
1	Colour	IS 3025 PART 4	Hazen	<5	5	15
2	Odour	IS 3025 PART 5	-	Agreeable	Agreeable	Agreeable
3	pH	IS 3025 PART11		7.65	6.5 - 8.5	No Relaxation
4	Electrical Conductivity	IS 3025 PART14	µS/cm	2530	-	
5	Turbidity	IS 3025 PART10	NTU	< 0.5	1	5
6	Total Dissolved Solids	IS 3025 PART16	mg/l	1596	500	2000
7	Total Alkalinity	IS 3025 PART 23	mg/l	555	200	600
8	Total Hardness as CaCO ₃	IS 3025 PART 21	mg/l	574	200	600
9	Calcium as Ca	IS 3025 PART40	mg/l	71	75	200
10	Magnesium as Mg	IS 3025 PART 46	mg/l	96	30	100
11	Chloride as Cl	IS 3025 PART 32	mg/l	300	250	1000
12	Nitrite as NO ₂	IS 3025 PART 34	mg/	0.1		
13	Sulphate as SO ₄	IS 3025 PART24	mg/l	155	200	400
14	Iron as Fe	IS 3025 PART 53	mg/l	BDL (DL:0.1)	0.3	No Relaxation
15	Sodium as Na	IS 3025 PART 45	mg/l	150		-
16	Potassium as K	IS 3025 PART 45	mg/l	21		

For Global Lab and Consultancy Services

Prepared

Verified Page 1 of 2

Authorised Signatory R. RAJESH Technical Manager

R. Rui vy.

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratoryis not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

GLOBAL LAB AND CONSULTANCY SERVICES

(An ISO / IEC 17025 : 2005 accredited NABL Laboratory)

S.F No.92/3A2, Geetha Nagar, Alagapuram Pudur,

Salem - 636 005. Tamil Nadu, India.

Phone no.: +91 427 2970 989 / 70944 52625.

E-Mail: lab@glcs.in; Web: www.glcs.in

TC - 6060

TEST REPORT

Report Number: GLCS/TR/403/2017-18

Report Date: 28.11.2017

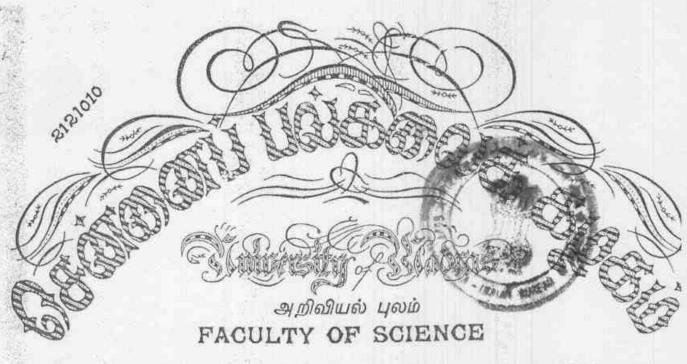
SI.	TEST PARAMETERS	TEST METHOD	UNIT	RESULTS		0:2012 Drinking Water	
No.	TEST PARAMETERS	TEST METROD	UNII	KESULIS	Acceptable Links	Permissible / Limit	
17	Acidity as CaCO ₃	IS 3025 PART 22	mg/l	4		(3)	
18	AmmoniacalNitrogen as NH ₃ -N	IS 3025 PART 34	mg/l	BDL (DL:1.0)	0.5	No Relaxation	
19	Total Kjeldhal Nitrogen	IS 3025 PART 34	mg/l	BDL (DL:2.0)		-	
20	Boron as B	IS 3025 PART 57	mg/l	BDL (DL:0.01)	0.5	1	
21	Free Residual Chlorine asCl ₂	IS 3025 PART 26	mg/i	BDL (DL:0.1)	0.2	1	
22	Fluoride as F	GLCS/SOP/W/015	mg/l	0.5	1	1.5	
23	Silica as SiO ₂	IS 3025 PART 35	mg/l	32.5			
24	Manganese as Mn	IS 3025 PART 59	mg/l	BDL (DL:0.1)	0.1	0.3	
25	Phosphate as PO ₄	IS 3025 PART 31	mg/l	BDL (DL:0.1)	-		
26	Carbonate	IS 3025 PART 51	mg/l	Nil	-		
27	Bicarbonate	IS 3025 PART 51	mg/l	555		+	
28	Nitrate as NO ₃	IS 3025 PART 34	mg/l	BDL (DL:2.0)	45	No Relaxation	
29	*Escherichia Coli	IS 15185 : 2002 (RA 2009)	3 to 1	Absent	Absent	/ 100 ml	
30	*Coliform Bacteria	IS 5401(P2): 2012	-	Absent	Absent	/ 100 ml	

Note: BDL - Below Detection Limit; DL - Detection Limit

Prepared

For Global Lab and Consultancy Services

Verified


Authorised Signatory R. RAJESH Technical Manager

R. Ruj vy

****End of Report* Page 2 of 2

Note: The test results are only to the sample submitted for test. Any Correction of the test report on full or part shall invalidate the report. Samples are not drawn by us unless otherwise stated. Sample will be retained for 14 days from the date of reporting except in case of regulatory samples or specifically instructed by client. Perishable samples will be discarded immediately after reporting. We do not accept only liability with regard to origin or source from which the samples are extracted. The Laboratoryis not responsible for authenticity of photocopied test reports. Any holder of this report is advised that information contained hereon reflects the laboratory's finding at the time of its intervention only and within the limits of client instructions. The authenticity of the test report's issued by us can be verified by submitting on E-mail request with report number and report date along with report copy.

^{*-}These parameters were sub-contracted to MoEF accredited Laboratory .The above water sample complies with Permissible Limit of IS10500:2012 Drinking Water Specifications as per above tested parameters.

0	சன்னைப் ப	ல்கலைக் ச	கழகப் இ	14600 QI	1994	A 10
- S 651 B	वाग्री ।	1015tò n	165	Epopula optical	(Or	<i>(5.5.17.98.90)</i>
	Ou Traint mark		67671101	# G	Soi)	ගැනු ධායින
(35 i 4 9 DU	ற்றார் என்று தக்க	Csiteurenisch	් ජැන්තුවන් එ	தபடி அறி	ிவியல்	நிறைஞர்
नकाकार्य या	்டத்தை அவகுக்டு	<i>5ಲ ಬಹುಹಣಾಮತಿ</i>	கழக இலக	र के का का यू है क	ir ougani	்குகிறது.

DES Given under the seal of the University

Dr. P. THANGARAJU, M.Sc., Ph.D. Qualified Person P.T. Tynna

Corners on Chepaule

Section So. Machae 25-01-1999

11£amani. Registras zimm Coinzi Vire-Chancello

GOVERNMENT OF INDIA MINISTRY OF LABOUR AND REHABILITATION OFFICE OF THE DIRECTOR GENERAL OF MINES SAFETY

Certificate of Practical experience granted by the Manager to a candidate for a Manager's / Surveyor's / Foremen's / Over man's / Sirdar's / Mate's / Short firer's / Blaster's Certificate of competency (Restricted) examination under the Metalliferous Mines Regulations 1961.

CHEMICALS, RAJAPALAYAM OF LIMESTONE PRODUCTS (Thenmali Limestone Mine) do hereby certify that Thiru. P.THANGARAJU, son of S.PERIASAMY (whose signature is appended) worked as a Geologist in the above mine from 02.05.1994 to 30.12.1999. During his term of work aforesaid, he has obtained practical experience as detailed overleaf. The duties connected with his work have involved continuous attendance at the mine and have been efficiently performed by him.

I believe him to be of good character and a fit and proper candidate to be examined for Certificate of Competency.

Or THENDLAI LIME STONE MINES

(Signature with date and official Scal)

[T.VENKATARAJAGOPALAN]

Mines Agent:

P.O.

: ARUKANGULAM

District

: TIRUNELVELI

State

: TAMIL NADU

(Signature of Candidate)

(State name of Mineral) : LIMESTONE

Dr. P. THANGARAJU, M.Sc., Ph.D., Qualified Person

Particulars of practical Experience	Place of Experience (b)	Period of practical experience(c)		Total Experience (e)		
(a)		From	To	Yr.	Month	Day
As a Traince in Drilling Operation.	Semi Mechanised Opencast working	02.05.1994	15.07.1995	01	02	14
As a Trainee in Blasting Operation.		16,07,1995	10.12.1996	01,	. 04	25
Exploration		11.12,1996	31.01,1998	01	01/3	20
Surveying		01,02,1998	25.06.1998	00	94	25
Sampling Quality control and		26.06.1998	20.07.1999	0.1	00	24
Supervision in HEMM Operation.		21,07,1999	30.12.1999	00	05	10
GRAND TOTAL					07	28
	Expereince (a) As a Trainee in Drilling Operation. As a Trainee in Blasting Operation. Exploration Surveying Sampling Quality control and Supervision in HEMM	Expereince (a) As a Trainee in Drilling Operation. As a Trainee in Blasting Operation. Exploration Surveying Sampling Quality control and Supervision in HEMM Operation.	Expereince (a) As a Trainee in Drilling Operation. As a Trainee in Blasting Operation. Exploration Exploration Surveying Sampling Quality control and Supervision in HEMM Operation. (b) experied From 02.05.1994 02.05.1994 16.07.1995 11.12.1996 26.06.1998 21.07.1999 21.07.1999	Experience (a) Experience(c) From To	Experience (a) Experience (c) From To Yr.	Expereince (a) Comparison Comparison

AVERAGE MONTHLY OUTPUT (D) / AVERAGE DAILY EMPLOYMENT (e) DURING THE ABOVE PERIOD IS GIVEN BELOW:

In below ground working	In open - cast working	In all
Nil Wi	35	35

Signature of Candidate

OF THEMMALAT LIME STONE MINES

Signature of Manager with Burnes)
[T.VENKATARAJAGOPALAN]

Name of the Mine:

Instructions :-

- 01. State clearly the nature of duties
- 02. State whether on surface, in open cast workings or below ground.
- 03. State specifically the period spent by the applicant in different mining operations, or surveying operations, as the case may be. If the employment has not been such as to involve continuous attendance of the applicant at the mine, it must be stated how many days a week he was employed at the mine, whether underground or above ground and in what capacity.
- 04. Delete if the mine is a Metalliferous mine.
- 05. Delete if the mine is a Coal mine.

Dr. P. THANGARAJU, M.Sc., Ph.D., Qualified Person

தமிழ்நாடு तमिलनाडु TAMILNADU 3544)

Canara Bank Sirugudi

Bank Guarantee

37632

ஆா. ராகாகிகுஷ்ணன

ricklengigensin shipunsanument the costy emittente.

p amie 363/19 1/2004.

Coll asimion courses in Marco

L.G.E. anthropinist (B.

YM R calle applicable as

Form No.

The Regional Controller of Mines, Indian Bureau of Mines, CHENNAI

Dear Sirs.

Guarantee No. C22GPGE173120004 Amount of Guarantee Rs.5,00,000/-Guarantee Period from OS .11.2017 TO 31.03.2022 Last date for lodgment of claim 31.03.2022

This Deed of guarantee executed on 8th Day of November, 2017 by Canara Bank a body corporate constituted under the banking companies (Acquisition and Transfer of undertaking) Act,1970 having its head office at No. 112,J.C.Road,Bangalore, and amongst other places, a branch at Strugudi in favour of the Regional Controller of Mines, Indian Bureau of Mines, Chennai for an amount not exceeding Rs.5,00,000/- (Rs. Five Lakhs only) at the request of M/s. Sivam Mines, (Thiru.S.Hangovan, B.E., Managing Partner),

This guarantee is issued subject to the condition that the liability of the bank under this guarantee is limited to maximum of Rs.5,00,000/- (Rs. Five Lakhs only) and the guarantee shall remain in full force up to 31.03.2022 (date of expiry) and cannot be revoked on or before 31.03.2022 (last date of claim) by the Bank/applicant.

SUBJECT TO AS AFORESAID

For CANARA BANK

Manager, Short BASI

For Canara Ba... Sirugudi Officer Samir Lakra

214A

BANK GUARANTEE AND CO-ACCEPTANCE BOND

- Agreement on production of a Bank guarantee for Rs.5,00,000/- (Rs. Five Lakhs only) under rule 27(1) of MCDR, 2017.
- 3. We, Canara Bank do hereby undertake to pay the amount due and payable under this guarantee without any demur, to the authority merely on a demand from the Regional Controller of Mines, Indian Bureau of Mines ,Chennai or any other officer authorized by the Controller General, Indian Bureau of Mines stating that the amount claimed is due by way of loss or loss of damage caused to or would be caused to or suffered by the government by reason of breach by the said lessee or any of the terms or conditions contained in the Mining plan / Mining scheme or by reason of lessee's failure to perform the said mine closure plan/progressive mine closure plan. However our liability under this guarantee shall be restricted to an amount not exceeding Rs.5,00,000/- (Rs. Five Lakhs only).
- 4. We undertake to pay to the authority on a demand from the Regional Controller of Mines, Indian Bureau of Mines, Chennai or any other officer authorized by the Controller General, Indian Bureau of Mines or Govt, of India any money so demanded notwithstanding any dispute or disputes raised by the lessee in any suit or proceedings pending before any court or tribunal relating there to our liability under this present being absolute and unequivocal.

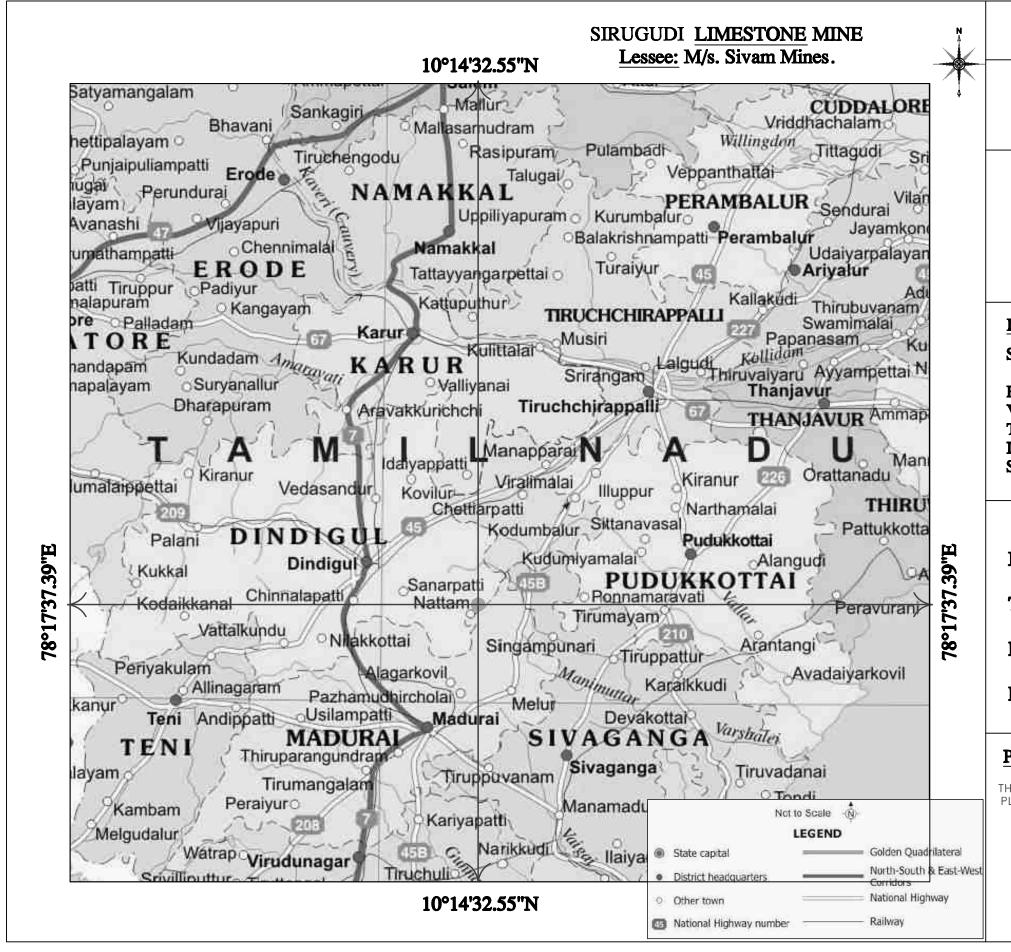
The payment so made by under this bond shall be valid discharge of our liability for payment there under and lessee shall have no claim against us for making such payment.

5. We, Canara Bank further agree that the guarantee herein contained shall remain in full force and effect during the period up to the end of the Mining plan/Review of Mining plan/Scheme of Mining of five years that would be taken for performance of the said Agreement and that shall continue to be enforceable till all the dues of the Govt, under or by virtue of the said agreement have been fully paid and its claims satisfied or discharged till Regional Controller of Mines, Indian Bureau of Mines, Chemai or any other officer authorized by the Controller General, Indian Bureau of Mines certifies that the terms and conditions of the said progressive mine closure plan/final mine closure plan have been fully and properly carried out by the said lessee and accordingly discharge this guarantee. Unless a demand or claim under this guarantee is made on us in writing on or before 31.03.2022 we shall be discharged from all liability under this guarantee thereafter.

FOR CANARA BANK
Manager Span States
SIRUGUDI (Dindion in in

For Canara Bank
Sirugudi
Samir Lakra Officer
Sp No 61240

- 6. We further agree that Regional Controller of Mines, Indian Bureau of Mines, Chennal or any other officer authorized by the Controller General, Indian Bureau of Mines shall have fullest liberty without our consent and without affecting in any manner our obligations hereunder to vary any of the terms and conditions of the said agreement or to extend time of performance by the said lessee from time to time or to postpone for any time or from time to time any powers exercisable by Regional Controller of Mines, Chennal against the said lessee and to forbear or enforce any of the terms and conditions relating to the said agreement, we, (bank) shall not be relieved from our liability by reason of any such variation or extension being granted to the said lessee or for any forbearance, act or omission on the part of Regional Controller of Mines, Indian Bureau of Mines, Chennal or any indulgence by Regional Controller of Mines, Indian Bureau of Mines, Chennal to the said lessee or any manner or thing whatsoever which under the law relating to sureties, would but this provision have effect of so relieving us.
- 7. This guarantee will not be discharged due to change in constitution of the bank or lessee.
- 8. We, Canara Bank, Sirugudi lastly undertake not to revoke this guarantee during its currency except with the previous consent of the Regional Controller of Mines, Indian Bureau of Mines, Chennai in writing.
- 9. Notwithstanding anything contained herein:
- a) Our liability under this Bank guarantee shall not exceed Rs.5,00,000/- (Rs. Five Lakhs only).


b) The bank guarantee shall be valid up to 31.03,2022

- c) The period of bank guarantee submitted is valid for the period of the proposals given in the Mining plan/Review of mining plan/Scheme of mining/PMCP etc. We are liable to pay the guarantee amount or any part thereof under this Bank guarantee and only if served upon us a written claim or demand on or before 31.03.2022
- d) This Bank guarantee issued in paper form shall become operative only when the Bank guarantee advice transmitted through SFM's is advised to the beneficiary by the advising Bank.
- 10. If the Bank guarantee is to be en-cashed through the court, in that case the (city where Regional office, IBM is located) court will have jurisdiction.
- In witness whereof, the bank through its authorized officer has set its hand and stamp on this 8th Day of November, 2017 at Sirugudi.

Por CANARA BANK GURDUNG 1)

Chamilger, CS par Gurdung Dil

For Canara Bank
Sirugudi
Samir Lakis
Samir Lakis
SP No 61240

PLATE NO: I

LOCATION PLAN

NOT TO SCALE

LESSEE:

M/s. SIVAM MINES, No. 6/209, MAIN ROAD, SIRUGUDI POST, NATHAM TALUK, DINDIGUL DISTRICT - 624 404.

LOCATION OF MINE:

S.F.NO : 693/5A(P), 696/2,3(P),4(P),5,

698/1,2,3,4A,4B,4C & 5.

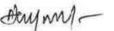
EXTENT : 2.53.0 Ha VILLAGE : SIRUGUDI

TALUK : NATHAM DISTRICT : DINDIGUL,

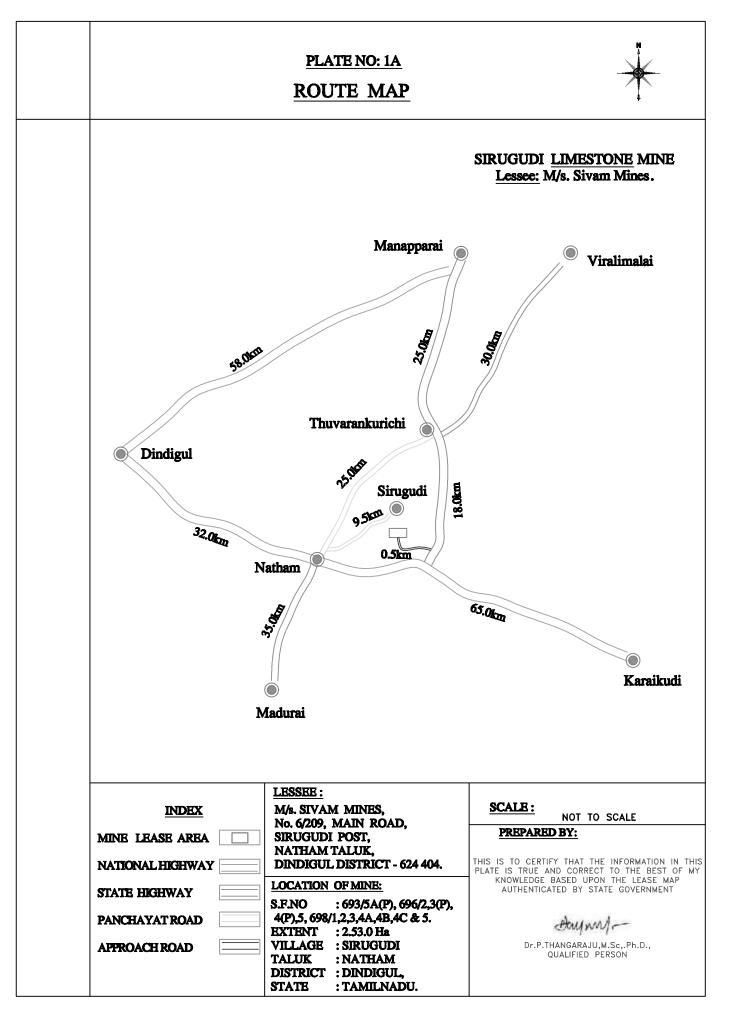
STATE: TAMILNADU.

INDEX

MINE LEASE AREA


TOPO SHEET No. : 58 J-08

LATITUDE : 10°14'32.55"N


LONGITUDE : 78°17'37.39"E

PREPARED BY:

THIS IS TO CERTIFY THAT THE INFORMATION IN THIS PLATE IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE BASED UPON THE LEASE MAP AUTHENTICATED BY STATE GOVERNMENT

Dr.P.THANGARAJU,M.Sc,.Ph.D., QUALIFIED PERSON

2.53.0 ha 218A

OCTOBER TO DECEMBER 10°14'32.55"N 78°17'37.39"E 10°14'28.35"N 78°17'46.13"E *The marks indicate the population is more than 500 peoples JULY TO SEPTEMBER

SIRUGUDI <u>LIMESTONE</u> MINE <u>Lessee:</u> M/s. SIVAM MINES,

LESSEE:

M/s. SIVAM MINES, No. 6/209, MAIN ROAD, SIRUGUDI POST, NATHAM TALUK, DINDIGUL DISTRICT - 624 404.

LOCATION OF MINE:

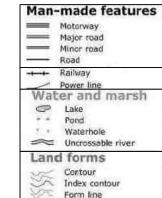
S.F.NO : 693/5A(P), 696/2,3(P),4(P),5, 698/1,2,3,4A,4B,4C & 5.

BXTENT : 2.53.0 Ha
VILLAGE : SIRUGUDI
TALUK : NATHAM
DISTRICT : DINDIGUL,
STATE : TAMILNADU.

PLATE NO: IB

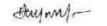
TOPOSHEET NO: 58, J/08

KEY PLAN

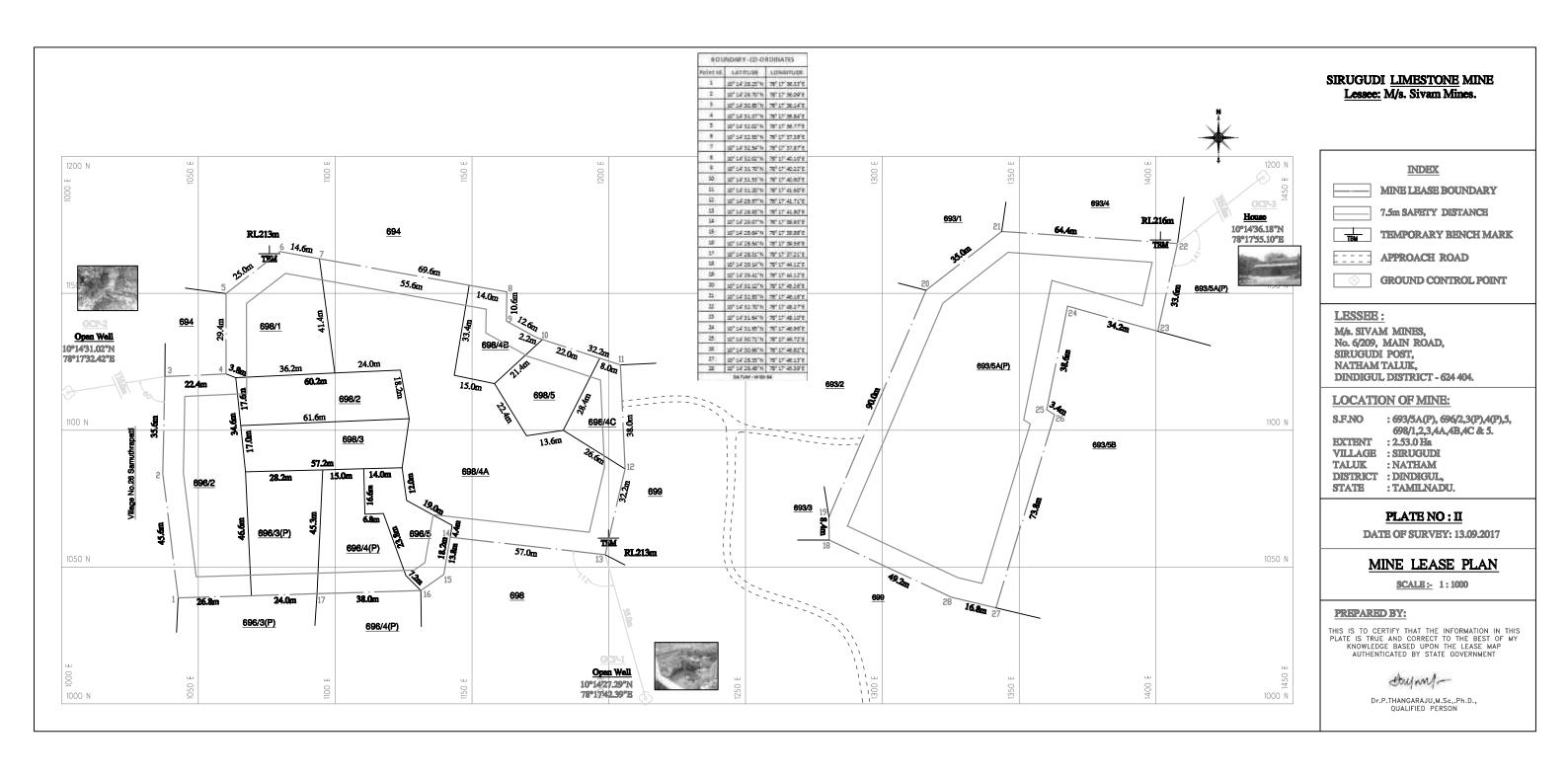

SCALE:- 1:50,000

INDEX

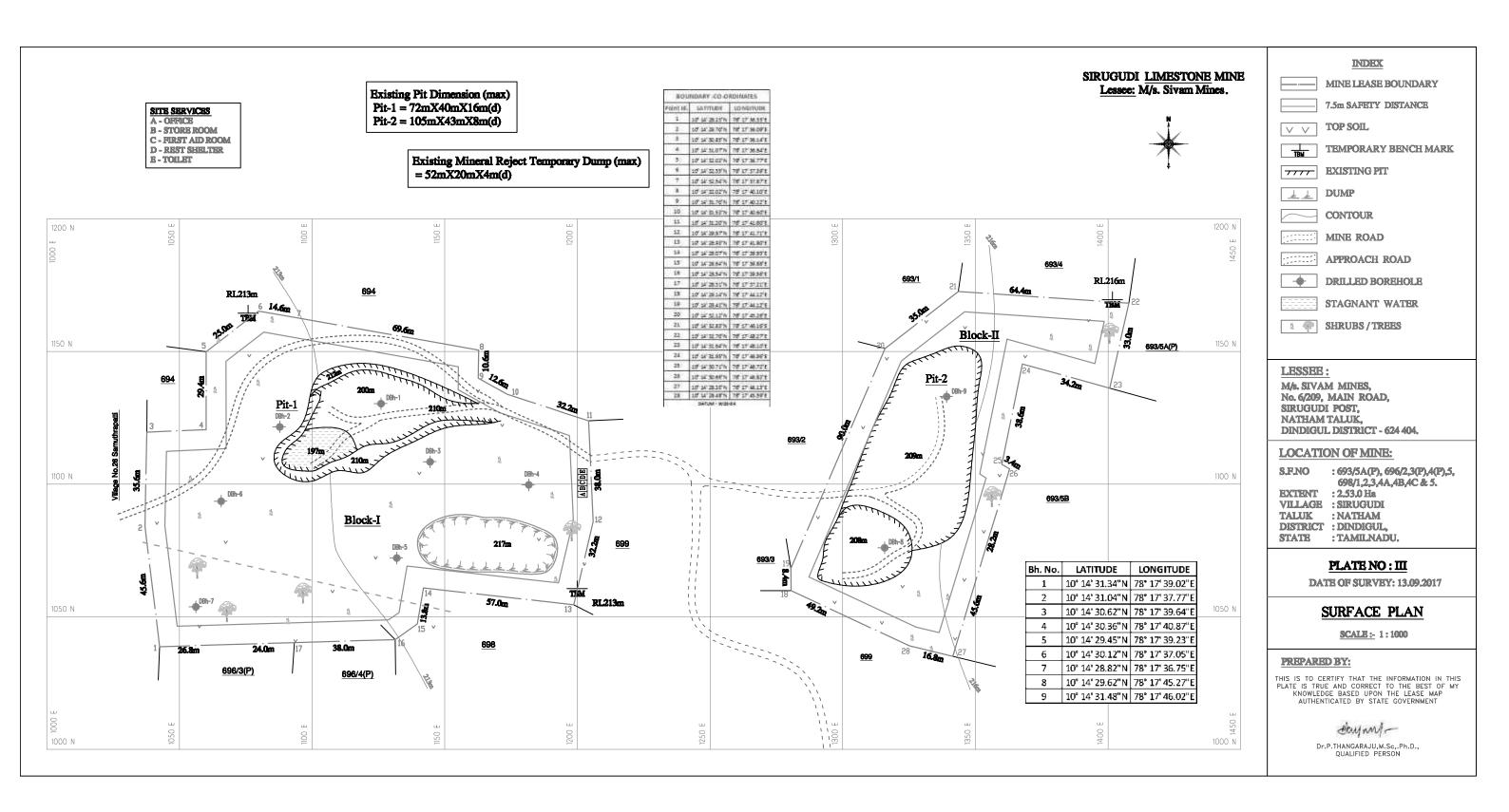
LEASE AREA

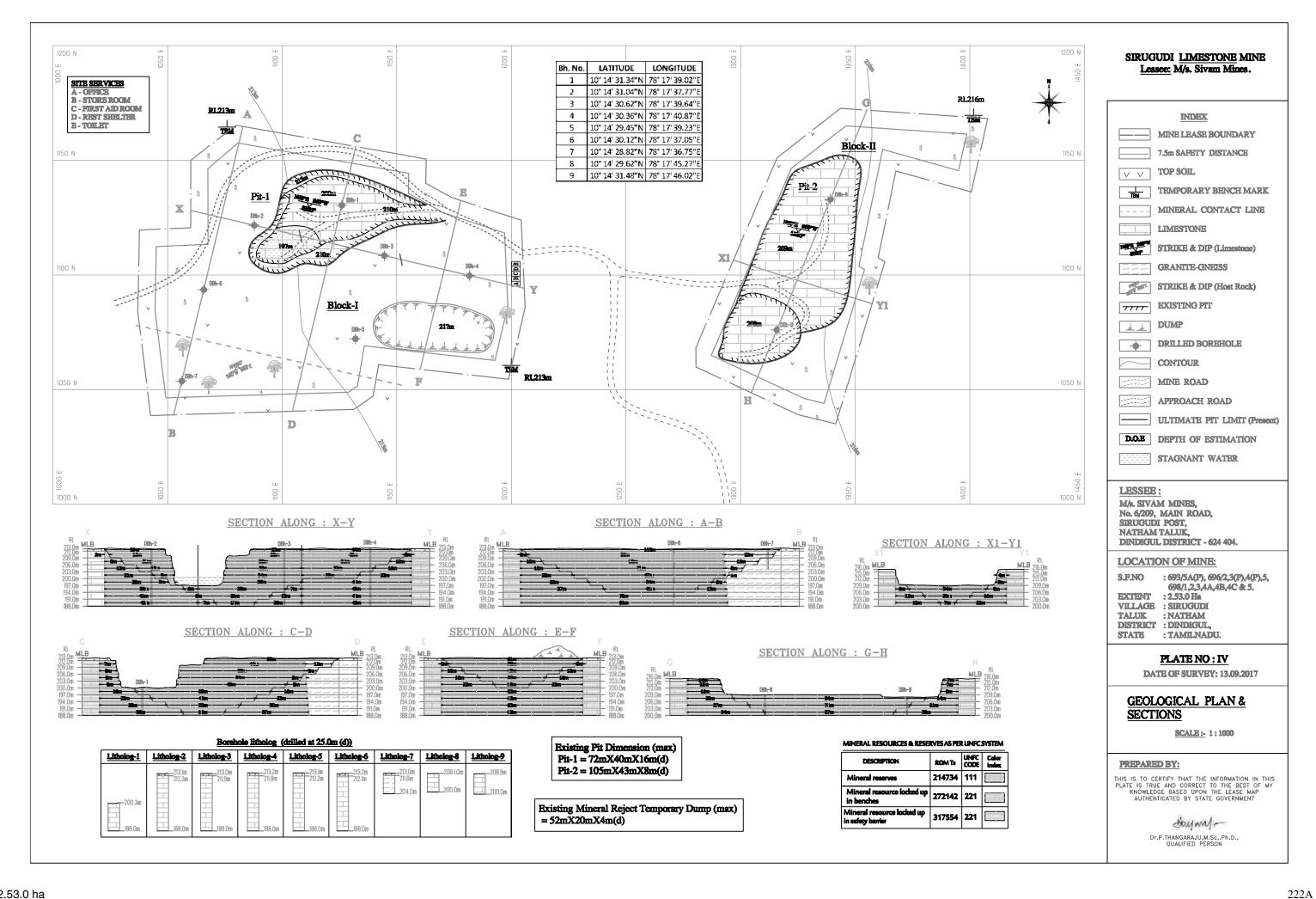

5KM RADIUS

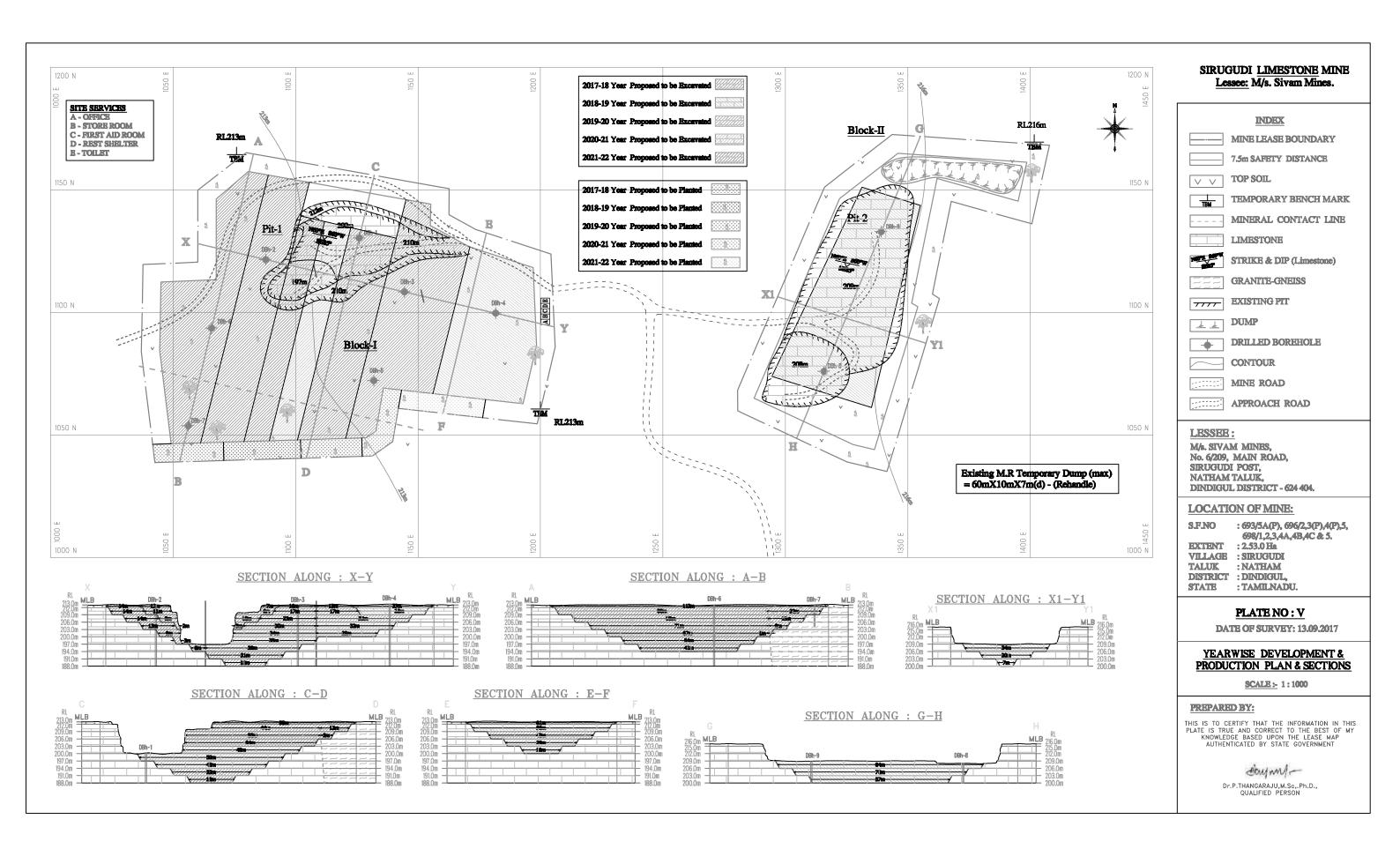
 \checkmark \checkmark \checkmark WIND DIRECTION

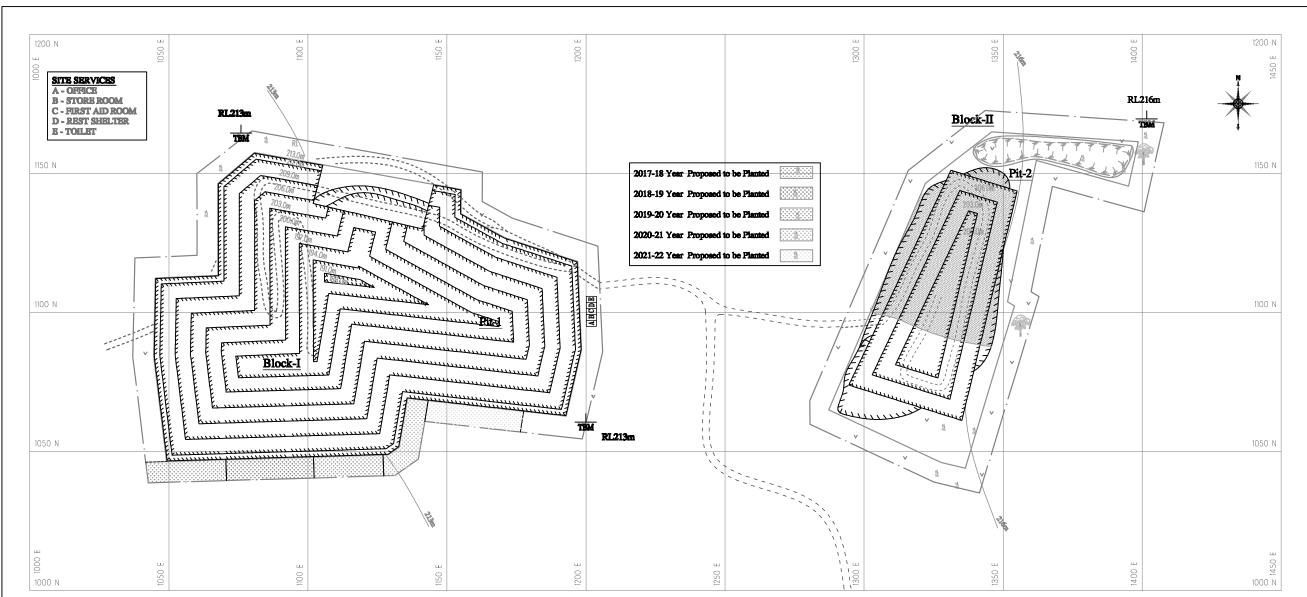


PREPARED BY:


THIS IS TO CERTIFY THAT THE INFORMATION IN THIS PLATE IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE BASED UPON THE LEASE MAP AUTHENTICATED BY STATE GOVERNMENT


Dr.P.THANGARAJU,M.Sc,.Ph.D., QUALIFIED PERSON


2.53.0 ha 220A


2.53.0 ha 221A

2.53.0 ha

2.53.0 ha 223A

PRESENT & POST MINING LAND USE PATTERN

DESCRIPTION	PRESENT AREA (Ha)	ADDITIONAL AREA TO BE REQUIRED AT THIS MINING PLAN PERIOD (Hs)	AREA AT THE END OF LIFE OF MINE (Ha)
AREA UNDER MINING	0.73.9	1.03.5	1.77A
DUMPS	0.10.4	0.06.0 +	0.06.0*
INFRASTRUCTURE	0.01.0	0.01.0	0.01.0
ROADS	0.03.0	NIL	0.03.0
GREEN BELT	0.07.0	0.12.0	0.19.0
UN UTILIZED AREA	1.57.7	0.46.6	0.46.6
TOTAL	2.53.0		2.53.0

^{*} Dumps are Proposed to be Backfilling

Proposed Pit Dimension (max)
Pit-1 = 135mX98m(avg)X25m(d)
Pit-2 = 105mX43mX16m(d)

Proposed Backfilling = 63mX45mX16m(h) Existing M.R Temporary Dump (max) = 60mX10mX7m(d) - (Rehandle)

SIRUGUDI <u>LIMESTONE</u> MINE <u>Lessee</u>: M/s. Sivam Mines.

INDEX

	MINE LEASE BOUNDARY				
	7.5m SAFETY DISTANCE				
V V	TOP SOIL				
TBM	TEMPORARY BENCH MARK				
7777	EXISTING / PROPOSED PIT				
41	DUMP				
	CONTOUR				
5511111	MINE ROAD				
;;;;;;;;;	APPROACH ROAD				
	PROPOSED BACKFILLING				
I DOODE	1.				
LESSEE:					
	M MINES,				
No. 6/209 SIRUGUI	, MAIN ROAD,				
SIKUGUL					

LOCATION OF MINE:

DINDIGUL DISTRICT - 624 404.

NATHAM TALUK,

S.F.NO : 693/5A(P), 696/2,3(P),4(P),5,
698/1,2,3,4A,4B,4C & 5.

EXTENT : 2.53.0 Ha

VILLAGE : SIRUGUDI

TALUK : NATHAM

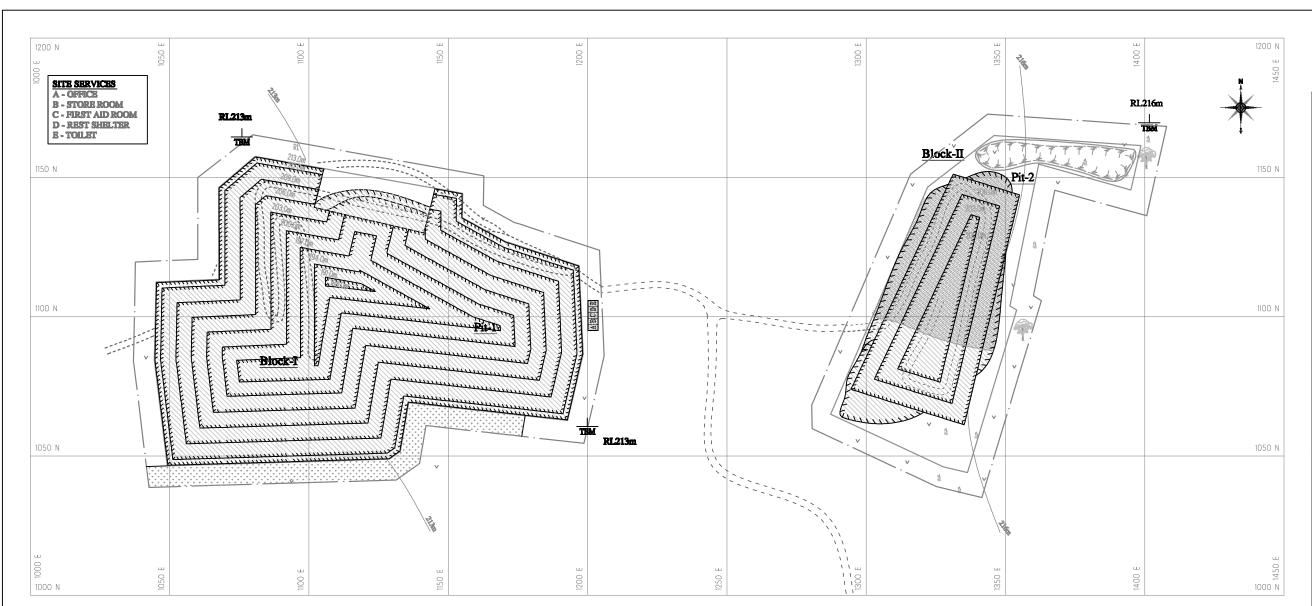
DISTRICT : DINDIGUL,
STATE : TAMILNADU.

PLATE NO: VI

DATE OF SURVEY: 13.09.2017

MINE LAYOUT - LAND USE & AFFORESTATION PLAN

SCALE:- 1:1000


PREPARED BY:

THIS IS TO CERTIFY THAT THE INFORMATION IN THIS PLATE IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE BASED UPON THE LEASE MAP AUTHENTICATED BY STATE GOVERNMENT

Dr.P.THANGARAJU,M.Sc,.Ph.D., QUALIFIED PERSON

2.53.0 ha 224A

AREA CONSIDERED FOR FINANCIAL ASSURANCE

DESCRIPTION	Area Put on use at Start of Pian (Ha) Additional Area Requirement during this of Pian (Ha)		Net Area Considered for Calculation (Fis)	Color code	
AREA UNDER MINING	0.73.9	1.03.5	1.77.4		
DUMPS	0.10.4	0.06.0*	0.06.0		
INFRASTRUCTURE	0.01.0	0.01.0	0.01.0		
ROADS	0.03.0	NIL	0.03.0	:==:	
GREEN BELT	0.07.0	0.12.0	0.19.0		
TOTAL	0.95.3	1.22.5	2,06,4		

* Dumps are Proposed to be Backfilling

Proposed Pit Dimension (max)
Pit-1 = 135mX98m(avg)X25m(d)
Pit-2 = 105mX43mX16m(d)

Proposed Backfilling = 63mX45mX16m(h) Existing M.R Temporary Dump (max) = 60mX10mX7m(d) - (Rehandle)

SIRUGUDI <u>LIMESTONE</u> MINE <u>Lessee:</u> M/s. Sivam Mines.

	INDEX
	MINE LEASE BOUNDARY
	7.5m SAFETY DISTANCE
\vee \vee	TOP SOIL
TBM	TEMPORARY BENCH MARK
7777	EXISTING / PROPOSED PIT
<u>+</u> +	DUMP
	CONTOUR
5000000	MINE ROAD
[111111]	APPROACH ROAD
	PROPOSED BACKFILLING
LESSEE	
	M MINES.
	MAIN ROAD.
SIRUGUI	
NA A PROPERTY A N.	F DELA TE TETE

LOCATION OF MINE:

DINDIGUL DISTRICT - 624 404.

NATHAM TALUK,

S.F.NO : 693/5A(P), 696/2,3(P),4(P),5,
698/1,2,3,4A,4B,4C & 5.

EXTENT : 2.53.0 Ha

VILLAGE : SIRUGUDI

TALUK : NATHAM

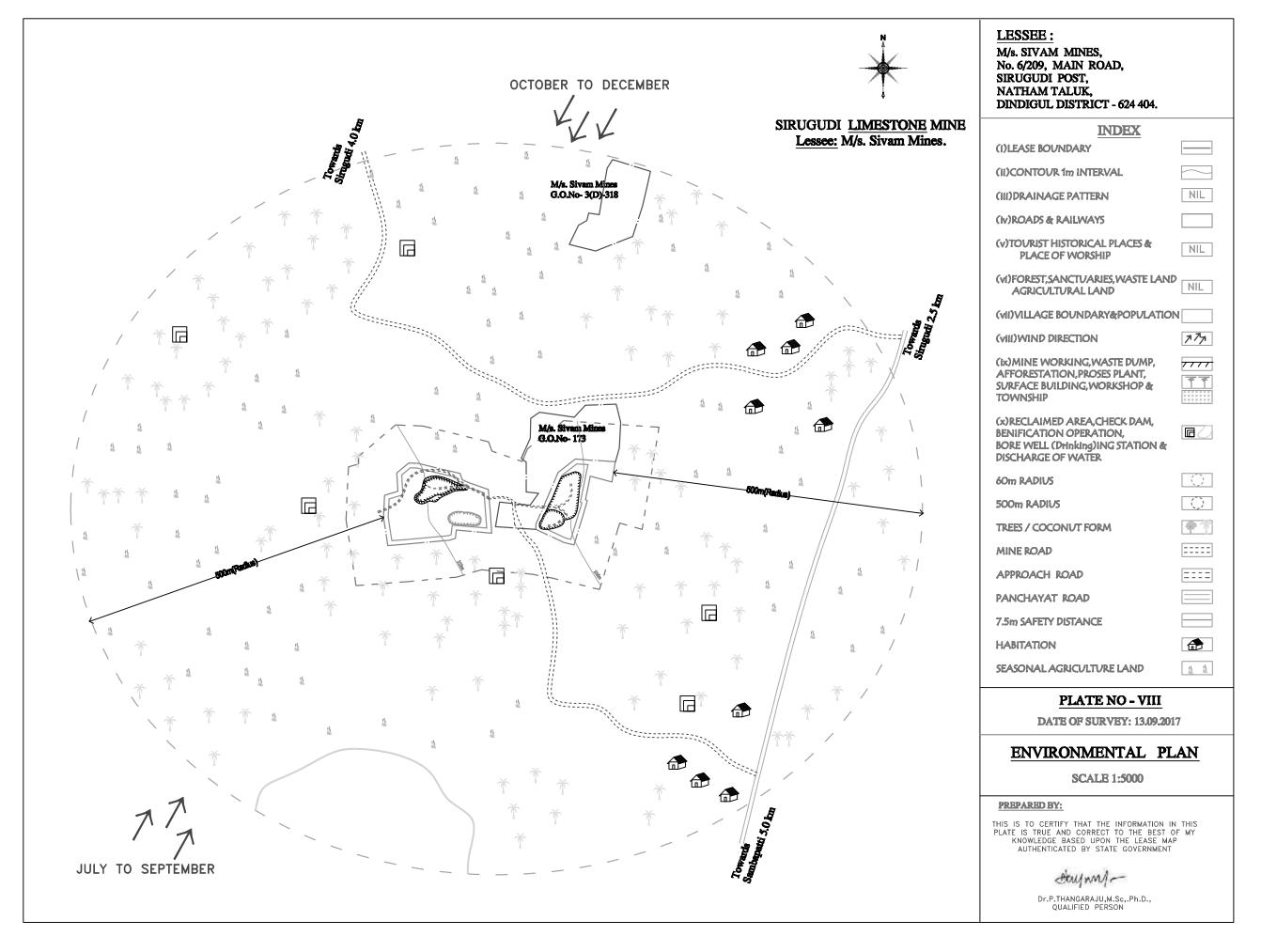
DISTRICT : DINDIGUL,
STATE : TAMILNADU.

PLATE NO: VII

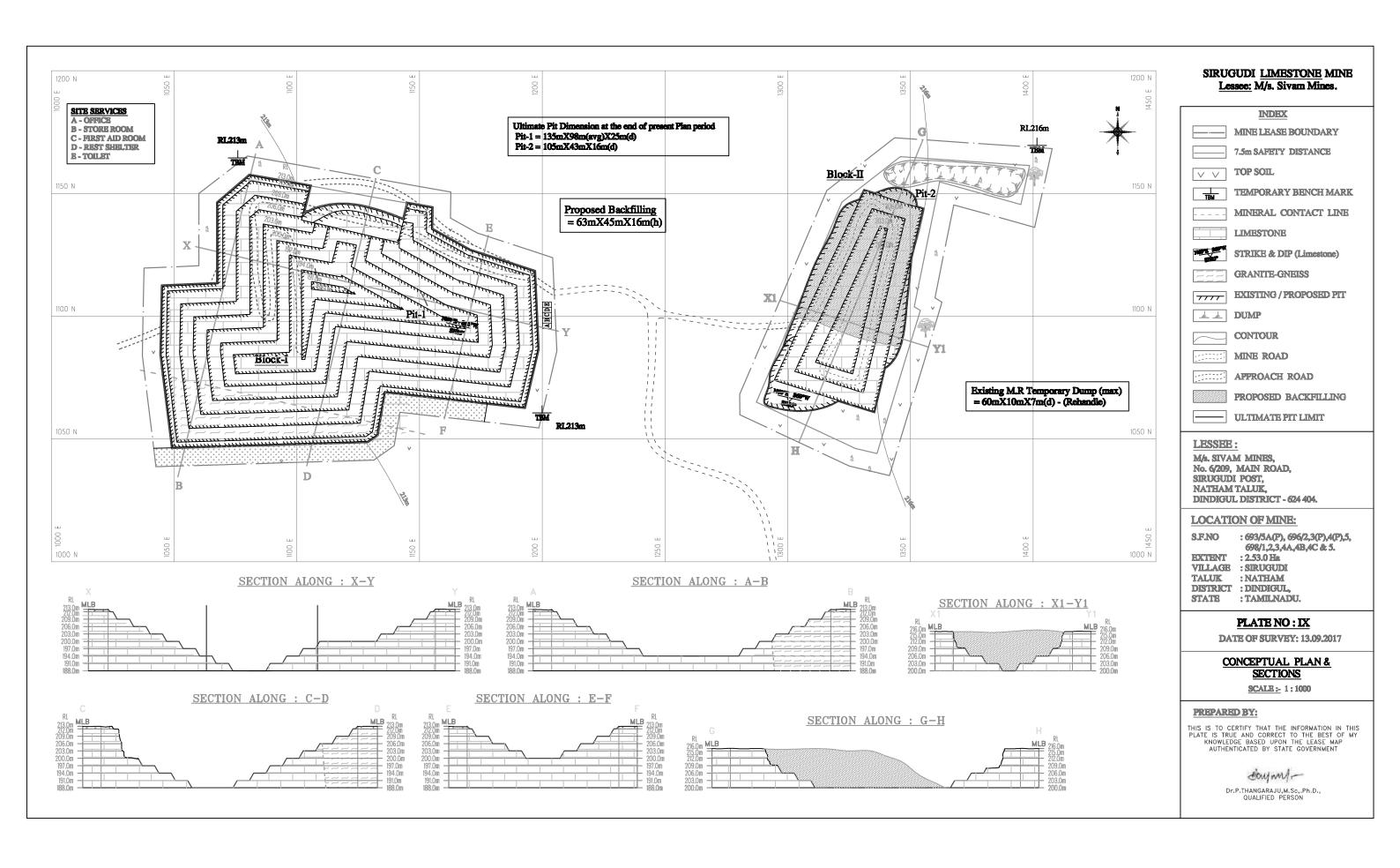
DATE OF SURVEY: 13.09.2017

FINANCIAL AREA ASSURANCE PLAN

<u>SCALE:-</u> 1:1000


PREPARED BY:

THIS IS TO CERTIFY THAT THE INFORMATION IN THIS PLATE IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE BASED UPON THE LEASE MAP AUTHENTICATED BY STATE GOVERNMENT



Dr.P.THANGARAJU,M.Sc,.Ph.D., QUALIFIED PERSON

2.53.0 ha 225A

2.53.0 ha 226A

2.53.0 ha 227A

TEST REPORT

Report No	EHS360/TR/2024-25/001	Report Date	04.01.2024				
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES					
Site Location	Site Location Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha	,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/001				
Sample Description	Ambient Air Quality Monitoring	Sample Condition	Good				
Sampling Location							

Date	Period. hrs	PM10(μg/m3)	PM2.5(μg/m 3)	SO2 (μg/m3)	NO2 (μg/m3)	03 (μg/m3)	NH3 (μg/m3)	CO (mg/ m3)
06-07.10.2023	7:00-7:00	35.3	17.5	4.1	12.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	35.9	18.1	4.4	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	35.1	17.1	4.2	42.5	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	35.4	17.9	4.3	42.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	35.6	18.1	4.1	13.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	36.1	18.5	4.4	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	36.2	17.6	4.2	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	36.8	18.2	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	36.2	17.2	4.0	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	36.9	17.8	4.2	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	36.8	17.3	4.3	12.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	37.2	17.9	4.5	13.0	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	37.3	18.3	4.2	13.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	37.4	19.1	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	37.4	18.6	4.3	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	37.9	19.2	4.4	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	35.3	18.4	4.1	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	36.1	18.9	4.2	13.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	35.4	19.1	4.3	14.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	36.2	19.7	4.4	14.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	35.3	19.3	4.2	14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	36.9	19.8	4.5	14.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	36.1	19.2	4.3	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	36.8	19.9	4.4	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S	Standard	<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ;DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

**********End of Report******** 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/001	Report Date	04.01.2024		
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES			
Site Location	Sirugudi Village, Natham Taluk, Dinc	ligul District			
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha				
Sampling Method IS 5182 Sample Drawn by Labor					
Sample Name	Air	Sample Code	EHS360/001		
Sample Description	Ambient Air Quality Monitoring	Good			
Sampling Location AAQ 1 – Near Lease 2, 10°14'31.42"N 78°17'43.09"E					

Date	Period. hrs	As (ng/m³)	C6H6 (µg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

*********End of Report******** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

1. IV. I. W. Ph. J. So. Jul. 1.							
Report No	EHS360/TR/2024-25/002	Report Date	04.01.2024				
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES					
Site Location	Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha	,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/002				
Sample Description	Ambient Air Quality Monitoring Sample Condition Good						
Sampling Location							

Date	Period. hrs	PM10(μg/m3)	PM2.5(μg/m 3)	SO2 (μg/m3)	NO2 (μg/m3)	03 (μg/m3)	NH3 (μg/m3)	CO (mg/ m3)
06-07.10.2023	7:00-7:00	35.3	17.5	4.1	12.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	35.9	18.1	4.4	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	35.1	17.1	4.2	42.5	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	35.4	17.9	4.3	42.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	35.6	18.1	4.1	13.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	36.1	18.5	4.4	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	36.2	17.6	4.2	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	36.8	18.2	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	36.2	17.2	4.0	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	36.9	17.8	4.2	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	36.8	17.3	4.3	12.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	37.2	17.9	4.5	13.0	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	37.3	18.3	4.2	13.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	37.4	19.1	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	37.4	18.6	4.3	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	37.9	19.2	4.4	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	35.3	18.4	4.1	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	36.1	18.9	4.2	13.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	35.4	19.1	4.3	14.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	36.2	19.7	4.4	14.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	35.3	19.3	4.2	14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	36.9	19.8	4.5	14.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	36.1	19.2	4.3	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	36.8	19.9	4.4	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S	tandard	<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit; DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/002	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES				
Site Location	Site Location Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/002			
Sample Description	Ambient Air Quality Monitoring	Ambient Air Quality Monitoring Sample Condition Good				
Sampling Location	AAQ 2 - Near Lease 1, 10°14'32.59"N 78°17'46.66"E					

Date	Period. hrs	As (ng/m³)	C6H6 (µg/m³)	Bap (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Star	ndard	<200	<100	<60	<80	<80

Verified by

*********End of Report****** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/003	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	ocation Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha	,1.70.0 ha,2.53.0 ha				
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/003			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location						

Date	Period. hrs	PM10(μg/m3		S02	NO2	03	NH3 (μg/m3)	CO (mg/ m3)
Date	i ciiou. iii s)	3)	(µg/m3)	(µg/m3)	(µg/m3)		co (mg/ ms)
06-07.10.2023	7:00-7:00	35.9	17.1	4.3	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	36.4	17.6	4.5	12.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	36.3	17.4	4.4	12.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	36.9	17.9	4.5	13.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	36.4	18.4	4.3	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	36.7	18.9	4.4	13.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	37.3	18.1	4.2	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	37.9	18.6	4.3	12.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	37.2	18.3	4.1	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	37.8	18.9	4.2	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	37.4	19.1	4.2	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	38.0	19.5	4.4	13.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	35.3	19.3	4.3	14.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	35.9	19.9	4.5	14.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	35.4	19.4	4.4	14.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	36.1	19.8	4.5	14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	36.3	17.3	4.2	14.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	36.9	17.9	4.5	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	36.7	17.4	4.3	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	37.1	17.8	4.4	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	37.3	17.6	4.2	12.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	37.9	18.2	4.4	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	37.4	18.3	4.2	12.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	37.8	18.4	4.3	13.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S	tandard	<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ;DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

**********End of Report******** 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/003	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES				
Site Location	ite Location Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/003			
Sample Description	Ambient Air Quality Monitoring	nbient Air Quality Monitoring Sample Condition Good				
Sampling Location	AAQ 3 – Near Lease 2, 10°14'29.65"N 78°17'43.25"E					

Date	Period. hrs	As (ng/m³)	C6H6 (µg/m³)	Bap (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Star	ndard	<200	<100	<60	<80	<80

Verified by

*********End of Report****** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/004	Report Date	0				
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES					
Site Location	Site Location Sirugudi Village, Natham Taluk, Dindigul District Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha						
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/004				
Sample Description	Ambient Air Quality Monitoring Sample Condition Good						
Sampling Location							

Data	Period. hrs	PM10(μg/m3	PM2.5(μg/m	S02	NO2	03	NII2 (/m.2)	CO (mg/m2)
Date	Period. nrs)	3)	(µg/m3)	(µg/m3)	(µg/m3)	NH3 (μg/m3)	co (mg/ ms)
06-07.10.2023	7:00-7:00	36.1	18.1	4.1	12.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	37.3	18.5	4.4	12.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	36.4	18.4	4.2	42.5	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	36.9	18.9	4.3	42.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	37.1	19.1	4.1	13.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	37.8	19.4	4.4	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	35.2	19.3	4.2	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	35.9	19.9	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	35.3	18.4	4.0	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	35.8	18.7	4.2	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	36.2	19.1	4.3	12.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	36.7	19.2	4.5	13.0	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	36.4	19.7	4.2	13.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	37.3	19.5	4.5	13.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	37.1	20.0	4.3	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	37.9	18.3	4.4	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	36.1	18.7	4.1	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	36.4	17.4	4.2	13.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	36.7	17.9	4.3	14.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	37.3	17.3	4.4	14.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	35.3	18.1	4.2	14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	35.8	18.4	4.5	14.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	35.3	18.9	4.3	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	35.6	19.7	4.4	12.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ;DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

600 083

End of Report********

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/004	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/004			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location	pling Location					

Date	Period. hrs	As (ng/m³)	C6H6 (µg/m³)	Bap (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

*********End of Report******** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/005	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District					
Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha						
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/005			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location						

Date	Period. hrs	PM10(μg/m3	PM2.5(μg/m 3)	SO2 (μg/m3)	NO2 (μg/m3)	03 (μg/m3)	NH3 (μg/m3)	CO (mg/ m3)
06-07.10.2023	7:00-7:00	35.4	18.4	(μg/1113) 4.4	<u>(μg/1113)</u> 14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	36.3	18.7	4.5	14.7	BDL(DL:5.0)		BDL(DL:1.14)
13-14.10.2023	7:00-7:00	36.1	19.3	4.2	13.3	BDL(DL:5.0)		BDL(DL:1.14)
14-15.10.2023	7:15-7:15	36.4	19.7	4.3	13.7	BDL(DL:5.0)		BDL(DL:1.14)
20-21.10.2023	7:00-7:00	35.7	19.6	4.4	13.1	BDL(DL:5.0)		BDL(DL:1.14)
21-22.10.2023	7:15-7:15	36.3	20.0	4.5	13.9	BDL(DL:5.0)		BDL(DL:1.14)
27-28.10.2023	7:00-7:00	35.4	18.4	4.3	14.1	BDL(DL:5.0)	• • • • • • • • • • • • • • • • • • • •	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	35.9	18.7	4.5	14.3	BDL(DL:5.0)		BDL(DL:1.14)
03-04.11.2023	7:00-7:00	35.3	17.4	4.4	14.4	BDL(DL:5.0)		BDL(DL:1.14)
04-05.11.2023	7:15-7:15	35.8	17.9	4.5	14.9	BDL(DL:5.0)	• • • • • • • • • • • • • • • • • • • •	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	36.4	17.5	4.3	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	36.9	18.1	4.4	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	37.1	18.3	4.0	12.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	37.4	18.7	4.1	12.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	36.1	17.7	4.2	12.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	36.7	17.9	4.5	12.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	35.3	17.3	4.1	13.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	35.9	17.6	4.4	13.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	36.1	17.7	4.3	12.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	36.4	18.4	4.5	12.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	.35.3	18.3	4.2	14.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	36.7	18.9	4.3	14.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	36.6	19.1	44	13.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	36.9	19.4	4.5	13.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit; DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

	M/s.SIRUGUDI LIMESTONE MINE		•			
Site Location Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/005			
Sample Description	Ambient Air Quality Monitoring	Ambient Air Quality Monitoring Sample Condition Goo				
Sampling Location	AAQ 5 – Near Lease 4, 10°14'46.32"N 78°17'49.98"E					

Date	Period. hrs	As (ng/m³)	С6H6 (μg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

Shyk

Page 1 of 4

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

Good

TEST REPORT

Report No	EHS360/TR/2024-25/006	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MIN	IE OF M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, D	indigul District				
	Fixture 0.24.20 ha 0.04.0 ha 0.04.5 ha 4.70.0 ha 0.52.0 ha					

Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha Sampling Method IS 5182 Sample Drawn by Laboratory Sample Name Air Sample Code EHS360/006 Sample Condition Sample Description **Ambient Air Quality Monitoring**

Sampling Location AAQ 6 - Near Lease 5, 10°14'57.78"N 78°17'34.06"E

Camping Education Are a real Education 14 of 17 of 17 of 100 E								
Date	Period. hrs	PM10(μg/m3)	PM2.5(μg/m 3)	SO2 (μg/m3)	NO2 (μg/m3)	03 (μg/m3)	NH3 (μg/m3)	CO (mg/ m3)
06-07.10.2023	7:00-7:00	39.4	20.1	5.1	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	40.7	21.3	5.4	17.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	41.7	20.4	5.2	16.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	42.4	21.7	5.5	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	42.7	21.3	5.4	18.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	43.0	22.4	5.6	19.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	41.7	21.4	5.5	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	42.3	22.	5.9	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	39.1	22.1	5.4	16.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	39.9	23.7	5.6	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	39.2	20.4	5.3	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	40.2	22.3	5.8	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	41.3	21.7	5.7	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	41.8	22.4	6.0	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	40.4	22.3	5.4	18.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	42.9	23.7	5.9	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	41.3	21.4	5.2	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	42.3	22.7	5.3	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	42.1	22.1	5.4	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	42.9	23.9	5.6	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	39.4	21.4	5.7	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	40.3	22.3	5.9	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	39.7	20.4	5.1	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	40.9	22.7	5.9	19.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
	Standard	<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ; DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/006	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES	·			
Site Location	Sirugudi Village, Natham Taluk, Din	digul District				
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/006			
Sample Description	Ambient Air Quality Monitoring	ir Quality Monitoring Sample Condition				
Sampling Location	AAQ 6 – Near Lease 5, 10°14'57.78"N 78°17'34.06"E					

Date	Period. hrs	As (ng/m³)	С6H6 (μg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/007	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	Site Location Sirugudi Village, Natham Taluk, Dindigul District Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/007			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location						

Date	Period. hrs	PM10(μg/m3	PM2.5(μg/m		NO2	03	NH3 (μg/m3)	CO (mg/ m3)
06 07 10 2022	7.00 7.00	20.2	3)	(μg/m3)	(μg/m3)	(μg/m3)		
06-07.10.2023	7:00-7:00	39.3	21.2	5.3	16.3	BDL(DL:5.0)		BDL(DL:1.14)
07-08.10.2023	7:15-7:15	40.2	22.7	5.7	17.4	BDL(DL:5.0)		BDL(DL:1.14)
13-14.10.2023	7:00-7:00	39.7	21.4	5.2	16.7	BDL(DL:5.0)		BDL(DL:1.14)
14-15.10.2023	7:15-7:15	40.9	22.8	5.6	18.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	41.2	20.3	5.4	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	42.7	21.7	5.7	19.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	41.3	20.4	5.4	17.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	42.9	22.8	5.9	19.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	39.1	21.7	5.2	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	40.4	23.2	5.4	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	40.1	21.4	5.3	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	41.7	23.8	5.7	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	41.2	20.4	5.4	17.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	42.9	22.6	5.6	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	40.1	21.7	5.5	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	42.7	23.7	5.7	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	39.3	20.8	5.3	19.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	40.4	21.7	5.7	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	39.2	21.4	5.4	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	41.7	22.7	5.7	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	40.1	21.4	5.3	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	42.3	22.3	5.8	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	42.1	21.4	5.2	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	40.9	22.9	5.9	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit; DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/007	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/007			
Sample Description	Ambient Air Quality Monitoring	Ionitoring Sample Condition				
Sampling Location	AAQ 7 – Sirugudi, 10°15'46.94"N 78°18'29.24"E					

Date	Period. hrs	As (ng/m³)	С6H6 (μg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

********End of Report***** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/008	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/008			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location AAQ 8 – Samudrapatti, 10°13'19.98"N 78°18'34.47"E						

Date	Period. hrs	PM10(μg/m3	PM2.5(μg/m	S02	NO2	03	NH3 (μg/m3)	CO (mg/ m3)
Date	i eriou. iii s)	3)	(µg/m3)	(µg/m3)	(µg/m3)	MII3 (μg/III3)	
06-07.10.2023	7:00-7:00	39.7	22.3	5.1	16.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	40.9	23.4	5.4	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	41.3	20.9	5.2	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	42.7	22.3	5.7	17.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	40.1	21.4	5.3	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	42.7	23.7	5.7	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	40.1	20.7	5.5	18.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	42.1	21.9	5.9	19.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	40.1	22.4	5.2	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	42.1	23.7	5.6	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	41.3	21.4	5.4	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	42.4	22.9	5.9	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	41.3	20.9	5.3	19.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	42.4	21.4	5.7	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	40.4	21.7	5.1	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	41.3	22.4	5.5	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	40.3	20.7	5.2	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	41.4	21.7	5.6	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	39.7	20.8	5.1	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	40.5	21.8	5.4	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	41.3	22.7	5.2	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	42.7	24.0	5.6	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	41.7	22.3	5.3	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	42.9	23.8	5.9	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit; DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/009	Report Date	04.01.2024				
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES					
Site Location	Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha						
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/009				
Sample Description	Ambient Air Quality Monitoring	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location	AAQ 9 – V.Pudur, 10°13'30.08"N 78°19'59.39"E						

Date	Period. hrs	As (ng/m³)	C6H6 (µg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

*********End of Report******** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/010	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/010			
Sample Description	Ambient Air Quality Monitoring	Sample Condition	Good			
Sampling Location AAQ 10 – Uralipatti, 10°13'2.82"N 78°15'1.28"E						

Date	Period. hrs	PM10(μg/m3	PM2.5(μg/m		NO2	03	NH3 (μg/m3)	CO (mg/ m3)
)	3)	(μg/m3)	(µg/m3)	(μg/m3)		
06-07.10.2023	7:00-7:00	40.7	22.8	5.3	16.1	BDL(DL:5.0)		BDL(DL:1.14)
07-08.10.2023	7:15-7:15	41.7	24.0	5.4	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
13-14.10.2023	7:00-7:00	39.3	23.2	5.5	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
14-15.10.2023	7:15-7:15	40.4	23.9	5.7	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	39.1	20.4	5.6	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	41.7	22.7	5.8	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	40.2	21.3	.5.4	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	41.3	22.4	5.6	18.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	39.3	21.3	5.3	18.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	40.4	22.9	5.7	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	39.7	21.9	5.4	18.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	41.3	23.4	5.8	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	40.4	22.1	5.2	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	42.3	23.9	5.9	18.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	41.3	22.4	5.1	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	42.7	23.4	5.5	19.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	40.3	20.4	5.1	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	42.7	21.8	5.5	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	41.3	21.3	5.2	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	42.9	22.4	5.6	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	42.3	21.9	5.4	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	42.9	22.4	5.8	19.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	40.7	21.3	5.2	18.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	42.3	22.3	5.6	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ;DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

End of Report******** 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/010	Report Date	04.01.2024				
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES					
Site Location	Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha						
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/010				
Sample Description	Ambient Air Quality Monitoring	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location	Impling Location AAQ 10 – Uralipatti, 10°13'2.82"N 78°15'1.28"E						

Date	Period. hrs	As (ng/m³)	С6H6 (μg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

********End of Report***** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/011	Report Date	04.01.2024			
	M/s.SIRUGUDI LIMESTONE MINE OF	M/s. SIVAM MINES				
Site Location	Site Location Sirugudi Village, Natham Taluk, Dindigul District					
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha					
Sampling Method	IS 5182	Sample Drawn by	Laboratory			
Sample Name	Air	Sample Code	EHS360/11			
Sample Description	Ambient Air Quality Monitoring Sample Condition Good					
Sampling Location AAQ 11– Panniamalai, 10°16'45.84"N 78°16'36.52"E						

Date	Period. hrs	PM10(μg/m3	PM2.5(μg/m 3)	SO2 (μg/m3)	NO2 (μg/m3)	03 (μg/m3)	NH3 (μg/m3)	CO (mg/ m3)
06-07.10.2023	7:00-7:00	40.1	22.4	5.4	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
07-08.10.2023	7:15-7:15	42.1	23.7	5.7	17.4	BDL(DL:5.0)		BDL(DL:1.14)
13-14.10.2023	7:00-7:00	41.0	21.4	5.5	17.1	BDL(DL:5.0)		BDL(DL:1.14)
14-15.10.2023	7:15-7:15	42.3	22.7	5.8	18.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
20-21.10.2023	7:00-7:00	42.3	22.4	5.7	18.6	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
21-22.10.2023	7:15-7:15	42.9	23.7	5.9	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
27-28.10.2023	7:00-7:00	40.3	20.4	5.3	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
28-29.10.2023	7:15-7:15	42.3	21.7	5.6	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
03-04.11.2023	7:00-7:00	39.7	21.4	5.2	16.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
04-05.11.2023	7:15-7:15	40.5	22.7	5.4	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
10-11.11.2023	7:00-7:00	41.5	22.1	5.3	17.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
11-12.11.2023	7:15-7:15	42.7	23.4	5.6	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
17-18.11.2023	7:00-7:00	41.7	22.4	5.4	16.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
18-19.11.2023	7:15-7:15	42.9	23.9	5.8	19.2	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
24-25.11.2023	7:00-7:00	41.4	22.4	5.5	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
25-26.11.2023	7:15-7:15	42.1	23.9	5.9	17.3	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
01-02.12.2023	7:00-7:00	40.1	20.9	5.2	16.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
02-03.12.2023	7:15-7:15	42.3	22.4	5.6	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
08-09.12.2023	7:00-7:00	40.4	21.7	5.3	16.8	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
09-10.12.2023	7:15-7:15	42.3	23.4	5.7	17.9	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
15-16.12.2023	7:00-7:00	40.3	22.4	5.4	18.1	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
16-17.12.2023	7:15-7:15	41.3	23.7	5.8	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
22-23.12.2023	7:00-7:00	41.2	21.4	5.3	17.4	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
23-24.12.2023	7:15-7:15	43.0	28.4	5.9	19.7	BDL(DL:5.0)	BDL(DL:1.0)	BDL(DL:1.14)
NAAQ* S		<100	<100	<80	<80	<100	<400	<4

Note: BDL: Below Detection Limit ;DL: Detection Limit

Remarks: The values observed for the pollutants given above are within the CPCB standards.

Verified by

*********End of Report******** 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/011	Report Date	04.01.2024				
	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES	·				
Site Location	Sirugudi Village, Natham Taluk, Dindigul District						
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha						
Sampling Method	IS 5182	Sample Drawn by	Laboratory				
Sample Name	Air	Sample Code	EHS360/011				
Sample Description	Ambient Air Quality Monitoring	r Quality Monitoring Sample Condition					
Sampling Location	ing Location AAQ 11– Panniamalai, 10°16'45.84"N 78°16'36.52"E						

Date	Period. hrs	As (ng/m³)	С6H6 (μg/m³)	BaP (ng/m³)	Pb (μg/m³)	Ni (ng/m³)
06-07.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
07-08.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
13-14.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
14-15.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
20-21.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
21-22.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
27-28.10.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
28-29.10.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
03-04.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
04-05.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
10-11.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
11-12.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
17-18.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
18-19.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
24-25.11.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
25-26.11.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
01-02.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
02-03.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
08-09.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
09-10.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
15-16.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
16-17.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
22-23.12.2023	7:00-7:00	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
23-24.12.2023	7:15-7:15	BDL (DL:0.1)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:0.1)	BDL (DL:0.1)
NAAQ* Sta	ndard	<200	<100	<60	<80	<80

Verified by

********End of Report***** CHENNAL 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Report No	EHS360/TR/2024-25/012	EHS360/TR/2024-25/012								
	M/s.SIRUGUDI LIMESTONE MINE OF M/s. SIVAM MINES									
Site Location	Sirugudi Village, Natham Taluk, Dind	digul District								
	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5	Extent: 0.24.29 ha,0.94.0 ha ,0.94.5 ha,1.70.0 ha,2.53.0 ha								
Sampling Method	SOP	OP Sample Drawn by Laboratory								
Sample Name	Water	Water Sample Code EHS360/012								
Sample	Water	Sample Condition	Good							
Sampling Location	W1 - Project Site Lease 1 - Mine power of the W2 - Project Site Lease 3 - Bore words - Project site Lease 4 - Pit water - Project site Lease 5 - Pit water - 10 - Sirugudi - Ground Water - 10 - Project Site Lease 5 - Pit water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site Lease 5 - Pit Water - 10 - Project Site	ater - 10°14'35.66"N 78°17 er - 10°14'43.75"N 78°17'49 er - 10°14'57.33"N 78°17'3	'55.58"E).77"E 4.83"E							

S.NO	Test Parameters	Unit	BW1	BW2	BW3	BW4	BW5	IS:10500 Norms*
1	рН @ 25°C	-	7.72	7.73	7.83	7.63	7.01	-
2	Conductivity@ 25°C	μs/cm	2140	1810	990	1740	1470	1/5
3	Turbidity	NTU	<1	<1	<1	<1	<1	6.5 – 8.5
4	Total Dissolved Solids	mg/l	1391	1177	643	1131	956	500 / 2000
5	Total Alkalinity	mg/l	430	280	310	235	310	
6	Total Hardness as CaCO ₃	mg/l	563	561	288	581	590	200 / 600
7	Calcium as Ca	mg/l	108	99	56	104	104	200 / 600
8	Magnesium as Mg	mg/l	71	76	36	68	80	75 / 200
9	Chloride as Cl-	mg/l	260	265	95	192	200	250 / 1000
10	Sulphate as SO ₄ -	mg/l	120	104	72	110	95	200 / 400
11	Sodium as Na	mg/l	164	108	106	136	128	0.3
12	Iron as Fe	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	-
13	Phosphate as PO ₄	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	-
14	Silica as SiO ₂	mg/l	28.0	26.0	28.0	32.0	31.0	-
15	Total Coliform	mgl	Absent	Absent	Absent	Absent	Absent	Absent
16	E.Coli	mgl	Absent	Absent	Absent	Absent	Absent	Absent

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

CHENNAL

600 083

*********End of Report********

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

Ph Ph 1	2 4 6 5	91 94	LIM	E mpr pr	-
P 16 1	M A	10.040	1 1 0/2	1 1 1	6.3
1. 17.1		Tax .	THE REAL		-

Report No	EHS360/TR/2024-25/013							
Site Location	M/s.SIRUGUDI LIMESTONE MINE OF M/s. SIVAM MINES Sirugudi Village, Natham Taluk, Dindigul District							
Sampling Method	SOP Sample Drawn by Laboratory							
Sample Name	Water Sample Code EHS360/013							
Sample	Water	Water Sample Condition Good						
Sampling Location	W1 - Samudrapatti - Ground Water W2 - V.Pudur - Ground Water - 10° W3 - Uralipatti - Ground Water - 10 W4 - Panniamalai - Ground Water W5 – Odugampatti – Ground Water W6 – Avichipatti - Ground Water -	13'31.90"N 78°19'59.29"E '°13'2.66"N 78°15'1.61"E - 10°16'46.65"N 78°16'36.7 r - 10°17'12.01" N 78°19'1	9"E 8.76"E					

S.N O	Test Parameters	Unit	BW6	BW7	BW8	BW9	BW10	BW10	IS:10500 Norms*
1	рН @ 25°C	-	7.59	7.4	7.82	7.67	8.23	7.49	_
2	Conductivity@ 25°C	μs/cm	1440	2880	1070	1150	1340	610	1/5
3	Turbidity	NTU	<1	<1	<1	<1	<1	<1	6.5 – 8.5
4	Total Dissolved Solids	mg/l	936	1872	696	748	871	397	500 / 2000
5	Total Alkalinity	mg/l	288	292	150	154	156	200	
6	Total Hardness as CaCO ₃	mg/l	570	501	260	285	292	270	200 / 600
7	Calcium as Ca	mg/l	106	103	56	58	54	72	200 / 600
8	Magnesium as Mg	mg/l	74	59	29	34	38	22	75 / 200
9	Chloride as Cl	mg/l	178	125	155	146	155	50	250 / 1000
10	Sulphate as SO ₄ -	mg/l	92	94	119	122	138	26	200 / 400
11	Sodium as Na	mg/l	116	209	178	184	205	42	0.3
12	Iron as Fe	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	-
13	Phosphate as PO ₄	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	-
14	Silica as SiO ₂	mg/l	26.0	26.0	22.0	28.0	24.0	14.0	-
15	Total Coliform	mgl	Absent						
16	E.Coli	mgl	Absent						

Verified by

Shyk

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

CHENNAL

600 083

*********End of Report********

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

PRIVATE LIMITED **TEST REPORT**

LUINVAIP FIN	TEOT REFORM									
Report No	EHS360/TR/2024-25/014	Report Date	04.01.2024							
Site Location	M/s.SIRUGUDI LIMESTONE MINE OF M/s. SIVAM MINES Sirugudi Village, Natham Taluk, Dindigul District									
Sampling Method	SOP	Sample Drawn by	Laboratory							
Sample Name	Soil	Sample Code								
Sample	Soil	Sample Condition	Good							
Sampling Location	S1 – Mine Lease 1 - 10°14'31.47"N 78°17'40.46"E S2 - Mine Lease 2 - 10°14'30.55"N 78°17'45.27"E									

Sl. No.	Parameter		S1	S2	S3-	S4	S 5	Desirable Range	Interpretation
1	рН @ 25°C		8.31	8.09	7.98	8.16	8.04	5.5-9.0	Strongly alkaline
2	Electrical Conductivit 25°C, μS/cm	y @	590	624	609	614	628	1000 - 2000	Low conductivity
3	Water Content, %		0.89	0.68	0.73	0.64	0.59	-	
4	Available Phosphorou	ıs, μg/g	55.6	51.4	58.2	50.6	50.1	15 - 840	Very Low
5	Organic Matter,%		0.7	0.9	1.1	1.8	2.0	-	
6	Soluble Calcium as C	a, meq/l	14.0	12.4	10.8	8.8	6.4	50 - 100	Low
7	Soluble Calcium & Magnesium, meq/l		20.6	20.6	19.5	12.8	10.3	-	
8	Chloride as Cl ⁻ , meq/l		12.8	11.7	12.4	11.8	10.1	0.1 - 0.2	High
9	Soluble Potassium as mg/100g	K,	0.8	0.6	0.8	0.9	1.1	15 - 25	Low
10	Soluble Sodium as Namg/100g	ι,	4.7	3.6	3.1	3.3	2.9	-	-
11	Sulphate as SO ₄ ,mg/1	100g	18.6	20.4	18.6	16.4	14.6	0.2 - 1	Low
12	Calcium Carbonate as CaCO ₃ , %		32	34	32	20	28	-	
13	Carbonate and Bicarb meq/l	onate,	1.6	1.4	1.8	2.2	1.2	-	
14	Total Kjheldal Nitrog	en, %	14	14	28	14	14	0.15 - 0.25	Very Low
15	Bulk density gm/cc		1.28	1.22	1.26	1.28	1.25	-	-
16	Water holding capacit	y %	42	42	48	44	44	-	-
17	Porosity %		56	54	60	52	50	-	-
		Sand	92	93	90	93	-	-	
18	Texture %	Silt	4	3	4	2	-	-	
		Clay	4	4	6	5	-	-	
19	Soil class		Sand	Sand	Sand	Sand	Sand	-	-

**********End of Report********

Verified by

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

CHENNAL

600 083

^{3.} Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

^{4.} Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

TEST REPORT

LICIA WIT TIME	() CD								
Report No	EHS360/TR/2024-25/015	Report Date	04.01.2024						
Cita Lagation	M/s.SIRUGUDI LIMESTONE MINE	OF M/s. SIVAM MINES							
Site Location	Sirugudi Village, Natham Taluk, Dindigul District								
Sampling Method	SOP	OP Sample Drawn by Laboratory							
Sample Name	Soil	Sample Code	EHS360/015						
Sample	Soil	Sample Condition	Good						
	S6 - Sirugudi - 10°15'43.05"N 78°1	8'27.50"E							
Sampling Location	S7 - Samudrapatti - 10°13'22.42"N	78°18'34.95"E							
Sampling Location	S8 - Uralipatti - 10°13'09.47"N 78°1	5'07.61"E							
	S9 - Panniamalai - 10°16'46 65"N 7	8°16'33 58"F							

		idilialai 10 10 10100 11 10 10						
Sl. No.	Parameter		S1	S2	S3-	S4	Desirable Range	Interpretation
1	рН @ 25°C		7.85	7.47	8.02	7.68	5.5-9.0	Strongly alkaline
2	Electrical Conductivity @ 25°C, μS/cm		484	516	534	546	1000 - 2000	Low conductivity
3	Water Content, %		1.34	1.25	1.16	1.09	-	1
4	Available Phosphorous,	$\mu g/g$	48.4	51.2	50.8	49.6	15 - 840	Very Low
5	Organic Matter,%		1.5	1.2	1.8	1.3	-	I
6	Soluble Calcium as Ca,	meq/l	3.8	4.4	2.6	1.9	50 - 100	Low
7	Soluble Calcium & Magnesium, meq/l		5.4	5.8	3.4	3.2	-	-
8	Chloride as Cl ⁻ , meq/l		4.2	3.6	2.8	3.4	0.1 - 0.2	High
9	Soluble Potassium as K mg/100g	,	1.1	0.9	1.4	0.2	15 - 25	Low
10	Soluble Sodium as Na, mg/100g		5.4	3.9	5.8	4.3	-	
11	Sulphate as SO ₄ -,mg/10	0g	14.8	12.6	13.4	15.8	0.2 - 1	Low
12	Calcium Carbonate as CaCO ₃ , %		28	36	34	28	-	1
13	Carbonate and Bicarbon meq/l	nate,	2.2	2.0	1.8	2.0	-	-1
14	Total Kjheldal Nitrogen	, %	56	48	14	28	0.15 - 0.25	Very Low
15	Bulk density gm/cc		1.52	1.44	1.38	1.30	-	-
16	Water holding capacity	%	44	46	48	44	-	-
17	Porosity %		60	62	64	66	-	-
		40	35	35	40	-	-	
18	Texture %	25	30	35	30	-	-	
		35	35	30	30	-	-	
19	Soil class		Clay Loam	Clay	Clay loam	Clay	-	-

*******End of Report******

Page 1 of 1 CHENNAI 600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Verified by

Selyk

Note: 1. The test results are only to the sample submitted for test. 2. Any correction of the test report in full or part shall invalidate the report.

3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

TEST REPORT

TC-9583

Report No	EHS360/TR/2024-25/016	Report Date	04.01.2024					
Site Location	M/s.SIRUGUDI LIMESTONE MINE OF M/s. SIVAM MINES							
Site Location	Sirugudi Village, Natham Taluk, Dindigul District							
Sampling Method	IS 9989	Sample Drawn by	Laboratory					
Sample Name	Noise Level Monitoring	Sample Code	EHS360/016					
Sample	Noise Level Monitoring	Sample Condition	Good					
Sampling Location	-							

CI				Noise 1	Levels, dB(A	4)				
Sl. No.	Location	Day Time (06:00-22:00 hrs.)			Night	Night Time (22:00-06:00 hrs.)				
INO.		Lmin.	Lmax.	Leq	Lmin.	Lmax.	Leq			
1	N1-Project site	40.3	55	50	35	44.3	41.8			
2	N2-Project site	40.3	55	49.1	35.1	44.7	41.5			
3	N3-Project site	40.1	59.3	49.8	35.1	44.3	41.7			
4	N4-Project site	40.3	55	49.1	35.3	45.3	41.6			
5	N5-Project site	37.4	58.9	49.4	32.6	48.7	41.2			
6	N6-Project site	38.7	55	49.1	36.1	40.5	39.9			
7	N7-Project site	41.6	58.1	48.5	36.5	41.5	40.6			
8	N8-Project site	42.7	55.7	50	30.2	40.5	36.3			
9	N9-Project site	38.8	55.1	48.7	32.8	38.5	36			
10	N10-Project site	39.5	59.5	50.1	32.9	44.1	36.9			
11	N11-Project site	18.2	55.3	49.1	30.5	41.2	38.5			
12	N12-Project site	38.3	55.1	48.3	31.1	38.6	38.5			
13	N13-Project site	39.4	58.6	47.8	33.7	41.9	38.8			
14	N14-Project site	39.1	55.3	47.4	33.2	39.5	37.4			
15	N 15-Project site	44	55.8	50.5	33.1	44.3	39.9			
16	N16-Project site	38.5	45.9	45.1	32.7	40.5	38.3			
17	N17–Project site	40.5	59.3	52.0	31.8	46.1	39.3			
18	N18–Project site	37.4	56.2	48.7	31.1	39.7	36.9			
	Buffer Zone:									
19	N19- Sirugudi	42.1	58.7	51.3	36.4	48.7	41.5			
20	N20- V.Pudhur	42.5	59.4	50.8	35.1	48.9	43.2			
21	N21- Pannianmalai	43.1	59.8	51.2	36.2	48.7	39.8			

Verified by

Shyk

Page 1 of 1
CHENNAI
600 083

Authorised Signatory

Name: Santhosh Kumar A Designation: Quality Manager

Note: 1. The test results are only to the sample submitted for test. 2.Any correction of the test report in full or part shall invalidate the report.

3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client.

4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstance's lab accepts any liability or loss/damage caused

by use or misuse of test report after invoicing or issued of test report.

E: info@ehs360labs.com

National Accreditation Board for Education and Training

Certificate of Accreditation

Geo Exploration & Mining Solutions, Salem

No. 17, Advaitha Ashram Road, Fairlands, Salem – 636 004, Tamilnadu, India.

The organization is accredited as **Category-A** under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA-EMP reports in the following Sectors –

S.No	Coston Description	Sector	Cat	
	Sector Description	NABET	MoEFCC	Cat.
1	Mining of minerals opencast only	1	1 (a) (i)	Α
2	Industrial estates/ parks/ complexes/areas, export processing Zones (EPZs), Special Economic Zones (SEZs), Biotech Parks, Leather Complexes	31	7 (c)	В
3	Building and construction projects	38	8(a)	В

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in RAAC minutes dated Jan 06, 2023 and posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no QCI/NABET/ENV/ACO/23/2684 dated Feb 20, 2023. The accreditation needs to be renewed before the expiry date by Geo Exploration & Mining Solutions, Salem following due process of assessment.

Saint.

Sr. Director, NABET Dated: Feb 20, 2023

Certificate No. NABET/EIA/2225/RA 0276

Valid up to August 06, 2025

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to the QCI-NABET website.